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Abstract

In the scattering process off a nuclear or nucleon target, the Gerasimov-Drell-

Hearn (GDH) sum rule for real photons (𝑄2=0 where 𝑄2 ≡ −𝑞2 with 𝑞 the photon’s

4-momentum) relates static properties of the target particle’s ground state to dynamic

properties of all its excited states. On the other side of the 𝑄2 spectrum, the Bjorken

sum rule holds in the Bjorken limit 𝑄2 → ∞. Bjorken sum rule relates the final

structure functions of the proton and neutron to the nucleon axial coupling constant in

weak decay. These two sum rules belong to domains where calculations are achievable

but use different degrees of freedom: hadronic degrees of freedom at low 𝑄2 versus

partonic degrees of freedom at intermediate 𝑄2. Meanwhile, different methods have

been used to connect the two sum rules at finite 𝑄2 values: Chiral Perturbation

Theory is used to expand the GDH sum rule while Operator Product Expansion is

used to expand the Bjorken sum rule.

In recent decades, improvements in polarized beam and polarized target techniques

have made it possible to test theoretical predictions in the intermediate 𝑄2 region.

During the Jefferson Lab (JLab) Hall A E97110 experiment, a precise measurement

of polarized cross sections was performed at 0.02 < 𝑄2 < 0.3 GeV2 using a polarized
3He target as an effective polarized neutron target. The measured data allowed us

to test predictions of Chiral Perturbation Theory at very low 𝑄2. Furthermore, an

extrapolation to the real photon point 𝑄2=0 tests the GDH sum rule on the neutron.

In order to reach the small angles necessary for the low 𝑄2 range, a new septum

magnet was installed in Hall A for this experiment. Unfortunately, the magnet was

mis-wired during initial running. There were therefore two periods for this experi-

ment: the first period had the defective magnet due to mis-wiring; while in the second

period, the magnet had been fixed and was working properly. The cross sections and

the asymmetries for the first period must be extracted using a difficult and unusual

method employing focal plane variables in the spectrometer. In the work described

in this thesis, the target-plane and focal-plane method will be established first and



confirmed by elastic scattering cross section measurements from carbon foil and 3He

targets. Cross sections and asymmetries of inelastic scattering were then extracted

using the same method, which constitute the main physics results of this thesis. Pre-

liminary results on 𝐼𝑇𝑇 , the integral of the polarized cross section, were also extracted

and are presented in this thesis.

In addition to the data analysis of E97110, this thesis includes instrumentation

work performed on the polarized 3He target at JLab. For the 12 GeV program of JLab,

the polarized 3He target is being upgraded to satisfy new experimental requirements.

The new target is a convection-based cell with two transfer tubes rather than a single

transfer tube as in the former 6 GeV design. The first stage of the target upgrade

aims to produce a 40 cm long, 10 amg target that can withstand 30 𝜇A of electron

beam current with an in-beam polarization of 55%, doubling the figure-of-merit from

the 6 GeV time. Several studies were conducted at the Test Lab of JLab on the

new convection cell. Work and improvement done on the Pulse Nuclear Magnetic

Resonance (NMR) polarimetry and its test results will be presented. As this thesis is

written, the target is being installed in Hall C of JLab in preparation for a 6-month

long running from November 2019 to May 2020.
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Chapter 1

Spin Structure of the Nucleon and

the GDH Sum Rule

In this chapter, we will first discuss the formalism for inclusive electron scattering

off a nucleus. The internal structure of the nucleon is parameterized by structure

functions (inelastic case) or form factors (elastic case). Next, we will examine the

theoretical methods that are used to derive the GDH sum rule for real photons. Then

we will discuss generalization of the GDH sum rule to virtual photons. After the

presentation of the sum rules, we will discuss GDH sum rule results from previous

experiments and the importance of the experiment being presented in this thesis.

1.1 Introduction

Protons and neutrons are the building blocks of the atomic nucleus. They are not

fundamental particles, and they have a structure. Exploring the nucleon structure

is important to our understanding of the structure of matter as more than 99.9% of

the mass of any visible object in our daily life is carried by its nucleons. In 1964,

M. Gell-Mann and G. Zweig proposed that nucleons are in fact composed of quarks,

which are point-like charged particles [1, 2]. This was confirmed experimentally in

the 1970s using electron scattering at SLAC.

Among all nucleon properties, understanding its spin constitution is particularly

1



interesting. The fundamental question we try to answer is: “how do quarks and

gluons make the spin of the nucleon?". The nucleon has spin 𝑠 = 1/2 . It was

originally expected that the quark spins carried most of the nucleon spin, about

70%, with the ∼30% remainder coming from the quark angular orbital momentum.

However, experiments at SLAC [3] and CERN [4] performed in the late 1980s and

early 1990s contradicted this expectation. The experimental results suggested that

only a small percentage of the nucleon spin is carried by the spins of the quarks.

This disagreement surprised physicists and is sometimes referred to as “the proton

spin crisis”. After decades of efforts, both theoretical and experimental, the current

understanding is that the quark spins contribute to about 30% of the nucleon spin

[5]. Other contributions, specifically the gluon spin and the orbital angular momenta

of gluons and quarks, are important.

The following sections will give an introduction about electron scattering, then

provide the theoretical background and motivation for the neutron spin structure

experiment that is the main subject of this dissertation.

1.2 Electron Scattering

Electron scattering is one of the most important experimental tools to probe

the structure of matter. One advantage of doing electron scattering is its accuracy.

Firstly, the electromagnetic interaction is weak enough to allow us to treat it perturba-

tively, the only well-controlled analytic method that is available to us in a quantum

field theory. Secondly, it is strong enough that it dominates the weak interaction.

Thus electron scattering can be accurately described by the electromagnetic interac-

tion, which is calculable with well-understood Quantum Electro-Dynamics (QED).

The first Born approximation (one photon exchange process) for inclusive scatter-

ing1 of an electron from a nucleon target is shown in Fig. 1-1, where 𝑘𝜇 and 𝑘′𝜇 are the

four-momenta of the incoming and outgoing electrons, respectively. Similarly, 𝑃 𝜇 and

𝑃 ′𝜇 refer to the momenta of the nucleon. For inclusive scattering experiments, the

1An inclusive scattering is a process in which only the scattered electron is detected.
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incoming, outgoing electron momenta and the scattering angle 𝜃 are measured. The

unknown photon-nucleon vertex in the Feynman diagram depends on two kinematic

quantities of the virtual photon: the momentum transfer 𝑄2 ≡ −𝑞2 with 𝑞 = 𝑘 − 𝑘′

the 4-momentum of the photon (the photon is off mass shell and thus 𝑄2 ̸= 0) and

the energy transfer 𝜈 = 𝑞 ·𝑃/𝑀 where 𝑀 is the target mass. In the laboratory frame,

the target stays at rest, 𝑃 𝜇 = (𝑀, 0) and

𝑘"	(𝐸, 𝑘) 𝑘("	(𝐸′,𝑘′)

𝛾∗ 𝑞"	(𝜈, 𝑞⃗)

𝑃("(𝐸0( , 𝑃()𝑃"(𝐸0,𝑃)

Figure 1-1: One photon approximation of e-N scattering.

𝑄2 = 4𝐸𝐸 ′ sin2(𝜃/2), (1.1)

and 𝜈 is the electron energy loss:

𝜈 ≡ 𝐸 − 𝐸 ′. (1.2)

The invariant mass is2 defined by
2The invariant mass is the total mass of outgoing particles that are not detected in the inclusive

scattering process. It is a relativistically invariant quantity and does not depend on the overall
motion of the frame.
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𝑊 ≡
√︀

𝑀2 + 2𝑀𝜈 −𝑄2. (1.3)

Another variable is the Bjorken scaling variable

x = 𝑄2/2𝑀𝜈, (1.4)

which in the parton model, see Section 1.3.3, is interpreted as the fraction of the

nucleon momentum carried by the struck quark. For elastic scattering on the nucleon,

𝑊 = 𝑀 and thus x = 1, whereas for a nuclear target with 𝐴 nucleons, x = 𝐴, for the

elastic kinematics.

The virtual photon reveals the target’s structure. By varying the squared mo-

mentum 𝑄2 and energy 𝜈, one can obtain the excitation spectrum of the target as

shown in Fig. 1-2. The spectrum displays elastic scattering, quasi-elastic scattering

(present for nuclear target only), the resonance region and the deep inelastic region.

We characterize these reactions as follows:

∙ Elastic scattering: 𝑄2 = 2𝑀𝐴𝜈, where 𝑀𝐴 is the nuclear mass. Electrons are

elastically scattered off a nuclear target (for a nucleon target, the target mass is

the nucleon’s mass). The target nucleus stays intact and reacts coherently. The

momentum transfer is shared among all the nucleons (or quarks, if the target

is a nucleon) and all the nucleons stay in their ground states.

∙ Quasi-elastic: When 𝜈 reaches a certain value, one of the nucleons can be

knocked out from the target while the electron elastically scatters off that nu-

cleon. This process is called quasi-elastic scattering. Due to Fermi motion,

the cross-section peak appears broadened compared to elastic case. Elastic and

quasi-elastic scatterings are parameterized by elastic form factors and response

functions, respectively.

∙ Resonances: At higher excitation energy, nucleon resonances start to appear in

the excitation spectrum. In region 1.2 < 𝑊 < 2.0 GeV/𝑐2, the virtual photon

starts to be sensitive to individual quarks. It is absorbed by these quarks
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∆
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(elastic)

(resonances)

W = M

(quasi−elastic)

Cross section

W = MT

(deep inelastic)

(Deep Inelastic Scattering)

Figure 1-2: A cartoon of cross section as a function of 𝑄2 and 𝜈 for inclusive electron
scattering off a nuclear target [6]. 𝑀𝑇 is the target mass, 𝑀 is the nucleon mass, and
𝑊 is the invariant mass. The excitation peak positions (N, Δ, ...) change when 𝑄2

and 𝜈 change but stay at constant 𝑊 . For nucleon targets, there is no quasi-elastic
peak.

and produces excited states called “nucleon resonances”. The first resonance is

the Δ(1232). In inclusive scattering, the numerous other resonances are not as

clearly seen as the Δ due to their overlap and a non-resonance background. The

region between the quasi-elastic and the Δ-resonance is called the dip region.

∙ Deep inelastic scattering (DIS): With large enough 𝑄2 and 𝜈, enters the DIS

region, dominated by scattering off quasi-free individual quarks3. In this region,

the dimensionless Bjorken scaling variable, x, is enough to characterize the

reaction to the first order. This is the phenomenon of “Bjorken Scaling”.

3At large 𝑄2 (small space-time) interval, the strong coupling constant 𝛼𝑠 is small: quarks barely
interact with each other and can be considered as quasi-free.
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1.3 Structure Functions

In elastic scattering, the target reacts as a whole to the probing electromagnetic

field and the target structure is unaffected by the probe. At long distance scales (i.e

very low 𝑄2 and 𝜈) the scattering is approximated by Rutherford scattering [7]. At

JLab’s energies, however, the exact expression is necessary. The kinematical aspect

of the scattering is given by Mott scattering [8] while the structure information of

the target is given by nuclear or nucleon form factors. For the inclusive inelastic

spectrum, structure functions are used to describe the structure of the target.

1.3.1 Unpolarized Structure Functions

In the laboratory frame, the differential cross section for inelastic scattering of an

electron from an unpolarized target is [10]:

𝑑2𝜎𝑢𝑛𝑝𝑜𝑙

𝑑Ω𝑑𝐸 ′ =
(︀ 𝑑𝜎
𝑑Ω

)︀
𝑀𝑜𝑡𝑡

[︁
2𝑊1(𝜈,𝑄

2) tan2 𝜃

2
+𝑊2(𝜈,𝑄

2)
]︁
, (1.5)

where ( 𝑑𝜎
𝑑Ω
)𝑀𝑜𝑡𝑡 = 4𝛼2𝐸′2 cos2(𝜃/2)

𝑄4 is the cross section for scattering an electron off a

point-like spin-zero target, 𝛼 is the fine structure constant4. 𝑊1 and 𝑊2 are the

structure functions that contain information about the target’s internal structure.

𝑊1 and 𝑊2 are usually rewritten in term of two dimensionless structure functions,

which depend on 𝑄2 and the Bjorken variable 𝑥:

𝐹1(𝑥,𝑄
2) = 𝑀𝑊1(𝜈,𝑄

2),

𝐹2(𝑥,𝑄
2) = 𝜈𝑊2(𝜈,𝑄

2).
(1.6)

Both 𝐹1,2 and 𝑊1,2 are called unpolarized structure functions (or spin-independent

structure functions).

4The usual value 𝛼 = 𝑒2

4𝜋𝜖0ℎ̄𝑐
= 1

137 is still valid at JLab’s energies.
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1.3.2 Polarized Structure Functions

When we take into account the target spin orientation, the difference between the

cross section when the electron helicity5(→) is parallel to the target spin (⇒) and the

one when the electron helicity is anti-parallel to the target spin (⇐) can be expressed

as follows [10]:

𝑑2𝜎→⇐

𝑑Ω𝑑𝐸 ′ −
𝑑2𝜎→⇒

𝑑Ω𝑑𝐸 ′ =
4𝛼2𝐸 ′

𝑀𝜈𝑄2𝐸

[︁
(𝐸 + 𝐸 ′ cos 𝜃)𝑔1(𝑥,𝑄

2)− 2𝑀𝑥𝑔2(𝑥,𝑄
2)
]︁
, (1.7)

where 𝑔1, 𝑔2 are polarized structure functions (or spin-dependent structure functions).

In the DIS limit, the longitudinal quark polarization in the nucleon is described by 𝑔1

and their transverse polarization is described by 𝑔1 + 𝑔2. From Eq. 1.7, the first term

in the bracket dominates when 𝐸 ≫ 𝑀𝑡𝑎𝑟𝑔𝑒𝑡, and 𝑔2 contributes to second order.

With a transversely polarized target, the cross section difference becomes:

𝑑2𝜎→⇑

𝑑Ω𝑑𝐸 ′ −
𝑑2𝜎→⇓

𝑑Ω𝑑𝐸 ′ =
4𝛼2𝐸 ′2

𝑀𝜈𝑄2𝐸

[︁
𝑔1(𝑥,𝑄

2) +
2𝐸

𝜈
𝑔2(𝑥,𝑄

2)
]︁
sin 𝜃. (1.8)

Equations 1.7 and 1.8 allow one to determine 𝑔1 and 𝑔2 independently if mea-

surements are done for both longitudinally and transversely polarized targets.

1.3.3 Structure Functions in the Quark-Parton Model

The quark-parton model is a theoretical model to describe the nucleon’s properties

in the DIS limit6 (this model is not derived from the fundamental theory of QCD).

It provides an interpretation of the Bjorken 𝑥 and of the structure functions. In

the quark-parton model, the nucleon is considered as a collection of non-interacting,

point-like constituent partons (later identified with QCD’s quarks and gluons). Here,

a quark which carries a x fraction of nucleon’s momentum can absorb a virtual photon

if the photon and quark helicities satisfy the helicity conservation law. In the parton

5Helicity is defined as 𝑠⃗·𝑝
|𝑠⃗||𝑝| , the spin orientation of the particle with respect to its direction of

motion.
6The DIS limit is defined so that 𝑄2 → ∞, 𝜈 → ∞ but 𝑄2

𝜈 is finite.
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model, the nucleon’s DIS cross section is the sum of the elastic cross sections of indi-

vidual partons. Therefore, the spin-average quark distribution 𝐹1(𝑥) (corresponding

to quark’s momentum distribution) and the spin-dependent quark distribution 𝑔1(𝑥)

(corresponding to quark’s polarization distribution) can be written as [10]

𝐹1(𝑥) =
1

2

∑︁
𝑖

𝑒2𝑖 𝑞𝑖(𝑥) =
1

2

∑︁
𝑖

𝑒2𝑖 [𝑞
↑
𝑖 (𝑥) + 𝑞↓𝑖 (𝑥)], (1.9)

𝑔1(𝑥) =
1

2

∑︁
𝑖

𝑒2𝑖Δ𝑞𝑖(𝑥) =
1

2

∑︁
𝑖

𝑒2𝑖 [𝑞
↑
𝑖 (𝑥)− 𝑞↓𝑖 (𝑥)], (1.10)

where 𝑞↑𝑖 (𝑞↓𝑖 ) is the probability that the spin of a quark of flavor 𝑖 and carrying a

momentum ratio 𝑥 is aligned parallel (anti-parallel) to the nucleon spin.

In the DIS (or Bjorken) limit, helicity conservation yields the Callan-Gross relation

[11], which relates the two unpolarized structure functions as follows:

𝐹2(𝑥) = 2𝑥𝐹1(𝑥). (1.11)

The scaling behavior of structure functions and the above relations are exact only

in the Bjorken limit, however, and are only approximative at finite 𝑄2. The 𝑄2 evo-

lution equations of parton distribution functions were first derived by Dokshitzer,

Gribov, Lipatov, Altarelli, and Parisi (DGLAP equations) [12], which add in radia-

tive corrections due to soft gluon contributions. At lower 𝑄2, one can use Operator

Product Expansion (OPE) method [13] to conduct nonperturbative calculations of

quantum field theory where the higher twist corrections and radiative corrections can

be separated.

