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Abstract

The transversity and the tensor charge of the nucleon, currently under active investigation experimentally and theoret-
ically, are fundamental quantities in hadron physics and for our comprehension of the nucleon structure. Some tension
between the values of the tensor charge, as computed on the basis of phenomenological extractions and lattice QCD
calculations, has been observed. In this letter, by means of an explicit example, we study the role of assumptions, usually
adopted in phenomenological parametrizations, and we show that, by relaxing some of them, such a tension could be
eased.
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1. Introduction

The collinear transversity function [1], hq1(x), together
with the unpolarized fq/p(x) and the helicity gq1L parton
distribution functions, describe the collinear structure of a
spin-1/2 hadron at leading twist. Unlike fq/p(x) and gq1L,
hq1(x), being a chiral-odd quantity, cannot be directly ac-
cessed in inclusive deep-inelastic scattering process (DIS),
as another chiral-odd function is needed to form a chi-
ral even observable. At present, transversity has been ex-
tracted [2–5] in Semi Inclusive Deep Inelastic Scattering
(SIDIS) processes in combination with the Collins frag-
mentation function (FF) [6], or in two-hadron production
in combination with a polarized dihadron fragmentation
function [7–11].

The possibility of accessing transversity in double po-
larized Drell-Yan process and a careful study of its prop-
erties and related sum rules were explored by Jaffe and Ji
in Ref. [12]. The Q2 evolution of transversity was inves-
tigated by Artru and Mekhi in Ref. [13] in leading order
(LO) QCD. Soffer derived a positivity bound for transver-
sity [14], referred to as Soffer bound (SB). In Ref. [15]
Barone showed that the SB, if true at some initial scale
Q0, is preserved by QCD evolution at LO. Vogelsang, in
Ref. [16], extended this result showing that SB is preserved
at next-to-leading order (NLO) accuracy as well.

The validity of the bound itself was questioned by Ral-
ston in Ref. [17]. On the other hand, it is a suitable
tool and different research groups have used the SB in
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their phenomenological extractions [4, 10, 11, 18]. The
x-dependent part of hq1 is usually parametrized in terms
of such bound at Q0, the initial scale of the analysis. By
imposing suitable constraints on the fit parameters, the
Soffer bound is automatically fulfilled throughout the anal-
ysis. At variance, the recent study of Ref. [11] adopts the
method of Lagrange multipliers to constrain transversity
with a flexible parametrization of hq1.

Studies of transversity and the tensor charge are im-
portant for Beyond Standard Model searches. Indeed, the
isovector tensor charge, gT , is related to potential tensor
interactions in the electroweak sector [19–22], and it is usu-
ally calculated on the lattice, as a matrix element over the
full x range, or by integrating the extracted transversity
functions from phenomenological analyses. With respect
to lattice QCD estimates, the latest phenomenological ex-
tractions of the transversity function [3, 5, 9, 10, 18, 23, 24]
seem to show a tension [25] on the estimated values of gT
as well as on individual contributions from up, δu, and
down, δd, quarks (see Eq. (15) below).

To this extent, it is interesting to check what is the role
of the underlying assumptions adopted in phenomenolog-
ical analyses. In this letter, by using an explicit example,
we explore the impact of loosening some of these choices.
This would bring us to analyze several aspects, such as
the parameter-space exploration, whether we observe the
violation of the Soffer bound in existing data and how all
of this traduces into (isovector) tensor charge estimates.

The rest of the letter is organized as follows: in Sec-
tion 2 we present the results of global fits of the transver-
sity function from SIDIS and e+e− data, obtained in the
framework of the transverse momentum dependent (TMD)
approach. Then, in Section 3, we will investigate the im-
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pact of these results in estimating the tensor charges. Con-
clusions and comments are finally gathered in Section 4.

2. Transversity from SIDIS data and role of the
Soffer bound

The bound [14], derived by Soffer, reads:

|hq1(x,Q2)| ≤ 1

2

[
fq/p(x,Q

2) + gq1L(x,Q2)
]
≡ SB(x,Q2),

(1)
where fq/p(x) and gq1L(x) are respectively the unpolarized
and the helicity parton distribution functions (PDFs).

