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Abstract

This article describes the CLAS12 Trigger System. The simulation, hardware, and software design, as well as all validation
procedures, are discussed. The firmware development tools used are discussed as well, including our experience with VIVADO
High Level Synthesis.

1. Overview

The CLAS12 Trigger System provides trigger signals for
the CLAS12 detector Data Acquisition (DAQ) system [1]. It
was originally designed to select physics events with scattered
electrons detected in the CLAS12 Electromagnetic Calorimeter5

System (ECAL) [2] and High Threshold Cherenkov Counter
(HTCC) [3], with the possibility to require a track in the
CLAS12 Drift Chambers (DC) [4]. In later stages of develop-
ment, signals from additional detectors were included into the
Trigger System, making it flexible and efficient to select events10

for the different experiments within the CLAS12 physics pro-
gram.

2. Requirements

The CLAS12 detector (see Ref. [5]) was designed to study
the interactions of electrons and photons with nucleons and nu-15

clei at a nominal luminosity of 1 × 1035 cm−2s−1. The CLAS12
Trigger System has to provide trigger signals for these pro-
cesses. Based on the simulation of the physics processes of in-
terest, the required event rate was estimated to be up to 20 kHz.
The trigger latency is required to be not less than 8 µs to provide20

sufficient time for trigger logic processing.
The following detectors were defined to be part of the trigger

system:

• High Threshold Cherenkov Counter (HTCC) [3]

• Drift Chambers (DC) [4]25

• Forward Time-of-Flight System (FTOF) [6]

• Electromagnetic Calorimeter (ECAL) [2]

• Central Time-of-Flight (CTOF) [7]

• Central Neutron Detector (CND) [8]

• Forward Tagger (FT) [9]30

Each of these detectors is required to provide information to
the Trigger System. To achieve that, the front-end electronics
were designed with built-in trigger components.

3. Design

The CLAS12 Trigger System was designed as a 3-stage35

pipeline-style system with total latency up to 8 µs. Input infor-
mation for the Trigger System comes from two sources: Flash
Analog-to-Digital Converters (FADCs) used in the photomulti-
plier tube (PMT)-based detectors, and Drift Chamber Readout
Boards (DCRBs) used in the Drift Chambers. The FADCs and40

DCRBs work at the pre-trigger level, reporting information to
the Trigger System in the appropriate form. Stage 1 receives
information from the FADCs and DCRBs, and performs data
processing according to the type of detector. Stage 2 performs
a timing and geometry coincidence between different subsets45

of the detectors in six groups, corresponding to the six-sector
CLAS12 Forward Detector structure, as well as requires coin-
cidence with information from the central detectors. Stage 3
forms the final trigger decision. The CLAS12 trigger diagram
is shown in Fig. 1.50

3.1. FADCs as Pre-trigger

All PMT-based detectors in CLAS12 participating in the
Trigger System use JLab VXS 250 MHz flash ADCs as the
starting point of the trigger logic (FADC) [1]. Each channel of
the FADC boards is pre-programmed with gain, pedestal, and55

amplitude threshold above pedestal. Every pulse above ampli-
tude threshold is integrated and sent to the corresponding sec-
tion of the Stage 1 trigger logic. The 16-channel FADC boards
report 13-bit pulse integrals and 3-bit pulse time every 32 ns,
which allows the following trigger logic to restore 4 ns pulse60

resolution, while the double pulse resolution remains 32 ns.
Based on the FADC reporting schedule, the following trigger
logic stages can work on a 250 MHz clock. However, in that
case we found it problematic to meet the Field Programmable
Gate Array (FPGA) timing. Because of this, our Stage 1 algo-65

rithms run on 125 MHz or slower clocks as described below.
The trigger information is provided to the following stages us-
ing VXS backplane serial lines.
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Figure 1: The CLAS12 Trigger System diagram. It is designed as a 3-stage pipeline-style system with total latency up to 8 µs. Input information comes from Flash
ADC Boards (FADCs) and Drift Chamber Readout Boards (DCRBs), and 32 separate trigger decisions are reported to the Trigger Supervisor (TS).

3.2. DCRBs as Pre-trigger
The Drift Chamber-based trigger uses JLab 125 MHz dis-70

criminator/TDC boards (DCRBs) [1] to feed the Trigger Sys-
tem. These 96-channel units report hits above the pre-
programmed thresholds every 16 ns. As for the FADC boards,
the DCRBs are implemented in VXS format and provide trigger
information using VXS backplane serial lines.75

3.3. Stage 1 Trigger
The Stage 1 trigger uses specially designed VXS Trigger Pro-

cessor boards (VTPs) (see Section 4.2). The VTP boards are
installed in switch slots in every VXS crate participating in the
Trigger System. The VTPs collect trigger data from the pre-80

trigger boards (FADCs and DCRBs) over VXS serial lines.
The most complex processing is performed for the Electro-

magnetic Calorimeter system (cluster finding) and the Drift
Chambers (segment and road finding). In the following sec-
tions we describe the design of the various trigger components.85

3.3.1. Electromagnetic Calorimeters
The CLAS12 Electromagnetic Calorimeter (ECAL) [2] in-

cludes two separate subsystems, the EC and PCAL. Each con-
sists of multiple layers of scintillating strips and lead sheets
with PMT readout on one side of the scintillators (the PCAL90

is shown in Fig. 2, the EC is similar). The primary purpose of
these detectors is electron identification by defining the energy
and coordinate of their electromagnetic showers, referred to as
clusters. The cluster finding algorithm was well established
during offline data processing development, and was adopted95

for the trigger implementation with some simplifications.

The algorithm first searches for one-dimensional clusters in
each of the three calorimeter views (U,V,W), sorting them by
energy and keeping only those above threshold, with a maxi-
mum number of four clusters in each view. Next the algorithm100

searches for two-dimensional clusters looking for overlap be-
tween the three views. For all two-dimension clusters found,
it performs attenuation corrections based on pre-loaded tables
of the attenuation lengths of the scintillation strips using the
distance from the cluster to the PMT, to determine the correct105

cluster energy. Finally, the algorithm sorts the two-dimensional
clusters by energy and reports those above threshold, with a
maximum number limited to four. For every cluster, the energy
and coordinates are reported to the Stage 2 trigger every 8 ns.
There is a persistency parameter that allows the same clusters110

to be reported for several consecutive 8 ns intervals to check
for a timing coincidence with the other trigger components, as
well as a timing delay parameter for the same purpose. One
event with a single cluster is shown in the PCAL (Pre-shower
Calorimeter) in Fig. 2. The corrected energies are shown for the115

individual strips.
It should be mentioned that such an algorithm is designed to

find clusters with a maximum energy to target electron identifi-
cation. For some CLAS12 experiments, it is necessary to iden-
tify minimum-ionizing particles (MIPs) using the same trigger120

component. For that purpose, clusters with energy below a cer-
tain defined threshold can be selected. Such a method works for
events where the number of clusters does not exceed four, other-
wise there is a risk of losing low-energy clusters corresponding
to MIPs. Intensive trigger efficiency studies were conducted for125

such cases, and the trigger efficiency was measured and found
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Figure 2: Trigger System representation of a cluster reconstruction using the
three views of the PCAL in one sector of CLAS12. Each of the three peaks
is shown as a bar before (black) and after (red) the energy correction. The
crossing lines indicate that the current event satisfies the Dalitz rule and will be
accepted. The green line represents a single peak in one of the views that does
not have partners in the other two views that satisfies Dalitz rule.

acceptable (see Section 10.3.2).

3.3.2. High Threshold Cherenkov Counter
The CLAS12 High Threshold Cherenkov Counter

(HTCC) [3] serves as one of the primary components of130

the electron trigger logic. It was specially designed to dis-
criminate electrons from other charged particles. The HTCC
consists of 48 mirror sections readout by PMTs connected to
FADCs (see Fig. 3). For trigger purposes, a 2×2 section sliding
window is used to identify clusters. The cluster may include135

from one to four PMT signals collecting the Cherenkov light
from the adjacent mirrors as shown in Fig. 3. The configuration
parameters include the single channel energy threshold, cluster
multiplicity threshold, and cluster energy threshold. The results
are reported to the Stage 2 trigger as 48-bit masks every 4 ns.140

The FADC “gain” configuration parameter allows for PMT
energy calibrations, making it possible to set energy thresholds
in terms of the number of photoelectrons.

3.3.3. Drift Chambers
The CLAS12 Drift Chambers (DCs) [4] contain six superlay-145

ers in each of the six CLAS12 forward sectors. Each superlayer
contains six layers with 112 sense wires in each layer. There is
no signal amplitude information available, only hit information
can be used in the trigger. The trigger algorithm was designed
as a two-step process.150

In the first step it searches for segments in each of the six
superlayers, reporting a 112-bit mask with the bits set for the
segments found on each superlayer. The search for segments is
conducted based on a pre-loaded segment dictionary, generated
by the Drift Chamber simulation software based on the wire lo-155

cations in the superlayers. The 112-bit mask indicates whether
a segment was found that has a hit starting at the bit position of
the first wire layer (see Fig. 4). If several segments are found
around the same location, the one with the maximum number

Figure 3: View of a portion of the multi-faceted HTCC mirror. The different
plots show events with 1, 2, 3, and 4 mirror facets involved. Hits registered by
the HTCC are shown by the red circles and the reconstructed cluster positions
are shown by the yellow circles. The hit position and cluster position coincide
for one hit clusters (top left plot), which has the lowest position resolution.

Figure 4: Drift Chamber segments in the superlayers of a single sector. The
plot shows wire layer vs. wire number. The hit position on DC layer 1 of the
found segments, circled in blue, is the reported segment position used in the
road-finding dictionary.

of hits is kept. In theory, the number of layers contributing to160

each segment must be equal to 6, and the number of hit wires
in a segment can vary from 6 to 12 depending on the track po-
sition and angle. In practice, the number of layers and hits in
each segment can be less because of Drift Chamber inefficien-
cies and hardware problems, so the threshold for the segment165

finder in the trigger logic is set to require 4 out of 6 layers to
match.

After the segment search is complete and the six 112-bit
masks are ready, the second step is performed, in which a pre-
loaded road dictionary is used to identify possible track candi-170

dates (so-called road finding). The road dictionaries were gen-
erated by the GEMC Monte Carlo simulation program [10] or
taken from the beam data (see details in Section 10.4). At least
five out of six superlayers are required to satisfy the trigger
condition. A 512-bit mask is generated every 32 ns contain-175

ing the road projections to other detectors (HTCC, PCAL, and
FTOF) and sent to the Stage 2 trigger where geometry matching
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is done.

Figure 5: Drift chamber reconstructed tracks used for road generation of the
scattered electron. Tracks are from data taken with beam. The black and red
lines in the left plot of polar angle θ vs. momentum indicate the region used
for the road dictionary generator. Additional requirements include a 1 GeV
minimum momentum and a z-vertex position cut (along the beamline) of -3 cm
± 7 cm - see the right plot.

