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τ → µµµ at a rate of one out of 1014 tau decays?
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We present in a full analytic form the partial widths for the lepton flavour violating decays µ± →
e±e+e− and τ± → `±`′+`′−, with `, `′ = µ, e, mediated by neutrino oscillations in the one-loop
diagrams. Compared to the first result by Petkov in [1], obtained in the zero momentum limit
P � mν � MW , we retain full dependence on P, the momenta and masses of external particles,
and we determine the branching ratios in the physical limit mν � P � MW . We show that the
claim in [2] that the τ → ``′`′ branching ratios could be as large as 10−14, as a consequence of keeping
the P dependence, is flawed. We find rates of order 10−55, even smaller than those obtained in the
zero momentum limit, as the latter prediction contains an unphysical logarithmic enhancement.

INTRODUCTION

It is widely reported by several experimental collabora-
tions, e.g. by CMS [3], ATLAS [4], LHCb [5], BABAR [6–
9] and Belle [10], that the branching ratios for the charged
lepton flavour violating (CLFV) decay τ± → `±`′+`′−,
with `, `′ = e, µ, can be as large as 10−14 in the Stan-
dard Model extended with either a Dirac or a Majorana
mass term for neutrinos. This follows from a claim by
Pham in [2] that for these decays the GIM mechanism [11]
produces a suppression of the form |∑i U`iU

∗
Li log xi|2,

where xi = m2
νi/M

2
W , i = 1, 2, 3, mνi and MW are the

masses of the three neutrinos and the W boson, and U is
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing
matrix [12, 13]. The result in [2] is in sharp contrast
with the first evaluation by Petkov [1], which showed
that these CLFV decays are instead power suppressed
by |∑i U`iU

∗
Li xi log xi|2, so that the smallness of the ra-

tios mνi/MW crushes the branching fractions well be-
low 10−54, far beyond the sensitivity of any foreseeable
experiment.

The calculations in [1] and [2] differ as follows. Ref. [1]
employed for the evaluation of the one-loop diagrams the
zero-momentum-limit (ZML) approximation, which as-
sumes vanishing momenta and masses of the external
particles while it retains the dependence on the inter-
nal masses of neutrinos and the W boson. The ZML,
implicitly assumes the mass scale hierarchy

(ZML) P � mνi �MW ,

where P generically stands for any of the external parti-
cle momenta and masses, e.g. P ∼ mL or P ∼ m`. This

approximation, even if far from the physical situation,
allows a substantial simplification of the one-loop inte-
grals, as in this way they depend only on xi. Ref. [2],
on the contrary, argued that once the external momen-
tum dependence is taken into account, the GIM cancel-
lation in L → ``′`′, with L = τ or µ, becomes actu-
ally much milder, with a suppression only of the form
|∑i U`iU

∗
Li log xi|2, which leads to branching ratio val-

ues of the order of 10−14.

If the prediction in [2] were true, it would imply, with
current values for neutrino mixing angles and mass split-
tings [14], that the branching ratio of µ → eee could
reach 10−17, for a lightest-neutrino mass of the order of
10−10 eV or smaller. This would be just around the cor-
ner for the Mu3e experiment currently under construc-
tion at the Paul Scherrer Institute, Switzerland, which
aims to reach a sensitivity of Br(µ → eee) ∼ 10−16 [15].
For the tau, the rates would be in the range 10−16−10−13,
still several order of magnitudes smaller than the current
world averages, Br(τ → ``′`′) . 10−8 [16], and the ex-
pected sensitivity of Belle II, Br(τ → ``′`′) . 10−10 [17],
and the HL-LHC, Br(τ → ``′`′) . 10−9 [18–20], but
more than forty order of magnitudes larger than the pre-
diction of [1].

Therefore, the question we address in this letter is if
the branching ratios of L → ``′`′ can really change so
dramatically once one assumes the physical limit (PL),
i.e. the hierarchy

(PL) mνi � P �MW ,

instead of the ZML, and keeps full dependence of external
momenta and masses in the loop diagrams.
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FIG. 1. One-loop diagrams contributing to the CLFV decay L− → `−`′+`′− in the unitary gauge: the Z penguin (a,b), the
photon penguin (c) and the box (d). Wave function corrections must be considered as well. In Feynman gauge there are also
diagrams with Goldston bosons.

