
The CLAS12 Software Framework and Event Reconstruction

V. Zieglera,∗, N. Baltzella, F. Bossùb, D.S. Carmana, P. Chatagnonc, M. Contalbrigod, R. De Vitae, M. Defurneb,
G. Gavaliana, G.P. Gilfoylef, Y. Gotraa, D.I. Glazierg, V. Gyurjyana, N. Harrisona, D. Heddleh, A. Hobartc,

S. Joosteni, A. Kimj, N. Markova, S. Mancillak, M.D. Mestayera, J. Newtonl, W. Phelpsh, S. Niccolaic, D. Sokhang,
M. Ungaroa

aThomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
bCEA-Saclay, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France

cInstitut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
dINFN, Sezione di Ferrara, 44100 Ferrara, Italy
eINFN, Sezione di Genova, 16146 Genova, Italy

fUniversity of Richmond, Richmond, 23173 VA , USA
gUniversity of Glasgow, Glasgow G12 8QQ, United Kingdom

hChristopher Newport University, Newport News, 23606 VA , USA
iArgonne National Laboratory, Chicago, 60439 IL, USA

jUniversity of Connecticut, Storrs, CT 06269, USA
kUniversidad Técnica Federico Santa Marı́a, Valparaı́so, 2390123, Chile

lOld Dominion University, Norfolk, 23529 VA, USA

Abstract

We describe offline event reconstruction for the CEBAF Large Acceptance Spectrometer at 12 GeV (CLAS12),
including an overview of the offline reconstruction framework and software tools, a description of the algorithms
developed for the individual detector subsystems, and the overall approach for charged and neutral particle
identification. We also present the scheme for data processing and the code management procedures.

Keywords: Electron scattering, hadronic physics, event reconstruction software. PACS: 13.60.-r, 07.05.Kf.

1. Introduction

This paper describes the software framework, tools,
and algorithms that were developed in support of event
reconstruction and analysis of the CLAS12 (CEBAF
Large Acceptance Spectrometer at 12 GeV) experiment5

at Jefferson Lab (JLab) [1]. Installed in experimental
Hall B, CLAS12 is a large acceptance spectrometer
based on two superconducting magnets and multiple
detector subsystems that provides large coverage for the
detection of charged and neutral particles produced by10

the interaction of an electron beam from the JLab CE-
BAF accelerator with a target located at the center of the
spectrometer. A six-coil torus magnet defines the six-
sector structure of the so-called Forward Detector that
is outfitted with Drift Chambers [2] for charged particle15

tracking and multiple detector systems for particle iden-
tification. These detectors include threshold Cherenkov

∗Corresponding author
Email address: ziegler@jlab.org (V. Ziegler)

Counters [3, 4] and Ring-Imaging Cherenkov Coun-
ters [5], scintillator-based time-of-flight hodoscopes [6],
and electromagnetic calorimeters [7]. In the target20

region, a 5 T superconducting solenoid surrounds a cen-
tral tracker based on silicon and Micromegas detectors
[8, 9], and subsystems for particle identification that
include a time-of-flight scintillation counter barrel [10]
and a neutron detector [11], forming the so-called25

Central Detector.

Figure 1 shows a model representation of the
CLAS12 spectrometer identifying the Forward and
Central Detectors. In between the central and forward
region, the CLAS12 Forward Tagger [12] extends the30

kinematic coverage for the detection of electrons and
photons at polar angles from 2◦ to 5◦ (see Fig. 2). The
Forward Detector covers the polar angle range from 5◦

to 40◦, while the Central Detector covers the polar angle
range from roughly 35◦ to 125◦. The total number35

of readout channels of CLAS12 is larger than 100k.
Typical trigger rates are 15 kHz. In 2018, data rates
of 500 MB/s with a live time of >95% were achieved.

Preprint submitted to Elsevier December 13, 2019

Figure 1: Model representation of the CLAS12 spectrometer in Hall B
at Jefferson Laboratory. The electron beam is incident from the left
side of this figure. The CLAS12 detector is roughly 20 m in scale
along the beam axis. The CLAS12 Forward and Central Detectors are
identified.

Figure 2: Model representation of the CLAS12 Forward Tagger that
is positioned just upstream of the torus magnet along the beam axis.
Attached to the upstream face of the detector is the Møller electron
shielding cone.

A total of ∼2 pB of data was accumulated in 2018.
The CLAS12 offline reconstruction and analysis40

framework was developed to cope with the complexity
of the spectrometer and the related data volumes. It
consists of an extensive library of software tools, of
detector reconstruction packages, and a framework to
chain the reconstruction and analysis applications for45

data processing. Software tools have been designed to
support and standardize event reconstruction including
detector calibration and monitoring, data analysis, I/O
functionality, database access, detector geometry, and
to handle magnetic field based calculations. Detec-50

tor reconstruction packages are designed to extract
from the raw data the relevant information for par-
ticle reconstruction, such as tracks, hits, or clusters.
These are the input information for the CLAS12 Event
Builder, which sifts through the reconstructed detector55

output to identify particles and form the reconstructed
event. The reconstruction components are deployed
in a service-oriented platform (see Section 2), which
provides the functionalities for data processing for both
event reconstruction and the subsequent analysis. While60

the software framework supports multiple programming
languages, the CLAS12 reconstruction packages and
tools currently in use are developed in Java.

This paper is organized as follows. The CLAS12
software framework and tools are described in Sec-65

tion 2. The raw and reconstructed data formats are
presented in Section 3. The monitoring, calibration, and
event display applications are described in Sections 4
and 5. Section 6 provides a detailed description of the
detector and event reconstruction packages, including70

selected results from reconstruction of simulated data
that have been used to develop and validate the algo-
rithms. The reconstruction performance on beam data is
presented in Ref. [1]. Finally, Sections 7 and 8 present
the data processing and code management procedures75

adopted for CLAS12.

2. Software Framework and Tools

Nuclear and particle physics data processing appli-
cations must guarantee a long lifetime, larger than the
multi-year duration of the corresponding experiment.80

The ability to upgrade and adapt technologies is there-
fore essential, so these applications should be organized
in a way that easily permits upgrades of aged software
components and inclusion of new ones, without need
for major redesign or structural changes. Support for85

software evolution and diversification (e.g. compati-
bility with heterogeneous hardware structures, such as
FPGAs and GPGPUs) is important to accommodate
more efficient and robust data-processing applications
in the future.90

Following these principles, CLAS12 reconstruction
and analysis relies on a data-stream processing frame-
work called CLARA [13, 14, 15, 16], which provides
a service-oriented architecture in which to build the
relevant software applications. Such applications are95

composed of interlocking building blocks called micro-
services, which are linked together by data-stream
pipes. The technology (e.g. a high-level program-
ming language or hardware deployment details), as
well as the algorithmic solutions used to process data,100

are encapsulated. The scope of a specific software
application implemented in CLARA is determined by
the micro-services that are included and by the order of
their execution.

2

A micro-service receives input data, processes it,105

and produces output data, where the I/O is organized
into tabular structures called “banks” whose structure
is configured by the specific service developer. A
micro-service reacts to an input data stream, processes
it, and passes processed data to the next micro-service110

in the data-flow path. As a result, the CLAS12
data processing application is versatile and flexible,
since the application building blocks can be improved
individually and replaced with no need for structural
changes in the framework. The CLAS12 micro-services115

are extensions of an abstract reconstruction engine,
which includes common components such as initial-
ization and event processing methods. This approach
reduces and simplifies the development of an individual
micro-service and enforces a common structure.120

The CLARA data-stream pipe is a data bus based
on the xMsg messaging system that supports various
protocols such as MPI, pub-sub, p2p, inproc, and shared
memory. The CLARA orchestrator, i.e. the process
level workflow management system, controls the overall125

process execution.
The framework enables execution of software appli-

cations in multi-threaded mode. This is implemented
via event-level parallelization for the CLAS12 recon-
struction. The framework is specifically designed to130

do thread-based parallelization on multi-core machines,
thereby allowing the simultaneous reconstruction of
multiple events having as many active threads as the
cores on the system. Figure 3 shows the results of a
scaling test on an Intel Xeon node (E5-2697A v4 @135

2.6 GHz). Comparison with Amdhal’s law indicates
99.5% parallel efficiency over the 32 physical cores of
the machine.

The CLARA framework provides service interface
implementations in Java, C++, and Python languages.140

At present, all of the CLAS12 reconstruction services
deployed using the CLARA framework are written in
Java.

2.1. Common Tools

The offline software of the CLAS12 project aims to145

provide tools that allow design, simulation, and data
analysis to proceed in an efficient, repeatable, and un-
derstandable way. Most software engineering details are
hidden from users, allowing them to concentrate on the
algorithms and physics. To facilitate code development150

for the detector subsystems of CLAS12, the software
was designed to provide libraries that are commonly
used by all of the reconstruction packages. These
libraries, referred to as “common tools”, contribute to

Figure 3: Scaling of the CLAS12 full event reconstruction application
as implemented in the CLARA framework. Tests were conducted
on a Intel Xeon node (E5-2697A v4 @ 2.6 GHz). Comparison with
Amdhal’s law indicates 99.5% parallel efficiency over the 32 physical
cores of the machine.

software maintainability by avoiding code replication,155

which facilitates code maintainability.
The common tools consist of various packages, each

having a specific purpose and functionality. Below we
discuss the main packages used in the reconstruction
software.160

2.1.1. Geometry

Due to the complexity of the geometry of the
CLAS12 detector subsystems, an interface was devel-
oped to provide classes and software tools that are used
to describe the geometry of all subsystems in a unified165

way. A library of primitives provides geometrical
objects needed to represent all detector subsystems
(these include lines, planes, and various shapes such as
cubes, trapezoids, etc.) and to provide the necessary
transformations to accommodate misalignments and170

distortions. Furthermore, geometry tools provide meth-
ods to track particles through volumes for evaluation of
track trajectories, such as line-to-surface intersections,
ray tracing through objects, and evaluation of the
distance of closest approach to a line or surface.175

The CLAS12 geometry library is initialized from a
database containing key geometry parameters and their
variations for every detector. This maximizes flexibility,
supports time-dependent experiment geometry condi-
tions, and ensures consistency between the simulation,180

reconstruction, and event visualization packages.
To facilitate development of new detector geometries,

visualization capabilities are included in the geometry
library. Figure 4 shows a view of part of the CLAS12
spectrometer using this functionality.185

3

2.1.2. Databases

The Calibration Constant Database (CCDB) soft-
ware package was developed at Jefferson Lab for the
GlueX experiment in Hall D [17]. CCDB provides
the functionality for storing and accessing structured190

tables in MySQL-based and SQLite portable databases.
The CLAS12 reconstruction packages use the CCDB
application programming interface to create and access
tables that contain detector geometry and calibration
constants, as well as maps used for decoding raw195

data. At the decoding stage, signals are converted
from hardware notation (crate, slot, channel) into the
CLAS12 notation (sector, layer, component).

The constants in CCDB tables are linked to specific
runs (using time stamps), so that different variations200

of constants are stored depending on run conditions.
CLAS12 software tools employ an Application Pro-
gramming Interface (API) that parses database tables
and creates structured maps of constants stored in
memory by detector sector, layer, and component. This205

allows fast retrieval of the constants.
The CLAS12 database access tools have been de-

veloped to avoid bottlenecks that might result from
multiple multi-threaded services accessing the database
to retrieve constants. An interface has been designed210

to fetch the constants on demand and cache them for
further requests. In this approach each service will
request the constants it requires on one thread and each
subsequent request by a new thread accesses the cached
values.215

2.1.3. Plotting and Analysis Tools

For ease of integration with the reconstruction soft-
ware tools and packages, the plotting tools used for data
calibration, monitoring, and analysis were developed in
the Java programming language.220

The plotting software, called groot, developed at
Jefferson Lab for CLAS12 is tailored to have a pro-
gramming interface similar to the CERN data analysis
package, ROOT, and provides the necessary function-
alities for histogram and graph creation, filling, and225

manipulation, as well as for fitting using the Java-based
MINUIT library available from the JHEP repositories.
This has been the base for the development of the de-
tector monitoring and calibration suites (see Section 4).

These same tools can also be used for physics analy-230

sis. An additional analysis package containing classes
for four-vector manipulations allows computation of
event kinematics (e.g. Q2 and W), Lorentz boosts, etc.

Figure 4: Visualization of part of the CLAS12 spectrometer via the
geometry package. From left to right, the Central Neutron Detector
(CND) in magenta, the Drift Chambers (DC) in blue, the Forward
Time-of-Flight (FTOF) in red, and the Electromagnetic Calorimeter
(ECAL) in yellow are shown.

2.1.4. Magnetic Field Package
The magnetic field package, magfield, used by235

the CLAS12 reconstruction creates binary field maps
from engineering models of the CLAS12 torus and
solenoid [18]. It employs a common self-described
binary format, with a header containing meta-data
describing the pedigree of the field, its grid coordinate240

system, and the coordinate system of the field compo-
nents. For example, the CLAS12 torus has a cylin-
drical grid but Cartesian field components. The same
magfield package provides the trilinear interpolation of
the field (a method of multivariate interpolation on a245

3-dimensional regular grid). Given that the field is often
requested at a sequence of points all contained within
a single grid cell, magfield uses time-saving software
“probes” to cache nearest neighbors.

2.1.5. Swimmer Package250

The swimmer package, in conjunction with the mag-
field package, is used in the CLAS12 reconstruction
to propagate charged particles through the CLAS12
solenoid and torus fields. It uses a fourth-order (with
fifth-order corrections) adaptive step-size Runge-Kutta255

integrator with single-step advancement that is achieved
through a configurable Butcher tableau advancer. There
are a number of convenience methods for swimming to
a plane, to the closest point on a line, and to a specified
value of a given (x, y, z) coordinate. For forward260

swimming in CLAS12, performance is improved by
reducing the dimensionality of the track state vector that
contains the main track parameters (Section 6.2.4), by

4

changing the independent variable from the path length
to the coordinate along the beamline, which defines the265

nominal CLAS12 z-axis.

3. Data Formats

EVIO (Event Input-Output) [19] is a data format
designed and maintained by the JLab Data Acquisition
Group, and is the data format of the raw data. For270

event reconstruction and analysis, the CLAS12 data
format was designed to provide a flexible data container
structure, with features that minimize disk access for the
most common tasks performed in data analysis. The
High Performance Output (HIPO) format developed for275

CLAS12 was designed to provide data compression,
using LZ4 (the fastest compression algorithm currently
available), and random access.