1.4 Real Compton Scattering

The forward Compton scattering amplitude of a photon from a nucleon can be

written as follow [10]:
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𝑇 (𝜈, 𝜃 = 0) = 𝜖⃗
′* · 𝜖⃗ 𝑓(𝜈) + 𝑖𝜎⃗ · (⃗𝜖′* × 𝜖⃗) 𝑔(𝜈), (1.12)

where 𝜖⃗ and 𝜖⃗*
′ are the incoming and outgoing photon polarization vectors respec-

tively. Here the incident photon is characterized by the 4-vectors of momentum

𝑞 = (𝑞0, 𝑞⃗), and of polarization 𝜖 = (0, 𝜖⃗′)7. The kinematic of the outgoing photon

is described by the primed quantities, and 𝜎⃗ is the nucleon spin operator. Equation

1.12 introduces the spin-flip amplitude 𝑔(𝜈) and the non-flip amplitude 𝑓(𝜈). The

derivation of Eq. 1.12 assumed invariance under rotational and parity transforma-

tions. In addition, crossing symmetry was imposed, which implies that Eq. 1.12 is

invariant under the transformations 𝜖′ ↔ 𝜖 and 𝜈 ↔ −𝜈. Hence, 𝑓(𝜈) is an even

function and 𝑔(𝜈) an odd function, and can be written as follows:

𝑓(𝜈) =
1

2
(𝑇1/2 + 𝑇3/2),

𝑔(𝜈) =
1

2
(𝑇1/2 − 𝑇3/2),

(1.13)

where 𝑇3/2,1/2 are the scattering amplitudes of the photon-nucleon system with the

subscripts 3/2 or 1/2 denoting the photon-nucleon system’s total helicity.

1.5 Virtual Photon Cross Sections

The inclusive scattering cross section can be written either in term of the four

structure functions 𝐹1,2, 𝑔1,2, or in term of four virtual photon absorption cross sec-

tions [14] as follows:

𝑑𝜎

𝑑Ω𝑑𝐸 ′ = Γ
(︁
𝜎𝑇 + 𝜖𝜎𝐿 + ℎ𝑃𝑥

√︀
2𝜖(1− 𝜖)𝜎′

𝐿𝑇 + ℎ𝑃𝑧

√
1− 𝜖2𝜎′

𝑇𝑇

)︁
, (1.14)

7For real photon 𝑞 · 𝑞 = 0 and 𝜖 · 𝑞 = 0, which represents transverse polarization.

9



where 𝜎𝑇,𝐿 are the absorption cross sections for the transverse and longitudinal virtual

photons, respectively. These two cross sections can be obtained from an unpolarized

experiment. 𝜎
′
𝐿𝑇,𝑇𝑇 are the spin-dependent terms arising in a doubly polarized ex-

periment. They represent the interferences of the amplitudes for longitudinal and

transverse photon absorption, and for transverse and transverse photon absorption,

respectively. 𝑃𝑥 (𝑃𝑧) is the target polarization parallel (perpendicular) to the virtual

photon momentum. ℎ = ±1 refers to the helicity of the longitudinal polarized elec-

trons. 𝜖 is the ratio of the longitudinal to transverse polarization components of the

virtual photon:

𝜖 =
[︁
1 + 2(1 +

𝜈2

𝑄2
) tan2 𝜃

2

]︁−1

, (1.15)

and Γ is the flux factor:

Γ =
𝛼

2𝜋2𝑄2

𝐸 ′

𝐸

𝐾

1− 𝜖
, (1.16)

where 𝐾 is the virtual photon flux for which several convections exist [14] .

The total helicity cross sections are related to the transverse (𝜎𝑇 ) and the “transverse-

transverse” (𝜎′
𝑇𝑇 ) cross section as follows:

𝜎𝑇 =
𝜎3/2 + 𝜎1/2

2
,

𝜎′
𝑇𝑇 =

𝜎3/2 − 𝜎1/2

2
,

(1.17)

where 𝜎3/2,1/2 are the helicity-dependent photo absorption cross sections and the sub-

scripts refer to total helicity projections of the photon plus target helicities.

These virtual photon absorption cross sections are related to the nucleon structure
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functions as follows [15]:

𝜎𝑇 =
4𝜋2𝛼

𝑀𝐾
𝐹1,

𝜎𝐿 =
4𝜋2𝛼

𝐾

[︀𝐹2

𝜈
(1 +

1

𝛾2
)− 𝐹1

𝑀

]︀
,

𝜎′
𝐿𝑇 = −4𝜋2𝛼

𝑀𝐾
𝛾(𝑔1 + 𝑔2),

𝜎′
𝑇𝑇 = −4𝜋2𝛼

𝑀𝐾
(𝑔1 − 𝛾2𝑔2),

(1.18)

where 𝛾2 = 𝑄2/𝜈2.

We have discussed Compton scattering amplitudes and virtual photon cross sec-

tions. They will be used to derive the spin sum rules in future sections. In the

following section, we will discuss an effective theory not relying on the 𝛼𝑠 pertur-

bative expansions. It can thus be used in the very low 𝑄2 domain. Testing such

technique is the main goal of our experiment.

1.6 Chiral Perturbation Theory

At low 𝑄2, the strong coupling constant 𝛼𝑠 becomes large so that quarks and

gluons arrange themselves in the strongly bound clusters that form hadrons, and per-

turbation theory expanding in the fundamental coupling 𝛼𝑠 is not applicable directly

to QCD. In order to describe hadrons at low energy, alternative model-independent

approaches are needed. One such approach is the effective theory known as Chiral

Perturbation Theory (𝜒PT). 𝜒PT is an effective field theory8 of quantum chromody-

namics (QCD) at low energies. That uses a small expansion parameter differing from

𝛼𝑠. This theory assumes that the quark’s masses, the pion’s mass or momenta of

incoming and outgoing particles are negligible compared to the nucleon’s mass. The

ratio of these quantities to the nucleon mass provides the small expansion parameters.

To understand how 𝜒PT works, we first introduce QCD, a local non-Abelian9

8This particular effective theory treats hadronic fields as the relevant degrees of freedom, instead
of the fundamental partonic fields. In addition, the relevant symmetries of QCD are also built in
the 𝜒PT.

9In a non-Abelian gauge theory, field operators do not commute with each other. One consequence
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gauge theory that describes the strong interaction. The complete QCD Lagrangian

[16] comprises quark and gluon fields which carry color charges10 and interact with

coupling strength 𝑔 =
√
4𝜋𝛼𝑠:

ℒ𝑄𝐶𝐷 = − 1

4𝑔2
𝐺𝛼

𝜇𝜈𝐺
𝜇𝜈
𝛼 + 𝑞𝑖𝛾𝜇𝐷𝜇𝑞 − 𝑞ℳ𝑞, (1.19)

where 𝐺𝛼
𝜇𝜈 is the gluon field strength with 𝛼 the color index and 𝜇, 𝜈 the Lorentz

indices, 𝑞 is the quark spinor, 𝐷𝜇 is the gauge covariant derivative, 𝛾𝜇 are Dirac

matrices connecting the spinor representation to the vector representation of the

Lorentz group, and ℳ is the diagonal quark mass matrix. The values of current

𝑢, 𝑑, 𝑠 quark masses (𝑚𝑢 ≃ 2 MeV, 𝑚𝑑 ≃ 4 MeV and 𝑚𝑠 ≃ 93 MeV) [17] are small

compared to the typical light hadronic masses (the proton mass is 938 MeV). The left

and right-handed quark wavefunctions can be written as:

𝑞𝐿 =
1

2
(1− 𝛾5)𝑞,

𝑞𝑅 =
1

2
(1 + 𝛾5)𝑞.

(1.20)

If ℳ = 0, 𝑞𝐿 and 𝑞𝑅 are not coupled and we thus have two independent particles

with left and right helicity11. This is the Chiral symmetry. If one sets 𝑚𝑢,𝑑,𝑠 ≈ 0, the

Lagrangian becomes [18]:

ℒ0
𝑄𝐶𝐷 = − 1

4𝑔2
𝐺𝛼

𝜇𝜈𝐺
𝜇𝜈
𝛼 +

∑︁
𝑙=𝑢,𝑑,𝑠

(︁
𝑞𝑅,𝑙𝑖𝛾

𝜇𝐷𝜇𝑞𝑅,𝑙 − 𝑞𝐿,𝑙𝑖𝛾
𝜇𝐷𝜇𝑞𝐿,𝑙

)︁
, (1.21)

which means the left and right handed quarks do not interact with each other. The

invariance is referred to as the 𝑆𝑈(3)𝐿×𝑆𝑈(3)𝑅 chiral symmetry of massless QCD. As

for all symmetries, a conserved quantity exists, which is the axial current in the case

is that gluons carry color charges and can couple to themselves. In contrast, in QED, photons do
not couple directly to each other.

10The color quantum number is introduced as an extra degree of freedom in the quark model of
hadrons and solved a factor of 3 increases in cross section of the process 𝑒+𝑒− → hadron among
other experimental evidence of the color charge. In QCD, the color charge of a quark has three
possible values: red, green or blue.

11For a massless particle, chirality is identical to helicity.
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of chiral symmetry. In the real world, however, chiral 𝑆𝑈(3)𝐿 × 𝑆𝑈(3)𝑅 symmetry is

explicitly broken by finite quark masses 𝑚𝑢,𝑑,𝑠 and more importantly by spontaneous

symmetry breaking. Therefore, the axial vector current12 is not conserved. This

introduces an spontaneous breaking of chiral symmetry in ℒ𝑄𝐶𝐷:

ℒ𝑄𝐶𝐷 = ℒ0
𝑄𝐶𝐷 + ℒ𝑠𝑏

𝑄𝐶𝐷, (1.22)

Goldstone’s theorem states that a spontaneously broken continuous symmetry

implies massless spinless particles: the Goldstone bosons. The eight lightest hadrons

are 𝜋±, 𝜋0, 𝐾±, 𝐾0, 𝐾̄0, 𝜂. Because the nonzero masses of the light quarks break

chiral symmetry explicitly the Goldstone bosons are not exactly massless. However,

the explicit breaking can be considered to be small and treated perturbatively. In

the limit of vanishing quark masses, 𝑚𝑢,𝑚𝑑,𝑚𝑠 → 0, the Goldstone boson masses

approach zero, 𝑚𝜋,𝑚𝐾 ,𝑚𝜂 → 0, while all other hadrons remain massive in the chiral

limit.

The approximate 𝜒PT Lagrangian can be obtained by keeping all terms that are

consistent with the symmetries of QCD. These terms will be chosen or discarded de-

pending on power counting scheme (𝑝-expansion, the relation between loop diagrams

and the momentum expansion) in 𝜒PT. In addition, each term will be multiplied by

a coupling constant (also called low-energy constants) which represent the relative

strength of the interaction at the vertex. When the quark masses are restored, the

perturbative theory is valid as long as quark masses or momenta of incoming and

outgoing particles are small enough.

The framework of 𝜒PT can be extended to the interaction of baryons at low

energies, the effective Lagrangian includes the baryon fields. In case of two flavors (𝑢

and 𝑑), the discussion is narrowed to the nucleons and pions. However, for baryon

calculations the power counting rule becomes complicated because the nucleon mass

is finite in the chiral limit and is comparable to the chiral symmetry breaking scale.

12The requirement of Lorentz invariance of the matrix elements restricts the form of interaction
vertex. An axial vector current is one of the five possible combinations of two spinors and the gamma
matrices. The axial vector current has the form 𝜓𝛾𝜇𝛾5𝜓.
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The one-to-one mapping between loop diagrams and chiral orders in the mesonic

sectors does not hold anymore in the baryonic case, and an infinite number of loop

diagrams contribute to a certain chiral order [19]. To overcome this, the Heavy Baryon

𝜒PT (HB𝜒PT) approach was introduced, HB𝜒PT takes advantage of the fact that

baryons are heavy, which means that the momenta involved are small, and the theory

is expanded in inverse powers of baryon masses [20].

Another approach is Infrared Regularization (IR) [21] which separates the one-loop

integral into an infrared part and regular part. The first obeys the power counting

rule, the second can be expanded in a power series and be absorbed into low energy

constants of the effective Lagrangian.

We have described 𝜒PT, the low energy approach to QCD that E97-110 aims to

test. In the following, we will discuss the observables measured for such test, namely

the generalized GDH sum rule. First we need to introduce the original GDH sum

rule.

1.7 The GDH Sum Rule for Real Photons (𝑄2 = 0)

The Gerasimov-Drell-Hearn (GDH) sum rule [23] relates the absorption cross sec-

tion of circularly polarized real photons to the anomalous magnetic moment of the

target, in our case the nucleon or the 3He nucleus:

𝐼(𝑄2 = 0) =

∫︁ ∞

𝑡ℎ𝑟

(𝜎1/2 − 𝜎3/2)
𝑑𝜈

𝜈
= −2𝜋2𝛼

𝜅2

𝑀2
, (1.23)

where 𝜎1/2 and 𝜎3/2 are the photoabsorption cross sections and the subscripts are the

total nucleon-photon helicity, 𝜈 is the photon energy, 𝜅 is the anomalous magnetic

moment of the target and 𝑀 is its mass, 𝛼 is the fine structure constant (≈ 1/137).

The integral goes from the photoproduction threshold13 to infinity. While the left

hand side of Eq. 1.23 describes a dynamical property of the target, the right hand

side involves ground state properties of the target that are well-measured. The non-

13This refers to the single pion production threshold for a nucleon target 𝜈𝑡ℎ𝑟 ≈ 150 MeV, and two
body break up for a nuclear target (𝜈𝑡ℎ𝑟 = 2.2 and 5.5 MeV for the deuteron and 3He respectively).
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zero value of the anomalous magnetic moment requires the existence of an excitation

spectrum of the target. For example, the nonzero 𝜅 value of the proton implies that it

has a substructure. This sum rule can be used for all type of targets, such as proton,

neutron, electron14, etc.

The GDH sum was derived using the dispersion relation and a low energy theorem.

It uses the following steps:

1. The Unitarity of scattering matrix relates the absorption cross section to the

imaginary part of forward scattering amplitude ℑ𝑓(𝜈) ∼ 𝜎𝑇,𝑇𝑇 . This is the

optical theorem [24].

2. Causality implies the analyticity of 𝑓(𝜈), which allows one to write a disper-

sion relation. This dispersion relation relates the real part of the scattering

amplitude to the integral of 𝜎𝑇,𝑇𝑇 , ℜ𝑓(𝜈) ∼
∫︀∞
𝜈0

𝜎𝑇,𝑇𝑇 (𝜈
′) 𝜈

𝜈′
𝑑𝜈 ′.

3. The Taylor expansion of the real part of scattering amplitude (ℜ𝑓(𝜈),ℜ𝑔(𝜈))

in term of 𝜈. Combining this expansion with the Low Energy Theorem (LET)

[25], which comes from gauge and Lorentz invariances, leads to the GDH sum

rule.

The main assumption ad a weak part in the derivation of GDH sum rule is the

non-subtraction hypothesis. It assumes that 𝜎𝑇𝑇 decrease fast enough toward zero as

𝜈 → ∞.

We have discussed the sum rule for real photons. Next we will discuss the gener-

alized sum rule with exchange of a virtual photon instead of the absorption of a real

photon.

1.8 Generalized GDH Sum Rule (𝑄2 > 0)

The first extension of the GDH sum was proposed by Anselmino et al. [26]. A

straightforward way to generalize the sum is replacing photoproduction cross sections
14For point-like particle, anomalous magnetic moment 𝜅 = 0, hence there is no excited spectrum.
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with the electroproduction ones of a virtual photon as discussed in Sec. 1.5. This can

be done by substituing:

𝜎1/2(𝜈), 𝜎3/2(𝜈) → 𝜎1/2(𝜈,𝑄
2), 𝜎3/2(𝜈,𝑄

2). (1.24)

With this approach, one can generalize the sum (the integral) but not the sum

rule. In addition, virtual photon cross sections are not uniquely defined quantities

since the definition of virtual photon flux 𝐾 is conventional. The first approach to

generalize the entire sum rule was proposed by X. Ji and J. Osborne [27] using the vir-

tual photon Compton amplitude. While the Compton amplitude cannot be measured

directly, it can be accessed indirectly by using a dispersion relation. This dispersion

relation relates the Compton amplitude to the spin structure functions which have

been measured in SLAC, CERN, DESY and JLab. In addition, theories like 𝜒PT or

Lattice QCD can calculate the virtual photon nucleon Compton scattering. Particu-

larly, at small 𝑄2, one can calculate Compton amplitudes in 𝜒PT. At large 𝑄2, one

uses measurements and evolve them (using OPE). For
∫︀
𝑔𝑝−𝑛
1 𝑑𝑥1, one uses the Bjorken

sum rule. But this concerned the moment directly, not the Compton amplitude.