Transversity has been extracted [26–29] in SIDIS, by
analysing the so-called Collins asymmetry:

A
sin(φh+φS)
UT =

2(1− y)

1 + (1− y)2

F
sin(φh+φS)
UT

FUU
, (2)

where y is the fractional energy loss of the incident lepton,
FUU = C[f1D1] is the unpolarized structure function and

F
sin(φh+φS)
UT = C[h1H

⊥
1 ] [30–32] is the polarized structure

function of the SIDIS cross section, given as a convolution
(over the unobserved transverse momenta) of the transver-
sity TMD distribution, hq1, and the Collins FF, H⊥1 .

In order to unravel the transversity, one has to gather
additional information on the Collins FFs, that could be
accessed in e+e− → h1h2X processes via a cos(2φ0) mod-

ulation, A
UL(C)
0 ∝ C[H̄⊥1 H⊥1 ] [33]. This was measured at

the energy
√
s ' 10.6 GeV by the BELLE [34] and the

BABAR [35] Collaborations as well as by the BESIII [36]
Collaboration, at a lower energy,

√
s ' 3.65 GeV.

Collins asymmetries in SIDIS and e+e− processes at
low values of transverse momentum (of the final hadron
or of the almost back-to-back hadron pair) are formally
expressed in terms of a TMD factorization approach [32,
33]. The TMD transversity function hq1(x, k⊥), related to
its collinear counterpart hq1(x), was extracted in a series of
global TMD fits of SIDIS and e+e− → h1h2X data [3, 18,
23].

Complementary information on the collinear transver-
sity function is obtained also in the context of a collinear
framework, for instance by considering its convolution with
di-hadron FFs in pion-pair production in SIDIS [9, 11, 24]
and in polarized pp collisions [10].

2.1. Fitting the TMD transversity function

In this Section we present the results of our fits per-
formed within a TMD approach. We will discuss and quan-
tify the influence of initial assumptions and their impact
on the extracted transversity functions.

Our analysis has been carried out following the model
of Ref. [18], to which we refer the reader for all explicit ex-
pressions of the observables within the adopted parametriza-
tion. Here we will highlight the differences with respect to
the analysis of Ref. [18] starting from the new dataset: in

addition to the SIDIS A
sin(φh+φS)
UT data from HERMES

off a proton target [37] and COMPASS off proton [28]

and deuteron [27] targets, and e+e− A
UL(C)
0 data from

Belle [34] and Babar [35], we have also included the latest
BESIII data [36] for e+e− azimuthal correlations. This
results in a total number of datapoints Npts = 278.

In the analysis of Ref. [18] and Refs. [3, 23], transver-
sity was parametrized adopting the usual Gaussian ansatz,
with factorized x and k⊥ dependences, as

hq1(x, k2
⊥) = hq1(x)

e−k
2
⊥/〈k

2
⊥〉

π〈k2
⊥〉

. (3)

We will use 〈k2
⊥〉 = 0.57 (GeV2), as extracted from HER-

MES multiplicities in Ref. [38]. The x-dependent part of
transversity is usually parametrized [3, 18, 23] at the initial
scale Q2

0 in terms of the Soffer bound, as

hq1(x,Q2
0) = N T

q (x) SB(x,Q2
0). (4)

For the Soffer bound, Eq. (1), we adopt one of the most
recent extractions of the collinear helicity distributions,
namely the NLO DSSV set of Ref. [39]. For consistency, for
the collinear unpolarized PDFs and FFs we adopt the NLO
CTEQ66 PDFs set [40] and the NLO DSS 2014 pion FFs
set [41]. A transversity DGLAP kernel is then employed
to carry out the evolution up to higher values of Q2, by
using an appropriately modified version [42, 43] of HOPPET
code [44]. We adopt Q2

0 = 1.69 GeV2 as the input scale,
with αS(MZ) ' 0.118 according to the CTEQ66 scheme.
The N T

q (x) factor in Eq. (4) is given by

N T
q (x) = NT

q x
α(1− x)β

(α+ β)α+β

ααββ
, (q = uv, dv) (5)

with the same α and β parameters for the valence uv and
dv transversity functions.

Upon constraining

|NT
q | ≤ 1 , (6)

the transversity functions automatically fulfill their corre-
sponding Soffer bound in Eq. (1). Such constraint plays an
important role in the extraction of the transversity func-
tion. To study and quantify the influence of the choice
in Eq. (6) we will perform two fits of the data using (and
not using) such a condition on NT

q parameters, i.e. en-
suring (not ensuring) the automatic fulfilment of the SB
throughout the fit. In the plots shown below, we will re-
spectively refer to these two cases as “using SB” or “no
SB”.