HIPO stores data in separate records (with adjustable
size), with tags associated with each record. Each280

record is compressed and a pointer to the record is kept
in the file’s index table. This feature allows separating
events during reconstruction based on the content of the
event, such as the number of reconstructed particles.
Users can read portions of the file depending on the285

final states to be analyzed. The metadata of the file,
describing detector and beam conditions, are common
for all analyses.

The HIPO library has both Java and C++ implemen-
tations. On the basis of the C++ implementation, a290

library was developed extending ROOT base classes to
allow for HIPO files to be read from ROOT frameworks.
Additional tools are available to allow users to produce
plots using native ROOT syntax.

4. Monitoring and Calibration Suites295

4.1. Framework

A calibration framework was developed to implement
visualization software tools needed for all detector
systems. Standard views were developed using the Java
Swing application to visualize detector components and300

to provide call-back mechanisms necessary to display
detector-component specific information. These soft-
ware tools provide functionality for data fitting, plot-
ting, and displaying using a Graphical User Interface
(GUI) environment.305

The calibration framework makes use of the other
CLAS12 libraries (the geometry and plotting packages,
as well as database utilities) and provides a uniform
GUI for all calibration applications. The framework
provides a data-processing interface and a calibration310

constant database interface used for online and offline
data analysis.

A common data-streaming interface is implemented
with software-level abstraction that allows the calibra-
tion and monitoring codes to run on all of the supported315

data formats used in CLAS12, including data read in
real-time from the CLAS12 DAQ system [20].

4.2. Calibration and Monitoring Suites

The software programs used for the CLAS12 detector
subsystem monitoring, as well as the energy and time320

calibrations, are Java-based suites that employ the
framework discussed in Section 2.1. The software tools
provided by the framework facilitate the development of
detector-specific suites. Figure 5 shows representative
views of the CLAS12 subsystem calibration suites.325

The calibration applications take as input raw or
reconstructed data files (from either beam data or
Monte Carlo simulations) in either EVIO or HIPO data
formats. They display and fit the various quantities and
histograms relevant to the extraction of the calibration330

constants. The calibration analysis parameters are saved
into ASCII files with the same structure as the tables
defined in CCDB. The constants are then reviewed and
uploaded to the database using CCDB commands.

5. CLAS12 Event Display335

The CLAS12 Event Display (ced) is a diagnostic
graphical application for displaying CLAS12 events.
The primary element of ced is the “view”, i.e. a
graphical representation of CLAS12 in its entirety or a
subset of its detector subsystems. For a given event, the340

primary purpose is to display the detector components
that have recorded a signal, and, if available, the
reconstructed tracks, to provide a visualization of the
particle passage through the detector. In addition, ced
can display information about the event such as the345

data banks, or information about the detector, such as
the magnetic fields. Available views are both 2- and
3-dimensional with the possibility of disabling the latter
for faster execution.

An illustration of views in ced is shown in Fig. 6,350

where a section of CLAS12 is displayed in a cut-view
with a specific focus on the Forward Detector. The
colored areas in the space around the detectors indicate
regions where a significant magnetic field intensity is
present from either the solenoid or torus; reconstructed355

tracks are shown by the orange lines. Similarly, Fig. 7
shows views of the Central Detector and of the Forward
Tagger. Figure 7(left) shows two tracks originating from

5

Figure 5: Representative subsystem calibration GUIs for the Electromagnetic Calorimeter (ECAL) [7] (upper left), Drift Chambers (DC) [2] (upper
right), Forward Time-of-Flight (FTOF) [6] (lower left), and Forward Tagger (FT) [12] (lower right).

the target as reconstructed from the fit of the available
central tracker hits in correlation with signals in the360

outer detectors. Here, the color scale is representative
of the recorded signal intensity. Figure 7(right) shows
a front view of the Forward Tagger calorimeter for
an event where three clusters were recorded. ced is
designed to be operated offline, reading either raw365

EVIO or HIPO events from a file, or online, reading
events from the CLAS12 DAQ system [20] to allow for
real-time monitoring of the detector during data taking.

6. Event Reconstruction

The event reconstruction software has been designed370

and developed within the CLARA framework. As
discussed in Section 2, the reconstruction of events for
CLAS12 is separated into micro-services that execute
data processing algorithms.

The data reader services access the detector decoded375

data stored in banks (see Section 2). Each entry for the
decoded detector hits is a row in a bank. A row includes
detector element identifiers (sector, layer, component,
and order), and digitized detector data, such as signal
charge, amplitude, time, or pedestal, depending on the380

specific system. Similar bank structures are created at
the decoding stage for the various quantities needed for
event reconstruction, such as hits, clusters, tracks, etc.
The micro-services that implement the reconstruction
algorithms pertaining to the CLAS12 subsystems fill385

these banks, which are subsequently appended and
written out to a file by a data-persistency micro-service.

The services running the reconstruction algorithms
access the various banks (transient data) as input and
produce output banks needed for the subsequent algo-390

rithms in the reconstruction chain. The order in which
the services are chained reflects the overall CLAS12
event reconstruction sequence and subsystem depen-
dencies. First, charged particle tracks are reconstructed
in both the Central and Forward Detector tracking395

systems based on the position of the recorded hits in
the different detectors (i.e. using strip positions or wire
locations). This procedure is referred to as “hit-based”
tracking. In parallel, hits recorded in the other detectors
are processed to reconstruct the energy and time of the400

associated particle interaction. These are matched to the
reconstructed tracks by the Event Builder service, based
on hit position and time information; unmatched hits are
retained as neutral particle candidates. At this stage, the

6

Figure 6: Views from ced of charged particle tracks in the DC showing cut-views to highlight different pairs of sectors of the CLAS12 Forward
Detector. The colored detector elements are the registered hits and the orange lines are the result of track reconstruction using the hits in the DCs.
The colored areas about the detectors represent the regions of magnetic field from the torus and the solenoid. In these views the beam is incident
from the left and the target is located in the middle of the solenoid (at the left edge of the image).

Figure 7: Views from ced of the Central Detector (left) and the Forward Tagger (right) from a view looking down the beamline. In the Central
Detector view (left), two tracks originating from the target are shown as reconstructed from the fit of the available central tracker hits in correlation
with signals in the outer detectors (Central Time-of-Flight (CTOF) and Central Neutron Detector (CND)). Here the color scale is representative of
the recorded signal intensity. The right figure shows a front view of the Forward Tagger calorimeter for an event where three clusters were recorded.

7

IO

DCHB

HTCC

FTOF

ECAL

…

DC::tdc

HTCC::adc

FTOF::adc
FTOF::tdc

ECAL::adc
ECAL::tdc

DCHB::Tracks
DCHB::Trajectory

HTCC::clusters

FTOF::hits

ECAL::clusters
ECAL::moments

EB IO

REC::Event
REC::Particle

REC::Calorimeter
REC::Cherenkov
REC::Scintillator

REC::Track
…

DCTBDC::tdc DCTB::Tracks
DCTB::Trajectory

Reconstruction
microservice

I/O service

Data bank

Figure 8: Graphical representation of the CLAS12 interdependencies between services and banks. The I/O service reads events from the input file
and distributes them to the reconstruction services chain for processing. Each service reads the relevant banks, applies the reconstruction algorithm,
and provides output banks that are passed to the next service in the chain. The Event Builder (EB) service is executed as last in the chain; it collects
the relevant banks from all CLAS12 subsystems services and produces event, particle, and detector response banks that are written to the output
file.

Event Builder can reconstruct the event “start time”, i.e.405

the time of the interaction between the beam and target,
and identify the reconstructed particles. Once the event
start time is determined, a second iteration of forward
tracking can be performed to implement the so-called
“time-based” tracking (which also incorporates the drift410

times in the Drift Chambers). See Section 6.2.1 for
more details on hit-based and time-based tracking.

The improved particle tracks from time-based track-
ing are the input for a second pass of the Event Builder,
which leads to the final event reconstruction. Given415

this sequence, some services can run in parallel, while
others need the reconstruction output provided by the
preceding steps. For instance, hit-based tracking for the
Central Vertex Tracker (CVT) using the CVT service
and for the Drift Chambers using the DCHB service420

(“HB” is for hit-based) can run in parallel, while
time-based tracking for the Drift Chambers using the
DCTB service (“TB” is for time-based) must come
after the first execution of the Event Builder service.
An overview of the reconstruction application service425

composition detailing these dependencies is shown in
Fig. 8.

6.1. Tracking Overview

Charged particle tracking is the key element of the
CLAS12 event reconstruction. It is separated into the430

reconstruction of tracks in the central tracker system

(comprised of the Silicon Vertex Tracker - SVT [8] and
the Barrel Micromegas Tracker - BMT [9]; together the
SVT and BMT comprise the Central Vertex Tracker -
CVT) and the forward tracking system (comprised of435

the Forward Micromegas Tracker - FMT [9] and the
Drift Chambers - DCs [2]). In the forward region a
torus magnet bends charged particles inward toward the
beamline or outward away from the beamline depending
on their charge. At full nominal current the

∫
Bdl varies440

from roughly 2 Tm at 5◦ to 0.5 Tm at 40◦. In the central
region a 5 T solenoidal magnetic field bends charged
tracks into helices. A view of the field intensities in the
(z, x) plane and overlap region for the torus and solenoid
fields is shown in Fig. 6.445

For both systems, track reconstruction comprises
algorithms for pattern recognition and track fitting.
Hit objects, corresponding to the passage of a particle
through a particular detector component, require the
transformation of an electronic signal into a location of450

the track’s position in the detector subsystem geometry.
A hit is defined as a detector element represented by
a geometric object, for example, a line representing a
strip in the central tracker. These objects then form
the input to the pattern recognition algorithms. This455

first step involves the identification of clusters of hits
and the determination of the spatial coordinates and
corresponding uncertainties for the hits and clusters
of hits. At the pattern recognition stage, hits that

8

are consistent with belonging to a trajectory (i.e. a460

particle track) are identified. This set of hits is then
fit to the expected trajectory with their uncertainties,
incorporating the knowledge of the detector material
and the detailed magnetic field map.

6.2. Forward Tracking465

6.2.1. Hit Reconstruction
The Drift Chamber (DC) wire [2] hit information is

given by the wire geometrical location and the drift
time to the wire. Track-dependent corrections to the
hit, such as the left-right ambiguity (to determine on470

which side of the sense wire the track passed) and
time-walk (to account for the shift in time as a function
of signal strength) must then be performed. Pattern
recognition for the DCs is initially done using only wire
position information and searching for groups of hits475

that form clusters. This portion of the algorithm is
called hit-based tracking. In hit-based tracking, a hit
is defined as a wire with a recorded signal. No timing
information is incorporated at the preliminary stage of
the reconstruction. After a hit-based track has been480

found, corrections to the raw times of the hits on the
track resulting from the propagation time along the hit
wire, the particle time of flight, the event start time, and
the cable delays are applied to determine the corrected
hit time. A distance of closest approach (DOCA) to485

the hit wire is estimated from the time. At this stage
the tracking is redone using the calculated DOCAs in
order to fit the track (see Fig. 9). This portion of the
DC reconstruction phase is called time-based tracking.
The calibration parameters entering in the function used490

to convert time to distance (see Ref. [2]) are extracted
from the distance of local fits to the DOCAs using a
linear function to the wire position.

In hit-based tracking, uncorrelated hit noise in the
DCs is identified by a Simple Noise Removal (SNR)495

algorithm. Hits that are identified as noise are dis-
carded from the list of hits passed on to the clustering
algorithm. There are 112 sense wires in each of
the 36 layers in each of the six Forward Detector
sectors. The SNR stores all 112 wires for a given layer500

bit-wise in an extended 128-bit word, with ”set” bits
corresponding to hits. The extended words are objects
that provide normal bit-wise operations on words of
arbitrary (multiple of 64) length. The algorithm is
configured through parameters specifying the maximum505

tilt of a track segment and the number of missing layers
allowed in the formation of a segment. Using bit-wise
operations on the extended words, the algorithm essen-
tially operates as a parallel processor on all 112 sense

Figure 9: Illustration of time-based tracking through a portion of a DC
superlayer using the determined distance of closest approach to each
sense wire indicated by the circles about the sense wires.

wires in a layer. This parallelism precludes the need of510

a wire for-loop, which enables the algorithm to run in a
negligible fraction of the total time for reconstruction.
More to the point, the SNR actually saves time by
reducing the combinations that must be explored in the
pattern-recognition phase of the ensuing track-finding.515

An illustration of the SNR hit categorization in the DC
is shown in Fig. 10.

6.2.2. Hit Clustering
Within each of the six sectors of the CLAS12 For-

ward Detector, there are three sets of DCs that are520

referred to as Region 1 (R1) upstream of the torus,
Region 2 (R2) within the torus coils, and Region 3
(R3) downstream of the torus (see Fig. 6). Each of
the three detectors in each sector, R1, R2, and R3,
consists of two so-called “superlayers”, each containing525

six layers of 112 drift cells (or 6 wire layers). The
hits remaining after the SNR algorithm are grouped into
clusters. Clusters are made up of adjacent hits within
the wire layers of a given DC superlayer. There can be
at most two neighboring hits within a single wire layer,530

forming a “double-hit”.1 However, up to two wire layers
can be missing within a superlayer when attempting to
form a cluster. This is to reduce tracking inefficiencies
resulting from possible wire malfunctions or intrinsic

1An additional hit in a layer is due to noise coming either from
an out-of-time hit that has a drift time that when converted to a drift
distance exceeds the cell size, or hits not belonging to the track.

9

Figure 10: Illustration of DC hits categorized by the SNR algorithm.
This plot of wire layer vs. wire number shows three DC superlayers.
The black hits are identified as noise and discarded and the red
hits are saved for further evaluation by the subsequent hit selection
algorithms. The orange hits are saved noise (false alarms) and the
shaded areas correspond to possible clusters. The darker shades
correspond to a higher quality factor, hence a higher probability for
hits on a track.

Figure 11: Illustration of typical curler noise patterns in a single six
wire layer superlayer in the DC displayed as seen using the CLAS12
Event Display ced. The hits shown are from a Monte Carlo electron
event.

inefficiencies. It was found that requiring 4 out of 6 wire535

layers within a superlayer to form a cluster is sufficient
to determine the cluster shape, which is subsequently
used to find the track trajectory.