The forward Compton amplitude for real photon in Eq. 1.12 can be modified to

include the longitudinal polarization vector 𝑞 to obtain the virtual Compton scattering

as follow:

𝑇 (𝜈,𝑄2, 𝜃 = 0) = 𝜖⃗
′* · 𝜖⃗ 𝑓𝑇 (𝜈,𝑄2) + 𝑖𝜎⃗ · (⃗𝜖′* × 𝜖⃗) 𝑔𝑇𝑇 (𝜈,𝑄

2)

+ 𝑓𝐿(𝜈,𝑄
2) + 𝑖(⃗𝜖

′* − 𝜖⃗) · (𝜎⃗ × 𝑞) 𝑔𝐿𝑇 (𝜈,𝑄
2),

(1.25)

where 𝑔𝑇𝑇 and 𝑔𝐿𝑇 are the spin flip amplitudes. These amplitudes can be rewritten

in term of spin-dependent Compton amplitudes 𝑆1(𝜈,𝑄
2) and 𝑆2(𝜈,𝑄

2):

𝑆1(𝜈,𝑄
2) =

𝜈𝑀

𝜈2 +𝑄2

[︁
𝑔𝑇𝑇 (𝜈,𝑄

2) +
𝑄

𝜈
𝑔𝐿𝑇 (𝜈,𝑄

2)
]︁
,

𝑆2(𝜈,𝑄
2) = − 𝑀2

𝜈2 +𝑄2

[︁
𝑔𝑇𝑇 (𝜈,𝑄

2)− 𝑄

𝜈
𝑔𝐿𝑇 (𝜈,𝑄

2)
]︁
.

(1.26)
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A dispersion relation gives [27]:

𝑆1(𝜈,𝑄
2) = 4

∫︁ ∞

𝜈𝑡ℎ𝑟

𝐺1(𝜈
′, 𝑄2)𝜈 ′

𝜈 ′2 − 𝜈2
𝑑𝜈 ′,

𝑆2(𝜈,𝑄
2) = 4

∫︁ ∞

𝜈𝑡ℎ𝑟

𝐺2(𝜈
′, 𝑄2)𝜈 ′

𝜈 ′2 − 𝜈2
𝑑𝜈 ′,

(1.27)

where 𝐺1 and 𝐺2 are related to 𝑔1 and 𝑔2 as:

𝐺1(𝜈,𝑄
2) ≡ 𝑀𝑔1(𝜈,𝑄

2)

𝜈
,

𝐺2(𝜈,𝑄
2) ≡ 𝑀𝑔2(𝜈,𝑄

2)

𝜈2
,

(1.28)

and where 𝜈𝑡ℎ𝑟 > 𝑄2/2𝑀 is the elastic scattering condition, 𝜈 on the left hand side is

an energy taken to the 𝜈 → 0 limit in order to apply the LET. The integral over the

photon energy 𝜈 ′ on the right hand side covers all kinematic ranges of electroproduc-

tion (𝜈𝑒𝑙 < 𝜈 ′ < ∞). In the 𝜈 → 0 limit Eq. 1.27 becomes:

𝑆1(0, 𝑄
2) = 4

∫︁ ∞

𝜈𝑒𝑙

𝐺1(𝜈,𝑄
2)
𝑑𝜈

𝜈
,

=
8

𝑄2

∫︁ 1−

0

𝑔1(𝑥,𝑄
2)𝑑𝑥 ≡ 8

𝑄2
Γ1(𝑄

2).

(1.29)

This represents a 𝑄2-dependent sum rule provided that one knows how to compute

the Compton amplitude 𝑆1(0, 𝑄
2). In regions where 𝑔2 contribution is negligible (such

as the DIS region or at the real photon point), combining Eq. 1.23 and Eq. 1.29 gives

the GDH integral:

𝐼(𝑄2) ≡
∫︁ ∞

𝜈𝑒𝑙

𝜎1/2(𝜈,𝑄
2)− 𝜎3/2(𝜈,𝑄

2)

𝜈
𝑑𝜈 =

2𝑀2

𝑄2
Γ1(𝑄

2). (1.30)

Or in terms of Compton amplitude:

𝑆1(0, 𝑄
2) =

4

𝑀2
𝐼(0, 𝑄2). (1.31)
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Another form of Eq. 1.30 is written in terms of spin structure functions as follows:

𝐼𝑇𝑇 (𝑄
2) =

2𝑀2

𝑄2

∫︁ 1

0

[︁
𝑔1(𝑥,𝑄

2)− 4𝑀2

𝑄2
𝑥2𝑔2(𝑥,𝑄

2)
]︁
𝑑𝑥. (1.32)

The generalized sum rule recovers the real photon GDH sum when one exam-

ines the limit as 𝑄2 → 0. Since the original sum rule does not include the elastic

contribution, we consider only the inelastic contribution:

𝑆1(0, 𝑄
2) ≡ 𝑆1(0, 𝑄

2)− 𝑆𝑒𝑙
1 (0, 𝑄

2). (1.33)

Expanding it around 𝑄2 = 0 yields:

𝑆1(0, 𝑄
2) = − 𝜅2

𝑀2
+ 𝑆1

′
(0, 0)𝑄2 + 𝑆1

′′
(0, 0)𝑄4 + . . . . (1.34)

where 𝑆1
′ and 𝑆1

′′ are the first order and second order 𝑄2-derivatives. Applying

Eq. 1.31 for the real photon recovers the GDH sum rule, Eq. 1.23.

The generalized GDH sum rule can be used to test theories because a disagreement

between the theoretical predictions for 𝑆1 and the measured GDH sum reveals the

quality of the approximations involved.

1.8.1 The Sum Rule in The Chiral Domain (Small 𝑄2)

In the low 𝑄2 region, one can use 𝜒PT to expand 𝑆1
′
(0, 0) as a power series.

Previously, Ji and Osborne’s calculation using Heavy Baryon Chiral Perturbation

Theory (HB𝜒PT) [27] reveals that the leading order contribution vanishes and that

at leading order, 𝑆1(0, 𝑄
2) is independent of 𝑄2. However, the next leading order

contribution is strongly 𝑄2 dependent. There are new calculations beyond HB𝜒PT

[36, 37].

1.8.2 The Sum Rule at Larger 𝑄2

At 𝑄2 → ∞, another spin sum rule exists: the Bjorken sum rule [28]. This

sum rule was originally derived from current algebra. It was rederived in the QCD
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framework and extended to finite (but still large) 𝑄2. The prediction of the 𝑄2

dependence of the Bjorken sum rule constitutes an important test of pQCD. The

Bjorken sum rule states:

Γ𝑝
1 − Γ𝑛

1 =

∫︁ 1

0

[︁
𝑔𝑝1(𝑥)− 𝑔𝑛1 (𝑥)

]︁
𝑑𝑥 =

𝑔𝐴
6
, (1.35)

where superscripts 𝑝, 𝑛 stand for proton and neutron and 𝑔𝐴 is the isovector axial

charge of the nucleon, measured in neutron 𝛽-decay. In the 𝑄2 → ∞ limit where 𝑔1 is

interpretable in the parton model, the first moments Γ1 of proton and neutron can be

written in terms of the light u, d and s quark’s parton distribution functions (PDF)

as:

Γ𝑝
1 ≡

∫︁ 1

0

𝑔𝑝1(𝑥)𝑑𝑥 =
1

2
(
4

9
Δ𝑢+

1

9
Δ𝑑+

1

9
Δ𝑠),

Γ𝑛
1 ≡

∫︁ 1

0

𝑔𝑛1 (𝑥)𝑑𝑥 =
1

2
(
1

9
Δ𝑢+

4

9
Δ𝑑+

1

9
Δ𝑠).

(1.36)

The difference yields a parton model interpretation of the Bjorken sum rule:

Γ𝑝
1 − Γ𝑛

1 =
1

6
(Δ𝑢−Δ𝑑). (1.37)

The internal spin structure of the nucleon is probed using weak decay and scatter-

ing of polarized leptons from polarized targets: Assuming 𝑆𝑈(3)𝑓𝑙𝑎𝑣𝑜𝑟various quark

flavor contributions to the nucleon spin can be obtained from these processes, each

provides a certain linear combination of Δ𝑢,Δ𝑑 and Δ𝑠 [29]. One combination of the

quark spin content is obtained by the neutron 𝛽-decay:

𝑔𝐴 = 𝑔3 = Δ𝑢−Δ𝑑. (1.38)

Combining Eq. 1.37 and Eq. 1.38 yields the Bjorken sum rule.

At large but finite 𝑄2, QCD radiative corrections and higher twists have to be

taken into account. Using OPE, we can separate the perturbative (QCD radiative
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corrections) from the nonperturbative (higher twists) parts. The Bjorken sum rule

generalized to finite 𝑄2 reads:

Γ𝑝
1 − Γ𝑛

1 =
1

6
(Δ𝑢−Δ𝑑) =

𝑔𝐴
6

(︁
1− 𝛼𝑠(𝑄

2)

𝜋
+ . . .

)︁
+𝐻𝑇 (𝑄2), (1.39)

where the first term on the right hand side is the same as Eq. 1.35 except for the

QCD radiative correction in power series of 𝛼𝑠(𝑄
2), which can be calculated using

perturbative QCD (pQCD). The second term 𝐻𝑇 (𝑄2) comes from higher twist effects

and is non-perturbative.

1.9 Current Data for GDH Sum at Low 𝑄2

In this section, we discuss current experimental data and theoretical predictions.

Particularly, the discussion will be restricted to measurements of the neutron spin

structure from a polarized 3He target.

Results for the generalized GDH sum on the neutron, 𝐼𝑇𝑇 , are shown in Fig. 1-

3, where the blue triangles are results from JLab experiment E94-010 [33]. The

integration using only this experiment data are shown in open blue circles. The error

bars on the data points are statistical and the systematic uncertainties are given

by the blue band on the horizontal axis. The blue data show a smooth transition

from partonic degrees of freedom (high 𝑄2) to hadronic degrees of freedom (low

𝑄2). The results from E94-010 emphasize the importance of treating properly the

Δ(1232) resonance in the 𝜒PT calculations. However, the E94-010 data did not

reach low enough 𝑄2 so that they cover the chiral domain where 𝜒PT calculations

can be accurately tested. The red triangles are results from the experiment discussed

here (second period only) [34]. The integration using only this experiment data, and

that with an estimate of the unmeasured high 𝑊 part are represented by the open

and solid triangle, respectively. The error bars represent the statistical uncertainties.

Uncorrelated and correlated systematic uncertainties are shown by the upper (red)

and lower (magenta) bands, respectively. The bands around -50 𝜇b indicate the model

uncertainties (red: neutron extraction from 3He; magenta: low-𝑥 extrapolation). Our
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second period data and E94-010 are consistent over their overlap region.

As 𝑄2 decreases, our results agree with the 𝜒PT calculation from Bernard et al.

[36]. The calculation from Lensky et al. [37] disagrees with the data. The first cal-

culation [36] includes Δ(1232) explicitly in the third order in the small expansion (It

uses dimensional regularization instead of infrared regularization). The latter calcu-

lation [37] uses relativistic B𝜒PT that include next-to-leading order term correction

including the Δ(1232).

Bernard et al (Χpt)
Lensky et al. (2016), Χpt

GDH Sum Rule

MAID 2007
E94010 data
E94010 data + extr.

Q2 GeV2

I TT
 (µ

b)

E97110 data
E97110 data + extr.-350

-300
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Figure 1-3: Results and expectations for the neutron generalized GDH sum 𝐼𝑇𝑇 (𝑄
2).

Blue triangles are the JLab experiment E94-010 results [33]. Red triangles are the
second period results of JLab experiment E97-110 [34]. The error bar on each data
point is statistical, with systematic uncertainties given by bands along the horizontal
axis. The solid black line is the MAID model calculation. The two latest 𝜒PT
predictions at low 𝑄2 are shown: Bernard et al. [36] (yellow band) and Lensky et al.
[37] (cyan band). The arrow at 𝑄2 = 0 is the GDH sum for the real photon.
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1.10 Summary

Theoretical tools for computing the generalized GDH sum rule have been pre-

sented in this chapter 15. At low, i.e below a few tenths of GeV2, one can use 𝜒PT

to calculate the Compton amplitude. However, several theoretical predictions in this

region disagree with each others. Hence, measurements of the neutron spin structure

at low 𝑄2 will provide a benchmark test of 𝜒PT and help guiding their theoreti-

cal progress. The discrepancies between data and calculations can be due to some

approximation in 𝜒PT calculations themselves.

15Lattice QCD has started to compute Compton amplitudes such as the ones included in the GDH
sum rule. So lattice QCD will give us a prediction too, and it will be based on fundamental QCD
principles.
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Chapter 2

The Experiment and Its Instruments

Experiment E97-110 was carried out in experimental Hall A at the Thomas Jef-

ferson National Accelerator Facility (TJNAF) in April-May (first period) and July-

August (second period) of 2003. The experiment focused on a precise measurement

of the moments of the neutron spin structure functions at low 𝑄2 (0.02 < 𝑄2 < 0.3

GeV2) using a polarized 3He target as an effective polarized neutron target. The

goal of the experiment is to make a bench-mark test of Chiral Perturbation Theory

calculations. A secondary goal is to check the Gerasimov-Drell-Hearn (GDH) sum

rule by extrapolating the integral to the real photon point.

The kinematic coverage of the experiment is shown in Fig. 2-1. Longitudinal po-

larized electrons with nine incident energies between 1.1 and 4.4 GeV were scattered

from a high-pressure polarized 3He target. The target was polarized in both lon-

gitudinal and transverse directions, which allows us to extract both spin structure

functions.

Data were taken in two experimental run periods. The first period covered the

lowest 𝑄2 points but with a defective equipment which complicates the data analysis.

The second period covered higher 𝑄2 points, with a properly working equipment. In

this thesis, the first period data are discussed. The second period data were analyzed

by V. Sulkosky [6].

In this chapter, information on the electron beam, the Hall A beamline, Hall A

spectrometers, and target collimator will be presented. I will also give a summary
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about the polarized 3He target, which details will be discussed in Chapter 6.
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Figure 2-1: Kinematic coverage of experiment E97-110. The horizontal axis is the
invariant mass 𝑊 . The vertical axis is the 𝑄2. The solid horizontal black lines are the
constant 𝑄2 used for the data analysis of the second period data. The value of 𝐼(𝑄2)
is obtained by integration of the cross section difference over 𝑊 at these constant 𝑄2

values. Red points are first period data, taken at four beam energies: 1.1, 1.5, 2.2,
and 3.3 GeV and at 6∘.

2.1 The Electron Accelerator

The layout of the electron accelerator is shown in Fig. 2-2. Electrons of 45 MeV

energy are produced by the polarized source and then are inserted and accelerated by

two linacs. They are sent to three experimental halls A, B, C. Until 2012, the highest

beam energy was 6 GeV. After the accelerator upgrade in 2014-15, the highest beam

energy became 12 GeV for Halls A, B, C and a fourth Hall (Hall D) was added. The

maximum current that can be delivered, summed over all four halls, is 200 𝜇A.
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The polarized source is a gallium arsenide (GaAs) which was first used at SLAC

[38]. Electrons are extracted by shining the laser light on a GaAs photocathode.

Electrons are excited from the valence band (𝑃3/2,𝑚 = 3/2 state) to the conduction

band (𝑆1/2,𝑚 = 1/2 state). A “strain” GaAs cathode is created by growing a thin

layer of GaAs on a GaAsP substrate. The strain induces a gap in sublevels of 𝑃3/2

electrons in the valence band. The gap causes the laser light to be absorbable only

by electrons in the 𝑃3/2, 𝑚 = 3/2 state, and not by other states. Hence, electrons are

excited only to the 𝑆1/2,𝑚 = 1/2 state. From there electrons diffuse to the surface and

escape into the surrounding vacuum. Ideally, this means the electrons produced are

100% polarized but in reality, polarization between 80-90% are obtained. The spin of

emitted electrons can be flipped by using a Pockels cell that controls the polarization

of the laser. The Pockels cell is a crystal that acts as a quarter wave plate when a high

voltage is applied on it. By flipping the polarity of the high voltage, we can invert

the circular polarization of the laser. During E97-110, the beam helicity was flipped

provide the rate at which it is flipped with the helicity sequence states following a

quartet pattern, either + − −+ or − + +−, and the sequence of the quartets was

pseudo-random. This helps to minimize the low frequency systematic uncertainty.

A

B
C

Helium
refrigerator

Extraction
elements

North Linac
(400 MeV, 20 cryomodules)

Injector
(45 MeV, 2 1/4 cryomodules)

Injector

Halls

South Linac
(400 MeV, 20 cryomodules)

Figure 2-2: Layout of CEBAF (Continuous Electron Beam Accelerator Facility) in 6
GeV era [39]. After passing 5 times through each linac, electron energy can reach 6
GeV. Electron beam can be sent simultaneously to each of the experimental halls.
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2.2 Hall A Layout

Hall A is the largest experimental hall among all of JLab’s halls. The layout of

Hall A is shown in Fig. 2-3. The key elements for E97-110 include the beam line,

the polarized 3He target (see Section 2.7 and Section 6), a septum magnet, two High

Resolution Spectrometers (Left and Right HRS)1 and their detector packages, which

will be discussed in following sections.

Pol.	
  3He	
  
Target

Right	
  HRS

Septum

Q1 Q2
Q3

D

Preshower
Shower

To	
  Beam	
  
Dump

Hall	
  A	
  floor	
  plan

VDC

Scintillators

Cherenkov

Figure 2-3: Hall A layout. Since only a single septum magnet was available, only
right HRS (RHRS) was used for production data taking during E97-110 while the left
HRS was used to monitored the beam current using a carbon foil target, as well as
charge asymmetry.

