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Pion Valence Quark Distribution at Large x from Lattice QCD
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Using a short-distance collinear factorization, the pion valence quark distribution qπv (x) is ex-
tracted from spacelike correlations of antisymmetrized vector and axial vector (V-A) currents, where
the employed perturbative hard coefficient is derived to one-loop. Finite lattice spacing, volume,
and quark mass dependencies are investigated in a simultaneous fit of matrix elements computed
on four gauge ensembles, providing a physical limit Ioffe time distribution. Using two different
phenomenologically motivated parametrizations of qπv (x), the qπv (x) distribution is found to be in
very good agreement with that extracted from experimental data. At large x, a softer valence quark
distribution is slightly favored by the figure of merit of this calculation. These two distributions are
consistent within uncertainty and reproduce the extraction of qπv (x) from the experimental data in
the entire x-region, showing the robustness of our calculation.

Introduction: The pion, being both a Nambu-
Goldstone boson and the lightest bound state in Quan-
tum Chromo-Dynamics (QCD), highlights the challenges
in creating consistent theoretical and phenomenologi-
cal frameworks to describe its partonic structure. The
shape of the pion valence parton distribution functions
(PDFs) extracted from experimental data [1–5] in differ-
ent analyses [6–12] are in sharp contrast among them-
selves and with perturbative QCD (pQCD)-based frame-
works [13, 14] at large longitudinal momentum fractions
x. Central to the disparity is whether the pion PDF has
a softer (harder) (1−x)2 ((1−x)) fall-off as x→ 1, and at
what x and Q2 pQCD predictions are matched - various
model calculations [15–20] exemplify this contrast.

The limited available phase space for partonic interac-
tions at large x localizes quantum fluctuations such that
large-x dynamics is constrained by confinement, in effect
increasing parton correlations as x → 1. As the quark
distribution at large x is sensitive to non-perturbative
quark-gluon dressing, a description of its behavior will
also elucidate our understanding of the generation of
mass in QCD through dynamical chiral symmetry break-
ing. Unraveling the complexities of the valence and sea
quark contents of the pion is spearheaded by several up-
coming experiments - Jefferson Lab tagged deep-inelastic
scattering (DIS) experiments [21], Drell-Yan measure-
ments at the COMPASS experiment [22] and, also the
future Electron-Ion Collider (EIC) facility [23]. A first-
principles lattice QCD (LQCD) determination of the pion
valence PDF qπv (x) with controlled statistical and system-
atic uncertainties is particularly well-timed and solicits a
synergy of increasing importance between experimental
and theoretical efforts.

Experimental extraction of x-dependent parton
physics has blossomed through the application of the

QCD factorization theorem [24] and considerable ad-
vancements in global analyses [25–29] of experimental
data. Besides, several LQCD methods [30–36] have been
proposed and developed that probe the light-cone struc-
ture of hadrons non-perturbatively. These approaches
have led to significant achievements in recent years, es-
pecially in determinations of flavor non-singlet distribu-
tions [37–45]. A proper quantification and mitigation
of systematic errors and numerical artifacts present in
these calculations and related theoretical challenges still
require further insight and development (for a recent re-
view, see [46]). Incorporating LQCD calculated quan-
tities as a component of future global analyses remains
a goal of the pQCD and LQCD communities providing
further impetus to overcome these challenges.

In this letter, we present a calculation of the qπv (x)
obtained from “Lattice Cross Sections” (LCSs) [34, 36],
specifically matrix elements of two local, spacelike-
separated, gauge-invariant currents within the pion. The
Lorentz covariant matrix elements of two currents spa-
tially separated by a quark propagator are computable
on a Euclidean lattice and have a well-defined contin-
uum limit as the lattice spacing a → 0. In our calcu-
lation, through the factorization of these hadronic ma-
trix elements, the collinear divergences of the partonic
scattering are absorbed into the non-perturbative PDFs,
leaving an infrared-safe and perturbatively computable
hard contribution, in direct analogy to the factorization
of inclusive DIS cross sections measurements in exper-
iments. Calculations on four distinct lattice ensembles
allows for estimating systematic errors from finite lattice
spacing, volume, and unphysical pion mass extrapola-
tions. These results are shown following a derivation of
the next-to-leading-order (NLO) perturbative kernel for
an antisymmetrized vector-axial (V-A) current combina-
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tion and contact is made with parton densities in a man-
ner akin a global analysis of experimental observables.