To reduce the size of the road dictionary and improve the se-
lection purity, we constrained the particle energy, vertex posi-180

tion, and kinematics of the tracks used to generate the roads (see
Fig. 5). Multiple dictionaries can be run simultaneously based
on the needs of the physics program. The data-based electron
dictionary generator can be seen to slowly converge as more
data-based tracks are fed into it (see Fig. 6). Segment positions185

are smeared by ±1 to fill in holes in the dictionary, which brings
the efficiency to nearly 100% with much less data to generate
the dictionary (also at the cost of lower purity). The dictio-
nary efficiencies for smearing vs. no smearing are demonstrated
in Fig. 7 and Fig. 8, respectively. The current road dictionary190

uses a single FPGA LUT6 element for each unique road entry,
allowing for roughly 200k unique entries. Using six 112-bit
masks, the dictionary size requirement exceeded the available
FPGA resources, so we reduced the bit masks to 56 bits each
by combining every two consecutive bits. The scattered elec-195

tron dictionary size is only 36k LUT6 elements, leaving space
for several additional dictionaries.

3.3.4. Forward Time-of-Flight System
The CLAS12 Forward Time-of-Flight System (FTOF) [6]

contains two layers of scintillating counters in each forward200

sector, but only one layer is used by the trigger logic. This
layer contains 62 counters with PMT readout on both ends.
When both PMTs report a signal above threshold, the trigger
system considers it as a hit. A 62-bit hit mask is reported to the
Stage 2 trigger every 4 ns. The trigger logic configuration in-205

cludes a single channel energy threshold and a counter average
energy threshold (geometric mean). The FTOF participates in
non-electron triggers such as the muon trigger.

3.3.5. Central Time-of-Flight System
The CLAS12 Central Time-of-Flight System (CTOF) [7]210

consists of 48 scintillation counters, surrounding the target as
a barrel, with PMT readout from both ends. Its trigger logic

Figure 6: Drift chamber unique trigger roads for electrons as a function of the
number of data-based roads.

is similar to that for FTOF, with a 48-bit mask reported to the
Stage 2 trigger every 4 ns.

3.3.6. Central Neutron Detector215

The CLAS12 Central Neutron Detector (CND) [8] consists
of three layers of scintillation counters, installed radially out-
ward from CTOF, with 24 counters per layer and 72 counters
total. Its trigger logic is similar to that for FTOF and CTOF,
with a 24-bit mask reported to the Stage 2 trigger every 4 ns220

(usually the inner layer only).

3.3.7. Forward Tagger Calorimeter and Hodoscope
The CLAS12 Forward Tagger Calorimeter and Hodoscope

(FT) [9] trigger is designed to trigger on electrons at small for-
ward polar angles (from 2◦ to 5◦). The calorimeter is a stack225

of 332 lead tungstate crystals connected to avalanche photodi-
odes (APDs) that are readout by FADCs. The hodoscope con-
sists of two scintillating fiber layers, each having 116 pixels
(of two sizes) that match the geometry of the calorimeter. The
calorimeter trigger finds clusters by looking for a seed hit at230

each crystal location. If the deposited energy in a crystal is
greater than the seed threshold and is a local maximum in space
(using a 3×3 crystal view) and time, then it is considered a seed
hit. For each seed hit, a cluster is formed by summing all of the
energies centered on the seed hit in a 3×3 crystal view for all235

hit times coincident with the seed hit (up to ±16 ns). The seed
hit time, which due to time-walk effects is the earliest hit in the
cluster, is used for the cluster time stamp, providing a 4 ns res-
olution. The geometrically matched hodoscope pixels for both
layers are checked for time coincident hits with the calorime-240

ter seed hit and the cluster is tagged as having none, layer 1,
layer 2, or both layers of the hodoscope present. Found clusters
are serialized and streamed to the Stage 2 trigger where several
programmable trigger cuts can discriminate clusters based on
energy, charge, and multiplicity.245
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Figure 7: Dictionary efficiency for electron roads with no segment position
smearing the data-generated road dictionary shows efficiencies at 85% and
above.

Name Specification
Latency (Stage 1+2) 5 µs
Jitter 4 ns
Stage 2 trigger bits 8
Deskew range 4 µs
Deskew step size 4 ns
Coincidence window range 2 µs
Deskew step size 4 ns

Table 1: Stage 2 trigger specifications.

3.4. Stage 2 Trigger
The Stage 2 trigger collects data from Stage 1 using fiber op-

tics. It is based on 7 SubSystem Processor boards (SSPs) (see
Section 4.3) all installed in one VXS crate. After receiving the
Stage 1 trigger streams, the SSPs form subsystem coincidences250

for the six identical sets of forward detectors (called sectors)
and the central detectors (all separately). Each subsystem trig-
ger stream goes through a programmable delay that provides
4 ns resolution when deskewing to optimize the time coinci-
dence. Next follows a programmable coincidence window for255

each subsystem trigger stream, also with a 4 ns step resolution,
to ensure that the different subdetector signals will remain sta-
ble long enough to form a time coincidence regardless of jitter
due to particle time-of-flight, detector response, and trigger jit-
ter. The Stage 2 trigger specifications are shown in Table 1.260

The forward detectors in the trigger consist of FTOF, EC,
PCAL, HTCC, DC, and PCALu 1 and the central detectors par-

1PCALu is the raw hit pattern of the PCAL U strips sent in addition to the

Figure 8: Dictionary efficiency for electron roads with segment position smear-
ing the data-generated road dictionary shows efficiencies fully at 100%. This
saves significant time as it requires far less data to converge, but does increase
the acceptance of invalid roads. The top plot shows efficiency for polar angle vs.
momentum and the bottom plot shows efficiency for polar angle vs. azimuthal
angle.

ticipating in the trigger consist of CTOF, CND, and FT.2 A
single SSP collects all forward detector trigger streams from
a single sector of CLAS12, and a single SSP collects all cen-265

tral detector trigger streams. After the delay and coincidence
widths are applied to each input stream, the input streams are
copied to 8 programmable sector trigger bits. Each sector trig-
ger bit contains a variety of trigger primitives and customizable
thresholds/cuts that can be tailored for a particular trigger type.270

The sector trigger bits are computed and sent to the final Stage 3
trigger. The Forward Detector trigger primitives are shown in
Table 2 and the Central Detector trigger primitives are shown in
Table 3.

3.5. Stage 3 Trigger275

The Stage 3 trigger is the final stage and collects all sector
and central trigger bit streams in a single module where they
can be combined in a variety of ways to generate the global
trigger bits used for reading out the Data Acquisition System
(DAQ). It is implemented on a single VTP board installed in280

the switch slot on the same VXS crate where all Stage 2 trig-
ger SSPs reside. There are 32 independent trigger bits that can
form a trigger based on any combination of sector and/or cen-
tral trigger bits. Each trigger bit contains two sector trigger bit

PCAL clusters. Since the PCALu strips are close and parallel to the FTOF bars,
they are used to make a geometrical coincidence.

2Note that the FT is actually part of the CLAS12 Forward Detector, but be-
cause it is not divided into sectors like the other Forward Detector subsystems,
for triggering purposes it is listed here as part of the Central Detector.
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Primitive Name Trigger Bit Parameters
PCALu Mask
FTOF Mask
PCAL Cluster Emin, Emax
EC Cluster Emin, Emax
PCAL + EC Cluster Emin
HTCC Mask
Geometry Matched
PCALu x FTOF Bar match tolerance
PCAL x DC Cluster Emin

Table 2: Forward Detector trigger primitives.

Primitive Name Trigger Bit Parameters
CND Mask
CTOF Mask
FT Cluster Emin, Emax,

Cluster Size, Hodoscope
Geometry Matched
CNDxCTOF Bar match tolerance

Table 3: Central Detector trigger primitives.

conditions (required to both be true) and a single central trig-285

ger bit condition. Additionally, each trigger bit contains a 16-
bit prescaler, final pulse width, and scaler. The Stage 3 trigger
specifications are shown in Table 4.

3.6. Trigger Information in Data Stream

An important part of the Trigger System is the Event Builder,290

which allows the trigger components to participate in event-by-
event readout the same way as is done for the DAQ components.
All three stages of the Trigger System are equipped with Event
Builders. Every time the CLAS12 DAQ is triggered, Stage 1
will build the data bank(s) with trigger decision details (such295

as the ECAL cluster coordinate/energy or DC segment/road in-
formation), Stage 2 will build the data bank with sector-level
and Central Detector coincidence results, and Stage 3 will build
the data bank that contains the trigger bit decisions for all final
32 trigger bit decisions. Event Builders read information from300

the pipeline-style buffers for a given programmable window re-
lated to the readout trigger time. All trigger-related data banks

Name Specification
Latency (Stage 1+2+3) 7 µs
Jitter 4 ns
Stage 3 trigger bits 32
Prescaler 0-65535
Trigger bit width 4 ns - 1 µs
Pulse rate 0.05 Hz - 125 MHz

Table 4: Stage 3 trigger specifications.

are available in the data stream along with the DAQ data banks,
providing detailed information about the trigger decision for ev-
ery accepted event. In particular, this allows the Trigger System305

to be run in “tagging mode”, which is a powerful way to test the
trigger efficiency (using either a loose or a random trigger).

4. Hardware Implementation

The CLAS12 Trigger System is implemented using High
Speed Serial (VXS) techniques for a complete fully pipelined310

multi-crate Trigger System that takes advantage of the elegant
high-speed VXS serial extensions for VME. This Trigger Sys-
tem includes a pre-trigger level and three stages, starting with
the front-end VXS crate Trigger Processor (VTP), a sector-level
SubSystem Processor (SSP), a global VTP processor (GTP),315

and a Trigger Supervisor (TS) that manages the timing, syn-
chronization, and front-end event readout.

Within a front-end crate, the trigger information is gathered
from the pre-trigger boards, consisting of 16-channel, 12-bit
FADC and 96-channel DCRB ([1]) modules via the VXS back-320

plane, to a VXS Trigger Processor (VTP). Each VTP is capable
of handling these 500 MBps VXS links from the 16 modules,
and then performs real-time crate-level trigger algorithms. The
VTP transmits the Stage 1 trigger information through multiple
Gigabit transceivers that are combined into a fiber link. The325

VTP uses a multi-fiber link to increase the aggregate trigger
data transfer rate to the global trigger to 10 Gbps.

The trigger data is transmitted on the VXS backplane, and
on the multi-fiber link using the Aurora protocol from Xilinx.
The front-end VXS modules use Virtex-V devices with Gigabit330

Transceivers operating at 2.5 Gbps. The VTP collects these
serial streams with a Virtex-7 device and works with a Zynq7
processor to manage the network interface and on-board Linux
operating system.