The Collins functions are parametrized as in Ref. [18]

H⊥q1 (z, p2
⊥) = NC

q (z)
zmh

MC

√
2e e−p

2
⊥/M

2
C Dh/q(z, p

2
⊥) ,

(7)
with q = fav,unf (favoured/unfavoured) and where MC is
a free parameter with mass dimension. Dh/q(z, p

2
⊥) is the

unpolarized TMD fragmentation function

Dh/q(z, p
2
⊥) = Dh/q(z)

e−p
2
⊥/〈p

2
⊥〉

π〈p2
⊥〉

, (8)
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with 〈p2
⊥〉 = 0.12 GeV2 [38]; for Dh/q(z) we use the NLO

DSS 2014 set [41]. The NC
q (z) factors are given by

NC
fav(z) = NC

fav z
γ(1− z)δ (γ + δ)γ+δ

γγδδ
,

NC
unf(z) = NC

unf .

(9)

In order to estimate the errors of the extracted func-
tions, we will follow the procedure of Ref. [45], and for
a given observable O we compute the expectation value
E[O] and variance V[O] as

E[O] =

∫
dna P(a|data)O(a) '

∑
k

wk O(ak ) , (10)

V[O] =

∫
dna P(a|data) (O(a)− E[O])

2

'
∑
k

wk (O(ak )− E[O])
2
.

(11)

O is a function of the n-dimensional parameter vector a
with a multivariate probability density P(a|data) [45] for
parameters a conditioned by existing experimental data.
This can be written using Bayes’ theorem as

P(a|data) =
L(data|a)π(a)

Z
, (12)

where L(data|a) is the likelihood, π(a) is the prior, and Z
is the evidence. We follow Refs. [5, 45] and discretize the
integrals in Eqs. (10) and (11) that lead to the introduction
of weights wk related to the corresponding χ2’s as

wk =
exp

[
− 1

2 χ
2(ak )

]
π(ak)∑

k

wk
. (13)

The priors π(a) are obtained using the Monte Carlo (MC)
procedure described in the Appendix A of Ref. [2]. Then,
we generate Nset parameter sets by a multidimensional
MC generator, utilizing the covariance matrix from the
Minuit [46] fit.

In particular, we start with Nset = 105 parameter sets
ak for the “no SB” fit, so that k ∈ [1, Nset] in Eqs. (10)
and (11). We then implement the Soffer bound directly on
the priors by keeping those sets with |NT

uv(dv)| < 1: this
results in Nset = 15570 for the “using SB” fit.

The bands and the central lines in Fig. 1 are computed
according to Eqs. (10) and (11). Fig. 1 shows the results of
the two types of fits. The extracted transversity functions
for uv and dv flavours, together with their 2σ uncertainty
bands, are plotted at Q2 = 4 GeV2. The Soffer bound
at Q2 = 4 GeV2 for the two flavours is also shown, with
a ±10% variation representing an uncertainty estimate on
their central values. The grey areas are the ones outside
the existing data, that lies in the range 0.035 . x . 0.29,
corresponding to the smallest and highest x value respec-
tively probed by the HERMES and COMPASS Collabo-
rations.
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Figure 1: Transversity functions for uv (red) and dv (blue) flavours
from a global fit to SIDIS and e+e− data at Q2 = 4 GeV2. Up-
per panel: results with automatic fulfillment of the Soffer Bound
(|NT

uv(dv)
| ≤ 1). Lower panel: results with no constraint on NT

uv(dv)
.

Error bands on the fitted functions are at 2σ. The corresponding Sof-
fer bound, computed with CTEQ66 [40] PDFs and DSSV [39] helicity
distributions, is also shown for uv (green) and dv (orange), together
with a ±10% variation. The white area represents the bulk of the
data; outside that region no datapoints are present in the fit.

Besides the differences showed in Fig. 1, we underline
that the two extractions have essentially the same statisti-
cal significance, rendering similar minimum χ2’s (χ2

min =
251.23 and χ2

min = 250.21 for the “using SB” and “no SB”
cases, respectively), and essentially the same χ2

dof ' 0.93
for the Npar = 9 parameter fit.

First of all, we notice that, since the helicity distribu-
tion for the dv quark flavour is negative, the corresponding
SB is much more stringent with respect to the uv one. So,
in extracting hdv1 (x), there is less room for the parameters
to vary. We also mention that, in all previous fits, NT

dv
was almost always saturating its lower bound [3, 18].