Additional “noise rejection” algorithms are applied
to the clusters to remove spurious hits that do not come540

from a real track. So-called “curler” patterns as shown
in Fig. 11 are typical for low-energy electrons in the
DC. Therefore, a pruning algorithm was designed to
remove them at an early stage of the reconstruction. The
algorithm is a counting method of the number of con-545

tiguous hits within a single wire layer of a superlayer.
In Figs. 11 and 12 we also see another typical noise
pattern that looks like horizontal “strings” of hits along
a wire layer. An algorithm was developed following the

Figure 12: Illustration of hits rejected by the pattern recognition
pruning algorithm in a Monte Carlo electron event. The circles
superimposed on top of the DC cells indicate the DOCAs computed
from the fully corrected times. The group of hits encircled is removed
by the pruning algorithm.

observation that high-momentum tracks from hadrons550

typically cross the superlayers at a large angle, while
“curlers” from low-momentum background follow curl-
ing trajectories, with a significant part of the pattern
lying within a single wire layer. Subsequent algorithms
are employed for resolving overlapping segments.555

Overlapping segments are produced when the trajec-
tories of two tracks cross each other or when the tracks
are almost parallel and very close to each other in a
given region. A Hough Transform is employed to find
hits on a line in the cluster, which allows the cluster to560

be split into segments. The resulting trimmed clusters
are then fit to a straight-line hypothesis, and those
hits with acceptable residuals are kept and identified
collectively as a “track segment”. An illustration of the
Hough Transform cluster selection algorithm is shown565

in Fig. 13.
Subsequent hit pruning algorithms are employed at

the time-based level. Figure 14 illustrates the selected
hits belonging to a cluster (orange) and the hits rejected
by the noise-finding algorithms. In the zoomed view570

displayed in this figure, the cluster shown on the first
superlayer illustrates the hit pruning algorithm and the
remaining segment, while the rejected hits in the second
superlayer are an example of a “looper” identified by the
the looper search algorithm.575

6.2.3. Pattern Recognition
Fits to the segments with a linear function are a

preliminary step to estimating a track trajectory. The
track parameters are estimated in the local coordinate
system of the DCs from this trajectory.580

Using the wire direction in a given superlayer along
with the line fit to a segment in that superlayer, a

10

Figure 13: Illustration of selected clusters (left-most selected hits with
superimposed lines) using a Hough Transform. Two track segments
cross each other. The right-most group of hits are selected using
the nominal clustering algorithm. The hits are separated into cluster
candidates and fit using a local coordinate system as a function of
layer and wire number. The selection is done without employing
timing information.

plane can be constructed. Thus pairs of segments in
neighboring superlayers within one chamber (with su-
perlayers of ±6◦ stereo angle) represent the intersection585

of two planes, which is a line whose coordinates are
evaluated midway between the two superlayers, and is
a 6-dimensional object (x, y, z, and 3 angles) that we
call a “cross”. A segment slope coincidence algorithm
is used to match neighboring segments in a region (see590

Fig. 14). Selection cuts are subsequently applied on
the reconstructed cross to ensure that it is within the
detector fiducial volume within resolution.

There are instances when an entire superlayer can
be missing from the list of hits available to fit a track.595

This can happen when inbending tracks are produced at
low angle and miss the last superlayer of the chamber
or when a segment has fewer than four valid (not
out-of-time) hits. Therefore, in order to compensate
for tracking inefficiencies due to this, an additional600

pattern recognition algorithm was designed. The al-
gorithm matches segments within the even and odd
numbered superlayers in a given sector, respectively.
The matching algorithm returns an estimate of where
the missing superlayer’s hits should be and forms a605

“pseudo-segment” from the wire locations correspond-
ing to these hits. Subsequently a “pseudo-cross” is
formed using the pseudo-segment and the neighboring
reconstructed segment in that region.

The first stage of pattern recognition consists of610

finding a track candidate from a set of 3 crosses (one
each in R1, R2, and R3) that are fit to a parabolic
functional form to give a “track candidate”. Using the
parameters of the parabolic function between the first
and the third cross and obtaining the magnetic field615

intensity at each step along this trajectory, we obtain an
estimate for

∫
Bdl. From the local angles of the crosses

in the x − z plane for R1 (θ1) and R3 (θ3), we estimate
the track momentum (p) in GeV and the particle charge

Figure 14: Illustration of rejected hits (red hexagons) and accepted
hits (orange hexagons) by the forward tracking pattern recognition
algorithm using Monte Carlo data. The filled circle between the
superlayers of a given region (R1, R2, or R3) represents the 3D point
(called a “cross”) obtained from the local fits to the DOCAs taking
into account the direction along the wires. The track trajectory is
projected at the y = 0 plane in this 2D view. The fitted track trajectory
is represented by the orange line. The upper figure is a zoomed view
into the track trajectory in R1.

(q) as:620

q
p

=
θ3 − θ1

v
∫

Bdl
, (1)

where the angles are in radians, the magnetic field
intensity (B) is in Tesla, and the path length
(dl) is in cm. The conversion factor v =

0.002997924580 (GeV/c) T−1cm−1 corresponds to the
speed of light. The cross position and angles in DC R1,625

together with the momentum and the charge, provide
all of the necessary information to define the track
parameters at a given location in the detector, and
therefore to start the track fitting.

6.2.4. Track Fitting630

The output of the pattern recognition is a seed with
initial parameters used to start the track propagation
from one measurement site to the next in the fit.
The track fitting uses a Kalman Filter method with a
5-parameter track representation (x, y, tx, ty, Q) called
the track state vector, defined in a local coordinate
system with the z-axis perpendicular to the DC wire
planes. Here, Q = q/p (with q corresponding to
the track charge), tx = px/pz, ty = py/pz, and px,
py, and pz represent the (x, y, z) components of the
track momentum in the local coordinate system. In the
analysis frame the state vector and the measurement are
defined at each layer for which there is a hit on a track.
Hence, as in Ref. [21], we can express the equations of
motion of the track in the torus field and the propagation

11

of the state vector covariance matrix as derivatives with
respect to z. In the DC, the magnetic field components
are mostly along the y coordinate (along the wires) in
the analysis frame. The trajectory of the particle in the
analysis frame is given by:

dx/dz = tx,

dy/dz = ty,

dtx/dz = Q · v ·
√

1 + tx
2 + ty2

· [ty · (txBx + Bz) − (1 + tx
2)By],

dty/dz = Q · v ·
√

1 + tx
2 + ty2

· [−tx · (tyBy + Bz) + (1 + ty2)By],
Q = Q0, (2)

where the initial values at the starting point z = z0,
corresponding to the measurement vector z-component
at a give measurement site, are x = x0, y = y0, tx = tx0,
ty = ty0, and Q = Q0. The state vector is initialized at
the first measurement layer.635

The above equations are solved numerically using a
fourth-order Runge-Kutta integration method in order
to propagate the state vector from the DC plane at
z0 to the next one at z. The state vector covariance
matrix is propagated along with it by computing the640

Jacobian matrices as in Ref. [21], again solving using
a fourth-order Runge-Kutta method. The Jacobian
matrix terms contribute to the propagator matrix used to
compute the Kalman gain. The propagated covariance
matrix takes into account multiple scattering through645

the known material layers of the DC tracking volume.
The non-zero components of the multiple scattering

matrix are:

Cov(tx, tx) = (1 + tx
2) · (1 + tx

2 + ty2) · θ0
2,

Cov(ty, ty) = (1 + ty2) · (1 + tx
2 + ty2) · θ0

2,

Cov(tx, ty) = txty · (1 + tx
2 + ty2) · θ0

2, (3)

where,

θ0 =
13.6
βpc

√
l

X0

√
1 + tx

2 + ty2 (4)

×

[
1 + 0.038 ln

(
t

X0

√
1 + tx

2 + ty2

)]
as given by the Highland-Lynch-Dahl formula [22]. The
radiation length X0 is computed as an effective radiation
length corresponding to the gas mixture in the DC wire
layer. Air is assumed outside of the DC volumes. The650

term l represents the path length traversed by the track.
At each plane the state vector is mapped onto a

measurement, which corresponds to the drift distance

to the wire in a given DC plane. In instances where
there are two hits associated with the track in a given655

wire layer (i.e. the track goes in between the wires),
the information from both hits is included in the fit.
The measurements used in the fit take into account the
left/right position of the track with respect to the wire.

After the times are corrected, the drift distance660

is computed using tabulated distance-to-time multi-
dimensional arrays. The drift distances are computed
using a multi-dimensional interpolation method using
the segment local angle (i.e. the entrance angle of the
track in the cell), the value of the magnetic field at the665

location of the hit, and the corrected times. The Kalman
fit is redone at the time-based level using the hits with
corrected times and the computed drift distances. A
graphical representation of tracks in ced is shown in
Fig. 6. This is a typical event for the nominal running670

conditions of CLAS12.

After the last iteration of the Kalman fit that propa-
gates the state vector to the initial site (corresponding
to the first layer in which there is a hit), the track
parameters are transformed into the lab frame and675

the track is swam through both the torus and the
solenoid fields to the distance of closest approach to
the beamline. The track parameters defined in the lab
frame (x, y, z, px, py, pz) are reported at this location.
A final track propagation from the reconstruction vertex680

point at the distance of closest approach to the beamline
is performed to obtain the trajectory of the track as a
series of points and path lengths corresponding to its
intersection with all the detector surfaces. This is used
for subsequent matching of the track to the detector685

responses.

In order to improve the accuracy of the vertex
reconstruction at the distance of closest approach to
the beamline, another tracking device was placed just
downstream of the solenoid. This device is the For-690

ward Micromegas Tracker (FMT) [9], which consists
of 6 layers of Micromegas detectors and covers the
polar angle range from 5◦ to 35◦. Integration of this
system in the reconstruction is currently ongoing. The
reconstruction algorithms in place consist of clustering695

of Micromegas hits corresponding to active adjacent
strips, taking into account the Lorentz angle correction
and energy weighting, and of matching of the clusters
to tracks found in the DC. The challenging aspect of
this reconstruction task is the combining of the track700

representation in two different frames for the DC (tilted
sector frame) and the natural frame of the FMT, which
is the frame where the FMT disks are perpendicular to
the beam axis.

12

Figure 15: Event display view of the CVT detector showing the 3
inner double layers of the SVT (in red) and the 3 innermost BMT
layers (in gray). The red lines in the upper left of the SVT in this view
represent active SVT strips corresponding to hits on a track.

6.3. Central Tracking705

Tracks whose polar angle is between 35◦ and 125◦ are
reconstructed by the Central Vertex Tracker (CVT). The
CVT consists of twelve cylindrical layers of tracking
detectors, numbered from 1 for the innermost layer to
12 for the outermost layer. The subset of tracking710

detectors forming layers 1 to 6 are silicon strip sensors
within the CLAS12 Silicon Vertex Tracker (SVT) [8].
Layers 7 to 12 are made of Micromegas tiles within
the Barrel Micromegas Tracker (BMT) [9]. The entire
CVT surrounds the target and sits in the 5 T solenoid715

field. The SVT is made from 3 concentric rings of
double-layer silicon sensors with a graded strip stereo
angle from 0◦ to 3◦ (with 0◦ along the beamline z-axis)
and a readout pitch of 156 µm. The BMT consists of 3
cylindrical detectors with strips along the z-axis (called720

the BMT-Z layers) and 3 cylindrical layers with circular
layers with circular strips perpendicular to the z-axis
(called the BMT-C layers). Each layer is divided into
three 120◦ sectors.

The revolution axis of the CVT coincides with the725

ideal beam axis, which defines the z-axis of the CVT.
The y-axis points upward in the laboratory frame and
the x-axis is defined to form a right-handed coordinate
system. The origin of the CVT coordinate system
matches the center of the nominal CLAS12 target730

center. An illustration of the CVT detector with ced is
shown in Fig. 15.

6.3.1. Hit Clustering
The first step of the tracking algorithm is the for-

mation of clusters from the raw hits. A cluster is735

a collection of contiguous hit strips. Its centroid,
calculated using charge weighting, is either given by
spatial information (a z-coordinate for the BMT-C
detectors in which strips are arcs at constant z or
xy-coordinates for the BMT-Z detectors in which strips740

are parallel to the z axis) or strip numbers for the SVT.
Charge weighting is done by averaging the relevant
strip information using the maximum of the ADC pulse
for the Micromegas strips or the equivalent deposited
charge for the SVT. The time information associated745

with each hit is currently not used.
Before feeding all of the CVT clusters to a pat-

tern recognition algorithm, spatial coordinates must be
associated with the SVT clusters. As described in
Ref. [8], the six SVT layers are mechanically paired and750

consequently form three regions. The readout strips of
the inner and outer layer of each region make a 3◦-stereo
angle. By associating one cluster of the inner layer
with one cluster of the outer layer, and by assuming that
an infinite momentum track perpendicularly crossed the755

two layers, a preliminary assignment for the (x, y, z)
coordinates of the particle between the two layers is
derived for this cluster pair. This pairing is performed
over all clusters of the inner layer with all clusters of the
outer layer. Pairs whose (x, y, z) coordinates are outside760

of the physical SVT sensor space are automatically
removed from the list of candidates. If one of the two
layers of a region has no hit that can be associated with
a track, then the information of the active layer is simply
ignored for the remainder of the reconstruction process.765

6.3.2. Pattern Recognition
The trajectory of a charged particle in a solenoidal

magnetic field is an helix. Because the BMT detectors
offer either xy- or z-coordinates but never both, the pat-
tern recognition cannot be performed in 3 dimensions.770

For particles of large enough momentum (perpendicular
momentum p⊥ > 0.25 GeV for a 5 T solenoidal mag-
netic field), the xy-projection of a helix is a circle, and
the rz-projection is a straight line (where r =

√
x2 + y2).

Therefore, a first pattern recognition algorithm is run in775

the xy-plane to look for circles and then a second pattern
recognition algorithm is run in the rz-plane to search for
straight lines.

The two pattern recognition algorithms are a modi-
fied version of the cellular automaton (CA) algorithm780

developed by the HERA-B Collaboration [23]. Here,
the elementary cell of the CA is defined as a segment

13

that connects two 2D points. In the (x, y) plane, cells
are formed with SVT and BMT-Z xy-information. Two
xy-clusters form a cell if the angular distance between785

them is lower than a defined threshold. This threshold
has been derived by maximizing the reconstruction
efficiency on a single track Monte Carlo simulation
merged with background extracted from the data. Two
clusters cannot form a cell if they are separated by more790

than one layer. Finally, the CA is run sector-by-sector in
the BMT and, as a consequence, a cell cannot be formed
with two clusters residing in different BMT sectors.