The entire Trigger System is synchronous and operates at335

250 MHz with the Trigger Supervisor managing not only the
front-end event readout, but also the distribution of the criti-
cal timing clocks, synchronization signals, and the global trig-
ger signals to each front-end readout crate. These signals are
distributed to the front-end crates on a separate fiber link, and340

each crate is synchronized using a unique encoding scheme to
guarantee that each front-end crate is synchronous with a fixed
latency, independent of the distance between each crate. The
overall trigger signal latency is <8 µs, and the CLAS12 experi-
ments require a trigger rate of up to 20 kHz, which can be easily345

handled since the hardware has an ability to operate with a trig-
ger rate of up to 200 kHz. The following sections describe the
main Trigger System hardware components.

4.1. Pre-trigger Boards

Two type of boards are used at the pre-trigger level to supply350

information to the trigger system: FADCs and DCRBs. They
are described in detail in the CLAS12 DAQ paper [1].
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Figure 9: VXS Trigger Processor (VTP) Board. Based on Xilinx XC7V550T
FPGA, the board is the processing unit of the Stage 1 and Stage 3 Trigger Sys-
tem. In addition to making the trigger decision, it also reports the corresponding
information into the data stream for debugging purposes.

4.2. VTP Board
The VXS Trigger Processor (VTP, see Fig. 9) is a VXS

switch card that is used to implement the trigger logic on the355

front-end crates (Stage 1) and global trigger crate (Stage 3).
There are 80 full-duplex serial links each capable of running at
up to 8.5 Gbps that can be used for transporting the trigger data.
The links are bonded in groups of 4 for a total of 20 channels,
which include 16 VXS payload slot interfaces (copper) and 4360

QSFP interfaces (optical).

Front-end (Stage 1) Crate Processing. The VTP in the front-
end crate collects data from the VXS payload FADC and DCRB
modules (and optionally from some of the QSFP links), where
it aligns the data in time for all links, and presents it to the365

detector-specific trigger logic, which resides in a XC7V550T
FPGA. The trigger logic processes the data and produces an
output trigger stream that is sent to the Stage 2 trigger crate (and
optionally to other Stage 1 VTP modules) using up to 4 QSFP
optical links. The QSFP optical links allow the Stage 1 trigger370

logic to use information from multiple Stage 1 crates, which is
required for some detectors that span multiple VXS crates (e.g.
the DC and FT subsystems). The QSFP optical links also allow
multiple links to go to Stage 2 when more bandwidth is needed
(e.g. HTCC and CTOF).375

Global Trigger (Stage 3) Crate Processing. In the global trig-
ger crate the VTP collects data from the VXS payload SSP
modules. The SSP modules supply a stream of trigger bits
for each sector (HTCC, FTOF, EC, PCAL, and DC) and also a
stream of trigger bits for the central detectors (CTOF, CND, and380

FT). These sector and central trigger bit streams have already
performed timing, multiplicity, and geometry coincidences be-
tween the detectors within the sector or central detectors. The
Stage 3 VTP allows the final (“global”) trigger bits (up to 32)
to be defined using different combinations for sectors, sector385

trigger bits, and central trigger bits. The 32 global trigger bit
decisions are evaluated at 250 MHz so that no additional jitter
is introduced by this stage. These bits are sent to the TS using
the high-density LVDS front-panel output using a twisted-pair
ribbon cable.390

Event Builder. A Zynq FPGA is used on the VTP to run the
standard CLAS12 CODA readout controller (ROC) component,
which allows the VTP to be configured and read out the same
as other VME/Intel-based CODA components. Event data can
be generated by the VTPs that contain the trigger decisions for395

both the Stage 1 and 3 components, which is used to understand
the trigger efficiency. Additionally, there is a large buffer (4 GB
with 200 Gbps bandwidth) and 40 Gbps Ethernet interface that
is intended for future upgrades of the front-end crate readout
system, which would use the VTP and 40 Gbps Ethernet for400

event readout rather than the VME interface. Fig. 10 shows the
interfaces between the FPGAs, memory, network, VXS, and
fiber modules.

Figure 10: VXS Trigger Processor Board (VTP) Block Diagram. This mod-
ule is a single-board computer designed at JLab to execute the most resource-
consuming algorithms of the trigger logic.

4.3. SSP Board

The SubSystem Processor (SSP, see Fig. 11) is a VXS pay-405

load card used to collect data from multiple front-end (Stage 1)
crates. The SSP performs the Stage 2 trigger processing by
creating sector and central trigger bit decisions. Up to 16 SSP
modules can be housed in a single VXS crate, but only 7 are
currently needed: 6 for the sector-based detectors and 1 for the410

central detectors. There are 36 full-duplex serial links each ca-
pable of running at up to 6.5 Gbps that can be used for trans-
porting the trigger data. The l inks are bonded in groups of 4
for a total of 8 channels: 1 VXS switch slot interface (copper)
and 8 QSFP interfaces (optical). All VXS and QSFP lanes run415

at 5 Gbps (or 20 Gbps per channel).
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Figure 11: SubSystem Processor (SSP) Board. Based on a Xilinx
XC5VTX150T FPGA, it is responsible for the making the Stage 2 trigger deci-
sion.

Stage 2 Trigger Processing. The Stage 1 optical data arrives
at the SSP where it is aligned and processed through various
algorithms to make the sector and central trigger bit decisions.
There are 8 sector and central trigger bits (expandable to 32)420

that evaluate at 250 MHz so that no jitter is introduced by this
stage. These bits are sent to the Stage 3 VTP using the VXS
switch serial interface. As for the VTP, the SSP has an Event
Builder that allows for readout of the trigger information and
its insertion into the data stream.425

5. High Level Synthesis in CLAS12 Trigger System Devel-
opment

A significant portion of the Trigger System components were
developed using Vivado High-Level Synthesis (HLS) from Xil-
inx [11]. HLS was introduced to reduce the electronics knowl-430

edge required to design hardware. It also makes the hardware
design flow easier when it comes to achieving a certain be-
havioral model required by the hardware without worrying too
much about the electronics underneath.

5.1. Motivation to use HLS435

HLS makes it easier to incorporate well-established data pro-
cessing algorithms, typically written in C++ or other high-level

languages, into FPGA-based projects. HLS allows for scien-
tists to be involved in the CLAS12 Trigger System development
who do not have an electronics engineering background. It al-440

lows for the involvement of programmers who developed the
algorithms for offline data processing but who have limited or
no FPGA programming experience. It also makes it possible to
validate code with the offline processing framework.

5.2. Trigger Components Implemented with HLS445

HLS was used to develop most of the Stage 1 components of
the CLAS12 trigger. These include the following elements:

• High Threshold Cherenkov Counter (cluster energy recon-
struction);

• Forward and Central Time-of-Flight Counters (clustering450

and timing correction);

• Electromagnetic and Pre-shower Calorimeters (cluster en-
ergy and position reconstruction).

The Time-of-Flight System and Cherenkov counter trigger
implementation was rather straightforward. This typically takes455

less than 10-15% of the Virtex-7 chip and the timing require-
ments were easily met.

The calorimeter trigger implementation required much more
effort because of its complex nature that requires significant
FPGA resources. The details are further explained in the next460

section using the ECAL as an example.
It should be mentioned that it took a significant amount of

time to implement the desired ECAL algorithm, mostly because
of the lack of experience in HLS usage. As soon as all impor-
tant details of the HLS tool were understood, the development465

process converged, and the trigger components related to var-
ious other CLAS12 detectors were implemented in a prompt
manner.

5.3. CLAS12 Electromagnetic Calorimeters (ECAL)
Among all of the Trigger System elements, the most chal-470

lenging for the FPGA implementation is the trigger component
serving the two CLAS12 electromagnetic calorimeters. Due to
their structure, these calorimeters do not provide cluster coordi-
nates or energies without significant event reconstruction. The
trigger implementation details are described in Section 3.3.1.475

Below we describe our experience with HLS using the ECAL
as an example.

5.4. C++ vs. HLS C++

The FPGA implementation of the ECAL trigger was done in
a 125 MHz domain, a balance between speed and resource uti-480

lization. The Trigger System components, in general, require
a fixed latency, which sets certain constraints on the design.
The reconstruction algorithm borrowed from the offline analy-
sis framework was adopted for VIVADO HLS by rewriting it
to C++, using HLS streams, HLS pragmas, unrolling for-loops,485

pipelining, and making all other needed changes. The resulting
implementation was tested on simulated data and showed cor-
rect results. After that we started to run it through VIVADO
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HLS and VIVADO tools to address various issues related to
generating an FPGA image that met the timing requirements490

and fit within the resource allotment.

5.5. HLS and HDL

When HLS is used, compiling the design consists of the fol-
lowing main steps:

• VIVADO HLS - convert C++ to Hardware Description495

Language (HDL);

• VIVADO synthesis - HDL to FPGA primitives;

• VIVADO implementation - map FPGA primitives to chip
and route connections.

For large designs, VIVADO HLS will very often report ex-500

tremely optimistic results that suggest a viable solution, but
during VIVADO implementation will fail to meet the timing
requirements. To address this the failing paths must be traced
back to the HLS component where it can be changed to try to
improve the design. It often took many iterations to either find505

the workable HLS settings, code structure, or clock period ad-
justment.

5.6. HLS Clock Domain

For the different trigger components related to the different
CLAS12 detectors, we use different clock domains between510

250 MHz and 31.25 MHz. In the 250 MHz domain, the mod-
ules occupying more than 10% of a XC7V550 Xilinx FPGA
failed to meet the timing requirements. In the 125 MHz and
lower frequency domains, the FPGA utilization was close to
100%. For the ECAL project with a chip utilization of about515

70%, the 125 MHz clock was used.
In general, a slower clock speed (31.25 MHz) was prefer-

able for smaller projects where resources were plentiful. When
using a slow clock, the HLS code was able to be written as a
single module and had no problem meeting the timing require-520

ments during implementation.
Larger projects, such as for the ECAL, require more efficient

use of the FPGA resources and have latency requirements that
require a faster clock, but cannot be too fast such that the HLS
modules cannot reliably meet the timing requirements. The525

125 MHz clock was found to be the optimal middle ground
for the “-1” speed grade Virtex-7 used in the CLAS12 Trigger
System.

5.7. HLS Project Size and Organization

The typical HLS project for the CLAS12 Trigger System530

contains only a few routines, and uses HLS streams in the func-
tion parameter list to communicate easily with the surrounding
HDL. That scheme works well for small projects.

For the ECAL with some versions being close to 100% of
FPGA utilization, the situation was quite different. The biggest535

problem we faced was the inability to meet the timing require-
ments during the implementation (even when HLS reports that
the timing is good). HLS uses state machines to schedule the

operations it synthesizes. For large HLS components, the gen-
erated state machines can have massive control signal fanouts.540

As the clock period shrinks, so must the maximum signal fanout
for the general control signals for a design to reliably meet the
timing requirements. For a clock period of 8 ns using a “-1”
speed grade Virtex-7, each HLS module was kept smaller than
the 30k look-up tables (LUTs) (<10% of the LUT resources)545

to achieve a design that consistently meets the timing require-
ments.