2.3 Hall A Beamline

2.3.1 Beam Current Measurement

The beam current is measured by the beam current monitor (BCM), which consists

of two cylindrical waveguides (cavities). When the beam passes through the cavities,

the voltage output from the cavity is proportional to the beam current. In addition,
1The experiment E97-110 only used the right HRS for physics data taking because of the avail-

ability of only one septum magnet. The left HRS was used to monitor the beam current using a
carbon foil target, as well as charge asymmetry.
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a Unser (a parametric current transformer) provides an absolute calibration of the

cavities. The Unser, being unstable over a time scale of several minutes, cannot be

used to monitor the beam current continuously.

The voltage output from a cavity is split into two parts: sampled and integrated

data, as shown in Fig. 2-4:

∙ For sampled data: The output from an amplifier is sent to a high-precision

digital AC voltmeter. Once every second, the RMS of the input signal provides

a digital output. This output is proportional to the beam charge accumulated

during that time. Then it is sent to a computer through GPIB.

∙ For integrated data: The output from an amplifier goes through a RMS-to-DC

converter. Then it is sent to a Voltage-to-Frequency (VTOF) converter, whose

output frequency is proportional to the DC input voltage. With the VTOF, no

signal is lost on the way as it is transported to the VME scalers.

The upstream and downstream BCMs are each connected to three amplifiers with ×1

(no amplification), ×3 and ×10 gains. For experiment E97-110, the ×3 gain signals

were used for beam currents above 5 𝜇A and the ×10 gain signals for currents below

5 𝜇A.

The beam charge is extracted from the scaler readings by:

𝑄𝐵𝐶𝑀×𝐺,𝐻𝑒𝑙(𝜇𝐶) =

𝑁𝐵𝐶𝑀×𝐺,𝐻𝑒𝑙(count)
𝑡𝐻𝑒𝑙

− offset×𝐺,𝐻𝑒𝑙

calibration constant×𝐺(count/𝜇𝐴)
𝑡𝐻𝑒𝑙 (2.1)

where 𝑐𝑜𝑢𝑛𝑡 is from upstream or downstream scaler reading with different gains

×1, ×3, ×10. The helicity is denoted 𝐻𝑒𝑙 and can be plus, minus or ungated. The

offset 𝑜𝑓𝑓𝑠𝑒𝑡×𝐺,𝐻𝑒𝑙 for each gain 𝐺 and each helicity was obtained from cosmic runs

(no beam). 𝑡𝐻𝑒𝑙 is the run time length for each run with helicity +, - or ungated.

calibration constant×𝐺 is the constant used to convert from upstream or downstream

BCM reading to current values with different gains. These calibration constants are

given in Table. 2.1.
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Figure 2-4: Schematic of beam current monitors.

Amplification (×G) Upstream Cavity Downstream Cavity
×1 1338.4 1335.5
×3 4100.7 4140.9
×10 12467.5 13015.1

Table 2.1: BCM calibration constants for E97-110 in unit of counts/𝜇A [40].

2.3.2 Beam Position Measurement and Raster

The transverse position of the beam on target and the angle with respect to

the nominal beam direction are measured by two Beam Position Monitors (BPMs)

located 7.524 m and 1.286 m upstream of the target center. Each BPM has 4-wire

antenna tuned to the fundamental frequency of the beam. When the beam passes

through the BPM system, a signal is induced that is proportional to the distance from

the beam. The absolute position of the BPMs can be calibrated by two superharps

(wire scanners) which are located adjacent to each of the BPMs. The BPMs have a

resolution of 20 𝜇m at 10 𝜇A [6].

The typical beam at JLab has a width of ≈ 200𝜇m. In order to avoid overheating
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the thin glass end windows of the polarized 3He target, the electron beam is rastered

to a larger cross-sectional size. The raster hardware is located 23 m upstream from

the target. For experimental E97-110, instead of the usual sine modulation, a new

“triangular” raster was used, which copied the Hall C design [41]. The raster uniformly

distributed the beam inside a square area with the dipole magnetic field varying in

a triangular waveform over time. During the experiment, different raster sizes were

used, and the most often used raster size was a 4 mm × 4 mm square.

2.3.3 Beam Energy Measurement

An accurate knowledge of the beam energy is very important for the analysis be-

cause it determines all kinematic variables. Currently, there are three independent

methods for measuring the beam energy [39]: the eP measurement, based on elastic

electron proton scattering; the Arc measurement, based on the beam deflection in a

known magnetic field; and the so-called Tiefenbach energy which relies on a param-

eterization of the beam transport in CEBAF. We describe the just two method in

details since they pertain to Hall A.

The first method, eP measurement, measures the electron scattering angle 𝜃𝑒 and

the proton recoil angle 𝜃𝑝 in elastic reaction 1H(e,e’P). The beam energy is given by:

𝐸𝑏𝑒𝑎𝑚 = 𝑀𝑝
cos 𝜃𝑒 + sin 𝜃𝑒/ tan 𝜃𝑝 − 1

1− cos 𝜃𝑒
, (2.2)

with 𝑀𝑝 the proton mass. The arrangement of the measuring apparatus is shown in

Fig. 2-5.

The electron beam hits the target, a thin CH2 plastic film, then the scattered

electron and the recoil proton are measured in coincidence by two sets of detectors.

The scintillator provides the trigger and Cherenkov detectors are utilized for electron

identification. The scattering angles are determined by Silicon Strip Detectors (SSD).

The resulting uncertainty on the beam energy from the eP method is ≤ 2×10−4 GeV.

The second method, the Arc measurement, determines the beam energy by mea-

suring the deflection angle of the beam in 40 m arc section of the beamline consisting
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Figure 2-5: Sideview of eP measurement apparatus. Proton detectors include two
sets scintillators and a silicon micro-strip detector (SSD proton). The recoil proton is
detected at an angle of about 60∘, in coincidence with the scattered electron, which
is detected at an angle range from 9∘ to 41∘. The electron detector consists of SSD,
scintillator planes and Cherenkov counters.

of eight bending magnets. The momentum of the electron beam is related to the field

integral along the path of the beam,
∫︀
𝐵⃗ · 𝑑𝑙, and the total bend angle 𝜃 as follows:

𝑝 = 𝑘

∫︀
𝐵⃗ · 𝑑𝑙
𝜃

, (2.3)

where 𝑘 = 0.299792 GeV·rad·T−1m−1/c. The magnetic field integral is measured

by using a 9th identical dipole (reference magnet) located outside of the arc and

connected in series with the other eight. The actual bending angle is measured by

using two pairs of wire scanners, one before and one after the arc. The Arc energy

measurement provides an absolute measurement to the 2× 10−4 GeV level.

The beam energy is also monitored online with Tiefenbach measurement (“Tiefen-

bach energy”), which relies on the same principle as the Arc energy measurement.

Instead of a direct measurement in the arc section, this method extracts the angle
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from monitored beam positions with the magnetic transfer function. It is thus non-

invasive but at a cost of the precision, which approximately amounts to 5×10−4 GeV

level2.

During the experiment, only Tiefenbach measurement was used for the first period

[42]. Beam energy for the second period is discussed in V. Sulkosky thesis, Ref. [6].

2.3.4 Electron Beam Polarimetry

Møller Polarimetry

This method uses high energy polarized electrons scattering off a fixed target

of polarized electrons of known polarization. By measuring the asymmetry of the

scattered electron rates with beam and target polarization parallel or antiparallel,

the beam polarization can be obtained. The Møller polarimetries consists of a mag-

netized ferromagnetic foil that provides the polarized electron target (a magnetized

ferromagnetic foil provides the polarized atomic electron target, its polarization is

determined by the foil magnetization measurements), and a detector to measure the

helicity dependent rate of the scattered electrons.

The polarized Møller scattering cross section is given by [39]:

𝜎 = 𝜎0

[︁
1 +

∑︁
𝑖=𝑋,𝑌,𝑍

𝐴𝑖𝑖𝑃
𝑡
𝑖 𝑃

𝑏
𝑖

]︁
, (2.4)

where 𝑃 𝑡
𝑖 , 𝑃 𝑏

𝑖 are components of the target and the beam polarizations along the 𝑖𝑡ℎ

axis, respectively. The analyzing power 𝐴𝑖𝑖 depends on the scattering angle in the

CM frame, 𝜃𝐶𝑀 . 𝜎0 is the unpolarized Møller cross section:

𝜎0 =
[︁𝛼(1 + cos 𝜃𝐶𝑀)(3 + cos2 𝜃𝐶𝑀)

2𝑚𝑒 sin
2 𝜃𝐶𝑀

]︁2
, (2.5)

with 𝑚𝑒 is electron mass. If we define the z-axis to be along the beam direction, and

the y-axis perpendicular to the scattering plane (OXZ-plane), 𝐴𝑖𝑖 can be written as:

2At its best performance, the uncertainty is 5× 10−4 GeV, on average the uncertainty is ≈ 10−3

GeV.
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𝐴𝑍𝑍 = −sin2 𝜃𝐶𝑀(7 + cos2 𝜃𝐶𝑀)

(3 + cos2 𝜃𝐶𝑀)2
,

𝐴𝑋𝑋 = −𝐴𝑌 𝑌 = − sin4 𝜃𝐶𝑀

(3 + cos2 𝜃𝐶𝑀)2
.

(2.6)

The analyzing power is maximum at 𝜃𝐶𝑀 = 90∘: |𝐴𝑍𝑍 | = 7/9 and |𝐴𝑋𝑋 | = 1/9.

The Møller polarimetry is conducted at very low beam currents. Asymmetry

measurements are performed instead of cross sections. The target is oriented at an

angle of ±20∘ with respect to the beam in the horizontal plane. With this orientation,

one can access both longitudinal and transverse beam polarizations. However, when

the average of the two target directions is taken, the transverse component cancels

out.

Compton Polarimetry

The Compton polarimeter is based on Compton scattering. Installed at the en-

trance of the hall, the Compton polarimeter consists of a magnetic chicane, a photon

source, an electromagnetic calorimeter, and an electron detector. The polarization

is extracted from the asymmetry measurement of Compton scattering of a circularly

polarized photon beam by the electron beam. The beam polarization 𝑃𝑏 is extract

from:

𝑃𝑏 =
𝐴𝑒𝑥𝑝

𝑃𝛾𝐴𝑡ℎ

, (2.7)

where 𝐴𝑒𝑥𝑝 is the experimentally measured asymmetry, 𝑃𝛾 is the photon polarization

and 𝐴𝑡ℎ is the Compton analyzing power.

For experiment E97-110, the statistical uncertainty from the Compton polarimeter

was (3-5) %, larger than average of other experiments because the beam currents used

were low. Hence, the Møller polarimeter was the main source of beam polarimetry

for this experiment.

During the first run period, a sizable beam current bleedthrough from Hall C
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beam was discovered in the Hall A beamline. This bleedthrough consists of polarized

beam, with different polarization than the Hall A beam polarization. It can thus

result in a large correction to the beam polarization. The bleedthrough from Hall C

in Hall A is dependent on the beam currents from the two halls and the Hall A slit

position. A correction to beam polarization is applied for second period [40] which

gives beam polarization uncertainty around 3.5%. For first period, the bleedthrough

correction is not as good as second period, so it is estimated to be around 4%.

2.4 High Resolution Spectrometers (HRS)

Hall A is equipped with two similar High Resolution Spectrometers, the “Electron”

Spectrometer (Right HRS or “Electron-Arm”) and the “Hadron” Spectrometer (Left

HRS or “Hadron-Arm”). The spectrometers main characteristics are summarized in

Table. 2.2. Each spectrometer consists of three quadrupoles and a dipole (QQDQ)

superconducting magnets. The first quadrupole (Q1) focuses in the vertical plane

and Q2, Q3 focus in the horizontal plane. The dipole spreads the charged particle

positions at the detector plane based on their momentum. These magnets also bends

up the charge particle with one type of charge, while blocking the neutral particles

and bending down the particles of opposite charge. This results in a very clean

environment for detectors, and hence with low noise level. The shielding around the

detector hut makes this even cleaner. The spectrometer’s central momentum 𝑃0 is

related to the magnetic field of the dipole by

𝑃0 =
3∑︁

𝑖=1

Γ𝑖𝐵
𝑖
0 = Γ0 + Γ1𝐵0 + Γ2𝐵

2
0 + Γ3𝐵

3
0 , (2.8)

where Γ𝑖 are the spectrometer constants, and 𝐵0 is the dipole magnetic field. To

measure Γ𝑖 the absolute electron energy is required. For the HRS, calibrations for

Γ𝑖 were obtained using elastic peak position measured in elastic 12𝐶(𝑒, 𝑒′) scattering

along with ARC and e-p energy measurements for the beam energy3[53].
3The location of the elastic peak in 𝛿𝑝 is related to the scattered electron momentum by

𝐸′ = Γ𝐵0(1 + 𝛿𝑝)
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Bending angle 45∘

Optical length 23.4 m
Momentum range (HRS-L) 0.3− 4.0 GeV/c
Momentum range (HRS-R) 0.3− 3.2 GeV/c

Momentum resolution 1× 10−4

Dispersion at the focus (D) 12.4 m
Radial linear magnification (M) −2.5

Angular Range (HRS-L) 12.5− 150∘

Angular Range (HRS-R) 12.5− 130∘

Angular acceptance (horizontal) ±30 mrad
Angular acceptance (vertical) ±60 mrad

Angular resolution (horizontal) 0.5 mrad
Angular resolution (vertical) 1.0 mrad
Solid angle at 𝛿 = 0, 𝑦0 = 0 6 msr

Transverse length acceptance ±5 cm
Transverse position resolution 1 mm

Table 2.2: Nominal Hall A spectrometers characteristics [39].

2.5 HRS Detector Package

The detector package for R-HRS is shown in Fig. 2-6. The following components

of the R-HRS were used for this experiment:

∙ Two planes of thin scintillators to generate triggers.

∙ A gas Cherenkov detector for particle identification.

∙ Vertical drift chambers (VDCs) for the determination of position and angular

coordinates of the particle tracks.

2.5.1 Scintillators

The HRS-R spectrometer contains two plastic scintillator planes (𝑆1 and 𝑆2) sep-

arated by 2 m to trigger the data acquisition. Timing resolution for each plane is

about 0.3 ns. The triggers are sent to the trigger supervisor (TS), which determines

if the data acquisition (DAQ) should record the event. When the event rate is high,

there can be a high deadtime, which is the fraction of events not recorded by the

where Γ is the spectrometer constant.
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Figure 2-6: Detector package for HRS-R.

DAQ. This deadtime can be decreased by reducing the number of recorded events by

a prescale factor (an integer) 𝑝𝑠 at the TS. For every 𝑝𝑠 events, only one is sent to

the DAQ system.

2.5.2 Gas Cherenkov Detector

The Gas Cherenkov is mounted between the two scintillator planes and filled with

CO2 at atmospheric pressure with an index of refraction 𝑛 = 1.0004. The Cherenkov

detector is used to differentiate between particles with different masses but similar

momentum. Particles with velocities exceeding threshold velocity, 𝛽𝑡ℎ𝑟𝑒𝑠ℎ = 1/𝑛,

produce Cherenkov radiation. For E97-110, the Cherenkov separated electrons from

other negatively charged particles such as pions. For 1 atm CO2, 𝑛 ≈ 1.0004 resulting

in a threshold momenta of 17 MeV/c for electrons and 4.8 GeV/c for pions.
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2.5.3 Vertical Drift Chambers

The Vertical Drift Chambers (VDCs) provide the particle’s tracking information.

A VDC package consists of two VDCs, see Fig. 2-7. The lower VDC is located near

the ideal focal plane of the HRS. A VDC has two wire planes (U and V planes),

which allow detection of both coordinates of a particle track in the plane of the VDC.

Position in the two VDCs allows determination of the direction of the track. The

resulting position and the angular resolution at the focal plane are approximately 225

𝜇m (FWHM) and 0.5 mrad (FWHM), respectively.
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Figure 2-7: Schematic layout of the VDCs. Reproduced from [39].

2.5.4 Electromagnetic Calorimeter

For HRS-R, the shower and preshower provide additional particle identification

(PID). These two together are called “total shower” detector. Signals from the total

shower is linearly proportional to the energy deposited by the incoming particles.

Electrons lose energy by electromagnetic showers and most of theirs energies are
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typically deposited in the first layer. When these electrons reach the second layer,

they will deposit all the remaining portion of their energies. On the other hand,

heavier particles such as pions do not trigger large electromagnetic shower and deposit

only part of their energies in the total shower detector. Hence, the total shower can

provide a good separation between electrons and pions in an independent way of

Cherenkov (otherwise, we would use two Cherenkovs, since they individually have

better PID than shower detectors).

2.6 Collimator

For E97-110, a set of collimator was used to block events coming from the target’s

glass windows. Traditionally, software cuts on the reconstructed target variables

were used to remove these events. However, due to the small scattering angle, the

transverse position acceptance is about a factor of two smaller and the resolution is

a factor of two worse compare to scattering at 12.5∘. In addition, the cross section

from scattering off the glass creates a sizable contamination to the physics of interest.