The subsequent step is the “neighbor” finding. Cell
“a” is a neighbor of cell “b” if they share one cluster795

and if the layer numbers in “b” are higher than those in
“a”. Tuned on single-track Monte Carlo simulation data
without background, cuts on the dot product between
the cell directions are applied as neighbor-forming
criteria. Once the neighborhood of a cell is defined, the800

CA is evolved over an N-evolution stage. For evolution
stage n, the state of all cells is updated according to
S n = max(S j

n−1) + 1, where S j
n−1 is the state of the

jth-neighbor of the considered cell at evolution time
n − 1. Therefore, at evolution stage N, the cells with805

the highest state are further outward than the cells with
a smaller state.

Track candidates in the (x, y) plane are then formed
starting from the highest state cells and following the
neighbor chain with ∆S = 1. In case of multiple810

neighboring cells with the same state, the one that has
the smaller dot product with the original cell is chosen.

Since the z-resolution of the BMT clusters is sig-
nificantly better than the uncorrected (i.e. prior to
obtaining a track direction) SVT 3D points, the search815

for candidates in the (r, z) plane is performed by only
using the BMT-C information. The CA algorithm
returns the track segments of two or three BMT-C
clusters. Due to the orthogonality of the BMT-C and
BMT-Z readout, all of the (r, z) segments of a BMT820

sector are combined with the (x, y) candidates in the
same sector. A line is fit to the BMT-C hits and its
intersections with the three SVT regions are computed.
If the distance between the expected intersection and the
preliminary 3D point in the SVT region is greater than825

two millimeters, then the two SVT clusters forming this
preliminary point are removed from the track candidate.

6.3.3. Track Fitting
Each track candidate is then passed to a Kalman filter.

The state vector to describe a helix is formed by five830

parameters (ϕ0, d0, κ, z0, tan θdip), where:

• d0 is the (x, y) distance of closest approach to the

CVT revolution axis;

• ϕ0 = atan(py/px) at closest approach angle to the
CVT revolution axis;835

• κ = q/p⊥ and q is the electric charge of the particle

and p⊥ =
√

p2
x + p2

y is the transverse momentum;

• z0 is the distance along the z axis to the CVT
center;

• θdip is the polar angle between the track and the840

xy-plane.

To initialize the Kalman Filter, a first estimate of
these parameters is obtained from:

• a circle fit in the xy-plane with preliminary SVT
3D points and BMT xy-clusters for d0, ϕ0, and κ.845

To improve the initialization of the fit, the point
(0,0) (on the ideal beam z-axis) is included in the
fit with an accuracy of 100 µm.

• a line fit in the rz-plane using only the z-clusters of
the Micromegas to initialize z0 and θdip.850

The covariance matrices of the two fits are merged
into a 5×5 matrix to initialize the covariance matrix for
the Kalman filter. Following the transport equations
in Ref. [24], the state vector is propagated from the
CVT revolution axis to the outermost layer of the855

CVT, filtering at each measurement composing the
track candidate. Once the last measurement is reached,
the state vector and covariance matrix are brought
back to the CVT revolution axis as they are and the
transport/filtering process is re-run. A maximum of five860

iterations is performed to make sure of the convergence
of the filtering process.

6.4. Tracking Performance
The momentum resolutions in the central and forward

trackers as a function of momentum are shown in865

Figs. 16 and 17, respectively. The distributions are fit
with a function of the form

√
a + bx2 + c/(1 + d/x2).

In both distributions, the worsening of the resolution at
low momentum is due to multiple scattering effects. The
resolution also worsens as a function of momentum af-870

ter a minimum is reached due to poorer track curvature
resolution. The resolutions achieved are well within the
design specifications and the difference in magnitude
between the central and the forward trackers is due to
the intrinsic resolutions of these systems875

For central tracking, an average CVT reconstruction
efficiency of 87.3% is obtained from a simulated proton

14

Figure 16: Momentum resolution vs. momentum of simulated protons
in the CVT without background.

Figure 17: Momentum resolution vs. momentum in the DC evaluated
using pions simulated at θ = 15◦ ± 5◦ and at φ = 0 ± 5◦ without
background.

sample with momenta in the range from 0.5 to 2.5 GeV.
A slight drop of efficiency is observed for tracks with
momenta less than 600 MeV. The higher curvature of880

small p⊥ tracks results in an increase in inefficiency
due to acceptance effects. The dominant source of
inefficiency is the gaps between the sensitive volumes
for the BMT and the SVT. These effects can be observed
in the efficiency plots of Fig. 18.885

Figure 18: Reconstruction efficiency vs. momentum (top) and
azimuthal angle (bottom) of simulated protons in the CVT without
background from a sample of simulated protons.

For the forward tracking, the momentum resolution
in the DC is evaluated using tracks simulated at θ =

15◦±5◦ and at φ = 0±5◦ (sample 1), to ensure that most
tracks are within the sensitive volume. Furthermore,
the DC momentum resolution is correlated with the890

polar angle since the track curvature is determined from
the magnetic field intensity, which is higher at lower
angles in the torus field, as can be seen from Fig. 19,
corresponding to tracks simulated at p = 4 ± 1 GeV,
10◦ ≤ θ ≤ 25◦, and φ = 0 ± 5◦ (sample 2).895

These resolutions are obtained from a Monte Carlo
sample that does not include out-of-time backgrounds
or misalignments of the tracking volumes. A dedicated
study that involves merging random background data
with low-luminosity data is described in Ref. [1]. The900

15

Figure 19: Momentum resolution vs. polar angle in the DC evaluated
using pions simulated at p = 4±1 GeV, 10◦ <≤ θ ≤ 25◦, and φ = 0±5◦

without background.

tracking efficiency for inbending (negatively charged)
and outbending (positively charged) pions in the torus
field calculated from sample 1 is shown in Fig. 20 for
tracks at θ = 15◦ ± 5◦. Inbending tracks suffer from a
loss in tracking efficiency for momenta generated below905

1.8 GeV at the time-based level due to lack of matching
with the outer detectors. These tracks miss the sen-
sitive volumes of the Forward Time-of-Flight (FTOF)
system, which is required to extract the time-correction
information needed for time-based tracking. The tracks910

do however pass the hit-based tracking requirement.
The efficiency loss due to the aforementioned effect
can be seen by comparing the (light) blue to the (dark)
red distributions. In the momentum range from 1.8
to 7.5 GeV, the time-based tracking efficiency is 98%,915

while in the range from 1.4 to 7.5 GeV, the hit-based
tracking efficiency is 99%. For outbending tracks (see
Fig. 20(bottom)), both the hit-based and time-based
tracking efficiencies are flat as a function of momentum
and on the order of 99%.920

The polar angular dependence of the DC tracking
efficiency obtained from sample 2 is shown in Fig. 21.
The green histogram corresponds to outbending tracks.
The efficiency is flat in the angular range from 10◦ to
25◦ for outbending tracks, while there is a loss of tracks925

below 15◦ for the inbending tracks (shown in orange).
As discussed above, this is due to tracks missing the
outer detectors.

The vertex resolutions of reconstructed tracks from
a sample of simulated semi-inclusive deep inelastic930

scattering events are shown in Fig. 22. The vertex is
obtained for positively and negatively charged tracks
reconstructed in the Central and Forward Detectors,
respectively. The vertex resolutions for the Central
Detector (blue histogram) is about 3 mm and for the935

Figure 20: DC tracking efficiency as a function of momentum
evaluated using (top) negatively and (bottom) positively charged pions
simulated at θ = 15◦ ± 5◦ and at φ = 0 ± 5◦. The (light) blue and
(dark) red distributions correspond to the hit- and time-based tracking
efficiencies, respectively.

Forward Detector (red histogram) is about 5 mm.

6.5. Electromagnetic Calorimeters
The Electromagnetic Calorimeters (ECAL) [7] of the

CLAS12 Forward Detector downstream of the torus and
the FTOF are lead-scintillator strip sampling calorime-940

ters used for the detection of electrons, photons, and
neutrons. A pre-shower calorimeter (PCAL) is posi-
tioned in front of the EC calorimeter, which consists
of two parts, EC-inner (ECIN) and EC-outer (ECOU).
The ECAL reconstruction service provides a fast and945

efficient algorithm for grouping scintillator strips with
hits into multiple peaks and clusters within the three
submodules, PCAL, ECIN, and ECOU, for each of the
six ECAL modules, while leaving cluster matching and
particle identification to the Event Builder service.950

Within the ECAL reconstruction service, these vari-
ous elements exist as objects with methods, structures,

16

Figure 21: DC tracking efficiency as a function of polar angle
evaluated using pions simulated at p = 4 ± 1 GeV, 10◦ ≤ θ ≤ 25◦ and
φ = 0 ± 5◦. The green histogram corresponds to outbending tracks
in the torus field and the orange histogram corresponds to inbending
tracks.

and data members designed for calibration, pattern
recognition, diagnostics, and serial output. For ex-
ample, the service applies run-dependent calibration955

corrections for conversion of the raw ADC and TDC
digitized data to energy and time, and also provides for-
matted output banks used by external services. Energy
thresholds and cluster identification criteria can also
be configured to optimize the reconstruction efficiency,960

suppress backgrounds, and avoid false or duplicate
clusters arising from fluctuations at the fringes of the
electromagnetic showers.

The cluster finding algorithm makes use of the unique
geometry and stereo readout features of the ECAL. As965

discussed in Ref. [7], each triangular scintillator layer
in the ECAL lead:scintillator sandwich is transversely
divided into strips, with the shortest strip at the corners.
The slice direction rotates by 120◦ for each successive
layer, providing three views labeled U, V , and W. For970

each strip within a view, layers are optically ganged
together into a stack. Individual photomultiplier tube
(PMT) readout of each PCAL, ECIN, and ECOU stack
provides a pulse proportional to the summed energy
deposited in the stack.975

The algorithm begins by finding collections of con-
tiguous stacks having signals above a user-defined
threshold for each of the three views. These groupings
are called peaks and their member stacks are referred to
as hits. Peak objects may be further subdivided based980

on the hit energy profile of the groupings. Each peak
object is associated with one or more stacks of strips that
belong to it, and the three-dimensional geometry of each
stack is stored along with the peak data. The service

Figure 22: The z (along the beamline) vertex resolutions of re-
constructed tracks from a sample of simulated semi-inclusive deep
inelastic scattering events. The vertex for positively and negatively
charged tracks reconstructed in the Central and Forward Detectors is
represented by the blue and red histograms, respectively.

uses this geometry data to determine which collection985

of peaks belong to clusters.

6.5.1. Cluster Position

The criterion for defining a cluster requires the spatial
intersection of three peaks, one from each of the U, V ,
and W views. Candidate peaks for a cluster search are990

based on a user-defined threshold for the summed peak
raw energy. Each peak is represented geometrically
as a directed line segment determined by the energy-
weighted average of the mid-lines of each member strip.
The degree of intersection of each U, V , and W peak995

triplet is determined by calculating the line of closest
distance between a U and V peakline, followed by the
line of closest distance between the midpoint of the
UV line and the W peakline. A user-defined cut on
this final UV-W distance identifies the cluster, and the1000

midpoint of the UV-W line defines the transverse (x′, y′)
coordinates of the cluster in the local coordinate frame
(with the z′ axis perpendicular to the ECAL planes).
The longitudinal coordinate z′ is set to coincide with
the layer of maximum energy deposition to minimize1005

parallax effects for tracks that are not perpendicular to
the detector surface [7]. As the cluster reconstruction is
performed before the matching with the other CLAS12
detectors that can provide particle identification, the
same algorithm is applied to clusters originating from1010

charged or neutral particles.

17

6.5.2. Cluster Energy
Once the cluster is localized, the path from the cluster

position to the PMT readout end is calculated for each
U, V , W peakline and the peak energies are corrected for1015

scintillator light attenuation. For isolated clusters, the
cluster energy is then defined as the sum of the corrected
energy from each of the U, V , and W peaks that define
the cluster.

More complicated scenarios arise from the triangular1020

geometry of the ECAL hodoscope, which creates the
possibility of a single peak in the U, V , or W view that
shares the summed energy from two or more clusters.
For these cases, the energy in each cluster that shares
that peak is assumed to be proportional to the relative1025

partial energies of the multiple clusters as measured in
the other views. For example, if there are two clusters,
both of which share the same U peak, the summed
energy V + W is determined for each of the clusters,
and the ratio of these summed energies determines how1030

much of the U peak energy is assigned to each of the
two clusters.

Finally, the clusters to be reported to external services
are selected with a user-defined energy cut, and these
clusters are sorted according to energy. Typical software1035

thresholds applied at the stacks, peak, and cluster level
are 1, 3, and 10 MeV, respectively.

6.5.3. Cluster Time
Once the cluster is localized, the path from the cluster

position to the PMT readout end is calculated for each1040

U, V , W peakline and the peak timing is corrected for
the propagation delay of the light, using the effective
velocity of light determined for each scintillator from
the calibration procedure. For isolated clusters, the
cluster timing is then taken from the U, V , or W peak1045

with the largest uncorrected raw ADC value. This
minimizes the effect on the timing resolution from both
the time-walk correction (i.e. the signal amplitude
dependence of the hit time) and the photoelectron
statistical fluctuations.1050

6.6. Threshold Cherenkov Counters

The CLAS12 Forward Detector includes two thresh-
old Cherenkov detectors for particle identification. The
High Threshold Cherenkov Counter (HTCC) [4] is
located upstream of the torus and is used for identi-1055

fication of the scattered electron in conjunction with
the ECAL. The Low Threshold Cherenkov Counter
(LTCC) [3] is positioned upstream of the FTOF and
is used mainly to identify pions. Both the HTCC
and LTCC are large gas-filled volumes (CO2 for the1060

HTCC, C4F10 for the LTCC) with mirrors that direct
light collection to the PMTs. The goal of the HTCC
and LTCC reconstruction algorithms is to calculate the
signal strength, time, and position from the raw ADC
signals (read out with flash ADC boards - FADCs). The1065

algorithm takes into account the properties of the HTCC
and LTCC geometries, namely, the possibility for the
signal from a single charged track to split into up to
four mirrors. Hence, up to four separate signals (or
hits) are produced. The final signal reconstruction is1070

done in three steps: decoding, hit reconstruction, and
cluster reconstruction. For each hit, the signal strength
(nphehit - the number of photoelectrons) is determined
from the pedestal-subtracted integral of the FADC pulse
and the associated time (thit) is determined from a fit of1075

the position of the FADC signal threshold crossing time.
At the hit reconstruction stage, individual signals

in terms of the ADC channels are converted into the
number of photoelectrons (nphehit) for each hit using
gain constants derived from the detector calibration and1080

stored in CCDB:

nphehit =
ADC
gain

. (5)

Geometry information on the PMT location is used to
associate the angular coordinates (θhit, φhit) to the hit.