In [2] it is argued that in the Z-penguin diagram shown
in Fig. 1a there are two propagators of nearly massless
fermions, which give rise to a log xi when the momentum
q of the Z boson approaches q2 = 0. This argument
is supported by a computation of the Z-penguin as an
expansion in q2/M2

W taking the form f(q2, xi) = f0(xi)+
(q2/M2

W )f1(xi) + . . . . By noticing that f0 ∼ xi log xi is
suppressed — the term computed in [1] — while f1 ∼
log xi is not, Ref. [2] concludes that (q2/M2

W ) log xi must
dominate the branching ratio in the xi → 0 limit.

This conclusion is flawed. First of all, in [2] the loop
integrals written in terms of Feynman parameters are
computed via a simple Taylor expansion of the denomi-
nator appearing inside. Such approximation is not legit-
imate for arbitrary values of the Feynman parameters,
so it does not lead to an expansion of the integral it-
self. A proper asymptotic expansion of a Feynman inte-
gral can be obtained, for instance, via the expansion-by-
regions method [21, 22], in which one divides the whole
integration domain into various regions and then per-
forms different Taylor expansions in each region. Only
the sum of all regions’ contributions eventually yields
the desired asymptotic series. In addition to that, even
if such q2/M2

W expansion were performed correctly, the
calculation presented in [2] implicitly assumes also the
hierarchy q2 � m2

νi. Therefore, the series expansion
f0(xi)+(q2/M2

W )f1(xi)+ . . . does not reproduce the cor-
rect xi → 0 limit at fixed values of q2, since this limit lies
beyond the validity range of q2 � m2

νi.

Recently, Ref. [23] presented a calculation of L→ ``′`′

in the PL, in which the one-loop diagrams are numeri-
cally evaluated with full dependence on P. At variance
with [2], they found branching ratios compatible with
those in the ZML or smaller. However, the authors of
Ref. [23] neglect the contribution from γ-penguins (as in
Fig. 1c) and therefore their results are gauge dependent.
Indeed, in processes with flavour changing neutral cur-
rents the gauge cancels entirely only in the sum of boxes,
Z- and γ-penguins [24, 25]. Even if Ref. [1] retained only
the logarithmic enhanced term xi log xi arising only from
the Z penguins and the boxes, the omission of γ-penguins
is not legitimate anymore as soon as one departs from this
approximation. So we are still left with the doubt if the
branching ratios in [23] are smaller as a consequence of

calculating in the Feynman gauge or if there is a deeper
physical meaning.

In this letter we present the decay widths of L→ ``′`′

in the PL, fully analytic in MW , mν and external mo-
menta and masses. We compute them by making a sys-
tematic asymptotic expansion in P/MW and mν/P of
all Feynman diagrams by means of the expansion by re-
gions. We will show that the neutrino mass dependence
|∑i xi log xi|2 in the ZML is replaced in the PL by a
much smaller enhancement |∑i xi log(m2

L/M
2
W )|2. We

will give an explanation of this exchange of mass scales
in the logarithm by analysing the effective operators me-
diating the decay once the Z and the W bosons are in-
tegrated out.

DETAILS OF THE CALCULATION

Let us consider the SM extended with neutrino mass,
either a Dirac or Majorana. The flavour eigenstates of the
left-handed neutrino fields ν`L entering in the weak in-
teractions become linear combinations of the three mass
eigenstates νi with masses mνi:

ν`L =

3∑
i=1

U`iνiL, ` = e, µ, τ, (1)

where νiL is the left-handed component of νi and U is
the PMNS matrix. The decay of a heavy lepton L = µ, τ
into three lighter charged leptons `, `′ = µ, e

L± → `±`′+`′−, (2)

with masses mL, m` and m`′ , respectively, proceeds then
via three classes of one-loop diagrams shown in Fig. 1:
the boxes, the Z and γ penguins. We neglect diagrams
with the exchange of a Higgs boson as they are further
suppressed by two extra powers of 1/M2