Without the use of dedicated collimators, described below, a significant contamination

from the glass windows would penetrate into the 3He, nitrogen events, which cannot

be removed by acceptance cuts.

For the E97-110 experiment, three sets of specially designed target collimators

were used:

∙ BRI6 - for 6∘ data with the ice cone cell (for first period).

∙ BRS6 - for 6∘ data with the standard cell (for second period).

∙ BRS9 - for 9∘ data with the standard cell (for second period).

The collimators are located upstream and downstream. The upstream collimator

blocks events from the upstream window and the downstream from the downstream

window. With the collimators in place the effective target length is approximately

cut in half. The layout and position of collimators can be found in V. Sulkosky thesis

[6].
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In addition to the target collimators, a collimator was placed around the sieve slit

to shield the septum entrance from stray events. These stray events come from the

beam line on its way toward the beam dump. The collimator around the sieve slit

was a 3 cm thick piece of tungsten.

2.7 The Polarized 3He Target

2.7.1 Introduction

3He can be considered effectively as a polarized neutron target. Free neutron has

a decay lifetime of 885.7±0.8 s [43], so a free neutron target for scattering experiment

is not practical. Two nuclear targets, deuteron and 3He, are typically used as effective

polarized neutron targets. A deuteron with spin 1 is primarily a neutron and a proton

in an S-state each with spin 1/2 alligned, with a small probability (𝑃𝐷 ∼ 5%) to find

them in D-state in which case the spins of the neutron or proton can be up or down.

The ground state wavefunction of 3He is dominated by the S state (∼ 90%). In this

state the proton spins are antiparallel due to the Pauli exclusive principle [44] and the

remaining 10% are contributions from S’ and D states. Hence, the spin 1/2 of 3He is

mostly carried by the neutron spin, making it an efficient effective neutron target.

2.7.2 How to Polarize 3He?

There are two ways to polarize a 3He target. The first one is metastability-

exchange optical pumping (MEOP) [45]. In MEOP, a RF (radio frequency) field is

applied to bring the 3He atoms from ground state (singlet state) to a metastable

state (triplet state). Metastable states of 3He are optically pumped directly and

subsequently transfer their polarization to other ground state 3He nuclei during

metastability-exchange collisions. The second method is spin exchange optical pump-

ing (SEOP) [46]. In SEOP, optical pumping is used to polarize the unpaired electron

of alkali atoms mixed with the 3He. Then polarization is transferred from the alkali

atoms to the 3He nuclei via hyperfine interaction. At JLab, we use the latter method
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to polarize 3He. The details of the SEOP method will be discussed in the next section.

Optical pumping

Optical pumping is a process in which laser light is used to polarize the electron

spins of atoms. The most popular atoms we use are alkali because they possess a single

unpaired valence electron. Rubidium and potassium are used for our case, with the

unpaired electron in 5𝑆1 state. Consider the ground state of the valence electron with

orbital angular momentum 𝐿 = 0 and spin 1/2, the total electron angular momentum

is 𝐽 = 1/2. The first excited state is the P state with 𝐿 = 1. With fine structure

interaction 𝐿⃗ · 𝑆⃗, the P state splits into the 2𝑃3/2
4 and 2𝑃1/2 states.

The 2𝑆1/2 →2 𝑃1/2 and 2𝑆1/2 →2 𝑃3/2 transitions are referred to as the D1 and

D2 lines. Let’s define the quantization axis along the direction of the magnetic field.

The ground and excited state sublevels start to split into two states with magnetic

quantum number 𝑚𝑠 = ±1/2 under an applied magnetic field see Fig. 2-85. With

absorption of circularly polarized photons (e.g. 𝜎+), electrons in the ground state

5𝑆1/2(𝑚𝑠 = −1/2) go to excited state 5𝑃1/2(𝑚𝑠 = 1/2). In the excited state two

effects occur. The first is electron decay back to the two ground states 5𝑆1/2(𝑚𝑠 =

±1/2) and the second is collisional mixing with 5𝑃1/2(𝑚𝑠 = 1/2) in the excited state.

The collision of excited electrons with buffer (nitrogen) gas mix the two sublevel of

excited states. In other words, the buffer gas randomizes the P states, thus rapidly

equalizing the sublevel populations of the excited states. If the photon helicity is

in the same direction as the main field, the electrons eventually will go to 𝑚𝐹 =

+3 state. As a result, electrons decay equally back to two ground states sublevel.

Eventually, all electrons will accumulate in the 5𝑆1/2(𝑚𝑠 = +1/2) state because this

state cannot absorb the 𝜎+ light. As mentioned, to maximize polarization efficiency,

a small amount of nitrogen buffer gas is needed. This is because electrons can go

from 5𝑃1/2 to 5𝑆1/2 with the emission of photons with the same wavelength as the
4The standard notation to describe energy levels is 2𝑆+1𝐿𝐽 .
5For optical pumping only, the applied magnetic field is not necessary as long as it is above a

certain limit (≫ 2 mG) [47] to prevent fast mixing of two ground states sublevels. For our case,
we need a magnetic field in order to keep the field homogeneous. So the noble gas polarization
relaxation can be reduced.
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laser light, but unpolarized. These unpolarized photons will decrease the pumping

efficiency. Nitrogen is a diatomic molecules, it has a variety of energy levels of rotation,

translation, and vibration and thus can absorb the energy emitted by the electron

decay. For a nitrogen density of ∼ 0.1 amg the quenching time is much smaller than

decay time, and nearly all electrons can go from excited state to ground state without

emitting a photon (quenching).
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Figure 2-8: Optical pumping of Rb by a right-handed circularly polarized laser. Figure
from Ref. [48]

The average alkali polarization is determined by the ratio of the optical pumping

rate 𝑅 and electron spin destruction rate Γ𝑆𝐷 [49]:

𝑃𝑅𝑏 =
𝑅

𝑅 + Γ𝑆𝐷

. (2.9)

The optical pumping rate 𝑅 depends on the laser photon flux per unit frequency

and the light absorption cross section. The electron spin destruction rate Γ𝑆𝐷 is

mostly due to the spin rotation interaction between Rb atoms and other atoms. The
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spin-rotation interaction, with a strength of [50]

𝐻𝑆𝑅 = 𝛾𝑁⃗ · 𝑆⃗, (2.10)

causes spin relaxation by coupling 𝑆⃗ to the rotation angular momentum 𝑁⃗ of the

alkali-metal-noble-gas pair, with 𝛾 the spin-rotation interaction coefficient.

Spin-exchange

The second step is the spin-exchange through which the polarized alkali atoms

transfer their (electron spin) polarization to the 3He nuclei. The spin-exchange process

is dominated by binary collisions. Alkali atoms interact with 3He nuclei through both

isotropic hyperfine interaction and spin-rotation interaction. The isotropic hyperfine

interaction is the one producing spin-exchange and is described by [51]:

𝐻𝐾𝑆 = 𝛼𝐾⃗ · 𝑆⃗, (2.11)

with 𝛼 is the coupling constant for Fermi-contact interaction. The hyperfine interac-

tion couples the noble-gas (3He) nuclear spin 𝐾⃗ to the alkali-metal (Rb) electronic

spin 𝑆⃗. The probability of spin-exchange, or the spin-exchange cross section, during

binary collision (for which the duration of collision is much shorter than the time

between collisions) is proportional to 𝛼2, and depends on the overlap of the alkali-

metal valence-electron wavefunction with the noble-gas nucleus. The overlap effects

between Rb and 3He cause an enhancement of the hyperfine interaction between Rb

electrons and 3He nuclei [46]. As a result the interaction is strong enough to cause

the polarization of the 3He nuclei.

In conclusion, the spin exchange is due to hyperfine interaction between the Rb

electrons and the 3He nuclei. The interaction gives rise to both a transfer of the po-

larization to 3He and a shift of the Rb Zeeman frequency due to the 3He polarization.

The later effect will be used for EPR polarimetry see Section 6.3.
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2.7.3 JLab 3He Lab Setup

The target system at JLab includes a laser/optic system, an oven, the 3He cell

and three pairs of Helmholtz coils. The cell is held at the center of the target where

the pumping chamber of the cell is mounted inside the oven that is heated to 250∘C.

Three pairs of Helmholtz coils are used to create a uniform magnetic field in three

dimensions. The magnetic field average strength is 25 G and a typical gradient in the

region occupied by the cell is 2-10 mG/cm.

Laser and optic system

The optic system is described in detail in [6] and a schematic diagram is shown in

Fig. 2-9. The divergent laser beam is focused by a lens mounted after the optical fiber.

This linearly polarized light is separated into 𝑆 and 𝑃 waves by a beam splitter. The

𝑃 wave part is reflected by a 3 inch mirror, then passes through a quarter waveplate

and becomes circularly polarized light. The 𝑆 wave part passes through a quarter

waveplate twice to make the 𝑆 wave becomes a 𝑃 wave, then it passes through another

quarter waveplate to become a circularly polarized light. The polarization handed-

ness of the light is determined by the fast and slow axes of the quarter waveplate.

These axes are oriented at an angle of 45∘ with respect to the horizontal plane.

Target cell

The target cell is a glass cell containing high pressure 3He gas with 130 - 140 micron

thick end windows. The glass walls of the cells were approximate 0.7 mm thick. The

thin glass walls were needed to reduce the radiation length of the electrons passing

through the glass at scattering angles of 6∘ or 9∘. A typical target cell of the 6 GeV

era is shown in Fig. 2-10. The cell consists of two chambers: the pumping chamber

and the target chamber. The pumping chamber is where alkali atoms be polarized.

They then transfer their polarization to 3He through spin exchange collisions. The

target chamber is where the electron beam passes through and interacts with the

polarized 3He.
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Figure 2-9: Laser optic setup (top view)[67].

Beam

Figure 2-10: A standard 40 cm long target cell used during E97-110.
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For low beam energies at 6∘, even the thin 0.7 mm walls was not sufficient to

reduce the electron’s energy loss, so a new design was developed for E97-110 that

consisted of an asymmetric cone for the downstream part of the target chamber. The

“ice cone” cell is shown in Fig. 2-11. The scattered electrons at 6∘ from the chamber

center would only traverse the end target window of 240 𝜇m thick. This cell reduces

the radiation length from the glass walls by a factor of 30. For the first period, the

“ice cone” cell was used and the standard cell was used for second period [6]. The

characteristics of the “ice cone” cells used in the first period are listed in Table 2.3.

Because the production cell contains 3He and nitrogen, one has to subtract nitro-

gen contribution to obtain that from clean 3He. Hence, reference cells are used to

subtract glass and nitrogen. The shape of the reference cell is the same as the 3He

cell, see Table 2.3. The reference cell is either vacuum or filled with nitrogen.

Beam

Scattered	Electron

6o

Figure 2-11: Top view of the “ice cone” target cell used during E97-110 (figure not to
scale).

Target Polarization

There are two polarimetries to measure the 3He polarization: Nuclear Magnetic

Resonance (NMR) and Electron Paramagnetic Resonance (EPR). Details of these

polarimetries will be discussed in Chapter 6.

44



Target Cell Type Ave. Density Entrance Center Exit
Proteus Production 7.9 amg 127 𝜇m 204 𝜇m 234 𝜇m
Proust Reference 7.0 amg 133 𝜇m 378 𝜇m 384 𝜇m

Table 2.3: Characteristics of the “ice cone” cells used in the first period of E97-110.
These cells were studied at the University of Virginia [42]. The target densities are
online values. The entrance, center, and exit stand for thickness of glass at entrance
window, center of side walls and exit window.

During experiment E97-110, both NMR and EPR measurements had been carried

out every six hours. Online target polarization was found to be (29-42)%. A careful

study to correct for field gradient produced by the septum magnet is ongoing to

extract the final target polarization [63].

2.8 Analysis Flow Chart

Fig 2-12 gives an overview of analysis procedure to extract the spin structures.

Raw counts are recorded at detector plane, these counts include a lot of information.

In order to extract only clean electron that scattered from 3He at target plane, one

needs to apply many corrections. The analysis include: correct for detector efficiency,

deadtime, optic study, acceptance study, dilution, background subtraction, and radia-

tive corrections. These steps will be discussed in detail in the next several chapters.
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Figure 2-12: Analysis flow chart for extracting cross section differences for experiment
E97-110.
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Chapter 3

Optics of HRS

In this chapter the optics of HRS will be discussed. In the last section I will show

the optic results for the defective septum magnet.

3.1 Septum Magnet

In order to reach the small angles (6∘ and 9∘) necessary for covering the low 𝑄2

domain, a septum magnet was built and inserted between the HRS and target chamber

for this experiment. The minimum angle of HRS without the septum is 12.5∘. The

main reason for the angle limitation is that the HRS cannot be moved closer to the

beamline without Q1 hitting the beam pipe. The schematic setup of the HRS with

septum is shown in Fig. 3-1. Since only one septum was available at the time of

the experiment, the left spectrometer (HRS-L) was used to detect scattered electrons

from a carbon foil target positioned downstream of the main target. Data from HRS-L

was used to monitor false asymmetries and the luminosity. Unfortunately, the septum

magnet was initially defective due to a mis-wiring of its coils. There are two periods

for this experiment: the first period had the mis-wiring problem, while in the second

period, the magnet had been fixed and was properly working. The remainder of this

thesis will only discuss data from HRS-R in the first period.
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Figure 3-1: A schematic plot of the septum magnet. To accommodate the septum,
the target was moved 80 cm upstream.

3.2 Spectrometer Optics

Spectrometer optics is used to relate the measured positions and angles of the

scattered electron at the focal plane to its kinematic variables at the scattering vertex.

The variables at scattering vertex 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 can be mapped to detected variables 𝑋𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

by the optical matrix 𝑋𝑡𝑎𝑟𝑔𝑒𝑡 ≈ 𝑀𝑋𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟. 𝑀 can be written as

𝑀 ∼ 𝑀 +𝑀2 +𝑀3 +· · ·

where 𝑀 is the first order term, and the rest are higher order terms.

In principle, optics can be obtained from field maps based on a well-known mag-

netic field. However, it would take a large effort to compute it this way. In addition,

if there is a misalignment between magnets, then it will introduce a large systematic

uncertainty to reconstructed quantities. In order to avoid these complications, sev-

eral calibration measurements are usually performed to determine the optics using

particles of known kinematics, and vertices such as by using sieve slits, multi carbon

foils or elastic scattering. Sieve slit is the name for a plate with multiple holes placed

at the HRS entrance, which can be used to determine the angular information of
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the track. Target foils at different locations along the beamline help to calibrate the

reconstructed vertex 𝑧. With elastic scattering from a foil target, scattering momenta

can be calibrated.

For a focusing spectrometer (such as HRS) with small opening angle, the matrix

for optic do not need high orders and most coefficients are zero. But this will not work

for a non-focusing spectrometer (mis-wired septum). In this section the calibration

procedure used to determine the optic matrix elements for the first period of the

experiment E97-110 is described, which is non-conventional due to the mis-wired

septum.

3.2.1 Coordinate Systems

In this section, a brief description of various coordinate systems will be presented.

For details see Ref. [54].

Target Coordinate System (TCS)

The 𝑧 axis of the TCS is defined by the line perpendicular to the central sieve slit

hole. 𝑧𝑡𝑔 points to the spectrometer. In the ideal case, the 𝑧𝑡𝑔 axis passes through

the hall center. The 𝑥𝑡𝑔 axis is parallel to the sieve slit surface and pointing vertically

down. The distance between the hall center to the midpoint of the central sieve slit

hole is defined to be the constant 𝐿 as shown in Fig. 3-2. The out-of-plane angle (𝜃𝑡𝑔

vertical angle) and the in-plane angle (𝜑𝑡𝑔 horizontal angle) with respect to the HRS’s

central ray are defined as 𝜃𝑡𝑔 = tan−1(𝑑𝑥𝑡𝑔

𝑑𝑧𝑡𝑔
) and 𝜑𝑡𝑔 = tan−1(𝑑𝑦𝑡𝑔

𝑑𝑧𝑡𝑔
) respectively, and 𝜃0

is the central angle of the spectrometer.

Focal plane Coordinate System (FCS)

The FCS is obtained by rotating the detector coordinate system around its 𝑦-axis

by an angle 𝜌, where 𝜌 is the angle between the local central ray and the 𝑧 axis of the

detector coordinate as shown in Fig. 3-3. As a result, the 𝑧 axis of the FCS rotates

as a function of the relative momentum Δ𝑝
𝑝

.
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Figure 3-2: Target coordinate system for electron scattering from a thin foil target.
The 𝑥𝑡𝑔 points into the page.

The angles at focal plane are given by 𝜃𝑓𝑝 =
𝑥𝑓𝑝

𝑧𝑓𝑝
and 𝜑𝑓𝑝 =

𝑦𝑓𝑝
𝑧𝑓𝑝

.