In order to reconstruct the real signal strength
(nphec), split signals (hits) have to be combined into1085

a single cluster. The algorithm starts by selecting the
hit with the largest nphehit, which is used as a seed for
the cluster. Adjacent hits within a certain time window
are then searched iteratively and, if found, added to
the cluster. The total signal strength is determined as1090

the sum of the individual signals, and the signal time
is determined as the average between the individual
signal times, weighted by the corresponding number
of photoelectrons. The cluster angular coordinates are
determined as the average between the individual hits1095

forming the cluster. The cluster quantities are defined
by:

nphec =
∑N

i=1 nphehit

N

tc =
∑N

i=1 N∗thit∑N
i=1 nphehit

θc =
∑N

i=1 θhit

N

φc =
∑N

i=1 φhit

N . (6)

The clustering algorithm is run iteratively until the full
list of N hits is exhausted.

18

In the HTCC, the cluster coordinates, required for the1100

matching of the hit with the reconstructed track in the
Event Builder, are reconstructed by projecting (θc, φc)
of the cluster on the surface of the ellipsoidal mirror of
the detector. In the LTCC, an estimated cluster position
is calculated based on a parameterization extracted from1105

Monte Carlo simulations. The track that passes the
closest to the cluster position is then chosen as the match
for this cluster.

6.7. RICH Detector
The CLAS12 Ring Imaging Cherenkov Counter1110

(RICH) [5] presently replaces one LTCC counter in the
Forward Detector (with a second RICH to be installed
in the future replacing a second LTCC counter). When
charged particles traverse the aerogel radiator in the
RICH volume, Cherenkov radiation is emitted with a1115

characteristic cone angle related to the particle velocity.
These photons are distributed in a ring pattern that can
be reconstructed by collecting the photons using mirrors
and PMTs (see Fig. 23 for an example RICH event).
The goal of the RICH reconstruction is to provide an1120

estimate of the Cherenkov angle for each detected pho-
ton and intercepted particle track, to allow subsequent
particle identification. This requires input from the
Forward Detector tracking service, which defines the
trajectory of particle tracks inside the detector and,1125

in particular, the track intersection point and direction
within the aerogel radiator and the photodetector plane
composed of multi-anode PMTs (MaMPTs).

In the first phase, the RICH reconstruction identifies
the cluster of hits produced by the charged particle in the1130

sensor plane. In the second phase, the cross-talk signals
are identified by means of an amplitude analysis (based
on the time-over-threshold information) in conjunction
with geometrical constraints, taking into account that a
cross-talk hit should be in the proximity of a genuine hit.1135

Finally, hits neither belonging to a cluster nor flagged
as cross-talk are considered as Cherenkov photon can-
didates.

The photon path inside the RICH is reconstructed in
two complementary ways, taking the middle point of1140

the hadron trajectory inside the radiator as the emission
point, and the hit pixel coordinates as the detection
point. The first method uses an analytic formula that
takes into account the refraction at the aerogel face
and is only valid for directly detected photons. It1145

provides an exact solution. The second method uses
a ray-tracing algorithm that also takes into account the
mirror reflections. It provides a numeric solution based
on an iterative procedure. Both methods return the
reconstructed Cherenkov angle in conjunction with the1150

Figure 23: Example of a reconstructed RICH event from beam data.
Small points indicate the trial pattern expected for an electron, as
identified by CLAS12. The dashed lines show examples of ray-traced
photon paths from the common emission point (in the radiator) to the
detected hit: two direct photons emitted upwards and two reflected
photons emitted downwards. The open circles are the detected RICH
hits. The circles are filled in the case that a viable traced solution has
been found. The central cluster is generated by the track impact on
the MaPMT plane.

corresponding aerogel refractive index, which can vary
slightly with respect to the nominal value due to the
chromatic dependence on the unknown photon energy.

The relevant RICH components (aerogel, mirrors,
MaPMT plane) are converted into ray-tracing planes1155

or spheres where the photon can undergo refraction,
reflection, or detection. Each ray-tracing element can
be independently aligned. The alignment procedure
uses as a benchmark the Cherenkov signal generated by
electrons, as identified by the HTCC and ECAL. For1160

these particles, the expected Cherenkov angle is given
by the known particle momentum (from DC tracking)
and mass. The position and orientation of the MaPMT
plane is defined by minimizing the average distance
that matches the RICH clusters to the charged tracks1165

extrapolated to the MaPMT plane. Any other RICH
component can be aligned with respect to the MaPMT
plane by selecting the sub-sample of photons passing
through that component. The alignment is done by
minimizing the average distance between the ray-traced1170

detection point (RdP) and the corresponding measured
MaPMT hit over the selected sub-sample of photons.

For each hadron track, the ray-tracing algorithm
progresses as described in the following. A trial
photon is a hypothetical photon assumed to originate1175

from the emission point at a Cherenkov angle θT and

19

Figure 24: Example of iteration of the ray-tracing photon path
reconstruction in the RICH (x, y) plane. The emission polar θT and
azimuthal φT angles of the closest trial photon are varied by the
expected Cherenkov angle resolution σ to extrapolate the correspond-
ing displacements of the detection point. The distance between the
measured and the trial hit is projected onto such displacements to
quantify the next angular step in units of σ. See text for details.

an azimuthal angle φT , with the corresponding RdP
T (θT , φT) defined by the ray-tracing algorithm. A
limited ensemble (on the order of 100) of trials is ini-
tially traced having θT defined by a particle hypothesis,1180

i.e. electron for a particle identified as an electron in
CLAS12, pion otherwise, and φT uniformly distributed
around the charged particle trajectory, see Fig. 23. For
each MaPMT measured hit, the closest trial RdP is
taken to be the starting point of the iterative ray-tracing1185

procedure for that hit.
To initiate the iterative procedure, the closest trial

RdP is required to stay at a distance from the hit smaller
than 10 cm, which is twice the typical distance between
the initial trial RdPs on the MaPMT plane. At each1190

step, the closest trial is re-traced by varying its angles
by the expected Cherenkov angle resolution σ to define
the corresponding displaced RdPs Tθ(θT + σ, φT) and
Tφ(θT , φT + σ). The distance vectors

−−→
TTθ and

−−−→
TTφ,

connecting each rotated trial RdP to the initial trial1195

RdP, naturally define a reference system in the MaPMT
plane, see Fig. 24. The distance vector

−−→
T H between the

measured hit H and the closest trial RdP position T is
projected onto the reference vectors to get an estimate
of the next angular step. In particular, the scale factor f1200

of the polar angle step ∆θ = fσ is defined by projecting
the distance vector

−−→
T H onto the reference vector

−−→
TTθ:

f = (
−−→
T H ·

−−→
TTθ)/|

−−→
TTθ|2. The factor f can be either

positive or negative, depending on if the rotated point
moves toward or away from the measured hit. The same1205

is done for the azimuthal angle φ.
The angles of the trial photon are modified by the

calculated ∆θ and ∆φ angular shifts, and the procedure
is repeated. At each step, the trial RdP gets closer to
the measured hit, but an exact solution cannot be found1210

as the procedure uses a linear approximation relating
the distances in the MaPMT plane with the angular
rotations in the 3D space. The iterative procedure stops
when the distance of the trial RdP from the measured hit
is smaller than a fraction of the MaPMT pixel size, i.e.1215

the RICH detector spatial resolution. The convergence
is fast, typically within a few steps, so that the average
reconstruction time of a RICH event is negligible, at the
level of few tens of microseconds.

For each photon hit in the event, the RICH re-1220

construction procedure provides a measurement of the
Cherenkov angle that does not depend on a given
particle hypothesis, having as input only the emission
point, the hit position, and the detector geometry. The
initial particle hypothesis is only instrumental to define1225

the starting ensemble of trials. As soon as a trial closer
than 10 cm to the hit is found, the iterative procedure
re-calculates the angles using only geometrical infor-
mation and neglecting any previous assumption on the
particle type.1230

As there is no a priori knowledge on which particle
has emitted a given photon, the procedure is repeated
for any charged particle intercepting the RICH radiator.
The ensemble of such measured Cherenkov angles
represents the basic experimental information provided1235

by the RICH. Any particle identification method, from
the most simple average at the track level to the most
complicated likelihood using the full event information,
can be derived from it.

6.8. Time-of-Flight Systems1240

The time-of-flight (TOF) detectors for CLAS12 in-
clude the Forward Time-of-Flight system (FTOF) [6]
and Central Time-of-Flight system (CTOF) [10]. The
FTOF consists of planes of scintillator counters located
between the RICH/LTCC and the ECAL. Two parallel1245

counter arrays in each Forward Detector sector are
employed to achieve the desired time resolution in the
polar angle range from 5◦ to 35◦. The arrays are referred
to as panel-1b (closer to the target) and panel-1a (farther
from the target). A third set of counter arrays referred1250

to a panel-2 covers polar angles from 35◦ to 45◦. The
different FTOF arrays can be seen in Fig. 6. The CTOF
consists of a barrel of scintillator counters located just
outside of the CVT within the solenoid.

The raw data from the detector PMTs read out during1255

data acquisition include an ADC charge and hit time
from a fitted flash ADC (FADC) waveform and a TDC
time. The ADC and TDC information is read out and

20

recorded only for those channels that are above the
∼1 MeV hardware readout threshold for the FADCs and1260

discriminators of both systems.
As the FTOF and CTOF counters employ double-

ended PMT readout, the calibration procedures for
these systems (described in detail in Refs. [6, 10])
allow the reconstruction to report accurate hit times1265

and deposited energy associated with both PMT signals
above threshold. At this point the event reconstruction
combines the PMT hit times and energies to give a
hit time and energy deposition associated with the
scintillation counter. In a second phase, hits in adjacent1270

counters, due to particles that pass through multiple
counters in the FTOF and CTOF systems (so-called
“corner clippers”), are combined into clusters with an
associated time, coordinate, and deposited energy. The
algorithms for the hit and cluster definitions are detailed1275

in the next sections.

6.8.1. Raw Counter Hits
Raw hits for the TOF systems are defined by match-

ing the ADC and TDC information reported for each
counter. This matching is based on the comparison of1280

the TDC time with the time from the FADC waveform
analysis. The latter is derived from fitting the leading
edge of the FADC pulse shape during data decoding.
Due to the choice of fast timing PMTs for the detector
readout and the use of 250 MHz FADCs, the number1285

of samples on the leading edge of the PMT pulses is
only 3 to 4, hence the FADC timing resolution is only
∼1 ns. The FADC and TDC times are then required to
be within a selected window. The windows parameters,
position, and width, as well as all other constants1290

used by the reconstruction package, are loaded at run
time from CCDB. Currently the window width used is
10 ns, which was found to be sufficient to reduce the
probability of a mismatch of the ADC and TDC data for
a given scintillation bar hit. This is especially important1295

for the FTOF as the ADC value of the hit is used to
compute the time-walk correction.

6.8.2. Reconstructed Counter Hits
Raw hits are processed to determine reconstructed

hits with energy, time, and position information. The1300

reconstructed hit times from the individual PMTs need
to account for the time delays along the readout path
that include the PMT signal transit time, the signal
propagation times through the signal cables and the
electronics, and any time-walk effects associated with1305

the readout discriminators. For the FTOF readout,
leading-edge discriminators are employed, while for
the CTOF readout, constant fraction discriminators are

employed and no external time-walk corrections are
required. The hit times reconstructed by the TDC1310

readout of the PMTs at the ends of each scintillation bar
(referred to generically here as 1 and 2) are given by:

t1/2 = (CONV · T DC1/2) − twalk
1/2

∓
C12

2
+ CRF + Cp2p, (7)

where CONV is the TDC channel-to-time conversion
factor (0.024 ns/bin), T DC is the measured PMT TDC
value relative to the trigger signal, twalk is the time-1315

walk correction that accounts for the pulse amplitude
dependence of the crossing times of the discriminator
threshold (used only for FTOF), C12 is a time offset
to center the PMT TDC difference distribution about 0,
and CRF and Cp2p are the time offsets to align all of the1320

counter hit times with respect to the accelerator RF time
and to each other, respectively. The paddle-to-paddle
time offsets Cp2p mainly account for the signal delays
along the cable lengths from the PMT output to the
readout electronics.1325

The FTOF and CTOF particle hit times relative to
the trigger signal can be determined separately from
the times t1 and t2 measured by the PMTs of a given
scintillation bar using:

t1/2
hit = t1/2 −

d1/2

ve f f
, (8)

where d1/2 represents the distances along the bar from1330

the hit point to the PMT given by:

d1/2 = L/2 ± y, (9)

with y the hit coordinate along the bar (determined from
forward tracking for the FTOF and central tracking for
the CTOF) and L is the counter length. The average
counter hit time is given by:1335

t̄hit =
1
2

(t1
hit + t2

hit) =
1
2

[
t1 + t2 −

L
ve f f

]
, (10)

where ve f f is the effective speed of light in the scintilla-
tion bar.

Using the timing information from the PMTs at the
ends of each bar, the hit coordinate along the bar with
respect to the center of the bar can be defined from the1340

FTOF or CTOF information alone using:

y =
ve f f

2
(t1 − t2 −C12). (11)

21

It is this coordinate determination that is compared
against the projected coordinate from tracking to de-
termine if the time-of-flight hit matches to a projected
track.1345

The algorithm detailed above and currently in use
requires good ADC and TDC information for the PMTs
at both ends of the counter to be available. However, if
one of the PMTs of a counter is malfunctioning, Eq.(8)
shows that the hit time recorded from the working1350

PMT alone can be used to reconstruct the particle
hit time using tracking information to correct for the
light propagation delay along the counter. The loss
of one PMT involves a

√
2 worse timing resolution

for the counter. Algorithms to address these cases are1355

already implemented in the reconstruction service but
are presently disabled.

The reconstructed energies from the ADC values of
the PMTs (1 and 2) for a given scintillator bar are given
by:1360

E1/2 = (ADC1/2 − PED1/2)


(

dE
dx

)
MIP
· t

ADCMIP

 , (12)

where (ADC − PED) is the measured pedestal-
subtracted ADC integral, ADCMIP is the ADC value for
normally incident minimum-ionizing particles (MIPs)
at the center of the scintillation bar,

(
dE
dx

)
MIP

is
the energy loss for MIPs in the scintillation bars1365

(2.001 MeV/cm), and t is the scintillation bar thickness.
The deposited energy is computed as the geometric
mean of the deposited energy as determined from the
two counter PMTs as:

Edep =
√

E1E2. (13)

6.8.3. Hit Clustering and Matching1370

If there are multiple scintillation bar hits associated
with a single incident charged particle track, a hit cluster
can be defined. These clusters have associated with
them a hit coordinate, deposited energy, and hit time.
Hits are assigned as part of a cluster in either the FTOF1375

or CTOF if their hit positions and hit times fall within
selected matching windows. The clustering algorithm
looks to define hit clusters matched to tracks separately
in each of the counter arrays.