W due the Yukawa
interaction. The partial width given in [1] was obtained
in the ZML. In this approximation, the one-loop integrals
depend only on the ratio xi. To leading order in xi, the
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Branching ratio (NO) Branching ratio (IO)

ZML PL ZML/PL ZML PL ZML/PL

µ→ eee 4.1× 10−54 2.9× 10−55 14 6.1× 10−54 4.6× 10−55 14

τ → µµµ 2.0× 10−53 5.8× 10−55 34 2.0× 10−53 5.8× 10−55 34

τ → µee 1.3× 10−53 3.8× 10−55 35 1.3× 10−53 3.8× 10−55 35

τ → eee 1.1× 10−54 3.3× 10−56 34 6.1× 10−55 1.9× 10−56 32

τ → eµµ 7.6× 10−55 2.1× 10−56 36 4.1× 10−55 1.2× 10−56 34

TABLE I. Branching ratio for the CLFV decays L → ``′`′ in the ZML and the PL for normal ordering (NO) and inverted
ordering (IO) of neutrino masses. The ratio between the two is also reported. In the ZML we assume m1 = 0 (NO) or m3 = 0
(IO).

amplitudes of the three classes of diagrams are:

iAZ =
αGF√

2π

∑
i

U`iU
∗
Li xi(3 + log xi)

×
[

(¯̀γµPLL)( ¯̀′γµ`
′)− 1

2 sin2 θW
(¯̀γµPLL)( ¯̀′γµPL`

′)

]
,

(3)

iAγ = −αGF√
2π

(¯̀γµPLL)( ¯̀′γµ`
′)
∑
i

U`iU
∗
Li xi, (4)

iABox =
αGF

2
√

2π sin2 θW
(¯̀γµPLL)( ¯̀′γµPL`

′)

×
∑
i

U`iU
∗
Li xi(1 + log xi), (5)

where GF and α are the Fermi and fine structure con-
stants, respectively, and sin2 θW is the sine of the Wein-
berg angle. Retaining only the terms enhanced by
log xi ∼ 50, which appear in the boxes and Z penguins,
one obtains the prediction for the rate in the ZML [1]:

Γ(L→ ```)

Γ0
=

3α2

16π2

∣∣∣∣∣
3∑
i=2

U`iU
∗
Li

∆m2
i1

M2
W

log
∆m2

i1

M2
W

∣∣∣∣∣
2

, (6)

and Γ(L → ``′`′, ` 6= `′) = 2
3Γ(L → ```), where

Γ0 = G2
Fm

5
L/(192π3). Eq. (6) is obtained by taking the

limit m1 → 0 and assumes normal neutrino mass hierar-
chy, i.e. m1 < m2 < m3, showing that the rate actually
depends on the neutrino mass splittings ∆m2

31 and ∆m2
21

since the GIM-suppression term
∑
i U`iU

∗
Lixi log xi van-

ishes in the equal mass limit. For inverted mass hierar-
chy, the subscript ‘1’ must be substituted with ‘3’ and
i = 1, 2. Eq. (6) also neglects subleading m`,`′/mL cor-
rections from phase space integration. The values of the
branching ratios in the ZML with normal and inverted
mass hierarchy are reported in Tab. I. Current PDG val-
ues are employed for the lepton masses, neutrino mass
splittings and neutrino mixing angles [14].

Let us now describe our calculation performed in the
PL. We generated the complete set of Feynman diagrams
and their relative counter-terms, using FeynArts [26]

with a modified version of the SM file to account for
neutrino masses and lepton flavour mixing. The am-
plitudes were reduced to one-loop tensor integrals using
Form [27], via the FormCalc package [28], keeping the
complete dependence on MW , P and mνi. The setup
was independently checked by a second implementation
based on FeynCalc [29].