Zdet
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Xfp

Xdet

Figure 3-3: The focal plane (rotated) coordinate system as a function of the focal
plane position.
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3.2.2 Optimization Method

The detector and target quantities are related by the optic matrix elements. The

first order relationship between the target coordinates and the focal plane coordinates

is shown in Eq. 3.1: ⎡⎢⎢⎢⎢⎢⎢⎣
𝛿

𝜃

𝑦

𝜑

⎤⎥⎥⎥⎥⎥⎥⎦
𝑡𝑔

=

⎡⎢⎢⎢⎢⎢⎢⎣
⟨𝛿|𝑥⟩ ⟨𝛿|𝜃⟩ 0 0

⟨𝜃|𝑥⟩ ⟨𝜃|𝜃⟩ 0 0

0 0 ⟨𝑦|𝑦⟩ ⟨𝑦|𝜑⟩

0 0 ⟨𝜑|𝑦⟩ ⟨𝜑|𝜑⟩

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥

𝜃

𝑦

𝜑

⎤⎥⎥⎥⎥⎥⎥⎦
𝑓𝑝

(3.1)

The dipole spreads particles with different momenta across 𝑥𝑓𝑝. So 𝛿𝑡𝑔 is strongly

correlated with 𝑥𝑓𝑝
1. For the standard i.e without septum HRS configuration, all

the quadrupoles are focusing. For simplicity, we can ignore the dipole effect (the

spread in 𝑥𝑓𝑝 due to different momentum), then the correlation between target and

focal plane quantities can be shown in Fig. 3-4. 𝜑𝑡𝑔 is related to 𝑦𝑓𝑝 and 𝜑𝑓𝑝 and

𝜃𝑡𝑔 is related to 𝑥𝑓𝑝 and 𝜃𝑓𝑝. There is no correlation between the two angles 𝜃𝑡𝑔

and 𝜑𝑡𝑔. These relations are shown in Eq. 3.1, in which the mid-plane symmetry

of the spectrometers requires the null (zero) elements. Eq. 3.1 is the first order

approximation. For standard HRS, the second order contributions are small because

the magnets are well made and well aligned [54].

However, the addition of the mis-wired septum magnet invalidates all symmetries.

Now, all terms become necessary and appear in the matrix. Fortunately, 𝑥𝑓𝑝 still rep-

resents well the momentum. The complete relation between target variables and focal

plane variables can be described by a set of tensors. These tensors are polynomials

in 𝑥𝑓𝑝 and can be written as follows:

𝜃𝑡𝑔 =
∑︁
𝑗,𝑘,𝑙

𝑇𝑗𝑘𝑙𝜃
𝑗
𝑓𝑝𝑦

𝑘
𝑓𝑝𝜑

𝑙
𝑓𝑝,

𝑇 =
𝑚∑︁
𝑖=0

𝐶𝑖𝑥
𝑖
𝑓𝑝,

(3.2)

1𝑥𝑓𝑝 is the long side of the VDC and (+x) is pointing away from the HRS dipole.
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Figure 3-4: Simple picture of particle positions in sieve plane and detector plane.
Due to three focusing quadrupoles, particles appear in reverse order at the detector
plane in the horizontal direction. For a given HRS magnetic setting, the higher in
momentum, the larger in bending radius.

where the 𝐶𝑖 are the optics matrix elements for the target coordinate. The indices

indicate the power of the focal plane variables. The matrix elements are determined

by minimizing 𝜒2 of the calculated value and the survey actual value.

The matrix to obtain target variables from focal plane variables, i.e. Eq 3.1,

is called the Reverse Matrix. Similarly, we can obtain the Forward Matrix which

provides focal plane variables from measured target quantities. For the mis-wire

septum, we have a sieve slit hole map for each different settings. Each sieve hole

location at focal plane depends on a specific combination of target variables.

The optic data include:

∙ Five scans of the 12C elastic peak that calibrates the spectrometer momentum.

They are taken at 𝐷𝑃 ≡ 𝑃0−𝑃12𝐶

𝑃12𝐶
= −3%,−2%, 0%, 2%, 3%, with respect to

𝑃12𝐶 , the momentum of elastically scattered electrons off 12C. By changing the

spectrometer central momentum 𝑃0, the carbon elastic peak appears different

locations at the focal plane2. For a given magnetic field, the higher in momen-
2For a given momentum, the higher the magnetic field, the smaller the bending radius (negative

𝑥𝑓𝑜𝑐𝑎𝑙) and vice versa. For elastic carbon settings, suppose elastic peak for 𝐷𝑃 = 0% setting appears
at the middle of the focal plane (𝑥𝑓𝑝 ∼ 0), then a 𝐷𝑃 = −2% elastic peak will appear on positive
𝑥𝑓𝑝 and on negative 𝑥𝑓𝑝 for a 𝐷𝑃 = 2%.
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tum, the larger in bending radius. Hence, high momentum particle appear at

positive 𝑥𝑓𝑜𝑐𝑎𝑙 as shown in Fig. 3-4. For example, for setting 𝐷𝑃 = −2%, 𝑃0 is

smaller by 2% and the fraction of momentum 𝛿𝑝 = 𝑃𝑖−𝑃0

𝑃0
for the elastic peak is

positive because the momentum of a particle elastically scattered from carbon

does not change.

∙ A set of three thin 12C foils that calibrates the 𝑦𝑡𝑔 acceptance. The foil thickness

is 10 mils (254 𝜇m). Foil locations are 𝑍 = ±10 cm and 0 cm.

∙ Sieve slit collimator runs to calibrate the horizontal and vertical angles. Due to

the mis-wired septum, only the bottom two rows of the holes have understand-

able optics and are used in the analysis.

For E97-110, the sieve slit configuration is shown in Fig. 3-5. Two holes are 2.7

mm in diameter, and the remaining holes are 1.4 mm in diameter. The larger holes

are used to determine the orientation of the image at the spectrometer focal plane.

The four columns closest to the beamline are spaced 0.48 cm apart. The next columns

are spaced 0.6 cm apart. The vertical spacing between holes is 1.3 cm. Due to the

mis-wiring, only the last three rows (1, 2, 3) are visible at the focal plane, the rest

did not pass the spectrometer.

In addition to the sieve slit collimator, a set of target collimators were used to block

events coming from the target’s glass windows [6]. In previous experiments using the

polarized 3He target, analysis cuts on the reconstructed target variables (𝑦𝑡𝑔) have

been used to remove these events. However, due to the small scattering angles of

E97-110, software cuts are not reliable due to the inaccurate reconstruction of the

target variables. Hence to remove glass contamination, collimators were necessary.

3.3 Optimization Routine and Results

Due to the abnormal behavior of the septum magnet, the standard optimization

package for Hall A [54] cannot be used. In this section, I will provide the procedure

that was developed for E97-110 to perform the optics calibration.
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Figure 3-5: Geometric configuration of the sieve slit used during E97-110. Column A
is closest to the beamline.

3.3.1 Forward Matrix

The forward matrix is obtained by matching the measured focal plane quantities

to the simulated quantities transported to the focal plane using the forward optical

matrix. The optimization is done by using TMinuit [55] to get the minimum 𝜒2

𝜒2 =
𝑁∑︁
𝑖

𝑦𝑑𝑎𝑡𝑎 − 𝑦(𝑥𝑖)

𝜎𝑖

, (3.3)

where 𝑦𝑑𝑎𝑡𝑎 are the measured quantities (𝑥𝑓𝑝, 𝑦𝑓𝑝, 𝜃𝑓𝑝, 𝜑𝑓𝑝) and 𝑦(𝑥𝑖) = 𝑓(𝛿, 𝑦𝑡𝑔, 𝜃𝑡𝑔, 𝜑𝑡𝑔)

with 𝑓 the forward matrix. There is a maximum number of parameters to use for the

matrix because of the limited number of data points. In order to determine which

term to add into the transport matrix, one needs to check the relation between the

two quantities of interest. For example, in order to determine how 𝑦𝑓𝑝 depends on

𝑦𝑡𝑔, one should study the pattern of the sieve slit with different 𝑦𝑡𝑔, while other target
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quantities are fixed3. The number of optic settings limits the higher order terms that

can be added to Eq. 3.2. Data from all calibration runs, provided in Table 3.1, are

used to determine the matrix elements. There are total 175 data points. However,

only 155 data points are used to do optimization because of several reasons. The

holes in bold texts are not included in the optimization either because the hole is

not completely visible, or the bending is too strong (such as for 𝐷𝑃 = 3% case).

The forward matrix elements determined from these data are provided in Table 3.2.

Fig. 3-6 shows the focal plane quantities from data and simulation. In addition, the

mis-wired septum magnet breaks all symmetries so all terms that are necessary for

an accurate transport from sieve slit to focal plane.

Furthermore, scattered electrons from the target with the same 𝑦𝑡𝑔, 𝜑𝑡𝑔, and 𝜃𝑡𝑔

should appear at the same locations at focal plane. However, it is not the case for

this mis-wired septum, the optics is found to depend on central momentum as well.

Hence, the forward matrix need to have central momentum dependence.

3.3.2 Reverse Matrix

The target quantities (𝛿𝑝, 𝑦𝑡𝑔, 𝜃𝑡𝑔, 𝜑𝑡𝑔) can be obtained from focal plane (detec-

tor) quantities (𝑥𝑓𝑝, 𝑦𝑓𝑝, 𝜃𝑓𝑝, 𝜑𝑓𝑝) using the reverse matrix, given by Eq. 3.2. The

coefficients for each reconstructed target quantities are listed in Table 3.3.

The reconstructed 𝛿𝑝, 𝑦𝑡𝑔 are shown in Fig. 3-7 . From this, we can see that the

resolution in 𝑦𝑡𝑔 is about 10 mm. To compare, the 𝑦𝑡𝑔 resolution (FWHM) for the

second period of running of E97110 (with a properly wired septum magnet) is about

4 mm. The reconstructed angles 𝜃𝑡𝑔 and 𝜑𝑡𝑔 are shown in Fig. 3-8. The angles are

not as well reconstructed as 𝛿𝑝 because of the limited optic data. The invariant mass

𝑊 −𝑀𝐶 is also shown in Fig. 3-7, where 𝑀𝐶 is the 12C mass.

3One should choose column D (near the center), a fixed row and choose 𝛿𝑝 = 0. Because only
the first, second and a small part of third row reach the focal plane, with different choice of 𝜃𝑡𝑔, the
cross term 𝜃𝑡𝑔𝑦𝑡𝑔 can be determined.
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E(GeV) Run 𝐷𝑃 % Z (cm) Hole seen

1.1
-10 1(A,B,C,D,E,F), 2(D,E,F)

1869 -3 0 1(A,B,C,D), 2(C,D,E), 3(E,F)
+10 1(A,B,C), 2(A,B,C,D), 3(D,E)

1.1 1816 -2 0 1(A,B,C,D,E), 2(C,D,E,F), 3(E,F,G)
-10 1(A,B,C,D,E,F), 2(D,E,F,G), 3(F,G)

1.1 1866 0 0 1(A,B,C,D,E), 2(C,D,E,F), 3(E,F,G)
+10 1(A,B,C), 2(A,B,C,D), 3(D,E)

1.1 1809 2 0 1(A,C,B,D), 2(D,E,F), 3(E,F,G)
-10 1(D,E)

1.1 1863 3 0 1(B,C,D), 2E
10 1(A,B), 2(C,D)

1.5 1566 -2 -10 1(B,C,D,E,F), 2(D,E,F)
1.5 1565 0 -10 1(B,C,D,E,F), 2(D,E,F,G)
1.5 1578 2 -10 1(B,C,D,E,F), 2(E,F)

-10 1(B,C,D,E), 2(D,E,F)
2.2 2074 -3 0 1(A,B,C,D), 2(B,C,D,E)

10 1(A,B,C), 2(A,B,C,D)
-10 1(B,C,D,E,F), 2(D,E,F,G)

2.2 2071 0 0 1(A,B,C,D,E), 2(C,D,E,F)
10 1(A,B,C), 2(A,B,C,D)
-10 1(D,E), 2(E,F)

2.2 2068 3 0 1(B,C,D), 2(E)
10 1(A,B), 2(C,D)

Table 3.1: Optic data with different beam energies, momenta and foil positions.
−10, 0,+10 cm are the upstream, center and downstream foils, respectively. For each
foil the visible sieve holes are listed. The numbers correspond to row number see
Fig. 3-5. The hole label maps for run 1566 and 1578 were obtained by interpolating
from 𝐷𝑃 = 0,±3 %.

3.4 Mis-wired septum Magnet Behavior

The septum magnet is used to bend particles from a scattering angle of 6∘ ± 2∘

to 12.5∘ ± 2∘ so they can enter the HRS. During the first period, because the bottom

coil of the septum magnet worked properly while the top coil was wired with the

wrong polarity, particles were bent in the wrong (opposite) direction if they enter

the top half of septum. Fig. 3-9 shows how the magnetic field behave for two coils

with current running in the same and opposite direction. The proper configuration

on the left panel of Fig. 3-9 display a uniform field acting as a dipole that bend all
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the particles. The defective configuration on the right panel showed the configuration

with which the first period had to run with. The configuration is that of a quadrupole,

unable to properly bend all the particles toward the HRS.

3.4.1 Sieve Slit Pattern

Because of the mis-wired septum, particles that enter the top part of the septum,

which corresponds to the fifth, sixth and seventh rows of the sieve slit as shown in

Fig. 3-5, are not deflected to the HRS entrance. At the middle of the magnet (4th

row), the net field from the septum is zero, so particles entering the septum at Θ0 = 6∘

and more importantly 𝜃𝑡𝑔 = 0 felt no field at all. Only particles going through the

last three rows of the sieve slit—the first, second and the third rows—would reach the

HRS entrance. Since the distance between sieve holes is not symmetric around the

center of the sieve (column D), particles going through different holes are bent with

different strength. In addition, particles are bent upward (downward) if they are on

the left (right) side of column D as shown in Fig. 3-10. Further from the bottom row,

the effect from the top coil becomes stronger, while that from the bottom coil becomes

weaker. Consequently, most of the particles could not reach the HRS entrance. Fig. 3-

10 shows the effect of the mis-wired magnet. Columns 𝐶,𝐷,𝐸 represent different 𝜑𝑡𝑔

and 𝜑𝑡𝑔 = 0 for D. In the sideview, the red arrows represent the magnetic field

direction. The blue arrows show the force exerted on the electrons. With different

momentum settings (current settings), the bending4 is different. This is shown in two

colors: pink for low B field and light green for high B field, respectively. As shown in

the side view of entrance of HRS, the green band is bent more than the pink band.

The bands in focal plane are flipped due to the HRS quadrupoles.

3.4.2 Sieve Pattern With Different Target Positions

Table. 3.1 shows the sieve hole pattern observed for different magnet configurations

for the multifoil carbon target. The reason for the observed pattern is as follow:

4Here, the bending comes from septum magnet, not the HRS yet.

57



The magnetic field at the first row (1A through 1G in Fig. 3-11) has enough

strength, so most of these holes are seen regardless of the foil 𝑧 position. Starting

from the second row (row 2), the field strength is weaker compared with the first row,

so the bending will not be enough to bring particles to the HRS entrance. A clear

pattern can be seen from the upstream (𝑧 < 0) to the downstream (𝑧 > 0) foils: the

scattering angle from upstream is smaller compared with the downstream one, see

Fig.3-11, and thus needs stronger magnetic field to bend toward the HRS entrance,

especially for holes on the small angle edges (A, B, C). However, the field strength

is not enough so only 2D, 2E, 2F, 2G are seen. For downstream foil (𝑧 > 0), the

opposite happens: the field bending for the larger angle edge (D, E, F, G) is too large

and only 2A, 2B, 2C are seen.

The result for the forward and backward transport matrices is listed in Table 3.2

and Table 3.3, respectively. One example of 𝑥𝑓𝑝 and 𝛿𝑝 is written as follows:

𝑥𝑓𝑝 = −0.4 + 13.9𝛿𝑝− 35.2𝛿𝑝2 − 21.8𝜑𝑡𝑔 + 32.8𝜑2
𝑡𝑔 − 15.3𝑦𝑡𝑔 + 12.5𝜃𝑡𝑔 − 68.6𝜃2𝑡𝑔

+ 172.9𝑦𝑡𝑔𝜃𝑡𝑔 + 252.4𝜃𝑡𝑔𝜑𝑡𝑔 − 1.0𝑃0𝜃𝑡𝑔 + 1.52𝑃0𝜑𝑡𝑔 + 1.3𝑃0𝑦𝑡𝑔,

(3.4)

where the coefficients are from the 𝑥𝑓𝑝 column in Table 3.2, kept to one significant

figure after the decimal point.