With hit clusters defined, the associated cluster co-1380

ordinate along the counter length is defined as the
energy-deposited weighted average of the reconstructed
y coordinate from Eq.(11) as:

ycluster =

N∑
i=1

yi · ∆Ei. (14)

Note that in both the FTOF and CTOF systems, the
maximum cluster size is practically limited to N =1385

2. For the coordinate transverse to the counter length
along the counter width, the coordinate is defined as the
average of the coordinates associated with the middle of
the bar.

The assigned cluster energy is the sum of the de-1390

posited energies in the counters associated with the
defined cluster,

Ecluster =

N∑
i=1

Ei
dep. (15)

In the FTOF when there is a defined hit or a defined
cluster in both panel-1b and panel-1a, a second cluster
matching algorithm is applied to determine if the hit or1395

cluster in panel-1b and the hit or cluster in panel-1a
are associated with the same incident track matched
to the panel-1b hit or cluster. If they are associated,
a corrected FTOF hit time based on the panel-1a
and panel-1b cluster times is computed using a time1400

resolution weighting according to the counter in each
cluster with the largest energy deposition using:

tcorr =

tcluster
1b

δ1b
+

(tcluster
1a − ∆r/βc)

δ1a(
1
δ1b

+
1
δ1a

) . (16)

Here δ1a,1b are the effective time resolutions measured
for the counters determined during the FTOF calibration
procedure and tcluster

1a,1b are the cluster hit times in panel-1a1405

and panel-1b. The term ∆r/(βc) accounts for the
path length difference between the panel-1b cluster
hit coordinate and the panel-1a cluster hit coordinate
and comes from forward tracking information. As β
depends on the FTOF time, it is assumed that it is based1410

on the panel-1b time information (the array with the
better timing resolution).

Given the effective FTOF counter resolutions, the
overall FTOF hit time resolution is improved by 15-20%
when combining the times from panel-1b and panel-1a1415

in this manner. Of course, if the track interacts with
only panel-1a or with only panel-1b due to the slightly
different solid angles of coverage of the arrays, then
only the single plane hit time is used in the event
reconstruction.1420

Note that employing the cluster times has not yet
been fully validated in the event reconstruction but is

22

currently under test using Monte Carlo data samples.
While this validation is in progress, the information
passed from the time-of-flight systems to the Event1425

Builder is based on reconstructed hits.

6.9. Central Neutron Detector

The Central Neutron Detector (CND) [11] is used to
detect 0.2 to 1 GeV neutrons in the Central Detector.
The CND consists of a barrel of three layers of scintilla-1430

tors coupled at their downstream ends with U-turn light
guides and read out on their upstream ends with PMTs.
The light readout from the scintillation bar in which a
particle interacts is called “direct”, while the light that
travels through the U-turn into the neighboring bar and1435

read out in the coupled counter is called “indirect”.
The reconstruction of the CND is done in five steps:

• the choice of the direct and indirect paddle, by
comparing the two PMT times (referred to as the
left and right times) of a coupled pair of counters,1440

after correcting them for relative and absolute
offsets determined in the calibration procedure and
accounting for light propagation times [11];

• the reconstruction of the deposited energy;

• the reconstruction of the time and position of the1445

hit in the paddle;

• the matching of CND hits with CVT tracks coming
from the interaction vertex;

• the clustering of multiple hits.

6.9.1. Energy Reconstruction1450

For direct hits in the left paddle at a position z along
the paddle, the two associated ADCs can be written as:

ADCL =
EL

E0
· MIPD · e

−z
AL , (17)

ADCR =
ER

E0
· MIPI · e

−(L−z)
AL .

Here MIPD (MIPI) is the ADC-to-energy constant
for direct (indirect) minimum-ionizing particles (MIPs),
EL/R is half the energy deposited by the particle in the
left/right paddle, z is the distance along the left counter
to the left PMT, L is the length of each paddle, and AL is1455

the coupled counter pair attenuation length. E0 is given
by:

E0 =
h · 2.001

2
MeV, (18)

where h is the thickness of each scintillator. In the
case of direct hits in the right paddle, the applicable
equations are obtained by switching the L/R indices.1460

The energy reconstruction for each coupled paddle is
obtained inverting Eq. 17. The total energy of the hit is
then given by the sum of EL and ER.

6.9.2. Hit Position and Time Reconstruction
The reconstruction of the time and position of a hit1465

will be shown for the case of a hit in the left paddle. In
case of a hit in the right paddle, the applicable equations
are obtained by switching the L/R indices.

Starting from tL and tR, defined as

tL = tto f +
z

ve f fL

+ tS + to f f + T DC j, (19)

tR = tto f +
L − z
ve f fL

+
L

ve f fR
+ ut + tS + to f f + T DC j,

and subtracting the time offsets obtained from the
calibration (to f f), the start time (tS), and the time jitter1470

(T DC j), one can define the propagation times tLprop and
tRprop to the left and right PMTs of the coupled pair as:

tLprop = tto f +
z

ve f fL

, (20)

tRprop = tto f −
z

ve f fL

+
L

ve f fL

+
L

ve f fR
+ ut,

where ve f fL/R is the effective light velocity in the
left/right paddle and ut is the propagation time of
light to travel in the U-turn. Both of these quantities1475

are obtained from CND calibration (see Ref. [11] for
details).

The position of the hit z is obtained from the differ-
ence of the left and right propagation times:

z =
ve f fL

2

(
tLprop − tRprop

)
+

ve f fL

2

(
L ·

(
1

ve f fL

+
1

ve f fR

)
+ ut

)
. (21)

The x and y coordinates of the hit are obtained from
the radius and the azimuthal angle of the hit, which are,
in turn, determined by knowing the layer, sector, and
component (left or right) of the hit. Finally, the time
of flight of the particle that produced the hit is obtained
from the sum of the left and right propagation times:

tto f =
1
2

(
tLprop + tRprop

)
−

1
2

(
L ·

(
1

ve f fL

+
1

ve f fR

)
− ut

)
. (22)

23

6.9.3. Hit/Track Matching
Tracks from charged particles crossing the CVT

are associated with hits in the CND. This allows the1480

position of each CND hit to be computed from the
track extrapolated beyond the CVT to the location
of the hit counter. This information is used in the
detector calibration [11]. CVT tracks are extrapolated
to radii corresponding to the entry point, midpoint, and1485

exit point of the track in the paddle. These points
are defined as the intersections between the helix of
the track and cylinders of radii corresponding to the
distances between the beamline and the three CND
layers. A CVT track and a CND hit are matched if1490

the hit coordinates and the extrapolated coordinates are
within a user-selected distance. The path traveled by the
particle in the paddle is approximated as the distance
between the entry and exit points. The path length
between the vertex and the hit is obtained from the helix1495

parameters.

6.9.4. Clustering
The clustering of CND hits is based on the geomet-

rical space-time distance between them. The determi-
nation of the maximal distance for clustering two hits1500

together takes into account the measured resolutions for
position and timing of the CND counters [11].

The algorithm uses standard hierarchical cluster-
ing [28]. A scan of all hits in an event is performed and
only hits with a deposited energy greater than 1 MeV1505

are considered for clustering. The two closest hits
are combined into a single hit with associated energy
defined as the sum of the energies of both hits. The
position and timing of the cluster hit are defined as those
of the hit with the highest energy, i.e. the seed hit.1510

The same algorithm is recursively run on the remaining
hits. Finally, the leftover hits that are relatively far from
each other are called clusters. The sector, layer, and
component of each cluster are those of the seed hit.

6.10. Forward Tagger1515

The Forward Tagger (FT) [12] is placed between the
HTCC and the torus magnet along the beamline and is
designed to detect electrons and photons in the polar
angular range from 2◦ to 5◦. The FT is composed
of an electromagnetic calorimeter based on PbWO41520

crystals (FT-Cal), a two-layer scintillator hodoscope
(FT-Hodo), and a Micromegas tracker (FT-Trk) similar
in design to the FMT [9]. The FT reconstruction
service is designed to provide efficient algorithms to
determine the energy, time, and positions of the signals1525

associated with the incident particle. The reconstruction

matches this information to determine the type and
three-momentum of the particle. The package consists
of four services, one for each of the sub-detectors and
a global service that builds the particle information1530

from the output of the detector reconstruction. In the
following, we describe each of the FT services and their
algorithms.

6.10.1. The FT-Cal Reconstruction Service
The calorimeter service has the role of reconstructing1535

clusters associated with the incident particles from the
detector raw information. These include the charge and
time recorded by the FADC boards that read out the
crystal signals. A cluster is defined as a contiguous
ensemble of crystals within the calorimeter, in which1540

a signals above a minimum energy threshold (10 MeV)
are found within a selected time window (10 ns) from
each other.

The first step to build a cluster is to reconstruct the
energy and time of the individual crystal hits from the1545

raw FADC information. For this purpose, the charge
and raw time of the recorded pulse are converted to
energy and time using calibration constants derived
from data. A linear relationship between energy and
charge is assumed. The hit time is defined from the1550

raw time by applying an offset and a charge-dependent
correction that accounts for time-walk effects.

Reconstructed hits are then ordered by energy and,
starting from the maximum energy hit, subsequent
crystals are associated with it based on their relative
positions and time differences. Once all hits are asso-
ciated with a cluster, the overall cluster energy, time,
and positions are computed. The cluster energy Etot is
calculated as the sum of the individual hit energies, Erec,
plus a global correction to account for the hit thresholds
and for shower leakages due to the finite length of the
crystal and the overall calorimeter size. This correction
is parameterized as a function of the measured cluster
energy based on full Geant4 simulations of the detector
response [12]. The cluster time is computed as the
energy-weighted average of the individual hit times.
Finally, the cluster position in the x−y plane (transverse
to the beam z-axis) is computed as the logarithmic
energy-weighted hit coordinates (xi, yi), i.e. the crystal
position with the following functional form [25]:

xcluster =

∑N
i=1 wixi∑N

i=1 wi
, (23)

ycluster =

∑N
i=1 wiyi∑N
i=1 wi

,

where the index i runs over the N crystals in the cluster

24

and the weighting factors wi are defined as:

wi = max (0,w0 + ln(Ei/Erec)) . (24)

The parameter w0 was fixed to 3.45 after optimization
based on Geant4 simulations. The z coordinate of
the cluster is set to a constant depth from the crystal1555

upstream face that was optimized based on Monte Carlo
studies.

The resulting clusters are finally selected by applying
cuts to exclude instances where the total and seed
energies are less than a defined threshold or where the1560

number of crystals in the cluster is below a defined
limit2. All of these selection parameters, as well as the
other constants used in the cluster reconstruction, are set
at run time by reading the CLAS12 calibration constants
database, CCDB.1565

The final list of clusters is saved to an output HIPO
bank that is passed to the global FT reconstruction
service for the particle reconstruction. The intermediate
hit information is also saved to a HIPO bank for
debugging purposes.1570

6.10.2. The FT-Hodo Reconstruction Service
The FT-Hodo is used to discriminate photons and

electrons. The system consists of two layers of plastic
scintillator tiles read out with silicon photomultipliers.
The FT-Hodo reconstruction service, which is similar1575

to that for the FT-Cal, has the role of reconstructing hits
and associating matching hits in the two layers of the
detector to form clusters.

Hits are defined from the raw FADC information
as the energy and time of the signals associated with1580

the incident particles. These are computed assuming a
linear relation for the charge-to-energy conversion and
an additive offset between the raw and reconstructed
time. The constants necessary for these conversions are
derived for each individual detector component based1585

on beam-data calibrations as discussed in Ref. [12]
and set at run time by reading the values from CCDB.
The reconstructed hits are then selected by applying a
minimum energy threshold that was optimized based on
data analysis.1590

The selected hits are then matched to form clusters
consisting of scintillator tiles in the two detector layers,
matched in space and time. The position matching
distance is defined by the largest tile size, i.e. 3 cm,
while the time matching parameter was optimized based1595

on Geant4 simulations and is set conservatively to
8 ns. The resulting cluster parameters are the cluster

2Note that the seed crystal is the one with the largest signal

size, position, total energy, and time. The cluster
energy is calculated as the sum of the individual hit
energies, while both the position in the x − y plane1600

and time are calculated as the energy-weighted average
of the corresponding hit parameters. The resulting
information is saved to a HIPO bank that is passed
to the global FT service. As for the calorimeter, the
intermediate hit information is also saved to a HIPO1605

bank for debugging purposes.

6.10.3. The FT-Trk Reconstruction Service
The FT-Trk is used to measure the angle of the

scattered electron. It consists of two double-layers of
Micromegas and is positioned upstream of the FT-Hodo.1610

The FT-Trk reconstruction service is currently in the
development stage and will be described in detail in
a future publication, while here we discuss only the
general principles. Algorithms for the conversion of
the raw Micromegas detector information to hits and for1615

matching hits to form clusters follows those developed
for the CLAS12 BMT that are discussed in Section 6.3.
All combinations of clusters identified in the x − y
layers of each of the two sub-detectors are then built
to form crosses. Finally, the crosses found in the two1620

sub-detectors are matched based on their position and
saved as input for the global FT service.

6.11. The FT Global Service

The final step of the FT reconstruction is the
matching of the information resulting from the three1625

sub-detectors. Specifically, hodoscope and calorimeter
clusters are matched to distinguish charged particles
having a cluster in the hodoscope from neutrals that
have a low probability of creating a signal in that
detector. The matching is based on the relative position1630

of the calorimeter and hodoscope clusters in the x −
y plane and on their time difference. The position
matching parameter is determined by the hodoscope
component size, while the timing cut is set to 10 ns,
similar to the cut value used in the lower levels of the1635

FT reconstruction. The output of the matching is an
FT particle, whose energy and position at the detector
are determined from the calorimeter cluster parameters,
while its charge is set by the presence of a hodoscope
cluster. The particle three-momentum at the target for1640

charged particles is then computed accounting for the
bending in the solenoid field, while for neutrals it is
computed assuming a straight path from the CLAS12
target center to the FT. When available, the tracker
information will be used to refine the determination1645

of the particle impact point on the FT front face and,

25

therefore, to improve the reconstruction of the angles at
the vertex. The resulting particle information is saved
to a HIPO bank for use in the CLAS12 Event Builder
service.1650

6.12. Event Builder
The Event Builder is the last service in the reconstruc-

tion algorithm, and performs a series of functions:

• collects information from the upstream services;

• correlates information from the sub-detectors into1655

particles;

• performs a general particle identification scheme;

• organizes the resulting information into a standard-
ized, persistent data bank structure.