Nowadays, lengthy expressions for the tensor integrals
could be obtained in principle in an analytical form with
full dependence on mνi,MW ,mL,m`,`′ and the invari-
ants sij = (pi + pj)

2, with p1−3 the momenta of the
three outgoing leptons, however their use is impractical.
It is therefore more helpful to compute them as series
in the small parameters P2/M2

W and m2
νi/P2. To this

end, we employed the method of expansion by regions
(for an introduction see e.g. [22]). For all one-loop dia-
grams, we divided the integration domain into different
regions and, for each region, we perform a Taylor expan-
sion with respect to the parameters that are considered
small there. Afterwards, by integrating every expanded
integrand over the whole domain, and by summing the
contributions from all the regions, we obtained the de-
sired asymptotic expansion of the original one-loop dia-
gram. The advantage of this method, compared for in-
stance to an expansion of the full result after integration,
is that the integrals arising in each region can be handled
much more easily than the initial one, as typically they
depend on just one or two mass scales.

We performed first an expansion assuming P ∼ mνi �
MW , without distinguishing at this point the two scales
mνi and P. In a second step, the integrals arising from
the first stage are further expanded in the limit mνi � P.
The total amplitude is then obtained by retaining only
the dependence on mνi, while higher order terms further
suppressed by P2/M2

W or m2
νi/P2, or terms independent

on mνi, are discarded. We perform several numerical
checks at different stages of the calculation as a sanity
check. To this end we took advantage of Mathematicas
arbitrary-precision numbers and Package-X’s analytic
expressions of one-loop integrals [30], available in any
kinematic configuration. We verified that our approx-
imated expressions for the tensor integrals become in-
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creasingly accurate both by including higher order terms
in the expansion as well as by taking the limit MW →∞
and mνi → 0, at fixed values of P.

RESULTS

The partial widths are given by integrating the ap-
proximated expression for the squared amplitude over the
three-particle phase space of L → ``′`′. These massive
phase space integrals depend on two variables sij , plus
two or three masses of the external particles. By employ-
ing the expansion by regions one more time, we computed
the phase space integrals as series in m`(′)/mL, retaining
only the leading terms in the final expressions for the
rate. We obtain:

Γ(L→ ```)

Γ0
=

3α2

16π2

∣∣∣∣∣
3∑
i=2

U`iU
∗
Li

∆m2
i1

M2
W

∣∣∣∣∣
2

×
[

log2 xL + 2 log xL −
1

6
log x` +

19

18
+

17

18
π2

− 1

sin2 θW

(
log xL +

11

12

)
+

3

8 sin4 θW

]
, (7)

where xL = m2
L/M

2
W and x` = m2

`/M
2
W . For L → ``′`′

(` 6= `′) we have:

Γ(L→ ``′`′)

Γ0
=

3α2

16π2

∣∣∣∣∣
3∑
i=2

U`iU
∗
Li

∆m2
i1

M2
W

∣∣∣∣∣
2

×
[

2

3
log2 xL +

25

18
log xL −

1

6
log x`′ +

55

108
+

2

3
π2

− 1

sin2 θW

(
log xL

2
+

11

24
+
π2

18

)
+

1

sin4 θW

(
3

16
+
π2

36

)]
. (8)

At variance with the result presented in [2], our expres-
sion for the rates is power suppressed by |∑i U`iU

∗
Lixi|2

and yields values for the branching ratios of the order
of 10−55, see Tab. I. Moreover, compared to Eq. (6) in
the ZML, Eqs. (7) and (8) do not have a logarithmic en-
hancement log2 xi ∼ 2500. On the contrary in its place
we get only log2 xµ ∼ 176 or log2 xτ ∼ 58, which are of
comparable size with respect to other terms appearing in
Eqs. (7) and (8). For this reason, the branching ratios
in the PL turn out to be about one order of magnitude
smaller than those in the ZML.

Note also that the presence of the singular terms log x`
or log x`′ is not in contradiction with the Kinoshita-
Lee-Nauenberg theorem [31, 32] and the cancellation
of mass singularities for inclusive observables. In fact

Eqs. (7) and (8) are valid strictly in the PL, i.e. when
mνi � m`(′) . The limiting case of vanishing charged-
lepton masses and non-zero neutrino masses violates the
assumptions of our derivation and therefore is not a
meaningful limit of our expressions.