𝛿𝑝 = 0.007 + 0.077𝑥𝑓𝑝 + 0.113𝑦𝑓𝑝 + 0.507𝜃𝑓𝑝 + 0.405𝜃𝑓𝑝𝑥𝑓𝑝 + 4.014𝜃2𝑓𝑝, (3.5)

where the coefficients are from the 𝛿𝑝 column in Table 3.3, kept to three significant

figures after the decimal point.
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Parameter 𝑥𝑓𝑝 (m) 𝑦𝑓𝑝 (m) 𝜑𝑓𝑝 (rad) 𝜃𝑓𝑝 (rad)
Offset -0.414179 -0.051197 0.039396 0.045596
𝛿𝑝 13.8555 -0.652497 -0.893291 -0.040309
𝛿𝑝2 -35.1653 - - -
𝜑 -21.7796 0.531578 1.89858 2.63222
𝜑𝛿𝑝 - -29.1303 -21.8079 -
𝜑2 32.7665 25.7656 -10.1326
𝑦 -15.2961 0.194259 1.60488 1.57033
𝑦𝛿𝑝 - -17.6567 -15.3232 -
𝑦𝜑 - 22.1518 - -
𝜃 12.4787 1.8026 -1.23964 -1.12437
𝜃2 -68.7814 -10.664 - -
𝜃𝛿𝑝 - 20.3194 29.008 -
𝜃𝑦 172.863 - - -13.0275
𝜃𝜑 252.423 -5.46078 20.8642 -31.1391
𝑃0 0.035416 0.001714 0.000741 -0.004017
𝑃0𝜃 -0.969692 -0.10275 0.057364 0.010362
𝑃0𝜑 1.51612 -0.057778 - -0.051289
𝑃0𝑦 1.29891 - - -

Input 𝜎𝑖 9 mm 0.6 mm 2.8 mrad 1.8 mrad
𝜒2 /n.d.f 2.96 5.29 1.67 1.29

# parameters 14 15 12 10

Table 3.2: Coefficients for the forward matrix. The parameters are quantities at the
target location. There are in total 51 parameters (14 for 𝑥𝑓𝑝, 15 for 𝑦𝑓𝑝, 12 for 𝜑𝑓𝑝,
10 for 𝜃𝑓𝑝). The number of data points used for optimization is 155. The input 𝜎𝑖 is
determined by choosing a single hole and applying a Gaussian fit. The terms which
are not included are not used in the optimization. 𝑃0 is central momentum of HRS.
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Figure 3-6: Experimental and simulated data at the focal plane. The forward matrix
is used in a simulation to transport particles from target to focal plane. The horizontal
axis is 𝑦𝑓𝑝 (m) for the three panels. Simulation is in black color and it is on the top of
data which are in color points. These data are from elastic carbon with sieve slit in
for setting 𝐷𝑃 = −2% and 𝑍 = 0 cm (run 1816). The labels in the figures indicate
the sieve slit holes as shown in Fig. 3-5.
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Figure 3-7: Reconstructed 𝛿𝑝 (left), 𝑦𝑡𝑔 (center) and 𝑊 −𝑀𝐶 (right). The top three
plots are data from first period for central foil (𝑧 = 0) with 𝛿𝑝 = −2% and without
sieve slit (run 1909). Focal plane limit cuts, analysis cuts (𝜃𝑡𝑔 vs 𝜑𝑡𝑔 to choose 1CD
& 2CD, PID) are applied. For comparison of resolution, the bottom three plots are
data from second period (properly wired septum) for multifoil (𝑧 = −20, 0,+10 cm)
with 𝛿𝑝 = −2% and without sieve slit (run 2401). As one can see, the resolution of
all 3 variables are poorer in first period due to mis-wired septum. Here kinematic
between two periods are not the same as one can clearly observe carbon excited state
peaks from second period.
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Figure 3-9: Magnetic field strength for two configurations: The left panel shows the
proper septum configuration used in the second period: field from 2 coils with current
running the same direction. The right panel shows the defective configuration used
during the first period: field from 2 coils with current running in opposite direction.
The configuration left creates a uniform magnetic field inside the red box (second
period). The right configuration creates a very different field (first period).
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Figure 3-10: The mis-wired septum bent particles with different scattering angle 𝜑𝑡𝑔.
Column D is at the center of the sieve slit. Top left plot shows columns C, D, E
in the target plane, 1 represents first row, 7 represents 7th row in the sieve slit as
shown in Fig. 3-5. Top right plot shows how different magnetic field strengths of the
septum make the particles arrive at different locations at the focal plane, the green
band is with high septum current, the pink band is with lower septum current. The
bottom left plot shows the top view in Hall A. The bottom middle plot shows how the
magnetic force exerted on different directions for electron on the left or on the right
of the magnet’s middle plane. As seen from Fig. 3-9, the magnetic field is pointing
at different directions for a constant 𝜃. The bottom right plot shows the side view of
the HRS entrance with differents strength of septum magnet.
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Z

Figure 3-11: Sieve slit with carbon foils at three locations (𝑧 = ±10, 0 cm). Due to
weaker magnetic field in second row, upstream (blue color foil) can be seen only D,
E, F, G and A, B, C, D for downstream (green color foil). The difference comes from
different in scattering angles. (Relative locations are not exact scale).

Parameter 𝛿𝑝 𝑦𝑡𝑔 𝜃𝑡𝑔 𝜑𝑡𝑔

Offset 0.006575 0.0015 0.038 0.0023
𝑥𝑓𝑝 0.077224 0.0056 -0.0038 -0.007
𝑦𝑓𝑝 0.112585 0.384 0.693 0.235
𝜃𝑓𝑝 0.507202 0.513 -2.269 -0.039
𝜑𝑓𝑝 – -0.395 0.041 0.410

𝜃𝑓𝑝𝑥𝑓𝑝 0.404832 – – –
𝑦𝑓𝑝𝜑𝑓𝑝 – 3.650 – -16.356
𝑦𝑓𝑝𝜃𝑓𝑝 – – 16.0
𝜃𝑓𝑝𝜑𝑓𝑝 – -16.369 – –
𝑦2𝑓𝑝 – 7.230 – -1.740
𝜃2𝑓𝑝 4.01425 – 5.575
𝜑2
𝑓𝑝 – –

# parameters 6 8 5 9

Table 3.3: Reverse matrix coefficients used to reconstruct target quantities. The
parameters are in term of focal plane quantities. The terms which are not included
are not used in the optimization.
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Chapter 4

Elastic Scattering Analysis

In this chapter the analysis of the elastic carbon, 3He, and N2 cross sections will

be discussed. Carbon elastic cross section is well-known, so it is used to calibrate the

HRS optics and acceptance. Analyzing elastic carbon data is the first step for the

cross section analysis of the experiment because the target length, target density, and

the momentum of elastically scattered electrons are well defined. Once carbon elastic

data are well-understood, elastic scattering from the extended 3He cell is analyzed to

confirm the reliability of the cross section extraction and assess the effects of extended

targets. Results presented in this chapter show that the focal-plane and target-plane

method works well in extracting cross sections from both foil and extended targets.

This method will be used to extract polarized inelastic cross sections, which constitute

the main physics results of this thesis, and will be presented in the next chapter.

4.1 Carbon Elastic Cross Section

The elastic Born cross section can in principle be extracted from data as follows:

𝜎𝐵𝑜𝑟𝑛
𝑒𝑥𝑝

𝑑Ω
=

𝑁𝑟𝑎𝑤

𝑁𝑡𝑔

× 𝑃𝑆1

𝐿𝑇 ×𝑄/𝑞 × 𝜖
× 𝑅𝐶

ΔΩ𝑔𝑒𝑜 × 𝐴𝑐𝑐
, (4.1)

where:

∙ 𝑃𝑆1 is the prescale factor for event type 𝑇1.
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∙ 𝑁𝑟𝑎𝑤 is the number of elastic events after applying detector and acceptance

cuts.

∙ 𝜖 is total efficiency including trigger, tracking and PID cut efficiencies.

∙ 𝑅𝐶 is the radiative correction factor, defined as 𝜎𝐵𝑜𝑟𝑛

𝜎𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑
.

∙ 𝐴𝑐𝑐 is the angular acceptance correction factor.

∙ ΔΩ𝑔𝑒𝑜 is the geometric solid angle.

∙ 𝑄/𝑞 is the number of beam electrons incident on the target, with 𝑞 the electron

charge 1.6× 10−19 C.

∙ 𝑁𝑡𝑔 is the number of target particles seen by the beam per unit area (target

density times target length).

The correction factors 𝑅𝐶 and 𝐴𝑐𝑐 are included in the elastic simulation [62] and

thus do not need to be corrected for. In other words, the simulation calculates the

actual experimental cross section rather than the Born one. The ΔΩ𝑔𝑒𝑜 is the actual

geometry of the distribution of detected particles at the detector plane.

4.1.1 Simulated Cross Sections

In order to obtain simulated cross sections, the same cuts as data are used. These

include cuts to define the solid angle and a cut on 𝑊 . The solid angle is determined

based on the sieve hole positions (the actual carbon cross section run is without the

sieve slit in). For this analysis, because of the imperfect transport matrices from

the mis-wired septum, the hole positions are not well-reconstructed and 𝐴𝑐𝑐 can not

be accurately determined. On the other hand, the focal plane variables agree well

between data and simulation. Therefore, a method based on the focal plane and

target variables is developed and the cross section was determined by comparing data

to a simulation.

The simulated cross section is obtained by the following steps:
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1. Using a carbon sieve slit run, a cut on the reconstructed quantities is used to

select the center of a sieve hole at the target plane. The sieve holes are identified

from the sieve position data (Fig. 3-8). This cut, applied for multiple sieve holes,

are used to defined a polygon region.

2. The phase space at the target is determined using target quantities generated by

the Monte Carlo (M.C.)’s phase space configuration (no physics event generator,

multiple scattering and photon radiations turned off). The quantities used

are the ones originally generated (not the one reconstructed). By choosing a

2D 𝜑𝑡𝑎𝑟𝑔𝑒𝑡 and 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 range (reconstructed angles), the solid angle is simply

calculated by Δ𝜃𝑜𝑟 ×Δ𝜑𝑜𝑟 (the originally generated angles). This phase space

is the solid angle one needs to use for the data.

3. The M.C. is then run with elastic event generator and photon radiations en-

abled. We count the number of events that remain inside the area defined in

step 2 and that survived a cut on the initial 𝑊 − 𝑀𝐶 (with 𝑀𝐶 the carbon

mass) distribution, i.e. before photon radiation, transport and reconstruction

are applied. We name number 𝑡𝑎𝑐𝑐.

4. Once the simulated particles are transported to the focal plane, a 2D cut on

the focal plane is applied. This 2D cut is defined by boundaries formed by 𝑦𝑓𝑝

and 𝜑𝑓𝑝 as in Fig. 3-6, which is a function of momentum 𝛿𝑝, details are listed in

A.1. The number of events that survive the cut in step 2, focal plane cut and a

cut on radiated 𝑊 −𝑀𝐶 distribution are counted. This number is named 𝑐𝑎𝑐𝑐.

We then sum the computed elastic cross section 𝜎𝑖, where 𝑖 design a surviving

event of given 𝜃, 𝜑, radiation effected 𝛿𝑝 and 𝑦𝑡𝑔, over all surviving events. The

simulated cross section is calculated as [62]:

⟨ 𝑑𝜎
𝑑Ω

⟩ =

𝑐𝑎𝑐𝑐∑︀
𝑖=1

𝜎𝑖

𝑡𝑎𝑐𝑐
. (4.2)
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4.1.2 Experimental Cross Sections

In our method, factors 𝑅𝐶 and 𝐴𝑐𝑐 are folded in the simulated cross section, and

we extract the experimental cross section as:

𝜎𝑒𝑥𝑝

𝑑Ω
=

𝑁𝑟𝑎𝑤

𝑁𝑡𝑔

× 𝑃𝑆1

𝐿𝑇 ×𝑄/𝑞 × 𝜖
× 1

ΔΩ𝑔𝑒𝑜

, (4.3)

The experimental cross section is obtained with the following steps:

1. PID cuts are applied to select electrons and single track events. The PID cuts

for Right HRS are:

∙ Gas Čerenkov:
∑︀

ADC > 350.

∙ Lead glass counters: 𝐸𝑝𝑠ℎ > 0.105 𝑝0, 𝐸𝑝𝑠ℎ + 𝐸𝑠ℎ > 0.78 𝑝0.

where
∑︀

ADC is the summed ADC signal of the gas Čerenkov detector, 𝐸𝑝𝑠ℎ

and 𝐸𝑠ℎ are respectively the energy deposited in the preshower and the shower

counters in MeV, and 𝑝0 is the HRS central momentum in MeV/c.

2. We then subtract the background (mostly coming from the 4He gas that fills the

target chamber) to obtain the pure carbon spectra, see Fig. 4-1. Data without

target were taken to determine this 4He background. Since the no-target run

(background) and carbon run (carbon plus background) are not taken in exactly

the same conditions (such as integrated current, prescaler, livetime, efficiency),

a scale factor must be applied. The scale factor applied to the 4He run is:

Scale factor =
𝑃𝑆2

𝑃𝑆1

× 𝐿𝑇1 × 𝜖1 ×𝑄1

𝐿𝑇2 × 𝜖2 ×𝑄2

, (4.4)

where 𝑃𝑆 are prescaler factors, 𝜖 denotes the total detector efficiency, 𝑄 is the

electron beam integrated charge, and subscripts 1 and 2 are for the carbon and
4He background runs, respectively. There is a difference in photon radiation

effects when subtracting 4He from carbon run 1. However, this difference is
1An electron does not lose much energy when crossing 4He compared with crossing carbon.

Hence when subtracting the two spectra, the subtraction is not perfect due to invariant mass (or
DP) distributions being slightly different.
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Figure 4-1: 𝑊−𝑀𝐶 spectrum for single carbon foil. Green is the raw carbon run (run
1899), Blue is no target (i.e mainly 4He) run (run 1898), Red is the clean carbon (Blue
subtracted from Green with appropriate scale factor) and Black is the simulation. The
width on the left side of the peak is mostly due to HRS resolution. On the right side,
the shape of the peak (tail) results from the convolution of HRS resolution and the
secondary photon emissions (Bremstrahlung). The larger the radiation length, the
bigger the tail is. The vertical axis is the yield normalized by charge, efficiency,
livetime, and prescale factor. The red dashed lines show the -0.005 < W < 0.01 GeV
cut used in the analysis. An additional scale factor was applied to have the matching
in height between two spectra.

negligible.

3. A 2D cut on the focal plane to choose event stay inside flat acceptance area.

Then another 2D cut at reconstructed 𝜃𝑡𝑔 and 𝜑𝑡𝑔 is applied as shown in Fig. 4-

2. Holes 1C, 1D, 2C & 2D are chosen for the cut because these holes appeared

for all momentum settings. Since the sieve positions are a function of 𝑦𝑡𝑔 and

momentum, the positions are different for each momentum setting. Table 4.1

lists the sieve positions that were used to obtain the cross section. In addition,

a cut on the invariant mass 𝑊 −𝑀𝑇 is added to select the elastic peak. No cut

on 𝑦𝑡𝑔 is necessary for these runs, since they are taken with a single carbon foil
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at 𝑦𝑡𝑔 = 0. We cannot analyze multifoil carbon runs because the combination

of mis-wired septum and target collimator blocks most of the events originated

from the upstream and downstream foils.
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Figure 4-2: Cut to select the (1C, 1D, 2C, 2D) area from experimental data. This
cut is applied to target reconstructed quantities (𝜑𝑡𝑔, 𝜃𝑡𝑔).

4. Cut on invariant mass 𝑊 − 𝑀𝐶 . A loose cut -0.005 < W < 0.001 GeV (red

dash lines in Fig. 4-1) is applied in order to stay away from the peak region

which is sensitive to secondary photon emissions (essentially external and in-

ternal Bremstrahlung, see Section 5.4). Besides, there is a small contribution

from nuclear excited states of carbon which is not visible in the W-spectrum

because of the wide width of the elastic peak. This contribution is estimated by

subtracting the simulated W-spectrum from the data2. The number of residual

counts provides the contribution from 12C excited state. Then we take the ratio

of this number to the total number of counts from data within the chosen W

cut (−0.005 < 𝑊 < 0.01 GeV). A W-spectrum showing both simulation and

data is provided in Fig. 4-1.

5. We then correct for the various detector inefficiencies: PID, trigger and mul-

titrack inefficiencies. The normalizations for each run used in the 12C analysis

are given in Table 4.2. The 𝑁𝑟𝑎𝑤 in Eq. 4.3 is determined at this stage.
2This method of subtraction make assumption that the normalization is good enough. It gives a

rough idea of how much the contribution from excited state is.
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Energy dp = -2 % dp = 0 % dp = 2 %
𝜑𝑡𝑔 𝜃𝑡𝑔 𝜑𝑡𝑔 𝜃𝑡𝑔 𝜑𝑡𝑔 𝜃𝑡𝑔

1.1 GeV

0.009205 0.029676 0.015501 0.033456 0.019807 0.037648
0.003033 0.030742 0.005401 0.032434 0.007751 0.034223
0.000862 0.048579 0.000550 0.044983 -0.000548 0.041738
0.006246 0.047371 0.006014 0.046525 0.006263 0.045879

1.5 GeV

0.011117 0.028855 0.015932 0.033179 0.020248 0.037331
0.003680 0.030644 0.005756 0.032312 0.008377 0.034021
0.001050 0.048253 0.000511 0.044675 -0.000584 0.041518
0.006548 0.046910 0.006307 0.046004 0.006090 0.045286

2.2 GeV

0.016110 0.032375
0.006620 0.031878
0.000885 0.044495
0.007051 0.045268

Table 4.1: Experimental sieve slit hole centers from reconstructed 𝜃𝑡𝑔 (rad) and 𝜑𝑡𝑔

(rad) for three beam energies for which the elastic reaction was measured (only large
𝑊 data was taken at 𝐸 = 3.3 GeV). For 2.2 GeV, only dp=0 % is available. These
boundaries are used in simulation and data for elastic carbon analysis. For each
setting, the sieve hole center position is given in 𝜑 and 𝜃. They correspond to (from
top to bottom) 2C, 2D, 1D, 1C.