The service is run twice with identical algorithms,1660

once using hit-based tracks, and later with time-based
tracks, where the results of the hit-based Event Builder
are used to initialize time-based tracking.

6.12.1. Forming Particles
In defining a reconstructed charged particle in1665

CLAS12, the Event Builder assumes that an assignment
will be made for each reconstructed track in both the
Forward Detector and the Central Detector. The asso-
ciated calorimeter, scintillator, and Cherenkov detector
responses are then assigned to that particle based on1670

geometric coincidences between the detector responses
and the track, with matching criteria corresponding
to the resolution of a given detector. The geometric
matching is based on the distance of closest approach
between the track and the response, where an example1675

is shown in Fig. 25.
A similar procedure is followed for creating neutral

particles, except the seeding is presently with unasso-
ciated ECAL (for the Forward Detector) and CND (for
the Central Detector) responses instead of tracks.1680

6.12.2. Event Start Time
A start time is assigned to the entire event and

serves as our most precise reference time on which all
time-based particle identification relies. This is based
on the optimal charged particle candidate in the Forward1685

Detector with an associated FTOF timing response. The
Event Builder assigns the start time based on the highest
energy electron in the ECAL. If there is no electron in
the ECAL, it next looks for a positron in the ECAL.
If there is no lepton, the next track in the priority list1690

is a forward-going positive track (assumed to be a π+).

Figure 25: Example of the geometric matching criteria showing the
distance of closest approach between a charged track from the DC
extrapolated to the ECAL and the cluster positions in the ECAL.

Finally, if there is no forward-going positive track, it
looks for a forward-going negative track (assumed to
be a π−). When looking for π+ or π− tracks, only the
candidate with the highest momentum in each group is1695

considered.
A parallel event start time is determined from the

FT to facilitate physics analyses and triggers where the
primary scattered electron is at very forward angles in
the FT. In this case, all combinations of charged parti-1700

cles in the FT and the Forward Detector are considered.
The particle in the FT is assumed to be an electron,
whereas all hadron mass hypotheses are considered for
the Forward Detector tracks. The combination with the
best time coincidence is chosen. The timing of the1705

resulting FT electron is then used to assign the start
time.

A correction to the start time is then performed using
the RF signal from the accelerator, combined with the
reconstructed event vertex position. This effectively1710

aligns the event start time to our best measure of the
beam-bunch arrival time at the target.

The uncorrected, measured vertex time of a particle,
tv, can be written as

tv = t −
PL

βc
, (25)

where t is the measured time response (e.g. in a
scintillator), PL is the path length between the primary
interaction vertex and that response, and βc is the speed1715

of the particle. We can then construct a correction to
align this time with the closest beam bunch time at the
target:

∆tRF = tv + (z0 − zv)/c − tRF − N/(2 fRF), (26)
∆t′RF = mod(∆tRF , 1/ f RF) − 1/(2 fRF),

26

where fRF is the frequency of the accelerator,
249.5 MHz or 499 MHz, corresponding to 2.004 ns or1720

4.008 ns bunch spacings, tRF is the measured, calibrated
RF time for the event, and z0 is the target center and
enters due to its use as a position calibration reference.
The resulting RF- and vertex-corrected start time for the
event is then given as1725

t′v = tv − ∆t′RF . (27)

6.12.3. Particle Identification
The next stage is a basic particle identification

scheme. This is intended to be loose to accommodate
a variety of physics analyses, while persisting the
necessary information to easily tighten and improve the1730

criteria later.
For charged particles, first calorimetry and

Cherenkov information is used to positively identify
e−/e+ candidates in the Forward Detector. If the
measured energy deposition is consistent with the1735

expected sampling fraction of the ECAL, and the
photoelectron response from the HTCC is consistent
with β ∼ 1, the particle is assigned as an e− or e+

depending on sign of the curvature of the track from
forward tracking with the DCs through the torus1740

magnetic field.
The remaining charged particles are then assumed to

be hadrons and assigned an identity based solely on
timing information, where the p/K/π candidate giving
the smallest time residual is assigned. This time residual1745

is computed from the difference between the measured
particle flight time and that computed for a given mass
hypothesis. Figure 26 shows reconstructed β vs. mo-
mentum distributions from beam data for forward-going
positively charged hadrons using information from the1750

FTOF and DC subsystems, where the electron is recon-
structed either in the Forward Detector (Fig. 26(top)) or
in the Forward Tagger (Fig. 26(bottom)). The computed
curves for the different mass hypotheses are overlaid.

Identification of neutral particles assumes only neu-1755

trons and photons, differentiated only by timing and
topological information. For the Forward Detectors
this is based on the ECAL, while for the Central
Detector it is based on the CND, and their reconstructed
cluster positions are used to compute the particle travel1760

path from the event vertex, assuming a straight-line
trajectory. If the resulting measured β is close to 1, the
particle is assigned as a photon, otherwise it is assigned
as a neutron. For photons in the Forward Detector,
the momentum is determined from its deposited energy1765

and ECAL sampling fraction [7]. For neutrons, the

Figure 26: Particle β vs. momentum from simulation data for
positively charged tracks with their start time from an electron in the
Forward Detector (top plot) or in the FT (bottom plot).

momentum is assigned based on the measured β, as-
suming the neutron mass. Figure 27 shows an example
of β reconstructed for neutrals in the Forward Detector
showing separation of photons and neutrons.1770

A particle identification quality factor in the form of
a signed-χ, or pull, is assigned based on the individual
contributing detector subsystem responses and their
resolutions. For e−/e+ identification the resolution-
normalized distance from the expected ECAL sampling1775

fraction is used, while for charged hadrons the resolu-
tion normalized time-difference is used. The resulting
information is organized into standardized output bank
structures for physics analysis, see Section 7.2. This in-
cludes the particle four-vectors, the associated detector1780

responses, and global event information such as beam
RF and helicity information.

6.12.4. Particle Identification Performance
The accuracy of the particle identification algorithm

that is currently implemented can be estimated from1785

Monte Carlo simulations where the assigned particle
identification can be compared to the true one. Tables 1

27

Figure 27: β distribution for neutral particles as measured by the
ECAL from simulation data, showing a sharp peak at β = 1 from
photons and a broader, slower distribution from neutrons.

and 2 show the particle identification matrix for the
Forward and Central Detectors, respectively. The
values are based on simulations of electron-hadron or1790

electron-photon pairs with hadron and photon momenta
in the range from 1 to 2.5 GeV and electron momenta
in the range from 1 to 9 GeV. The diagonal elements
correspond to the cases where the particle is correctly
identified and the off-diagonal elements to the cases1795

where the particle is misidentified. It should be
noted that the resulting values are strictly related to
the assignment algorithm currently in use and on the
timing resolutions implemented in the Monte Carlo
simulation [26]. An increase of the diagonal element1800

values and a corresponding decrease of the misiden-
tification probability is expected as, for example, in-
formation from the threshold Cherenkov detectors and
the RICH in particular are integrated into the algorithm
and isolated hits in the FTOF and CTOF detectors1805

are incorporated into the neutral particle identification
algorithm.

Truth
e π K p n γ

e 0.98
π 0.93 0.10 0.00
K 0.03 0.80 0.00
p 0.03 0.02 0.98
n 0.66 0.01
γ 0.14 0.95

Table 1: Particle identification matrix for the CLAS12 Forward
Detector based on simulated hadrons and photons with momentum
between 1 and 2.5 GeV, and electrons up to 9 GeV. The diagonal
elements are correctly identified, while the off-diagonal elements are
misidentified. Detector inefficiencies are included.

Another measure of the particle identification perfor-
mance for neutrals is given by the reconstruction of
π0 decays to two photons. Figure 28 shows the γγ1810

invariant mass reconstructed from the ECAL and from
the Forward Tagger.

Truth
π K p n

π 0.84 0.14 0.00
K 0.11 0.80 0.01
p 0.03 0.04 0.95
n 0.11
γ 0.00

Table 2: Particle identification matrix for the CLAS12 Central
Detector based on simulated hadrons with momentum between 0.3
and 1.1 GeV. The diagonal elements are correctly identified, while the
off-diagonal elements are misidentified. Detector inefficiencies are
included.

7. Data Processing

7.1. Workflow
The raw data from the detector subsystems is cur-1815

rently first preprocessed in what is called the decoding
stage. This is an I/O-heavy, single-threaded process
and involves extracting hits from waveforms, translat-
ing data-acquisition/hardware nomenclature (associated
with crate/slot/channel labels) into physical detector1820

objects, performing special analyses dependent on serial
event access, and converting from the input EVIO
format to the HIPO data format. This phase includes
registering beam helicity state changes and special
scaler events, and populating their results into special1825

tagged HIPO events to facilitate later analysis. The
result is a factor of ∼5 reduction in size and a file format
optimized for I/O.

The second data processing stage is a CPU-heavy re-
construction phase, including all of the tracking, cluster-1830

ing, calorimetry, time-of-flight, and event building de-
scribed in the previous sections. It runs multi-threaded
in the CLARA framework and can be configured to
output various data schema depending on the purpose,
see Section 7.2, during full-scale data processing, or1835

larger, special-purpose banks during preliminary cali-
bration phases.

The final stage of data processing involves the run-
ning of I/O-heavy analysis trains that perform event
skimming (e.g. filtering out specific final state event1840

topologies), and accommodate various corrections and
common analysis plugins. It splits the data into multiple

28

Figure 28: Reconstructed π0 → γγ candidates using photons detected
in the ECAL (top plot) and the FT (bottom plot). The plots are
based on simulations of semi-inclusive deep inelastic scattering events
generated based on the PYTHIA event generator [27].

output files based on different event selections, each
optimized for a group of physics analyses. An example
schematic is shown in Fig. 29. This stage is designed1845

to be run repeatedly as selection criteria and physics
analyses mature. The reduction factor of the input file
size generated by the analysis trains depends directly on
the applied filtering conditions for the specific output.
Selecting events with an electron identified in the ECAL1850

provides a reduction factor of ∼0.3, while for events
with an electron in the ECAL and a positive hadron in
CLAS12, the reduction factor is ∼0.1. A typical 2 GB
EVIO file gets reduced to a 200 MB HIPO data file with
banks for physics analysis (see Sec. 7.2).1855

7.2. Data Summary Tapes

The final data output is provided by the Event Builder
in the form of data summary tapes (DSTs), a standard-
ized selection of HIPO banks for physics analysis. The
trains mentioned above are run on input DST files to1860

produce skimmed output DSTs. These include:

• global event information, e.g. run number and

IO

ECAL
SF

e-J/ψX

e-pX e- π+n

e- π0Xe-pπ+π-

e- K+X ppX

IOInput File

e-pX

e- π+n

e-pπ+π-

e- π0X

e-J/ψX

e- K+X

ppX

Output Files

Train plugin

I/O service

Data file

Figure 29: Schematic flow of analysis trains. The example shows
a train composed of a plugin to correct the ECAL sampling fraction
(SF) and several analysis filters for different final states. Events from
a HIPO file are read by the IO service and processed through the
analysis chain that applies the selected corrections and labels them
according to the different filters. The labeled events are written to the
corresponding output file.

event time stamp, integrated beam charge, beam
helicity state, event start time;

• particle information, e.g. momentum four-vector1865

and vertex position, particle type and identification
quality, and status words that encode information
on the sub-detectors involved in the particle for-
mation;

• high-level detector response information associ-1870

ated with each particle, e.g. detector identifier,
response position and time, and track trajectory in
each detector layer.

The DST banks are organized such that the large
detector information banks can easily be dropped to1875

leave only the data essential for a high-level physics
analysis, without leaving unassociated references or
unnecessary information 3.

7.3. Computing Resources

Reconstruction of all CLAS12 data is performed1880

on Jefferson Lab’s batch computing system [32]. It
currently consists of about 400 computing nodes of
various types, with a total of about 21,000 available
jobs slots and half as many cores. The input raw data
and analyzed output data are stored on JLab’s tape silo1885

[29], which provides sufficient cold storage for all of
JLab’s activities. Data for physics analysis are also
stored live on JLab’s Lustre filesystems [30], which
currently amounts about 2 PB of disk, but will be

3Currently all DST banks are saved to a file.

29

increased to almost 7 PB in the near future. Analysis1890

of the reconstructed data is performed on the JLab
batch and interactive farm nodes, and also exported to
other institutions for final physics analysis. CLAS12
currently has 450 TB available on different file systems,
and a fair share computing resource of 36M core-hr/yr.1895

8. Code Management

8.1. Repositories
The software is managed in a github repository [31],

and branches and forks are utilized to accommodate
parallel development by several groups. Two main1900

branches, master and development, are utilized to store
code ready for production and for validation, respec-
tively. For the main branches, all modifications are
made through pull requests after passing the automated
tests described in Section 8.3 and require approval by a1905

designated CLAS12 software expert.

8.2. Releases
There are three reconstruction code release types:

test, validation, and production. A tagging scheme has
been implemented to indicate the type of change with1910

respect to previous releases. Test releases, identified
by the letter “c”, are tagged from branches other than
the master or development branches and are intended
to validate a specific code change or algorithmic im-
provement. Usage of these releases is typically limited1915

to the developers. Validation releases, identified by the
letter “b”, are tagged from the development branch to
test code updates before merging to the master branch.
Production releases are tagged from the master branch
after code updates for production data processing.1920

The release designator scheme uses the format
X(b/c).Y.Z, where increments of X, Y , or Z are applied
in the following cases:

• X: introduction of new technology, major algo-
rithmic improvements, or changes that are not1925

backward compatible;

• Y: extension of interfaces, new implementations,
or major bug fixes;

• Z: minor bug fixes.