The original ECAL project consisted of about 20 C++ pro-
cedures that occupied most of the FPGA resources - with HLS
generating big fanouts on this scale, it was impossible to meet550

the 8 ns timing on the implementation stage. The workaround
was to split the entire project into smaller procedures, glued
together in HDL by using well defined, simple interfaces be-
tween the separate procedures. Still, some procedures were too
big, especially for the sorting algorithms. We were able to split555

some procedures further until finally the entire project met the
timing requirements and the resulting FPGA image was loaded
into the hardware.

After every significant change, we re-tested the code on sim-
ulated data, making sure it still produced correct results. The560

chart in Fig. 12 shows how many HLS projects were created in
the end.

Another reason for subdividing the project is the lack of
multi-clock domain support. Since the Event Builder in the
VTP board works on a 250 MHz domain and most projects565

use a slower clock, every project was subdivided and separate
pieces communicated over the HDL-written interface. The ne-
cessity of subdividing HLS projects and of using HDL to as-
semble them together, is probably the most restricting feature
in HLS usage. Much of this subdividing can be reduced by570

using the HLS DATAFLOW directives (which can isolate func-
tions communicating through registered FIFO interfaces), but
it requires further code restructuring to be compatible with this
flow and does not support multiple clock domains.

Figure 12: ECAL HLS project chart. The entire project is split into multiple
smaller projects to satisfy the timing requirements. In particular, the hit sorting
section is split into seven identical projects.

5.8. HLS Versions and Cross-Project Dependences575

As mentioned before, splitting the project into smaller pieces
allowed us to meet the timing requirements. This worked, in
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particular, because we were able to eliminate combinatorial
paths between the HLS projects connected by the streams. Such
dependences can be clearly seen looking into the schematics for580

the failed timing chains, and were usually related to the large
state machine control signals going between modules. Initially
we used HLS version 2015, but we could not eliminate these
long combinatorial paths across modules. This was resolved af-
ter switching to HLS version 2017, where the streams could be585

fully registered (with pragma “axis register both port=”). This
meant that if the registered HLS streams were used between
separate HLS projects, then the state machine paths were also
registered between modules. With that, it was only a matter of
splitting projects into smaller pieces to improve/meet the timing590

requirements.

5.9. HLS Settings

The clock uncertainty is set as 30% of the main clock, which
we found forces HLS to produce more realistic timing esti-
mates. A single HLS project often cannot exceed several per-595

cent of the flip-flops (FF) and LUT budget, otherwise it may be
a problem to meet the timing requirement on the VIVADO im-
plementation step. A typical HLS project for one of the PCAL
trigger elements is shown in Fig. 13.

5.10. VIVADO Settings600

Common settings for VIVADO were used as shown in Fig.
14. It usually takes 3+ hours to compile the PCAL project on a
Dell R730 server under RHEL7. For some firmware versions,
we were able to utilize 100% of the LUTs and still meet the
timing requirements if the clock domain was 125 MHz or lower.605

The VIVADO project for the PCAL trigger is shown in Fig. 14.

5.11. Firmware Validation for HLS-based Projects

The ability to validate the firmware using a C++ implemen-
tation is the one of the biggest advantages of HLS. During the
course of development and commissioning, we ran HLS C++610

code on simulated and beam data from the CLAS12 detectors,
implementing the required features and fixing bugs. During
data taking we were able to find and fix observed problems or
add new features in several hours, which was very important to
save beam time.615

5.12. Conclusions about HLS Usage

The CLAS12 ECAL and other detectors were successfully
implemented into the Trigger System using HLS to produce the
core part of the firmware. This trigger was used in the first
physics run in 2018 and worked as expected. We were able to620

select events based on individual ECAL cluster energy, some-
thing which was possible before only during offline data pro-
cessing.

HLS in general appears to be a useful tool, especially to
implement smaller trigger components like the Cherenkov or625

Time-of-Flight counters. For components utilizing a significant
portion of the FPGA, it will benefit development significantly
to improve HLS in the following directions:

Figure 13: Typical HLS project for one of the PCAL trigger elements. 4%
LUTs is close to the maximum possible to meet the timing requirements of the
following steps. With an 8 ns target, the clock uncertainty is set to 3 ns.

• Support multi-clock domains;

• Improve subroutine calls by allowing the option to fully630

register paths between modules;

• Improve state machine logic, for example support streams
between routines inside the project and be able to generate
separate state machines for separate routines. This will
allow for the avoidance of splitting the project manually635

and using HDL as a top interface as we are currently forced
to do.

6. Software

This section describes the various software tools used dur-
ing the CLAS12 Trigger System development, validation, and640

operation.

6.1. Development Software
Several software packages were used to implement and test

the trigger logic developed for CLAS12. These were the FPGA
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Figure 14: VIVADO project for the PCAL trigger. The strategies used were
“Vivado Synthesis Defaults” and “Performance ExplorePostRoutePhysOpt”.
LUT utilization is about 2/3 of the total balance. It was relatively easy to meet
the timing requirements with an FPGA clock 125 MHz or slower.

synthesis and implementation packages, and the FPGA high-645

level synthesizer.
For FPGA synthesis and implementation, Xilinx

ISE/Planahead and Vivado were used. Most of the front-
end boards were developed years ago and use Virtex-5 and
Spartan 6 FPGAs, which are not supported by Xilinx Vivado,650

so we relied on Xilinx ISE/Planahead for synthesis and im-
plementation. Even though these tools are no longer updated
by Xilinx, they have proved to be stable, reliable, and deliver
consistent results. Newer designs use Xilinx 7-series parts (we
used Artix, Kintex, and Virtex), so we used the Vivado tools,655

which had far better support than ISE/Planahead.
Vivado HLS was used to implement a variety of trigger al-

gorithms, Event Builder logic, and general purpose logic. HLS
components were able to be verified with C/C++ test benches
on their own without anything more than GNU GCC and asso-660

ciated C/C++ header files from the HLS toolchain. This tool
often allowed for faster FPGA implementation, but many com-
ponents were still implemented in HDL where resource and/or
timing requirements became critical. Occasionally simulation
of the HDL-generated files from HLS was required to debug665

C/C++ modules when simulation under GCC found no prob-
lem, but the HDL result did. Differences between the C/C++

simulation and the corresponding HDL output were primarily
due to: C/C++ assumption of infinite length buffering while
HDL buffers were finite, ambiguous C/C++ coding where GCC670

and HLS behaviors differed, and latency issues due to the
C/C++ simulation having no concept of elapsed time. Our ex-
perience with HLS is described in detail in Section 5.

6.2. Operating Systems

Linux operating systems are used on all readout controllers in675

the CLAS12 DAQ. The VME crate controllers use Intel-based
CPUs and run a standard Centos and Linux kernel distribution.
The VTP modules use an ARMv7 CPU with custom hardware
and run Arch Linux using a custom Linux kernel. Both CPUs
boot from the network using a shared kernel and root filesystem680

images, which simplifies administration. Common DAQ soft-
ware (readout, configuration, slow control, diagnostics, etc.)
tools are used for both platforms and most tools available on
standard desktop PCs are also available.

Details on the installation of Arch Linux with ARMv7 are as685

following:

• Linux kernel 4.4.0

– Updates with specific support for Xilinx Zynq Pro-
cessors

– Available at https://github.com/Xilinx/linux-xlnx.git690

– Custom device-tree

– Provides FPGA programming interface

– Allocates physical memory for use with DMA and
event buffers

– Standard I2c and SPI API695

• Arch Linux compiled for ARMv7

– Available at https://archlinuxarm.org/

– Filesystem over NFS

– Diskless booting using tftp (UBoot)

6.3. Configuration Software700

6.3.1. Configuration Files
The CLAS12 Trigger System has a large number of param-

eters controlling its logic. Those parameters are set by writing
values to hardware registers, and are controlled by reading those
registers back. The system uses ASCII configuration files, as705

shown for example in (Fig. 15). Every line in these configura-
tion files contains a key word and the number of corresponding
parameter values. The directive “include” can be used to cre-
ate a hierarchical set of configuration files. Normally the main
configuration file is selected during the run startup procedure,710

and the CLAS12 run control software resolves all “include” di-
rectives, resulting in the creation of one big configuration file.
That file is used to program all trigger hardware registers, and
its content is also written to the data stream for bookkeeping
purposes. The register contents are read back and the results715

are recorded into the data stream as well, providing full control
of the Trigger System settings. Normally the same configura-
tion files contain the DAQ settings as well, making it a complete
source for the entire DAQ/Trigger System settings.

6.3.2. Timing Settings720

One of the important aspects in setting up the trigger is the
measurement of the relative timing between the signals from the
detector elements used to define a trigger. These are referred to
as delay curves. For this purpose software procedures were de-
veloped. This includes special trigger configuration files and725

software tools to scan individual subsystem latencies, record
sets of beam current normalized scalers, and produce the corre-
sponding delay plots (see Fig. 16). The trigger time setting for
a specific detector element was kept at a constant value, which
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Figure 15: Configuration file example. Flat text configuration files were used
for all DAQ and trigger components. Download and Upload procedures were
implemented, with uploaded settings being stored in data files and databases.
The format used allows personnel with appropriate training to understand and
modify the system settings using text editors. Version control is enforced using
Github.

determined the DAQ readout time window width and offset,730

while the timing for the other subsystems were changed step by
step to monitor the delay curve. Delays and coincidence widths
were adjusted to account for known jitter sources to ensure no
events were lost due to poor timing alignment. This procedure
was repeated every time the trigger logic was changed.735

6.3.3. Gain Calibration and Threshold Settings
One of the important settings in the Trigger System is for

the FADCs. As stated above, the FADC boards serve as the
pre-trigger for most of the Stage 1 trigger components (except
the Drift Chambers), and correct pedestal and gain calibrations740

for these units are critical for correct Trigger System perfor-
mance. Pedestal and gain measurements are conducted before
run startup, and the values are loaded using configuration files.
All of the thresholds in the configuration files are set using
physical units such as MeV for the calorimeter energy and the745

number of photoelectrons for the Cherenkov counter.

6.4. Readout and Control Software

All trigger hardware modules were implemented in VXS for-
mat and installed into VXS crates along with the other DAQ
electronics. All readout and control libraries were developed as750

part of the DAQ software project as described in Ref. [1]. From
the software point of view, the DAQ and Trigger Systems can
be considered as one system equipped with standard software
tools.

7. Simulation Tools755

Several simulation tools were used in the development of the
CLAS12 Trigger System. These tools were very useful during
the development and implementation stages, and are still in use
now for continued validation. The primary simulation tools for
the CLAS12 Trigger System are detailed below.760

Figure 16: CTOF×FT Delay Scan. In this scan of CTOF×FT coincidence rate
vs. CTOF trigger delay, the FT trigger time was fixed as having the smallest
jitter, and the CTOF trigger delay was changed. Similar delay scans were mea-
sured for all detectors participating in the trigger logic, to make sure all trigger
components were in time.