Next-to-leading order perturbative kernel: Following
our previous work [41], we consider the following matrix
element in a hadron h

σh,µνV A (ξ, p) = ξ4ZV ZA 〈h(p)|T{[ψγµψ](ξ)

[ψγνγ5ψ](0)} |h(p)〉 , (1)

where σh,µνV A depends covariantly on the hadron momen-
tum p and spatial separation ξ between the currents;
ZV,A are the renormalization constants of the local cur-
rents determined in [47] for the ensembles used in this
calculation. A Lorentz decomposition of Eq. (1) yields
structures σhV A that depend on the invariant spacelike in-
terval between currents and the Ioffe time [48], ω = p · ξ,
of the process. As a result of the invariance of strong in-
teraction under parity and time reversal transformations
σhV A(ω, ξ2, p2) = −σhV A(−ω, ξ2, p2) and we have the fac-
torization relation [36]

σhV A(ω, ξ2, p2) =
∑
q

∫ 1

0

dx

x
K(xω, ξ2, x2p2, µ2)

×fqv/h(x, µ2) +O(ξ2Λ2
QCD), (2)

where the perturbative kernel has the property
K(xω, ξ2, x2p2, µ2) = −K(−xω, ξ2, x2p2, µ2), µ2 is the
factorization scale, and fqv/h(x, µ2) ≡ fq/h(x, µ2) −
fq/h(x, µ2) are valence PDFs. As K(xω, ξ2, x2p2, µ2) de-
pends on the coordinate-space variable ξ, it is difficult to
apply conventional perturbative calculation techniques,
developed usually for momentum-space calculations. A
rigorous derivation of this hard part in both coordinate
and momentum space, and critical need for keeping ξ
small will be presented in an upcoming calculation [49].
To perturbatively calculate K(xω, ξ2, 0, µ2), we define
the momentum-space LCS

σ̃hV A(ω̃, q2) ≡
∫
dDξ

ξ4
eiq·ξ σhV A(ω, ξ2, 0)

=

∫ 1

0

dx

x
K̃(xω̃, q2, µ2)fqv/h(x, µ2) +O(Λ2

QCD/q
2),(3)

where D = 4 − 2ε is the space-time dimension,
ω̃ = 2p·q

−q2−i0+ and a momentum space factorization of

σ̃hV A(ω̃, q2) has been performed. K is obtained from K̃:

K(xω, ξ2, 0, µ2) = ξ4

∫
dDq

(2π)D
e−iq·ξK̃(xω̃, q2, µ2) .(4)

To calculate K̃, we project h onto a parton state q in
Eq. (3) and expand both sides in powers of the strong

coupling αs, i.e. K̃ = K̃(0) +αsK̃
(1) + · · · , and similarly

for fqv/q, which up to first order in αs results in

σ̃
q(0)
V A (ω̃, q2) =

∫ 1

0

dx

x
K̃(0)(xω̃, q2, µ2)f

(0)
qv/q

(x, µ2), (5a)

σ̃
q(1)
V A (ω̃, q2) =

∫ 1

0

dx

x
K̃(1)(xω̃, q2, µ2)f

(0)
qv/q

(x, µ2)

+

∫ 1

0

dx

x
K̃(0)(xω̃, q2, µ2)f

(1)
qv/q

(x, µ2).

(5b)

The perturbative expansion of renormalized PDFs is
well-known,

f
(0)
qv/q

(x, µ2) = δ(1− x), (6a)

f
(1)
qv/q

(x, µ2) = −1

ε

(4π)ε

Γ(1− ε)
αs
2π
CF

(
1 + x2

1− x

)
+

, (6b)

where we choose the MS renormalization scheme. Based
on Eqs. (5) and (6), K̃(0) and K̃(1) are fully determined

by σ̃
q(0)
V A and σ̃

q(1)
V A . The calculation of σ̃

q(0)
V A and σ̃

q(1)
V A

up to O(αs) can be obtained from the lowest order and
one-loop Feynman diagrams. Due to Ward-Takahashi
identities for vector current and axial-vector current, UV
divergences cancel out within one-loop diagrams and we
do not need perturbative renormalization, which means
ZV = ZA = 1 in the perturbative calculation. One can
also verify that perturbative collinear divergences from