8.3. Code Tests and Validation1930

In addition to automatic builds, the software includes
both basic unit tests and advanced tests for several
packages. These are designed to verify the correctness
and reproducibility of the reconstruction output for a

specific package or for the overall event, respectively.1935

Unit tests involve, for example, reconstructing a sim-
ulated track or particle hit in a specific detector and
comparing the result to the truth information. Advanced
and extended tests are run on either a Monte Carlo or
beam data sample, comparing to the Monte Carlo truth1940

information in the first case or to the results obtained
in previous releases in the second case. A portion of
the tests are run automatically at build time, using the
TravisCI system linked to the github repository. These
automatic tests take about 30 minutes to run and have1945

proven invaluable in overseeing software development.
In addition to unit and advanced tests, every new

release is subject to extensive validation on both Monte
Carlo and beam data. Samples of Monte Carlo and
beam events for different beam energies and detector1950

configurations were chosen to test event reconstruction
over the entire detector acceptance. Reconstruction of
these samples is performed and results are compared
to previous code releases. The comparison focuses on
several parameters, from processing time, to momentum1955

resolution, to particle reconstruction efficiency. A new
release is accepted for production only if it results in
globally improved event reconstruction performance.

9. Ongoing Developments

The software framework and event reconstruction1960

described in the previous sections are based on the code
that is currently being utilized for data processing or
will be deployed in the near future in an upcoming
release. Nevertheless, as CLAS12 data are being
analyzed, several potential improvements have been1965

identified and are either in the process of being imple-
mented or planned for the near future. In this section,
we discussed the most relevant developments.

9.1. Artificial Intelligence Assisted Forward Tracking

Recent progress in the field of machine learning1970

offers a promising alternative to conventional algo-
rithmic tracking methods. While the conventional
methods provide algorithms that are well understood
and well studied, there are some algorithms in the
data reconstruction process that can be substituted with1975

neural networks to reduce data processing times. For
CLAS12, tracking is the most time-consuming aspect of
experimental data processing. Tracking in the DC takes
up to ∼90% of the total data processing time, which
includes finding track candidates and iterating through1980

track-forming segments to find the best combinations of
segments that can form a track. This time increases with

30

luminosity as the number of noise segments increases
and can ultimately lead to processing time degradation.
We have started to address this issue by employing1985

machine learning techniques to find the best track
candidates in each event and to reduce the number of
combinatorics.

With increased luminosity, the number of potential
DC cross candidates increases. This implies that the1990

Kalman Filter fitting algorithm must be run for all
possible combinations of crosses.

Reconstructed track segments from both positive and
negative tracks from the currently reconstructed data
samples are used to train the neural network. We1995

are currently testing three types of neural networks:
boosted decision tree [33], multilayer perceptron [34],
convolutional [35].

Preliminary results indicate that the convolutional
neural network performed competitively with the multi-2000

layer perceptron with about 97% accuracy and 3% false
positives.

The hits identified as on-track by the neural network
are saved in a bank and the DC reconstruction package
was adapted to read these data as an input to hit-based2005

tracking. Benchmark results of reconstruction speed for
hit-based tracking show a factor of ∼5 improvement.

Implementing the neural network software into the
CLAS12 reconstruction workflow is under develop-
ment. The second stage of the machine learning2010

project will concentrate on efficiency improvements
using artificial intelligence assisted tracking.

9.2. Improvements to Event Reconstruction

The CLAS12 detector began beam operations for
physics in early 2018 after a several month commis-2015

sioning phase. Since that time the event reconstruction
code has continued to improve to meet issues as they
have arisen. However, the code and the framework are
already performing well enough for advanced physics
analysis of the collected data to proceed. A broad survey2020

of reconstruction results using the current CLAS12
software framework and event reconstruction code are
presented based on beam data in Ref. [1]. As might
be expected, there are still areas where development,
testing, and validations are in progress in order to2025

continue improvements. In this section, several areas
of ongoing work are highlighted.

9.2.1. Improvements to Central Tracking
Improvements to tracking in the CVT are currently

being studied. These include:2030

• improvements to the tracker geometry implemen-
tation and fitting algorithm - the combination of
these code modifications is expected to improve
the fit residuals, which are indicative of a bias in
the current version of the code as seen through2035

systematic shifts in their distributions;

• implementation of geometrical distortions derived
from detector alignment;

• the use of the beam offset information (relative to
the nominal beam z-axis) in the track fit initializa-2040

tion;

• the use of SVT clusters instead of crosses in the
seeding.

These updates aim at enhancing the robustness of
the tracking algorithm and improving resolution and2045

efficiency.

9.2.2. Improvements to Time-of-Flight Reconstruction
As discussed in Section 6.8, the output of the

time-of-flight reconstruction are hits that are used as
input to the Event Builder algorithms. The use of2050

clusters for particles that go through two adjacent TOF
paddles (either in the FTOF or CTOF systems) is
expected to yield improved timing resolution, as is
combining the hit times in FTOF for tracks that go
through both forward counter hodoscopes as discussed2055

in Section 6.8.3. A quantitative estimate of the timing
resolution improvements and a validation of the clus-
tering algorithm are currently ongoing using on Monte
Carlo simulations.

9.3. Improvements to the Event Builder2060

The matching of tracks to detector responses, either
hits or clusters, is currently based on the distance of
closest approach between the tracks and the response
coordinates. Improvements to this matching can be
obtained using track trajectories, i.e. intersections of2065

the track with the relevant detector planes where the
responses are reported. The use of trajectories will
reduce the uncertainty on the path length determination
that relies on the response coordinates. The use of
timing information in the matching will reduce the2070

effect of accidentals in high rate detectors such as the
HTCC.

In the future, the particle identification scheme will
be improved by exploiting additional detector informa-
tion. This includes the ECAL shower profile to improve2075

electron-pion separation for momenta above ∼4.5 GeV
where the HTCC becomes sensitive to charged pions,

31

and RICH responses to improve charged-particle iden-
tification in the forward direction.

10. Conclusions2080

We have presented the software framework and
event reconstruction algorithms that are currently be-
ing utilized for the processing of data collected by
the CLAS12 experiment in Hall B at Jefferson Lab.
The framework was developed to allow processing of2085

CLAS12 data for reconstruction and analysis based on a
service-oriented architecture. The specific software ap-
plications leverage an extensive set of common libraries
for handling I/O, geometry, databases, and magnetic
field that are designed to support data monitoring,2090

calibration, reconstruction, and analysis.
Full event reconstruction is implemented in the

framework as a chain of micro-services that perform
reconstruction of the individual CLAS12 subsystems
and whose output information is collected by the Event2095

Builder service to form and identify particles. While
the current reconstruction chain already supports re-
construction of all subsystems and the creation of full
events with performance consistent with expectations,
upgrades to the existing software implementation and2100

algorithms are under study. However, the current status
of event reconstruction based on data collected during
the first production data runs with CLAS12 with the
electron beam are reported and discussed in detail
in Ref. [1] that show the efficacy of the developed2105

reconstruction framework, common tools and detector
calibration applications, and the associated algorithms
required for event reconstruction.

11. Acknowledgments

We would like to thank the JLab IT Division and2110

CODA group for their support. This work was sup-
ported in part by the Chilean Comisión Nacional de
Investigación Cientı́fica y Tecnológica (CONICYT),
the Italian Istituto Nazionale di Fisica Nucleare, the
French Centre National de la Recherche Scientifique,2115

the French Commissariat à l’Energie Atomique, the
U.S. Department of Energy, Office of Science, Office of
Nuclear Physics under contract DE-AC05-06OR23177,
the National Science Foundation, the Scottish Univer-
sities Physics Alliance (SUPA), the United Kingdom’s2120

Science and Technology Facilities Council, and the
National Research Foundation of Korea.

References

[1] V.D. Burkert et al., “The CLAS12 Spectrometer at Jefferson
Laboratory”, to be published in Nucl. Inst. and Meth. A, (2020).2125

(see this issue)
[2] M.D. Mestayer et al.. “The CLAS12 Drift Chamber System”, to

be published in Nucl. Inst. and Meth. A, (2020). (see this issue)
[3] M. Ungaro et al., “The CLAS12 Low Threshold Cherenkov

Counter”, to be published in Nucl. Inst. and Meth. A, (2020).2130

(see this issue)
[4] Y.G. Sharabian et al., “The CLAS12 High Threshold Cherenkov

Counter”, to be published in Nucl. Inst. and Meth. A, (2020).
(see this issue)

[5] M. Contalbrigo et al., “The CLAS12 RICH Detector”, to be2135

published in Nucl. Inst. and Meth. A, (2020). (see this issue)
[6] D.S. Carman et al., “The CLAS12 Forward Time-of-Flight

System”, to be published in Nucl. Inst. and Meth. A, (2020).
(see this issue)

[7] G. Asryan et al., “The CLAS12 Forward Electromagnetic2140

Calorimeter”, to be published in Nucl. Inst. and Meth. A, (2020).
(see this issue)

[8] M.A. Antonioli et al., “The CLAS12 Silicon Vertex Tracker”, to
be published in Nucl. Inst. and Meth. A, (2020). (see this issue)

[9] A. Acker et al., “The CLAS12 Micromegas Vertex Tracker”, to2145

be published in Nucl. Inst. and Meth. A, (2020). (see this issue)
[10] D.S. Carman et al., “The CLAS12 Central Time-of-Flight

System”, to be published in Nucl. Inst. and Meth. A, (2020).
(see this issue)

[11] P. Chatagnon et al., “The CLAS12 Central Neutron Detector”, to2150

be published in Nucl. Inst. and Meth. A, (2020). (see this issue)
[12] A. Acker et al., “The CLAS12 Forward Tagger”, to be published

in Nucl. Inst. and Meth. A, (2020). (see this issue)
[13] V. Gyurjyan et al., CLARA: A Contemporary Approach to

Physics Data Processing, J. Phys. Conf. Ser. 331, 0320132155

(2011).
[14] J. Carbonneau, M. Moog, J. Gilfoyle, et al., 2011 APS Division

of Nuclear Physics Meeting Abstracts, EA.024.
[15] Component Based Dataflow Processing Framework, 2015,

IEEE DOI: 10.1109/BigData.2015.7363971, ISBN: 978 1-2160

4799-9926-2
[16] CLARA: The CLAS12 Reconstruction and Analysis frame-

work, 2016, J. Phys. Conf. Ser. 762, 012009 (2016).
[17] The GlueX Collaboration, The GlueX Experiment

in Hall D, Presentation to JLAB PAC36, (2010.2165

http://www.gluex.org/docs/pac36 update.pdf
[18] R. Fair et al., “The CLAS12 Superconducting Magnets”, to be

published in Nucl. Inst. and Meth. A, (2020). (see this issue)
[19] Event IO Data Format,

https://coda.jlab.org/drupal/content/event-io-evio2170

[20] S. Boyarinov et al., “The CLAS12 Data Acquisition System”, to
be published in Nucl. Inst. and Meth. A, (2020). (see this issue)

[21] A. Spiridonov, “Optimized Integration of the Equations
of Motion of a Particle in the HERA-B Magnet”,
arXiv:physics/0511177, (2005).2175

[22] V. L. Highland, Nucl. Instr. and Meth. 129, 497 (1975); Nucl.
Instr. and Meth. 161, 171 (1979); G.R. Lynch and O.I. Dahl,
Nucl. Instr. and Meth. B58, 6 (1991).

[23] I. Abt, I. Kisel, S. Masciocchi, and D. Emelyanov, “CATS: A
Cellular Automaton for Tracking in Silicon for the HERA-B2180

Vertex Detector”, Nucl. Inst. and Meth. A 489, 389 (2002).
[24] Rainer Mankel, Rept. Prog. Phys. 67, 553 (2004).
[25] W. H. E. Day and H. Edelsbrunner, Journal of Classification 1-1

(1984), 7.
[26] R. Niyazov and S. Stepanyan, “CLAS/DVCS Inner2185

Calorimeter Calibration”, CLAS-Note 2005-021,

32

(2005). https://misportal.jlab.org/ul/Physics/Hall-
B/clas/viewFile.cfm/2005-021.pdf?documentId=213

[27] M. Ungaro et al., “The CLAS12 Geant4 Simulation”, to be
published in Nucl. Inst. and Meth. A, (2020). (see this issue)2190

[28] Jefferson Lab Batch Farm,
https://scicomp.jlab.org/docs/ExpPhyComp

[29] T. Sjostrand, S. Mrenna and P. Z. Skands, “A Brief Introduction
to PYTHIA 8.1”, Comput. Phys. Commun. 178, 852 (2008).

[30] Jefferson Lab Tape Silo, https://scicomp.jlab.org/docs/node/92195

[31] Jefferson Lab Lustre Filesystem,
https://scicomp.jlab.org/docs/node/17

[32] CLAS12 Reconstruction Software Repository,
https://github.com/jeffersonlab/clas12-offline-software

[33] B. P. Roe, H-J. Yang, J. Zhu, Y. Liu, I. Stancu, G. McGregor,2200

Nucl. Inst. and Meth. A 543, 577 (2005).
[34] K. Hornik, M. Stinchcombe, and H. White. Neural Networks 2,

359 (1989)
[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,

MIT Press, 326 (2016).2205

33

	Introduction
	Software Framework and Tools
	Common Tools
	Geometry
	Databases
	Plotting and Analysis Tools
	Magnetic Field Package
	Swimmer Package

	Data Formats
	Monitoring and Calibration Suites
	Framework
	Calibration and Monitoring Suites

	CLAS12 Event Display
	Event Reconstruction
	Tracking Overview
	Forward Tracking
	Hit Reconstruction
	Hit Clustering
	Pattern Recognition
	Track Fitting

	Central Tracking
	Hit Clustering
	Pattern Recognition
	Track Fitting

	Tracking Performance
	Electromagnetic Calorimeters
	Cluster Position
	Cluster Energy
	Cluster Time

	Threshold Cherenkov Counters
	RICH Detector
	Time-of-Flight Systems
	Raw Counter Hits
	Reconstructed Counter Hits
	Hit Clustering and Matching

	Central Neutron Detector
	Energy Reconstruction
	Hit Position and Time Reconstruction
	Hit/Track Matching
	Clustering

	Forward Tagger
	The FT-Cal Reconstruction Service
	The FT-Hodo Reconstruction Service
	The FT-Trk Reconstruction Service

	The FT Global Service
	Event Builder
	Forming Particles
	Event Start Time
	Particle Identification
	Particle Identification Performance

	Data Processing
	Workflow
	Data Summary Tapes
	Computing Resources

	Code Management
	Repositories
	Releases
	Code Tests and Validation

	Ongoing Developments
	Artificial Intelligence Assisted Forward Tracking
	Improvements to Event Reconstruction
	Improvements to Central Tracking
	Improvements to Time-of-Flight Reconstruction

	Improvements to the Event Builder

	Conclusions
	Acknowledgments