7.1. GEMC/Geant4 Simulation Tool

In the beginning of the CLAS12 Trigger System de-
velopment, the hardware was not available, so input data
were generated by the CLAS12 Geant4 Monte-Carlo package
(GEMC) [10]. This package was used to produce data files with765

data banks in the same form as produced by the DAQ. The Trig-
ger System software includes a playback package that is able
to read GEMC-generated files and produce FADC and DCRB
responses identical to those from the hardware. All Stage 1
trigger components implemented with HLS were developed us-770

ing simulated data, including for the most complex responses in
the calorimeter and Drift Chambers. For VHDL-written com-
ponents, simulated data were used as well along with other spe-
cialized tools described below.

For example, Fig. 17 and Fig. 18 show a comparison of the775

energy and coordinates of the EC clusters reconstructed by the
offline analysis software and by the Trigger System. Differ-
ent FPGA components were used to perform the “divide” op-
eration in the Trigger System, including one based on digital
signal processing (DSP) and another based on using look-up ta-780

bles. The first method provides better results but requires more
resources than the second method. Similar comparisons were
used to guide many decisions during system development.

Another example (see Fig. 19) shows the absolute EC cluster
energy obtained by offline analysis and by the Trigger System.785

As can be seen, the Trigger System provides the same result as
predicted by simulation and obtained from offline analysis.

7.2. FPGA Simulation Tools

A cycle accurate simulator was setup to model, test, and de-
bug the full Trigger System using Aldec Riviera. This tool790

is able to perform simulations of the full Trigger System in a
mixed language environment (VHDL, Verilog, C/C++) for all
FPGA components used in CLAS12 (Xilinx series 5, 6, and 7
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Figure 17: EC cluster finding: difference between results from the offline recon-
struction and Trigger System (using dividing in coordinate calculation). Ideally
it must be a delta function, but in reality we see a difference between the offline
reconstruction and the trigger decision for the cluster energy.

Figure 18: EC cluster finding: difference between results from the offline recon-
struction and Trigger System (using a look-up table in coordinate calculation).
In this case we see a difference not only in the cluster energy, but in the cluster
coordinates as well. This means that the look-up table method should not be
used for the cluster coordinate definition in the trigger.

Figure 19: EC cluster finding. Here the PCAL is removed and 5 GeV electrons
hit the EC directly. The energy deposition in the offline and trigger model are
shown. It can be seen that the Trigger System cluster finder has an energy
definition and resolution comparable with offline reconstruction.

Subsystem Crates ModType ModCnt ChCnt
DC 18 DCRB 252 24192
EC 6 FADC 84 1296
PCAL 6 FADC 96 1152
FTOF 6 FADC 36 576
FT-Cal 2 FADC 21 332
FT-Hodo 1 FADC 15 232
CND 1 FADC 9 144
CTOF 1 FADC 6 96
HTCC 1 FADC 3 48
GT 1 SSP 6 28 (Fiber)

Table 5: Trigger Simulation crates. Responses from the 43 VME crates, cor-
responding to 10 CLAS12 detectors, were included in the trigger simulation
procedure. This allowed comprehensive results to be provided and to find any
possible problems. ModType is the VME/VXS module used by the particular
subsystem. ModCnt is the number of modules used by the subsystem. ChCnt
is the number of individual channels used.

components). VHPI was used to interface external C/C++ pro-
grams from the DAQ to the VHDL test bench. Using VHPI,795

calls to the DAQ EVIO (the native DAQ data format) C/C++

libraries were possible from VHDL, making it possible to feed
detector waveform data into the trigger simulation directly from
Monte Carlo, data files taken with beam, or from user-created
text files. Simulation intensive components, primarily gigabit800

SerDes components, were replaced with fast, simple models
once verified to improve the simulation performance. The sim-
ulator is single-threaded and requires a license for each running
instance, making it costly to parallelize. Even so, it was capable
of processing 1 event every 30 s on a typical desktop PC sim-805

ulating the CLAS12 forward and central Trigger System com-
prised of 24,192 Drift Chamber wires and about 3,400 FADC
channels.

The simulation was built from the actual HDL firmware
source files compiled for the various modules used in the Trig-810

ger System (DCRB, FADC, VTP, SSP). HDL wrappers were
created to model the VXS crates that include: backplane, fiber
interconnect, trigger distribution, clock distribution, configura-
tion, and readout. Table 5 summarizes the trigger simulation
components.815

Each of the front-end crates uses a VTP trigger module that
runs the detector-specific trigger algorithm. The front-end VTP
modules feed the trigger data to the global trigger (GT) crate
Stage 2 (SSP). The SSP modules feed the trigger data into the fi-
nal trigger Stage 3 (GTP). There are 10 different VTP firmware820

types to support the Stage 1 (front-end) and Stage 3 (GTP) algo-
rithm. There are 2 different SSP firmware types that support the
Stage 2 CLAS12 Forward and Central Detector trigger logic.

This full simulation is primarily run for two scenarios. The
first is whenever a significant firmware change is made. In this825

case a small number of specially selected events (about 2k) can
be fed through to tag the trigger decisions on each. The second
is whenever the DAQ system records events where the trigger
failed to properly tag them (typically during a random trigger
run to assess the efficiency). For both cases the failed events can830
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be loaded into the simulation and the failed decisions can be ex-
plored in detail to determine the cause. The first scenario takes
one day or more depending on the number of events needed
to check, while the second case can take minutes, since only
failed events are presented to the simulation so problems can835

immediately begin to be examined.

8. Trigger System Firmware Development

After generic Trigger System design was complete and
the hardware components entered their production stage, the
firmware development began. Both HLS and VHDL tools were840

used. Work was performed using data samples generated by
the CLAS12 GEMC/Geant4 package and cosmic data after the
hardware components were installed. This section describes
our procedures. Additional development and validation with
beam are described in Section 10.845

8.1. Preparation of Simulated Data Sets

Simulated data sets for Trigger System development were
prepared using GEMC (the Geant4-based CLAS12 simulation
package [10]). GEMC has a fully realistic CLAS12 geome-
try description and complete maps of the magnetic field, and850

produces digitized results suitable to be converted into the pre-
trigger data format.

Various data sets were generated depending on what was
needed for the development of particular trigger components.
For example, fixed-energy, single electron sets were produced855

for the initial development of the EC and PCAL components.
For these data sets, all detectors positioned upstream of the EC
or PCAL were disabled to make sure the single electron directly
hit the EC or PCAL. In this way the cluster-finding algorithm
could be developed and tested in ideal conditions. After that, re-860

alistic data samples were produced and the algorithm was tested
again.

Another data set was used to create the road dictionary for
the Drift Chamber-based trigger component. For this purpose,
positively and negatively tracks were generated uniformly in a865

selected momentum, θ, and φ range, and tracked through the
CLAS12 detector to determine the list of DC wires associated
with the particle trajectory. More details can be found in Sec-
tion 10.4.

8.2. Development Using Simulated Data870

The trigger development process consisted of several meth-
ods that depended on the nature of the trigger compo-
nent. Most Stage 1 components were implemented using the
HLS/VIVADO tool, where the firmware was written using an
HLS C++ extension. In that case, it was possible to develop875

and validate the firmware as part of the offline reconstruction
framework using a standard desktop computer. Usually the of-
fline processing algorithms were re-written using HLS/C++,
with appropriate simplification and structural changes to make
it suitable for the FPGA firmware. Simulated data were used as880

input, which were processed directly by the HLS/C++ code and
compared with the initial simulation parameters. In addition,

the same samples were processed by the offline reconstruction
software and the results were compared with the trigger out-
put. This double-check method practically guarantees bug-free885

implementation. There was no single case when the C++ im-
plementation passed tests on the simulated data and then failed
during the final validation stage. The most complicated Stage 1
components were developed and tested using this method.

Several components of the trigger were written mostly in890

VHDL and initially no software existed for feeding GEMC data
into the HDL simulations. This was the case for the Stage 1 FT-
Cal+FT-Hodo and DC trigger, as well as the Stage 2 and Stage 3
components of the trigger. These modules relied on standard
VHDL test benches to feed/generate test vectors for evaluating895

the correctness of the design modules. For example, the FT test
bench generated clusters at each position of the calorimeter and
hodoscope to test the channel mapping and geometry match-
ing. Additional specific test cases verified the FT-Cal+FT-Hodo
trigger clustering time coincidence, cluster multiplicity, and la-900

tency to ensure it operated as expected. C/C++ modules were
written that emulated the FT-Cal+FT-Hodo and the DC trigger
so the algorithms could work in the same offline framework as
described above for the other Stage 1 components.

8.3. Development and Validation Using Cosmic Data905

When the hardware components for the CLAS12 detector
were constructed and mostly installed, and the first version of
the firmware was ready for testing, all three Trigger System
firmware stages were loaded and development continued for
the entire Trigger System using cosmic data. At that point we910

started to perform Trigger System validation for some com-
ponents, while development was continued for others, as de-
scribed in the following sections.

8.3.1. Alternative “Hit-Based” Trigger System
The CLAS12 detector inherited some components from the915

original CLAS detector (see Ref. [12]), in particular its Trigger
System. That system was fed by TDC/discriminator boards and
was able to produce “hit-based” information only (i.e. based
only on the list of channels above threshold). We decided to
keep it for reference purposes as an alternative to the new Trig-920

ger System. It was used during CLAS12 cosmic data detector
calibrations and validation of the new Trigger System up to the
point when the new Trigger System was ready. It is still op-
erational and can be used to double-check the main CLAS12
Trigger System if needed.925

8.3.2. Development and Validation of ECAL Special Purpose
Trigger with Cosmic Data

The first detector calibrations employed cosmic data. Here
we will describe, as an example, one of the procedures related
to the EC/PCAL calibration needed for correct Trigger System930

performance. Similar procedures were executed for all detec-
tors participating in the Trigger System.

The efficiency and spatial uniformity of the cluster finding
trigger in the EC/PCAL described in Section 3.3.1 requires al-
ready calibrated calorimeters with pre-determined PMT gain935
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and light attenuation constants loaded into the VTP/FPGA trig-
ger firmware. Calibration runs using a special-purpose MIP
trigger were used to obtain these constants. For that purpose
a so-called “pixel trigger” was developed and loaded into the
Stage 1 firmware along with the main trigger, so it was possible940

to calibrate the system using a pixel trigger and then switch to
the main one for data taking. This “pixel trigger” used a simple
multiplicity condition on 1D cluster size for each U,V,W view
to reject undesirable muon trajectories and select normally inci-
dent tracks. This reduced the trigger and data rate by 95% and945

ensured the same MIP energy was deposited for all possible
triple intersections of single strips.