σ̃
q(1)
V A cancel exactly with f

(1)
qv/q

in Eq. (5), resulting in

finite K̃(0) and K̃(1), and thus up to O(αs)

K̃µν(ω̃, q2, µ2) =
εµναβqαpβ

p · q

{
1

1 + ω̃
+
αsCF

4π

×
[(

2 + 2ω̃2

ω̃ + ω̃2
ln(1 + ω̃) +

3ω̃

1− ω̃2

)
ln

(
µ2

−q2 − i0+

)
+

5ω̃

1− ω̃2
+

2− 2ω̃ − ω̃2

ω̃ + ω̃2
ln(1 + ω̃)

− 1 + ω̃2

ω̃ + ω̃2
ln2(1 + ω̃)

]}
− (ω̃ → −ω̃). (7)

By performing a Fourier transform, we obtain

Kµν(ω, ξ2, µ2) =
1

π2

εµναβξαpβ
p · ξ

[K(0)(ω) +
αsCF

2π

{K(1,0)(ω) +K(1,1)(ω) ln(−ξ2µ2e2γE/4)}], (8)

with

K(0)(ω) = 2ω cosω, (9)

K(1,0)(ω) = 2ω

∫ 1

0

dy cos(yω)

[
1

2
δ(1− y)

−
(

2 ln(1− y)

1− y
− y2 − 3y + 1

1− y

)
+

]
K(1,1)(ω) = −2ω

∫ 1

0

dy cos(yω)

(
1 + y2

1− y

)
+

, (10)

where the leading order kernel K(0)(ω) in Eq. (9) is the
same as the result in [41]. It is crucial to mention that
a large p alone does not guarantee the applicability of
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ID a (fm) mπ (MeV) L3 ×Nt Ncfg

a127m413 0.127(2) 413(4) 243 × 64 2124

a127m413L 0.127(2) 413(5) 323 × 96 490

a94m358 0.094(1) 358(3) 323 × 64 417

a94m278 0.094(1) 278(4) 323 × 64 503

TABLE I. Parameters for each gauge ensemble used in this
work: lattice spacing, pion mass, spatial and temporal sizes,
and number of configurations used.

perturbative expansion and contributions from large ξ
can invalidate the perturbative factorization [36, 41].

Numerical Results & Extraction of the qπv (x): This
calculation is carried out on four different 2+1 flavor
QCD ensembles (listed in Table I) using the isotropic-
clover fermion action generated by the JLab/W&M Col-
laboration [50]. We refer to [41] for details about the im-
plementation of a modified sequential source technique,
and a combination of Jacobi and momentum smearing
to obtain matrix elements for a given momentum p and
spatial separation ξ between the currents. In this calcula-
tion of the forward matrix elements, the pion source-sink
separation T is systematically increased, while holding
fixed the current insertion time t = T/2, ensuring iden-
tical excited-state contamination from both source and
sink sides. To extract the desired matrix elements, we
assume the following forms of two- and four-point corre-
lation functions:

C2pt(T ) = Ae−m0T

C4pt(T ) = e−m0T (B +De−∆mT ), (11)

and perform simultaneous correlated fits to the two- and
four-point functions. We verify that the value of ground-
state energy m0 obtained from this simultaneous fit is
consistent with that obtained from C2pt(T ) alone and
also agrees with the energy-momentum dispersion rela-
tion.

In FIG. 1, we present fit results of the ratio
C4pt(T )/e−m0T on the ensembles a94m278 and a94m358
for momenta in the range p ∈ {0.41 − 1.65} GeV and
current separation ξ = 3a, both p and ξ in along the
z-direction, to demonstrate how reliably we can extract
the asymptotic value of B, and hence the Ioffe time dis-
tribution from B/A. The numerical challenges manifest
in this formalism are reflected in the signal-to-noise ratio
(S/N) of the largest momentum p = 1.65 GeV relative to
that of the smallest p = 0.41 GeV; the former is nearly 3
times smaller. Despite this, we can fit these data up to at
least T = 14(∼ 1.32 fm) even for the largest momentum
p = 1.65 GeV on the lightest pion mass mπ = 278 MeV
ensemble. In all the fits, we use the time window such
that S/N ≥ 1. Moreover, the ξ = a matrix elements are
affected by the contact terms arising from the clover term
connecting neighboring lattice sites and the matrix ele-
ment deviates significantly from other data points. We
exclude these matrix elements in our analysis.