In the upper panel of Fig. 1, as expected, we observe
two extracted functions comparable to the existing extrac-
tions in Refs. [3, 18, 23] and respecting the SB for both
flavours used in extraction. For the extraction correspond-
ing to “no SB”, lower panel of Fig. 1, we can note the
following:

(i) when relaxing the constraint on Nuv

T , the correspond-
ing transversity function does not essentially change
with respect to the one in the upper panel;

(ii) conversely, the dv transversity function tends to vio-
late its Soffer bound, especially in the region where
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data are present;

(iii) while the uncertainty bands of the two extracted huv
1

are quite similar, there is a significant difference be-
tween the uncertainties of hdv1 .

Now, we have to estimate the statistical significance
of the violation of the SB for the down-quark transversity
function shown in Fig. 1. To this aim, we use a simple
z-score method to measure whether we are observing a
statistically significant deviation from the zero hypothe-
sis, i.e. the fulfillment of the SB by the dv transversity
function. The z-score is generally defined as

z =
x− µ
σ

, (14)

and tells us how many standard deviations σ we are far
from the mean µ for the point x. In the case of the ex-
tracted dv transversity function, we have −0.9 ≤ z ≤ −0.3
for the whole region, that means that the SB for down
quark is well within 1σ deviation and we can conclude
that the violation is not statistically significant.

Another aspect is related to the exploration of the pa-
rameter space. While the uncertainty on uv transversity
function is essentially unchanged when relaxing the initial
constraint, this is not the case for the dv one.

Furthermore, as mentioned in Ref. [5], the exploration
of the parameter space starting from a single fit may lead
to incorrect estimates of both mean values and errors of
observables and/or extracted parameters. We can demon-
strate it explicitly as follows. We perform the constrained
“using SB” fit that turns in the saturation of the normal-
ization parameter NT

dv
= −1. We point out that, when re-

questing parameters NT
uv(dv) to be limited between −1 and

+1, the minimizer (Minuit [46]) maps this region onto the
unbound region using a arcsin function. Once the fitted
parameter is close to the bound value (±1) this means ±∞
for the internal parameter of the minimizer. This prevents
to explore all regions in the parameter space compatible
with the theoretical expectations and with the calculated
2σ error without imposing any bound on parameters. If
we now generate the priors using the covariance matrix,
the resulting distributions show artificially small errors for
the d-quark transversity, see Fig. 2. When the transver-
sity for d quarks saturates, as happens at x ∼ 0.2, the
error becomes extremely small (see green band in Fig. 2).
This behavior is typical for constrained fits, see Fig. 4 of
Ref [9] or Fig. 8 of Ref. [24]. SIDIS process is dominated
by u-quark contribution and thus one expects the relative
precision for d quark to be worse with respect to the one
reachable for u quark. This is clearly not the case for
the d-quark green band in Fig. 2 when compared to the
u-quark one in Fig. 1.

Indeed, there exist configurations, compatible with the
SB, that are not explored when the constraint on the NT

q

parameters is imposed directly in the fit. This issue was
mitigated in Refs. [3, 18] by generating several hundred
thousands of parameter sets and in Ref. [11] by using
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Figure 2: Transversity functions for dv flavour from a global fit to
SIDIS and e+e− data at Q2 = 4 GeV2. Blue band corresponds to
usage of priors from Fig. 1, while green band corresponds to priors
generated from constrained fit |NT

dv
| ≤ 1 directly. Error bands on

the fitted functions are at 2σ. The corresponding Soffer bound, com-
puted with CTEQ66 [40] PDFs and DSSV [39] helicity distributions,
is also shown, together with a ±10% variation. The white area rep-
resents the region of the bulk of the data; outside that region no
datapoints are present in the fit.

the Lagrange multiplier method instead of imposing di-
rect constraints on the parameters.

3. Tensor charges

The contribution to the tensor charge of the nucleon
from quark q is the first Mellin moment of the non-singlet
quark combination

δq =

∫ 1

0

[
hq1(x)− hq̄1(x)

]
dx. (15)

The isovector combination, gT , is of particular interest and
can be calculated relatively easily on the lattice [47]:

gT = δu− δd. (16)

In our analysis we have hq̄1 ≡ 0 and thus we compute
valence quark tensor charges as

δqv =

∫ 1

0

hqv1 (x) dx. (17)

It is also useful to mention that truncated charges can
be built, upon integrating in Eq. (17) between the exper-
imental minimum and maximum x values, xmin and xmax

respectively.
As gT is related to BSM effects [19–22], a phenomeno-

logical extraction of the transversity functions can be used
in principle to put a limit on the strength of this poten-
tial non-standard interactions. At the same time, another
means for putting limits on these BSM signals is repre-
sented by the lattice QCD estimates of gT . For a compre-
hensive review of lattice results, see Ref. [47] and references
therein.