In the case of purely Majorana masses (with no Dirac
component), the neutrino weak eigenstates are still a
combination of three (Majorana) fields, however the
PMNS matrix takes on two new CP violating phases.
These phases (1, α21, and α31) multiply the three
columns of the Dirac mixing matrix so that U`1 → 1 ·U`1,
U`2 → eiα21/2U`2, and U`3 → eiα31/2U`3 for all `. In
Eqs. (6-8) the PMNS elements show up in pairs as U∗LiU`i,
with i always the same in the two factors, so the Majo-
rana phases cancel.
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FIG. 2. Example of two diagrams mediating L → ``′`′ in a
low energy effective field theory description.

Finally, we can understand the mechanism that con-
verts the xi log xi in the ZML into a xi log xL in the PL by
looking at the effective operators arising after integrat-
ing out the Z and the W bosons. Let us for simplicity
concentrate only on the operator associated with such
logarithmic enhancement and let us focus for instance on
the box in Fig. 1d. Both in the ZML and in the PL, we
can shrink the two W propagators to a point-like inter-
action and match the amplitude onto the the following
dimension-six and dimension-eight operators:

OL`
′

6 = (ν̄iγ
µPLL) (¯̀′γµPLνj) ,

O``
′

6 = (¯̀γµPLνi) (ν̄jγµPL`
′) ,

O8 = m2
νi (¯̀γµPLL) ( ¯̀′γµPL`

′) . (9)

The first two operators correspond to the usual Fermi in-
teraction mediating µ and τ leptonic decays. They con-
tribute to L→ ``′`′ via the one-loop diagram in Fig. 2a.
The third operator in (9) is necessary to renormalize the
effective theory, i.e. to cancel the UV divergence from the
diagram 2a. These operators’ Wilson coefficients are:

CL`
′

6 =
4GF√

2
U`′jU

∗
Li , C``

′

6 =
4GF√

2
U∗`′jU`i ,

C8(µ) =
G2
F

2π2
log

(
M2
W

µ2

)
U`iU

∗
Li . (10)

We can imagine performing the matching between the
SM and the effective theory at a scale µ = MW , and
evolving the coefficients to a lower scale via the renormal-
ization group. The coefficient C8 explicitly depends on
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the renormalization scale µ and this dependence reveals
the difference between the PL and the ZML. In the ZML,
the evolution of C8 can proceed down to a scale µ ∼ mνi,
at which point we can integrate out the neutrinos and
remove the operators OL`

′

6 and O``
′

6 which contain the
neutrino field. We are then left with an EFT with only
O8, whose Wilson coefficient is frozen at C8(mνi), i.e.
it contains a log(M2

W /m
2
νi) (compare with Eq. (5)). On

the contrary, in the PL, C8 can run only untill the scale
µ ∼ mL is reached. In this case, all operators in (9) are
still active at the scale mL, however C8 produces only a
milder log(M2

W /m
2
L) enhancement. Therefore, the ZML

overestimates the values for the branching ratios as it al-
lows an unphysical evolution of these operators between
MW and mνi, while in reality the running stops at the
physical intermediate scale mL where the process hap-
pens.

CONCLUSIONS

Several experimental collaborations reported that the
branching fractions of L→ ``′`′ can be as large as 10−14,
following the observation in [2] that the GIM cancellation
is not so severe and takes the form of |∑i U`iU

∗
Li log xi|2.

In this letter we showed that this conclusion is wrong.
We calculated and presented for the first time the

branching ratios in the PL by performing a series ex-
pansion of all one-loop diagrams in the small parameters
P/MW and mνi/P. Our fully analytic expressions prove
that the GIM suppression in these decays is power-like
|∑i U`iU

∗
Lixi|2, similarly to what was shown long ago

in [1] for the ZML, so that the claim from [2] must be
rejected. We predict the branching ratios in the Stan-
dard Model including neutrino masses to be of the order
of 10−55. [MISSING FINALE HERE]
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