The pixel trigger pipeline executes these steps in parallel,
with user configurable parameters in bold: 1) If FADC hit en-
ergy > EMIN, make a pulse HITWIDTH*4 ns for that strip.950

2) Look for coincidences of U,V,W pixel strip candidates from
step 1. 3) Evaluate multiplicity EVALDELAY*4 ns clock cy-
cles after the leading edge of a candidate pixel from step 2. 4)
Generate a pixel trigger if the multiplicity requirement is met
and we still have a hit on U, V, and W.955

Additional configurable trigger elements were introduced,
including a total energy sum threshold ESUM and a look-up
table for triplets of strips that satisfy the geometrical constraint
dU + dV + dW = DALITZ, where d is the normalized dis-
tance to the hit strip indicated by the arrows in Fig. 20 and960

DALITZ = 2 for perfect pixel events. The latter test was some-
times necessary to prevent noisy PMTs from saturating the mul-
tiplicity (N=3) trigger condition. Offline analysis showed that
about 90% of pixel triggers satisfied the Dalitz test (see Fig. 21),
while adjacent calorimeter elements that did not use the trigger965

had a much smaller pixel fraction. This suggests the pixel trig-
ger helps to suppress events that undergo multiple scattering,
which would trigger adjacent strips and violate the multiplicity
requirement.

Figure 20: Examples of clusters from cosmic muon triggers. The desired trajec-
tory (left) is normally incident on the face of the PCAL and satisfies the single
pixel multiplicity condition (Nu=Nv=Nw=1) in the FPGA pixel trigger. The
event at right shows a more vertical trajectory rejected by this trigger.

8.3.3. Development and Validation of DC Component of the970

Trigger System with Cosmic Data
Early tests of the Drift Chamber tracking trigger were done

using cosmic events triggered from the ECAL. A small fraction
of events had tracks near the target location where the road dic-
tionary was defined, but within a day enough statistics could be975

Figure 21: Offline analysis of events that satisfied the pixel trigger in the ECinner
calorimeter. The left plot shows that 89% of the ECinner triggers satisfied the
pixel test dU +dV +dW = 2. The right plot shows that only 14% of the ECinner
triggers found an ECouter event that satisfied both the N = 3 and pixel test.

collected to do checks that the tracking trigger was functioning.
Offline reconstruction of events with reconstructed tracks was
checked to see if the tracking trigger fired as shown in Fig. 22.
Any events with tracks that passed through the target, but failed
to be tagged by the tracking trigger were run through simula-980

tions to identify the reason. The tests clearly showed very loose
acceptance and motivated tighter kinematic constraints on the
dictionary generation that were eventually done when studies
with beam were later performed.

Figure 22: DC negatively charged cosmic tracks rejected (left) and accepted
(right) by the tracking trigger in plots of reconstructed momentum vs. recon-
structed z-vertex position. Any track rejected above 1 GeV with z-vertex within
±20 cm would indicate a trigger failure, but the tests showed 100% efficiency.

8.3.4. Development and Validation of Entire Trigger System985

with Cosmic Data

While the Stage 1 trigger components were validated sep-
arately from each other during the development stage, the
Stage 2 and Stage 3 components required the entire system to be
assembled to perform validation. Initially those two stages were990

programmed with simplified algorithms to test signal propaga-
tion and basic Trigger System functionality, and only the timing
coincidence between different detectors was implemented. The
development of Stage 2 and Stage 3 continued during cosmic
run operations and later with beam operations, adding geomet-995

rical matches between different detectors and increasing the co-
incidence logic complexity.
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8.3.5. Trigger System Flexibility and “Permanent Develop-
ment” Mode

The initial plan was to develop the Trigger System firmware1000

to satisfy all CLAS12 experiments for the entire duration of
CLAS12 operation, meaning high (close to 100%) trigger effi-
ciency and reasonable purity. As the power and flexibility of
the Trigger System was revealed to the community, additional
requirements were requested to improve the system purity, and1005

to include additional physics processes. As a result, the Stage 2
and Stage 3 components of the Trigger System were under con-
stant development during the first year of CLAS12 operation,
and the firmware was upgraded and the entire system was val-
idated after every change. After a while, the Trigger System1010

reached the point when relatively small improvements in the
trigger purity could only be achieved with significant effort. At
that point the development was declared complete. The nature
of the FPGA-based Trigger System allows almost endless im-
provements, but such a “permanent development” mode is not1015

practical.

9. Physics Triggers

9.1. Electron Trigger

The electron trigger is designed to select inclusive electron
scattering from the CLAS12 targets:

e(p, n, A)→ e′X. (1)

The trigger selects events with at least one scattered elec-
tron detected by the forward detectors. The High Threshold1020

Cherenkov Counter (HTCC), Pre-shower Calorimeter (PCAL),
Electromagnetic Calorimeter (EC), and Drift Chambers (DCs)
participate in the generation of the trigger decision. Searching
for the electrons is performed in all six CLAS12 Forward De-
tector sectors in parallel. The final electron trigger is a simple1025

“OR” of the six sector trigger signals.
The HTCC discriminates electrons from other charged parti-

cles. This detector must be calibrated in terms of the number of
photoelectrons before the start of any experiment. The HTCC
trigger logic searches for clusters and calculates the total num-1030

ber of photoelectrons detected by the HTCC. The cluster may
include up to four PMT signals that collect the Cherenkov light
from the adjacent mirrors as described in Section 3.3.2. The
minimum number of photoelectrons in the cluster is one of the
main electron trigger parameters. Usually this threshold is set to1035

1-2 photoelectrons depending on the experiment requirements.
The PCAL and EC calorimeters are designed to detect pho-

tons and electrons as described in Section 3.3.1. A high energy
deposition in the calorimeters is a signature of electron detec-
tion, and is one of the electron trigger parameters. The PCAL1040

and EC detectors must be calibrated before the start of any ex-
periment in terms of energy deposition measured in MeV. The
electron trigger uses cuts on the cluster energy in the PCAL
(EPCAL) and EC (EEC) separately, and cuts on the total energy
deposition in both detectors ETotal = EPCAL + EEC . These cuts1045

depend on the beam energy and the experiment requirements,

and usually lie in the range from 150-300 MeV (correspond-
ing to a minimum electron energy from 600-1200 MeV when
accounting for the sampling fraction of the ECAL [2]) for the
energy sum ETotal.1050

Geometrical matching between the HTCC signal and the po-
sition of the shower in the PCAL calorimeter helps to suppress
random coincidences between the two detectors. The trigger
firmware uses an HTCC-PCAL look-up table to make a proper
event selection.1055

The track reconstruction in the DC system at the trigger level
is very useful for the further suppression of accidental back-
ground, as described in Section 3.3.3. The trigger decision
requires at least 3 layers in every superlayer and at least 5 su-
perlayers in every road, which is a standard setting for all trig-1060

gers where the DC-based component is used. The geometrical
matching between track candidates and hits in the PCAL and
EC detectors is used to strengthen the trigger performance in
terms of event purity.

Figure 23: Cut view from the CLAS12 event display showing an event selected
by the electron trigger. The trigger detectors HTCC, DC, PCAL, and ECAL are
indicated. The reconstructed electron momentum is 4.5 GeV.

The electron trigger configuration may be represented by the
formula:

HTCCi(Nphe>NHTCC
min )×

[EPCAL>EPCAL
min ) × ETotal>ETotal

min ) × DC]i
(2)

where index i is the CLAS12 sector number and Nphe is the1065

number of photoelectrons detected by the HTCC in a defined
cluster. NHTCC

min , EPCAL
min , ETotal

min are trigger parameters, and DC
means that a track was reconstructed by the DC-system. The
space correlations between all detectors and coordinates of the
track are implemented as well. As an example, the event dis-1070

play with a 4.5 GeV electron selected by the trigger is shown in
Fig. 23.
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9.2. Photoproduction Trigger

The photoproduction trigger is designed to select events
where a scattered electron is detected by the Forward Tagger1075

in the polar angular range from 2◦ to 5◦. Strictly speaking it is
not a photoproduction process but electron scattering with low
four-momentum transfer Q2 = 4EbeamE′ sin2 θ/2. The trigger
logic continuously searches for clusters in the FT calorimeter
(FT-Cal) from an electromagnetic shower, and calculates the1080

shower energy and space coordinates. The cluster energy is the
sum of all crystal energies within a 3×3 spatial array that meet
the time-matching constraints. Once the clustering algorithm
has identified a cluster, the corresponding data is reported to
the next trigger stage. This includes the time stamp, the energy,1085

and the spatial coordinates (center of the seed crystal). The
cluster energy is not corrected for shower leakage effects at this
stage. Finally, the trigger processor makes the trigger decision
by applying further cuts to the clusters.

The trigger selection is based on lower and upper energy lim-
its and the number of hits in the cluster. The trigger may also
select events with a specified number of clusters detected by
the calorimeter. The coincidence with the two-plane scintil-
lating hodoscope FT-Hodo, located in front of the calorimeter,
serves to discriminate charged particles from high-energy pho-
tons. The geometry matching between FT cluster and FT-Hodo
hit helps to suppress background coming from photons. The
trigger logics also provides the possibility to select reactions
with an electron and several photons in the final state, for ex-
ample

ep→ e′γγX.

The display of two events with one and two clusters in the FT-1090

Cal, selected by the FT trigger is shown in Fig. 24.
The Trigger System may use the information from the

CLAS12 Forward and Central Detectors to select events with
several charged or neutral particles in coincidence with the elec-
tron in the FT-Cal. The trigger detector composition depends on1095

the reaction under study.
Charged particles in the forward detectors are selected by a

coincidence between the FTOF, PCAL, and EC with tracks re-
constructed by the DC system. Space correlations between all
trigger detectors are required, including coordinates of tracks1100

crossing the detector planes. Hit matching along the track is an
important part of the background reduction at the trigger level.
The cuts on the energy depositions in the trigger detectors are
used to select charged and neutral particles.

The trigger configuration

FT (EFT
min<E<EFT

max) × FT Hodo(2)×

[FTOF(E>EFTOF
min ) × PCAL(E>EPCAL

min ) × DC]i

was used in the first CLAS12 experiments to select the reaction

ep→ e′h+/−
F X

with at least one electron and one particle h+/−
F with a definite1105

charge in the final state. The charge of the particle is a trigger
parameter. The trigger can select negative, positive, or a particle

Figure 24: Display of two events selected by the Forward Tagger trigger with
one and two clusters in the FT-Cal.

with any charge in the final state. FT Hodo(2) denotes the in-
clusion of the hodoscope in the trigger with hits in both planes,
correlated in space with a FT-Cal cluster. The index i denotes1110

the CLAS12 sector number. Each detector has its own trig-
ger energy cuts: EFT

min, EFT
max, EFTOF

min , and EPCAL
min . A space cor-

relation matching requirement between the FTOF and PCAL
elements was implemented. The DAQ bandwidth limitations
require prescaling of this trigger.1115

The selection of the events with at least one electron and two
charged particles in the forward direction detected in different
sectors

ep→ e′h+/−
F h+/−

F X

was done by the trigger configuration

FT (EFT
min<E<EFT

max) × FT Hodo(2)×

[FTOF(E>EFTOF
min ) × PCAL(E>EPCAL

min ) × DC]i×

[FTOF(E>EFTOF
min ) × PCAL(E>EPCAL

min ) × DC] j,

where i and j denote different CLAS12 sectors.
The central detectors, such as Central Time-of-Flight

(CTOF) and Central Neutral Detector (CND), were used for the
selection of the events with at least one particle detected in the
Central Detector. The trigger configuration

FT (EFT
min<E<EFT

max) × FT Hodo(2)×

[FTOF(E>EFTOF
min ) × PCAL(E>EPCAL

min ) × DC]i×

CTOF(E>ECTOF
min )

was used for the selection of events with an electron in the FT,
at least one charged particle going in the forward direction, and
at least one particle detected in the central detectors.

ep→ e′h+/−
F h+/−

C X.