The matrix elements computed across the four gauge
ensembles are shown in FIG. 2. We only include |ξ| ≤

FIG. 1. Removal of the leading ground-state time depen-
dence exposes the desired matrix elements in the large T limit,
shown here for ensembles a94m278 (above) and a94m358 (be-
low) for current separations ξ = 3a. High momenta data
rescaled for S/N comparison.
0.56 fm in our analysis so that ξ is sufficiently smaller
than Λ−1

QCD, thereby ensuring the validity of the short-
distance factorization and minimizing higher-twist con-
tributions from large ξ. Exploiting the analyticity of the

FIG. 2. Simultaneous fit to the antisymmetric V-A currents
matrix element on four different ensembles. The blue band
indicates the Ioffe time distribution in the physical limit.

LCS σV A(ω ≡ p · ξ, ξ2) in ω, we obtain the Ioffe time
distribution using a flexible z-expansion fit [51, 52] sup-
plemented with chiral, continuum, finite volume [53] and
higher twist corrections:

σV A(ω, ξ2) =

kmax=4∑
k=0

λkτ
k + b1mπ + b2a

+b3ξ
2 + b4a

2p2 + b5e
−mπ(L−ξ) , (12)

where τ =

√
ωcut + ω −√ωcut√
ωcut + ω +

√
ωcut

. (13)
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Inclusion of higher-order terms beyond kmax = 4 have no
statistical significance and are not considered in the z-
expansion fit (12). We choose ωcut = 1.0 as used in [54];
other choices of ωcut were observed to have no effect on
the final band in the physical limit and vanishing con-
tribution of O(ξ2) higher twist effect (FIG. 2) where bi
corrections of Eq. (12) have been implemented. The fit
yields

λ0 = 0.104(3), λ1 = −0.006(3), λ2 = −0.029(9),

λ3 = −0.943(404), λ4 = 0.124(136),

b1 = 0.174(96), b2 = −0.083(43), b3 = −0.0004(7),

b4 = 0.007(8), b5 = 0.102(51) (14)

with χ2/d.o.f = 1.20. With the physical σV A(ω) distri-
bution in hand, we can immediately extract the physical
qπv (x) with no further extrapolations.

FIG. 3. The pion valence quark distribution obtained from
fitting the convolution of qπv (x) and the NLO perturbative
kernel (8) to the determined σV A(ω) distribution in the fit
Eq. (12). Fits 1 and 2 label the 2- and 3-parameter functional
forms in Eq. (15). [Inset] A comparison of the reconstructed
σV A(ω)-distribution for 4.0 < ω < 5.0 from the PDF fits and
that obtained from (12).

The extraction of qπv (x) is achieved by numerically
evaluating the convolution of the NLO kernel (Eq. (8))
and two phenomenologically motivated functional forms
of the PDF:

qπv (x) =
xα(1− x)β(1 + γx)

B(α+ 1, β + 1) + γB(α+ 2, β + 1)
(15)

and fit the σV A(ω) distribution using the numerical fit-
ting program ROOT [55]. We use the strong coupling
αs = 0.303 at the initial scale µ0 = 2 GeV [56]. The
systematic uncertainties in the PDF fit parameters are
estimated by a 10% variation in αs as in [54]. The 2-
parameter fit, by fixing γ = 0 in Eq. (15) yields,

α = −0.17(7)stat(2)sys, β = 1.24(22)stat(7)sys (16)

with χ2/d.o.f = 1.41. Stated uncertainties are statistical
(systematic) first (second). In a 3-parameter fit, with an

uncontrained γ, we obtain

α = −0.22(11)stat(3)sys, β = 2.12(56)stat(14)sys,

γ = 4.28(1.73)stat(25)stat (17)