Tensions have been observed [25] between phenomeno-
logical estimates and lattice QCD calculations of gT and
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individual quark contributions. In fact, δuv values from
phenomenology seem to be incompatible with the lattice
ones, and gT values calculated on the lattice are found to
be higher than the ones for most phenomenological anal-
yses [10]. Lattice results are approximately in the range
0.9 . gT . 1.1, and with very tiny errors, for instance
0.926(32) from a recent study in Ref. [48]. It is then in-
teresting to see the impact of the results presented in Sec-
tion 2 on the phenomenological estimates of the tensor
charges.

By integrating the two couples of extracted transver-
sity functions of Fig. 1, we calculate for every MC set
the corresponding tensor charges, δuv and δdv, and thus
the corresponding isovector tensor charge, gT . The cor-
responding central values and errors are again computed
according to Eqs. (10) and (11).

To begin with, we can check the effect of relaxing the
hypothesis |NT

q | ≤ 1 on the tensor charges distributions.
Fig. 3 shows the distribution of δuv (upper panel) and δdv
(lower panel) calculated at Q2 = 4 GeV2, the usual energy
scale adopted to compare tensor charges calculated on the
basis of phenomenological analyses and lattice QCD esti-
mates. The labels “using SB” and “no SB” have the same
meaning as in Fig. 1. As one could expect, while relax-
ing the initial constraint, the δuv distribution does not
change much, thus reflecting the very small difference ob-
served in the extracted huv

1 in Fig. 1. At variance with this,
the δdv distribution dramatically changes, reflecting once
more what has been observed for the fitted dv transversity
function in Fig. 1.

For the individual quark distributions, we find that
both δuv and δdv are different from lattice computations,
0.716(28) and −0.210(11) respectively found in Ref. [48],
see Table. 1. Although these results do not ease the tension
between phenomenological and lattice QCD estimates of
δuv and δdv; they actually have an effect on the isovector
tensor charge estimates.

Fig. 4 shows the distribution of gT values at Q2 =
4 GeV2 for the “using SB” and “no SB” case. In relaxing
the initial constraint on the NT

q parameters, the gT distri-
bution broadens. This broadening is due to the changes
in the δdv distribution, and mitigates the existing tension
between phenomenological calculation and lattice QCD es-
timates. Indeed, the peak of the “no SB” gT distribution
moves toward the range of lattice gT estimates, and its
tail overlaps with the lattice QCD range, 0.9 . gT . 1.1.
In this sense, by relaxing the initial request of automatic
fulfillment of the Soffer bound, the phenomenological anal-
ysis is able to explore portion of the parameter space that
are less in tension with gT estimates on the lattice.

A summary of the results for the tensor charges, δuv
and δdv, and for the isovector tensor charge, gT calcu-
lated at Q2 = 4 GeV2, are presented in Table 1. Expec-
tation values and standard deviations are calculated us-
ing Eq. (10) and the square root of Eq. (11). The quoted
errors are at 2σ.

A word of caution and some comments are in order.
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Figure 3: Distributions of the tensor charges for uv (upper panel) and
dv (lower panel) at Q2 = 4 GeV2. The tensor charges are calculated
using the extracted transversity distributions of Fig. 1, integrated
over the full range 0 ≤ x ≤ 1. Labels “using SB” and “no SB” have
the same meaning as in Fig. 1.

There are in fact some aspects to be stressed, that would
help in enlighten the current knowledge on transversity
and on tensor charges.

As already mentioned, the covered x range in the phe-
nomenological extractions is quite limited, namely 0.035 .
x . 0.29. This means that, when calculating δq and gT ,
most of the computation is given by an extrapolation based
on the adopted model and outside this x range. In this re-
spect, loosening some initial constraints can help in reduc-
ing the effect of such extrapolation, but also lead to differ-
ent results and, in turn, different interpretation. Further-
more, we have to stress that lattice calculations are also
based on some specific assumptions such as choice of the
action, lattice spacing, etc, and that are performed consid-
ering matrix elements over the full x range. Therefore, the
comparison between phenomenological and lattice results
should be done prudently.