Here h+/−
C stands for the charged particle in the Central Detec-

tor.
The CND detector could be added to the coincidence chain

with a space correlation between the CTOF and CND counters
in case the trigger rate is too high

FT (EFT
min<E<EFT

max) × FT Hodo(2)×

[FTOF(E>EFTOF
min ) × PCAL(E>EPCAL

min ) × DC]i×

CTOF(E>ECTOF
min ) ×CND(E>ECND

min ).
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As stated above, the minimum energy depositions in all detec-
tors in the trigger are parameters that depend on the individual1120

experiment requirements.

9.3. J/ψ Meson Trigger
A special trigger was designed to detect the quasi-

photoproduction of J/ψ-mesons

ep→ e′p′J/ψ, J/ψ→ µ+µ−.

Two decay modes are useful for the selection of the J/ψ me-
son: J/ψ → e+e− and J/ψ → µ+µ−. The conventional elec-
tron and photoproduction triggers select the J/ψ-meson in case
of its decay to an electron-positron pair. However, these trig-
ger configurations do not work with muons in the final state.
Therefore, another trigger was added to select one more decay
mode for this experiment. The CLAS12 spectrometer has no
dedicated muon system, but it turns out that the selection of
particles with energy deposition in the PCAL-EC calorimeters
close to the minimum-ionizing value is sufficient to suppress
the background from pions when the invariant mass of the two
particles (muons or pions) is near the J/ψ-mass. The muons
from the J/ψ decay appear in opposite CLAS12 sectors, which
allowed for the trigger configuration:

[FTOF(E>5)×PCAL(15<E<60)×
EC(60<E<120)×DC]i×

[FTOF(E>5)×PCAL(15<E<60)×
EC(60<E<120)×DC] j.

The energy units are in MeV. Note, that there is no require-
ment to search for the scattered electron at all. This gives an
order of magnitude advantage in the virtual photon flux in com-1125

parison with the case when the electron is detected in the FT
calorimeter. The event display with two particles with oppo-
site charges and in the opposite sectors, selected by the muon
trigger, is shown in Fig. 25.

10. Trigger System Validation with Beam1130

When beam operations started, the Trigger System valida-
tion was completed as part of the entire CLAS12 detector com-
missioning. This section describes the trigger validation proce-
dures.

10.1. “Random Trigger” Validation Procedure1135

The ultimate validation of the trigger is done using the so-
called “Random Trigger” (RT) runs. RT runs are special runs
where the event readout is initiated not by the trigger logic, but
by an external random generator that can be tuned to the desired
frequency. Most of the events in the RT runs do not contain any1140

tracks, however, a small fraction of the events will have real
particles that were reconstructed because the particles acciden-
tally fell in the readout window that was initiated by the random
generator. In the event readout, in addition to various data banks
from the DAQ system, the trigger decisions are stored as well1145

(see Section 3.6).

Figure 25: CLAS12 event display of an event selected by the muon trigger.
The trigger detectors DC, FTOF, PCAL, and EC are indicated. The particle
momenta are 1.1 and 1.3 GeV.

These accidental “good” events are used to check whether
the desired trigger bit in the Stage 3 32-bit trigger mask was set
by the trigger logic. In case it is not set, information from the
Stage 1 and Stage 2 trigger is available to analyze the possible1150

reasons for the inefficiency.

(a) (b)

Figure 26: Distribution of cluster coordinates of PCAL (left) and ECin (right).
The scatterplots in red show all events, while the blue scatterplots show events
where a cluster is in the fiducial region of the calorimeter (about 15 cm away
from the edges).

The technique of the trigger validation is as follows. The
trigger logic is configured exactly as it will be set in an experi-
ment, but it runs in “tagging mode”, reporting trigger decisions
into the data stream for every randomly generated event. After1155

several hours of running we collect at least 100 million events.
After the data is processed and the events are reconstructed,

we select a subset of events with the correct trigger time. This is
done using FADC spectra for the detectors participating in the
trigger logic. We need to select events with FADC pulse times1160

similar to those in the data obtained using the regular trigger.
Figure 27 (a) shows typical FADC pulse arrival timing for the
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regular beam (not random) trigger data. Reconstructing and
analyzing the data obtained using a random trigger, we select
events with a signal in the middle of the FADC window to make1165

sure we do not have boundary effects when the signal region is
selected. Based on the typical pulse shape, we ignore areas with
hit times below 50 ns and above 150 ns (see Fig. 27 (b)).

(a) (b)

Figure 27: HTCC FADC pulse arrival times: a) physics triggers, b) random
trigger. Plot a) was used to select “good” events from the Random Trigger
runs. For such events, the FADC timing has to be at least 50 ns from both
timing window edges to avoid boundary effects.

We typically find several thousand events that accidently fall
into the correct trigger window. These events can be used to1170

obtain the trigger efficiency and purity assuming that our of-
fline reconstruction software works correctly. It should be men-
tioned that correct working of the offline reconstruction is an
important pre-requisite for complete trigger validation.

10.2. Validation of the Electron Trigger1175

As a reminder, the electron trigger logic uses responses from
the PCAL, EC, HTCC, and DC (see Eq. 2), and as was de-
scribed in Section 10.1, for trigger validation we have used
Random Trigger data. The first step in the validation of an elec-
tron trigger is a selection of events with a “clean electron”. The1180

CLAS12 offline reconstruction software assigns a particle iden-
tification (PID) to each reconstructed particle [13] (for electrons
PID=11), however in these studies, we imposed additional cuts.
In particular

• DC roads are optimized for tracks originating from the tar-1185

get, which is why in the offline analysis we put a cut on the
vertex z coordinate to make sure the track originates from
the target;

• Selected events where the electron hits the calorimeters in
the fiducial region, to make sure the shower energy is fully1190

reconstructed;

• Applied trigger condition cuts on the offline cluster ener-
gies in the PCAL and EC, and also on number of photo-
electrons in the HTCC.

After applying the above-mentioned cuts for each of these elec-1195

trons, we checked whether the electron trigger bit was set for
the corresponding sector. At the end, the trigger efficiency is

defined as the number of “Bit Set” events over the number of
all events with a “clean” electron. The CLAS12 experiments
required a trigger efficiency close to 100% for electrons above1200

2 GeV. Since both the PCAL and EC are sampling calorimeters,
2 GeV electrons will deposit only part (in average about 25%
in our case) of their total energy. Because of shower and light
fluctuations, some 2 GeV electrons will have less than 25% of
their energy reconstructed in the calorimeters. Based on this,1205

we required the energy threshold in the trigger to be more than
300 MeV, which guarantees that more than 99% of 2 GeV elec-
trons will deposit energy above the threshold.
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Figure 28: (a) Momentum distribution of “good electrons”. The brown distri-
bution represents all “good electrons”, the blue histogram represents all events
where the electron trigger bit was not set, the black histogram represents events,
that do not have a EC×PCAL trigger bit, and the red histogram represents
events that missed the electron trigger bit. (b) Distribution of the number of
photoelectrons for events where the electron has more than 2 GeV energy and
missed the HTCC trigger bit.

Figure 28a shows the momentum distributions of all “good”
electrons (in brown), electrons when the electron trigger bit was1210

not set (in blue), when the EC×PCAL bit was not set (in black),
and events when the HTCC bit was not set (in red). Above
2 GeV most events have only the HTCC bit missing. Figure 28b
shows the distribution of the number of photoelectrons for the
events that have no HTCC trigger bit. About 90% of these1215

events are at the threshold region (a 2 photoelectron threshold
was employed). The Trigger System has a different precision
of gains and pedestals values from the offline reconstruction.
In particular, in the trigger the pedestal value is constant for all
events in the run, but in the offline reconstruction the pedestal is1220

calculated event by event using samples of the FADC readout
data before the signal region. This will create such threshold
related effects. The final trigger efficiency is shown in Fig. 29,
which shows that the trigger efficiency is above 99.5% for elec-
trons with momentum above 2 GeV.1225

10.3. Validation of the Photoproduction Trigger
As described in Section 9.2, the CLAS12 photoproduction

trigger requires a coincidence between one electron measured
in the Forward Tagger (FT) detector and two hadrons measured
in the CLAS12 detector in either the forward or central part.1230

The validation procedure aims to verify if, for a given event
foreseeing one final-state electron in the FT acceptance and two
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Figure 29: Trigger efficiency as a function of the electron momentum. The
efficiency is above 99% for the entire momentum range.

or more hadrons within the CLAS12 acceptance, whether the
Trigger System would recognize it properly, resulting in event
readout. In order to validate the system with beam during com-1235

missioning, the following strategy was adopted. First, the elec-
tron detection by the FT was validated using Random Trigger
runs. After this, the detection of single hadrons in CLAS12
was studied in special runs, where the only trigger source was
the FT. Finally, the coincidence between the two systems was1240

assessed. Full details are described below.

10.3.1. Validation of Electron Detection in the FT
A scattered electron in the FT is identified as an electromag-

netic shower in the FT Calorimeter (FT-Cal) within a defined
energy range, in time coincidence and geometrically matched1245

to a hit in both layers of the FT Hodoscope (FT-Hodo). The
map providing the matching between the cluster seed position
in the FT-Cal and the tile position in the FT-Hodo was first de-
rived from the nominal detector geometry, and then confirmed
by Monte Carlo simulations.1250

The identification of the scattered electron in the FT was
validated through a similar procedure as the one adopted for
the CLAS12 electron trigger discussed in Section 10.2 based
on Random Trigger runs. The recorded events were processed
through the standard CLAS12 reconstruction software and fil-1255

tered, keeping only those with a reconstructed electron in the
FT system. Since event readout was triggered by a random
pulser, events with the reconstructed electron signal close to
the margins of the readout window were also rejected. For these
events, the electromagnetic clusters found by the reconstruction1260

software (“offline” clusters) were compared to those reported
by the Trigger System and stored in the trigger data banks.