with χ2/d.o.f ≈ 1.29. Inclusion of an additional ρ
√
x-

term in (15) was found to be consistent with zero. Com-
mensurate χ2/d.o.f between fits (16) and (17) limits the
selection of one fit over another based solely on the good-
ness of the fit. However, the fit (17) includes the possi-
bility of γ = 0 and is more general. These fits are shown
in FIG. 3. We elected not to extrapolate our Ioffe time
distribution obtained from our z-expansion fit beyond
the largest Ioffe time ω = 4.71 when determining the
PDF. However for illustration purposes (FIG. 3 inset),
extrapolating the central value of the σV A(ω) distribu-
tion from the z-expansion fit (blue) and the associated
2- (red) and 3-parameter (cyan) fits reveals that precise
LQCD data at large-ω are required to distinguish be-
tween different large-x behaviors of qπv (x). We find the
σV A(ω)-distribution reconstructed from the 2-parameter
fit slightly underestimates the uncertainties of the distri-
bution in the physical limit. This observation together
with the smaller χ2/d.o.f favors the qπv (x) extracted using
the 3-parameter fit (17).
Discussion: For a comparison with global fits of qπv (x),

we evolve our extracted PDF sets to a scale of µ2 = 27
GeV2, from an initial scale µ0 = 2 GeV shown in FIG. 3,
large enough for the validity of factorization. FIG. 4
shows a comparison with the PDF extraction using LO
factorization of the E615 data [3], which shows a (1− x)
large-x behavior, and the analysis [11] where the next-to-
leading-logarithmic threshold soft-gluon re-summation
effects [57, 58] are included in the calculation of the Drell-
Yan cross section, which shows a softer (1 − x)2 fall-off.
Notably, in a NLO analysis of the E615 data [10], the
large-x behavior was found to be ∼ (1 − x)1.54. Fol-
lowing the discussion in the previous section, we note
from FIG. 4 that our more flexible fit (17), with smaller
χ2/d.o.f, has good agreement with the analysis in [11]
over the entire x-region.

When compared to previous LQCD calculations of
qπv (x), the present calculation shows good agreement
with the previous LCSs calculation [41] and qπv (x) ob-
tained in [54] using the “reduced pseudo Ioffe time dis-
tribution” formalism [35]; although qπv (x, µ2 = 27 GeV2)
in [54] shows some tension with the E615 data in the
0.42 < x < 0.8 region. Corresponding calculations using
the “quasi-PDFs” formalism [33] show differences among
themselves and in 0.4 < x < 0.85 region in [60] and in
x > 0.62 region in [43] with our calculation and the ex-
perimental extraction of qπv (x).
Conclusion & Outlook: This work presents the first

calculation of LCS that incorporates results on four
gauge ensembles, including the lightest pion mass used
in any lattice QCD calculation to access qπv (x), along
with a derivation of the one-loop perturbative matching
kernel for the antisymmetric vector-axial current combi-
nation. The resultant PDFs obtained are in agreement
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FIG. 4. Comparison of pion xqπv (x)-distribution obtained
from this calculation with the xqπv (x) distributions extracted
from the experimental Drell-Yan cross sections. The blue data
points are from LO analysis [3] and the “ASV-rescaled” black
data points compiled from [59] are the E615 re-scaled data
according to analysis [11].

with the qπv (x) extracted from the experimental data.
From our analysis, we have the indication that a
(1 − x)2-behavior of the qπv (x) at large x is preferred.
Future calculation with finer lattice spacings and access
to larger momentum, thus providing data at higher Ioffe
time (ω ∼ 8 − 10) will provide further clarification to
distinguish between the softer (1−x)2 and harder (1−x)
fall-off of the qπv (x)-distribution that can complement
experiment and resolve the large-x behavior. The
simpler non-perturbative UV renormalization of the
current-current operators, the availability of current
combinations, and the remarkable agreement of this
result with the experimentally extracted qπv (x) in the
entire x-region demonstrate the potential of this method
to unravel the enigmatic structure of the pion.
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[50] R. Edwards, B. Joó, K. Orginos, D. Richards, and
F. Winter “U.S. 2+1 flavor clover lattice generation
program,” Unpublished (2016).

[51] C. G. Boyd, B. Grinstein and R. F. Lebed, “Constraints
on form-factors for exclusive semileptonic heavy to light
meson decays,” Phys. Rev. Lett. 74, 4603 (1995).

[52] C. Bourrely, I. Caprini and L. Lellouch,
“Model-independent description of B → πlν decays and
a determination of |V (ub)|,” Phys. Rev. D 79, 013008
(2009) Erratum: [Phys. Rev. D 82, 099902 (2010)].

[53] R. A. Briceño, J. V. Guerrero, M. T. Hansen and
C. J. Monahan, “Finite-volume effects due to spatially
nonlocal operators,” Phys. Rev. D 98, no. 1, 014511
(2018).
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