We also notice that, in Ref. [5], a similar analysis has
been performed by including lattice data on gT directly
into the fit procedure. The two transversity parametriza-
tions used here and by Lin et al. are quite similar, but the
fit of Ref. [5] was performed with different sets of fit param-
eters and different choices for the collinear PDFs and FFs.
Moreover, in order to use SB, we parametrize transver-
sity proportional to SB, while Ref. [5] used a generic x-
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Figure 4: Distributions of the isovector tensor charge, gT , at Q2 =
4 GeV2. The calculation is performed using the extracted transver-
sity distributions of Fig. 1, integrated over the full range 0 ≤ x ≤ 1.
Labels “using SB” and “no SB” have the same meaning as in Fig. 1.

δuv δdv gT

Q2 = 4 GeV2

using SB 0.42± 0.09 −0.15± 0.11 0.57± 0.13

no SB 0.40± 0.09 −0.29± 0.22 0.69± 0.21

Table 1: Summary of the results at Q2 = 4 GeV2 for the tensor
charges and the isovector tensor charge calculations, under the “us-
ing SB” and the “no SB” hypotheses. Expectation values and stan-
dard deviations are calculated using Eq. (10) and the square root
of Eq. (11). The quoted errors are at 2σ.

dependent form. Nonetheless, the results presented in
Fig. 3 of Ref. [5] is compatible with our results. Notice that
Ref. [5] performed only analysis of SIDIS data, whereas we
use both SIDIS and e+e− data.

It would be certainly interesting to extend such a kind
of study to similar analyses performed in the collinear
framework, such as the one by Bacchetta and Radici [10],
where independent datasets are used and where, within
a different parametrization for transversity, the automatic
fulfillment of the Soffer bound is also achieved. In fact,
the recent study of Ref. [11] does study the influence of SB
on the extraction of transversity. The results of the cur-
rent study are in agreement, within the errors, with those
of Refs. [10, 11]. Notice that the contribution of down
quark varies the most between different studies, ours and
Refs. [2, 5, 10, 11]. This is not unexpected: down quark
functions are less constrained by the experimental data,
the bound is more stringent, and thus one is to expect the
larger variation of results based on methodology of the fit
and used parametrization.

4. Conclusions

In this letter we have studied the role of initial as-
sumptions in phenomenological analyses for transversity
function from SIDIS data. The tranversity distributions
are usually parametrized in terms of their corresponding

Soffer bounds and, upon some choices, the bound is auto-
matically fulfilled throughout the analysis.

By means of an explicit example, we have shown that,
by relaxing the initial assumptions on the parameters that
ensure the automatic fulfilment of the bound, we could ob-
tain interesting information on the size of the violation of
the Soffer bound observed in current SIDIS data. It turns
out that there is no statistically significant violation of
such bound. Moreover, loosening the initial choices on the
parameters has allowed us to explore better the parameter
space and have more reliable estimates on the errors, in
particular for down quark transversity.

Using then the extracted transversity functions, we
have calculated the tensor charges for uv and dv quark
flavours and, consequently, the isovector tensor charge, gT .
Another effect of loosening the initial constraints on the
parameters for transversity is on the tensor charges esti-
mates. In fact, the existing tensions observed between phe-
nomenological and lattice QCD estimates of gT are eased,
and the gT values distribution moves towards the range
of lattice QCD estimates. Nonetheless, the discrepancy
observed for δuv persists.

Current SIDIS data are, at the moment, not sufficient
to constrain the valence transversity functions and, in turn,
the tensor charges. The probed x range, (0.035 . x .
0.29), is still too narrow to avoid the effects of extrapo-
lations made in the integration needed to compute ten-
sor charges and gT . If we calculate truncated values for
“no SB” fit of δuv, δdv, and gT , we obtain 0.29 ± 0.03,
−0.23±0.10, and 0.52±0.10 respectively (to be compared
with the values in Table 1). Thus, around 30% of the
tensor charge value results from an extrapolation to an
unexplored region of x.

In this respect, new SIDIS data from the future Elec-
tron Ion Collider and Jefferson Lab could definitely help
in reducing the effect from this model dependence and ex-
pand the region of explored values of x. Another avenue of
constraining transversity is the addition of the data from
other processes, where transversity is probed into a global
fit, such as the left-right asymmetry measured in polarised
proton-proton scattering.

In conclusion, similar educated analyses in different
frameworks would certainly be helpful in pinning down the
transversity function and, in turn, constraining the tensor
charges and the isovector one more reliably.
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