The efficiency of the FT-Cal clustering algorithm in the Trig-
ger System was evaluated by comparing all “offline” clusters to

those matched - in space and time - to the “online” clusters 3.
The efficiency was computed as:

ε =
Ntrigger

Nall
, (3)

where Nall and Ntrigger are, respectively, the total number of “of-
fline” clusters and the number of “offline” clusters matched to
an “online” cluster. The result is shown in Fig. 30, reporting the1265

FT trigger efficiency for electromagnetic clusters as a function
of the corresponding corrected energy. The efficiency is higher
than 99.5% over the full energy range of interest. This small
inefficiency is mainly due to the fact that the clustering algo-
rithm in the Trigger System works on a 3×3 matrix of crystals,1270

whereas this limitation doesn’t hold in the offline reconstruc-
tion. The efficiency of the FT-Cal/FT-Hodo matching algorithm
was evaluated in a similar way, repeating the previous calcula-
tion but considering only electromagnetic clusters associated
with one hit in each FT-Hodo layer. The result is reported in1275

Fig. 31. The efficiency of the matching algorithm is higher than
96.5% over the full energy range of interest. The inefficiency is
mainly due to the difference in the FT-Cal / FT-Hodo geomet-
rical matching map between the Trigger System and the offline
reconstruction. The latter map is broader, hence there are some1280

clusters associated with FT-Hodo hits in the offline reconstruc-
tion that are not matched in the online system.
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Figure 30: FT-Cal trigger efficiency as a function of the measured electromag-
netic cluster energy.

10.3.2. Validation of Charged Hadron Detection in the
CLAS12 Forward Detector

The Trigger System recognizes a charged hadron in the1285

CLAS12 Forward Detector as a hit in the FTOF ([6]) (panel-
1b) in time coincidence and geometrically matched to a hit in

3The energy of “offline” clusters is properly corrected to account for electro-
magnetic shower leakage from the back of the FT-Cal, while “online” clusters
do not have these corrections. Therefore, for a given electron in the FT-Cal,
there is a systematic difference between the two energies. This effect is prop-
erly taken into account when setting the energy range for electron detection in
the Trigger System, and does not affect the corresponding trigger efficiency.
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Figure 31: FT-Cal+FT-Hodo trigger efficiency as a function of the measured
electromagnetic cluster energy.

the U-strips of the Pre-shower Calorimeter [2] associated with a
cluster with energy larger than a programmable threshold. The
map providing the geometrical matching between the FTOF1290

counter and the PCAL U-strip was first derived from the nomi-
nal detector geometry, and then confirmed by Monte Carlo sim-
ulations. To reduce the rate of random coincidences, the Trig-
ger System also requires the presence of a segment in 5 out of
6 Drift Chamber superlayers in a given CLAS12 sector. The1295

charged hadron identification algorithm was validated in spe-
cial data-taking runs in which the Forward Tagger was the only
enabled event readout source. In these runs, the Trigger System
was configured to report in the output trigger bank the presence
of a charged hadron in any CLAS12 sector, as defined in Sec-1300

tion 3.6.
The recorded events were processed through the standard re-

construction software and filtered, keeping only those with a
well reconstructed forward charged track measured in CLAS12.
The track was required to be within the nominal acceptance of1305

the CLAS12 PCAL, and a momentum threshold of 300 MeV
was applied. The Trigger System efficiency was evaluated by
comparing all reconstructed tracks to those recognized by the
Trigger System. During commissioning, the efficiency was
evaluated as a function of different observables, such as the en-1310

ergy deposited in the FTOF counters and in the PCAL, and the
topology of the geometrical matching window. The trigger pa-
rameters were individually tuned to maximize the trigger effi-
ciency. In the final configuration, an energy threshold of 2 MeV
and 10 MeV for the FTOF counters and PCAL clusters, respec-1315

tively, was selected. The result is reported in Fig. 32, showing
the CLAS12 Forward Detector trigger efficiency for charged
hadrons as a function of the track momentum. The efficiency
is larger than 99% in the full momentum range, with the ineffi-
ciency dominated by threshold effects for the PCAL clusters.1320

10.3.3. Validation of Charged Hadron Detection in the
CLAS12 Central Detector

The Trigger System recognizes a charged hadron in the
CLAS12 Central Detector as a cluster in the CTOF ([7]). To

0 1 2 3 4 5 6
Track momentum [GeV]

96

97

98

99

100

T
rig

ge
r 

E
ffi

ci
en

cy
 %

Trigger Efficiency > 99%

Figure 32: CLAS12 Forward Detector trigger efficiency as a function of the
measured track momentum.

maximize the trigger efficiency for low momentum tracks, no1325

coincidence with other detectors, such as the CND ([8]), was
implemented. As for the CLAS12 Forward Detector case, the
CLAS12 Central Detector charged hadron identification algo-
rithm was validated in special data-taking runs in which the FT
was the only enabled event readout source.1330

The recorded events were processed through the standard re-
construction software and filtered, keeping only those with a
well reconstructed charged track measured in the CLAS12 Cen-
tral Detector. The track was required to be associated with a
CTOF hit, with energy deposition larger than the correspond-1335

ing threshold of 1 MeV. The result is reported in Fig. 33, show-
ing the CLAS12 Central Detector trigger efficiency for charged
hadrons as a function of the track momentum. At low momenta
(∼1 GeV), where most of the tracks are concentrated, the trigger
efficiency is ∼99%.1340
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Figure 33: CLAS12 Central Detector trigger efficiency as a function of the
measured track momentum.
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10.3.4. Full Trigger Efficiency
As described in Section 9.2, the two main CLAS12 trigger

configurations for photoproduction measurements are: (i) the
coincidence between one charged cluster in the FT-Cal with two
tracks in different CLAS12 Forward Detector sectors and (ii)1345

the coincidence between one charged cluster in the FT-Cal, one
track in any CLAS12 Forward Detector sector, and one track in
the CLAS12 Central Detector. The corresponding trigger effi-
ciency was evaluated using data from special data-taking runs
in which the FT was the only enabled event readout source.1350

The recorded events were processed through the standard re-
construction software and filtered, keeping only those with two
forward tracks or one forward track and one central track. The
efficiency was evaluated as the ratio between the number of
events with the trigger bit set and the total number of events.1355

The obtained efficiency is ∼97.5% for both configurations.

10.4. Drift Chamber-Based Trigger Components and Data-
Based Dictionary

The road dictionary for the DCs used within the Trigger
System was initially generated using a fast Monte Carlo ap-1360

proach, where positively and negatively charged particles in a
selected momentum and angular range were randomly gener-
ated, tracked in the CLAS12 magnetic field using the CLAS12
“swimmer” developed for the offline reconstruction based on a
4th-order Runge-Kutta approach [13], and projected onto the1365

DC wire planes to determine the hit position and therefore the
DC wire numbers. This method has intrinsic limitation because
of the approximation done in tracking the particle through the
detector that does not include energy loss, multiple scattering,
or other effects due to the particle interactions with the detector1370

material.
To overcome these limitations, roads were also generated

from full Geant4 simulations of the CLAS12 detector based on
the GEMC package as described in Section 8.1. This provides
an accurate description of the relevant materials the particles1375

travel through, resulting in a more accurate road dictionary at
the expense of a significantly higher computing time to generate
the same size dictionary.

The effectiveness of these two approaches was tested by us-
ing real tracks from beam data to evaluate the completeness of1380

the dictionaries, i.e. the fraction of tracks for which a matching
road is found. This study indicated that very large statistics is
needed in the dictionary-making to populate specific regions of
the phase space.

As a third alternative approach, dictionaries were also pro-1385

duced from real tracks from beam data: in this case dictionaries
with very large statistics can be produced in limited computing
time with the advantage of the best accuracy in accounting both
for particle interactions in matter and for the actual detector ge-
ometry. These were the dictionaries that were used in the final1390

trigger implementation.

10.5. Final Validation Before Experiment Start-up

Even though the Trigger System components were validated
when the CLAS12 detector was commissioned, we still have

to execute our validation processes for the entire system at the1395

beginning of every experiment. This is necessary because dif-
ferent experiments request configuration changes in the Trigger
System that take advantage of its flexibility. Also, we apply
firmware changes occasionally to improve the Trigger System
components based on our previous experience, and then the1400

changes have to be validated. The final Trigger System vali-
dation is performed by taking beam data with a random trigger
(see Section 10.1).

The final trigger validation procedure was executed several
times during the first year of CLAS12 experiments and has1405

proven to be very useful: bugs in the trigger firmware were
found and fixed, and the trigger configuration parameters were
optimized. On one occasion a firmware bug was introduced
into the PCAL Stage 1 trigger logic during the firmware up-
date that was expected to be small and simple. The final valida-1410

tion procedure revealed an irregularity in the spatial distribution
of clusters (see Fig. 34) (it also shows one CLAS12 sector is
missing but this was another problem unrelated to the Trigger
System). Since the PCAL Stage 1 trigger firmware is imple-
mented in C++/HLS, the Geant4 data sample was reprocessed1415

through the C++ firmware implementation (see Fig. 35), and
the problem was confirmed and subsequently found and fixed.
The firmware was recompiled and reloaded, and the final trigger
validation was repeated showing that the problem was fixed. It
took only several hours between finding the problem and being1420

ready to run again. Every experiment in CLAS12 begins with a
complete Trigger System validation.

Figure 34: PCAL trigger bug in beam data. The red crosses inside the blue
areas correspond to trigger inefficiencies. This was discovered during beam
data processing.
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Figure 35: PCAL trigger bug in Geant4 simulation. The blue lines correspond
to trigger inefficiencies. This is visible much better in simulation than in beam
data, and points to an exact problem.

11. Performance and Reliability

The CLAS12 Trigger System operates as a free-running,
pipeline-style system run from a global 250 MHz clock. It pro-1425

vides 32 global trigger decisions based on >10 different sub-
detectors (>28k channels), which allows for multiple experi-
ments to acquire data simultaneously. The trigger efficiencies
have in general been measured to be about 99%, indicating a
reliable and efficient trigger implementation. The trigger pu-1430

rity has been measured to be about 55% for electrons (nega-
tives inbending torus polarity configuration), taking advantage
of energy-corrected clustering in the ECAL along with Drift
Chamber track matching. It is possible to improve this purity by
reducing the timing coincidence windows, jitter, and cell size of1435

the Drift Chamber tracking dictionary. This can be checked by
re-analyzing existing event data since it contains the raw wave-
form data. Not all physics triggers utilize the tracking trigger
due to an incomplete road dictionary (e.g. neutral particle de-
cays into charged particles with a detached vertex). Further1440

work to expand the dictionary roads can be investigated to fur-
ther increase the selection purity.

12. Conclusions

The work on the CLAS12 Trigger System started in 2008.
The system was designed and implemented from 2008 until1445

2017 and has been successfully used during the development,
testing, and commissioning phases of all CLAS12 detectors.
In December 2017, the CLAS12 Trigger System was ready for
the first beam experiment. During the first year of operation of
CLAS12, the Trigger System was improved to take advantage1450

of its flexible and powerful design, to account for the perfor-
mance of the various components, and to add new features to

increase system efficiency and, most of all, purity. By the end
of 2018, the system was in full operation mode, allowing accu-
mulation of data with the portion of “good” events on the level1455

of higher than 50%. The achieved performance of the CLAS12
Trigger System allows use without significant changes for the
entire CLAS12 physics program.
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