Target (run #) PS LT Q [𝜇C] 𝜖𝑃𝐼𝐷 𝜖𝑚𝑢𝑙𝑡𝑖𝑡𝑟𝑎𝑐𝑘 𝜖𝑡𝑟𝑖𝑔𝑔𝑒𝑟
Carbon (1899) 100 0.996 1575.9 0.98 0.749 0.9994
4He (1898) 25 0.996 758.2 0.98 0.927 0.9986

Table 4.2: Normalization factors for elastic carbon target and 4He (no-target) runs.

6. 𝑁𝑡𝑔 = 𝜌12𝐶 × 𝐿 where 𝜌12𝐶 = 1.933 g/cm3 is carbon density and 𝐿 = 0.0254±

0.000508 cm is the carbon thickness.

7. Finally, the counts should be normalized to the geometrical solid angle ΔΩ𝑔𝑒𝑜.

It is determined either from the sieve survey (area of sieve holes from the above

cut), or it can be determined from the simulation. For run 1899 with four

holes (1C, 1D, 2C, 2D), solid angle ΔΩsieve survey = 98.9 × 10−6 sr from survey

information [56] and ΔΩ𝑠𝑖𝑚 = Δ𝜃𝑜𝑟×Δ𝜑𝑜𝑟 = 90.0×10−6 sr from the simulation.

The latter is used in calculating the experimental cross section. The difference in

the solid angles between survey and simulation is due to the forward and reverse

transport matrices, and will be taken into account as part of the uncertainties.

In addition, the HRS+defective septum resolution is determined from carbon spec-
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trum. The 1.5 GeV setting was taken at the beginning of the running period, hence

the amount of ice is smaller compare to the rest (the subject of ice building up will be

discussed in next section). Consequently, the HRS+septum resolution for this energy

setting is better, 𝛿𝑝/𝑝 = 2.8 × 10−4. For 1.1 and 2.2 GeV, 𝛿𝑝/𝑝 = 4.0 × 10−4 due

to more ice accumulating on the surface of the insulating polystyrene foam. These

numbers will be used for other different targets.

4.1.3 12C Cross Section Uncertainties

The following section lists all the systematic uncertainties for experimental and

simulated carbon elastic cross section analysis.

Experimental Data

∙ Statistic: < 1%.

∙ Beam current: 2%. The uncertainty on the beam current in Hall A is typically

∼ 1% [39]. However, since the E97110 runs were usually conducted at smaller

than usual beam current (1 or few 𝜇A) due to high rates, we use 2% as our

uncertainty.

∙ Target length, density: 2% [56].

∙ VDC efficiency: < 3%3. VDC multitrack efficiency is studied in [57]. The

upper limit of systematic uncertainty of VDC efficiency is given by the VDC

inefficiency.

∙ Acceptance: 0%. In this document, only single carbon foil results are stud-

ied within the very small solid angle defined in Table 4.1 (see also Fig. 4-2).

Furthermore, the elastic peak is at |𝛿𝑝| ≤ 2%. Therefore we assumed that the

acceptance is well-defined.

∙ Solid angle: 6%. This uncertainty comes from how well we determine the sieve

center, typically Δ𝜑 = 6.0± 0.2 mrad, Δ𝜃 = 16.6± 0.4 mrad.
3Some elastic runs have low efficiency. On average 𝜖𝑉 𝐷𝐶 ≈ 1-2%.
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All these uncertainties are uncorrelated and can therefore be added in quadrature.

The resulting total systematic uncertainty in the extracted experimental cross section

is about 8%.

Simulation

∙ Transport functions: 10%. The solid angle used in the experimental cross sec-

tion does not perfectly match with the sieve survey solid angle as mentioned in

step 6 of the procedure of obtaining the experimental cross section. This is due

to the imperfect transport functions (both forward and backward).

∙ Beam energy: ±0.5 MeV (< 1%).

∙ Ice thickness: 10± 3 mm (∼ 6%). During the experiment, ice from air humid-

ity built up on the surface of the polystyrene foam that thermally isolated the

septum bore from the target chamber. The precise amount of ice is unknown

and it was scrapper off periodically during the experiment. The ice thickness

is estimated by comparing the radiative tail of 𝑊 −𝑀𝐶 spectra of the carbon

elastic peak between data and simulation. Ice thickness uncertainty from the

second period is typically 1.5 mm [61]. However, this number cannot be deter-

mined exactly for the first period due to non-perfect transport, and we double

the typical 1.5 mm uncertainty.

∙ Spectrometer angle: 5.91∘ ± 0.04∘ (∼ 3% in cross section) [56].

Like for experimental uncertainties, these error are essentially uncorrelated and can

thus be added quadratically. Total systematic uncertainty for the expected cross

section from simulation is about 12%.

4.1.4 12C Elastic Cross Section Results

Table 4.3 shows simulated and experimental cross sections for all the three beam

energies (1.1, 1.5 and 2.2 GeV) for which the elastic reaction was measured, and

three HRS momentum settings. They agree within uncertainties. This gives us the
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confidence that the focal-plane and target based cross section extraction method

works well, at least for the single foil data presented so far.

Energy /
DP

Run HRS Mo-
mentum
Resolution

Cor % 𝜎𝑠𝑖𝑚 (𝜇𝑏) 𝜎𝑑𝑎𝑡𝑎 (𝜇𝑏) Rel. dif. %

1.1 GeV (syst ± 13%) (syst ± 8%)
Dp = -2% 1909 5.0× 10−4 2 5046 4639 8%
Dp = 0% 1899 4.0× 10−4 1 5258 5164 2%
Dp = 2% 1889 4.0× 10−4 0 5293 5576 -5%
1.5 GeV
Dp = -2% 1636 2.8× 10−4 5 1658 1640 2%
Dp = 0% 1603 2.8× 10−4 5 1719 1649 4%
Dp = 2% 1599 2.8× 10−4 5 1725 1825 -6%
2.2 GeV
Dp = 0% 2078 3.0× 10−4 18 106 103 3%

Table 4.3: Comparison of cross sections from simulation (𝜎𝑠𝑖𝑚) and experimental
(𝜎𝑑𝑎𝑡𝑎) for a single carbon foil at 𝑧 = 0 with three different beam energies and dif-
ferent central HRS momentum setting (DP). The cuts on W are the same for all
setting: −0.005 < 𝑊 < 0.01 GeV both on simulation and data. The third column
is the HRS momentum resolution. The fourth column (Cor %) is the correction due
to contribution from 12C excited states. The last column is the relative difference:
Rel. Dif. = 𝜎𝑠𝑖𝑚−𝜎𝑑𝑎𝑡𝑎

𝜎𝑠𝑖𝑚
. The ice thickness is 8 mm, 15 mm, and 20 mm for 1.5, 1.1,

and 2.2 GeV, respectively.

4.2 Elastic 3He and N2 Cross Sections

The procedure to extract cross sections of 3He and N2 elastic scattering is the

same as carbon. The reason we analyzed N2 elastic cross section is to verify with a

number of nucleus than 3He that our analysis method worked. Beside this important

check, the N2 cross section is not used in the main analysis. However, applied analysis

cuts will be different due to the extended length of 3He and N2 target cells. There

will be no cut on the target length due to poorly reconstructed 𝑦𝑡𝑔.
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4.2.1 Simulated Cross Sections

The simulated cross section for an extended target is obtained by the following

steps:

1. Simulate elastic 3He or N2 cross section with target length of 34.3 cm (specific

target collimator configurations can be found in [6]). This is the total length

of ice cone cell (see Section 2.7 and Fig. 2-11) with its windows positioned at

15.04 cm downstream and 19.25 cm upstream.

2. Generate with the MC elastic events for extended target with sieve slit and

target collimators. Choose an optimal region in 𝜃𝑡𝑔 versus 𝜑𝑡𝑔 plane, analysis

cuts are based on this region. These cuts will be used in experimental cross

section extraction as well. The boundaries for these cuts are shown in Table 4.4.

In the 12C elastic analysis, we chose 2D cut on (𝜃𝑡𝑔 vs 𝜑𝑡𝑔) from selected sieve slit

hole centers from experimental data. For the 3He and the N2 elastic analysis,

we chose the optimal area that as large as possible and still cover enough events

inside. This area is determined from simulation with extended target and sieve

slit on configuration.

3. The rest is the same as step 2 through step 4 of the section discussing simulating

the elastic cross section of the carbon analysis.

4.2.2 Experimental Cross Sections

The experimental cross section is obtained the same way as for the elastic carbon

analysis:

1. We subtract the background (contributions from cell glass windows, two-step

process and nitrogen gas inside 3He) to obtain pure 3He. There are three types

of runs for one kinematic setting: empty cell (the reference cell with vacuum

inside), reference run (the reference cell filled with nitrogen gas) and production
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Energy dp = -2 % dp = 0 % dp = 2 %
𝜑𝑡𝑔 𝜃𝑡𝑔 𝜑𝑡𝑔 𝜃𝑡𝑔 𝜑𝑡𝑔 𝜃𝑡𝑔

1.1 GeV

0.012291 0.044039 0.012683 0.045982 0.014483 0.048538
0.005598 0.028701 0.009747 0.031564 0.015540 0.035245
-0.002779 0.037188 -0.004306 0.035552 -0.006733 0.033252
0.001253 0.050992 0.001018 0.047413 -0.000313 0.043272

1.5 GeV

0.012242 0.045219
0.009795 0.031545
-0.003938 0.035355
0.001086 0.046733

2.2 GeV

0.013583 0.044397
0.010217 0.031207
-0.003288 0.035808
0.000470 0.046288

Table 4.4: Boundaries in the reconstructed 𝜃𝑡𝑔 (rad) and 𝜑𝑡𝑔 (rad) for three beam
energies. These boundaries are cuts applied on elastic extended target (3He and N2)
analysis. For each setting, the four points from top to bottom correspond to sieve
holes 2C, 2D, 1D, 1C, respectively.

run (3He cell). At first, we subtract the empty cell run (after proper normal-

ization) from nitrogen cell run, which gives the yield from pure nitrogen. Then

we subtract this pure nitrogen yield from the production run after applying a

scaling factor that accounts for the difference between nitrogen density inside

the reference cell and the nitrogen density inside the 3He cell.

2. The number of target 3He is given by 𝑁𝑡𝑔 = 𝜌3𝐻𝑒 × 𝐿 where 𝜌 = 7.9 amg and

𝐿 = 34.3 cm. There is no analysis cut on 𝑦𝑡𝑔 (there are hardware cuts provided

by the target collimators [6]).

3. The rest is the same as steps 1 and 3 through 7 in extracting the experimental

cross section from elastic carbon.

In Table 4.5, estimates of the systematic uncertainties on the unpolarized 3He

elastic cross sections are given. The uncertainty on the target density is from pre-

liminary online result and will be improved with further study [63]. The uncertainty

from the acceptance is from carbon elastic cross section results.
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Source Systematic Uncertainty
Target density < 5%

Carbon normalization uncertainty 8%
𝛿𝜎exp/𝜎exp 10%

Table 4.5: Experimental 3He unpolarized elastic cross section systematic uncertainty.
Carbon normalization uncertainty come from the carbon elastic cross section study,
≈ 8% disagreement between measured cross section and simulated cross section.

4.2.3 N2 and 3He Cross Section Results

Cross section results for 3He and N2 targets for the three beam energies are shown

in Table 4.6 and Table 4.7. The results agree within their uncertainties. These results

on two different nuclei and different beam energies and HRS central momentum, com-

bined with elastic carbon results, give us the confidence that our transport matrix and

the cross section extraction method based on focal plane plane and target plane vari-

ables works well for both foil and extended length targets. The disagreement between

experimental and simulated 12C elastic cross section is possibly caused by sources such

as: the imperfect transport function, the assumption of angular, momentum and 𝑦𝑡𝑔

acceptances are 100% within the analysis cut.

Energy / DP 3He Run
Number

𝜎𝑠𝑖𝑚 (nb/sr) 𝜎𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 (nb/sr) %

1.1 GeV
Dp = -2% 1913 188222 170084 10
Dp = 0% 1904 185285 184956 1
Dp = 2% 1897 190517 200949 -5
1.5 GeV
Dp = 0% 1609 76864 75289 2
2.2 GeV
Dp = 0% 2087 10147 10314 -2

Table 4.6: Comparison of simulated and experimental cross sections for elastic scat-
tering off 3He. At high energy, quasi-elastic contribution can’t be neglected and an
8% correction is applied to the 2.2 GeV cross section result.
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Energy / DP N2 Run 𝜎𝑠𝑖𝑚 (𝜇b/sr) 𝜎𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 (𝜇b/sr) %
1.1 GeV
Dp = 0% 1903 1416 1465 -3
Dp = 2% 1894 1455 1544 -6
1.5 GeV
Dp = 0% 1608 414.5 412.6 1
2.2 GeV
Dp = 0% 2082 17.247 16.801 3

Table 4.7: Comparison of simulated and experimental cross sections for elastic scat-
tering off N2 target.

4.3 Elastic 3He Asymmetry

Elastic scattering asymmetry results for the first period were extracted with the

target polarized longitudinally (either 0∘ or 180∘ with respect to the beamline). There

are three beam energy settings: 1.1, 1.5, and 2.2 GeV. A cut on 𝜈 as shown in the

fourth column in Table 4.8 was used to select elastic peak. Quasi-elastic dilution

is not corrected but the contribution should be small. These results are shown in

Table 4.8, and Fig 4-3 and Fig 4-4. Each data point is the average of all runs for that

particular setting of beam energy, target spin direction and beam IHWP status.

Run 𝐴𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐴𝑑𝑎𝑡𝑎 ± (𝑠𝑡𝑎𝑡)± (𝑠𝑦𝑠𝑡) 𝜈 cut (MeV)
1904 0.007040 0.012177 ± 0.002383 ± 0.001461 ≤ 10
1906 -0.007040 -0.010379 ± 0.002453 ± 0.001245 ≤ 10
1610 0.009378 0.009761 ± 0.001542 ± 0.001171 ≤ 10
1620 -0.009378 -0.012681 ± 0.001549 ± 0.001522 ≤ 10
1625 0.009378 0.008496 ± 0.001696 ± 0.001020 ≤ 10
1634 -0.009378 -0.009138 ± 0.001892 ± 0.001097 ≤ 10
2086 0.013434 0.018370 ± 0.004189 ± 0.002204 ≤ 20
2092 -0.013434 -0.007325 ±0.004397± 0.000879 ≤ 20
2096 0.013434 0.022969 ± 0.006264± 0.002756 ≤ 20
2099 -0.013434 -0.010613± 0.005998 ± 0.001274 ≤ 20

Table 4.8: Elastic 3He asymmetry for three beam energies.
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Figure 4-3: Elastic longitudinal asymmetry for 1.1 and 1.5 GeV. Error bars are sta-
tistical uncertainties. Red squares are experimental asymmetry, black squares are
simulated asymmetry.
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Figure 4-4: Elastic longitudinal asymmetry for 2.2 GeV. Error bars are statistical
uncertainties. Red squares are experimental asymmetry, black squares are simulated
asymmetry.
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Chapter 5

Production Data Analysis, Results

and Conclusions

To fulfill the physics goal of experiment E97110, asymmetries and cross sections

were measured for polarized inelastic electron scattering from polarized 3He. In this

chapter the analysis of these data, preliminary results for inelastic 3He asymmetries,

unpolarized cross sections and polarized cross sections are presented. The only input

to these results that is not final is the target polarimetry, and radiative corrections.

Once the polarimetry is final, cross section results presented here will be updated and

be used to form the GDH and other moments. During the run of E97-110, it was

clear that the defective septum would complicate the analysis and restrict significantly

the statistical precision of the data, since only a small area of the acceptance could

be used. Hence it was decided for the first period to only measure moments with

enough statistical precision. The 𝑔1, 𝑔2 and 𝜎𝑇𝑇 measurement presented here were

not intended to be precisely measured.

5.1 Detector Efficiencies

For cross section analysis, efficiencies of detectors must be well controlled. Since

this work is generic, it will be applied not only to the elastic analysis but also to the

production analysis. In efficiency studies, detector cuts are optimized such that one
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can distinguish good electrons from background events. These background events

mostly come from negative charged pions and low-energy electrons. The detector

cuts involve VDCs, scintillators, Cherenkov and the total shower calorimeter. Since

detector efficiencies are in principle helicity independent, they should not affect the

asymmetry analysis.

5.1.1 VDC Efficiency

The VDC efficiency is defined as [57]:

𝜖 =
𝑁𝑔𝑜𝑜𝑑

𝑁𝑡𝑜𝑡

, (5.1)

where 𝑁𝑡𝑜𝑡 is the total number of events that survive the acceptance and PID cuts

(sample events), and 𝑁𝑔𝑜𝑜𝑑 is the number of events with a successful track reconstruc-

tion that is verified its consistency with the lead glass calorimeter signal location.

PID cuts used here in 𝑁𝑡𝑜𝑡 are the combination of Cherenkov and lead glass cuts and

do not contain any tracking information.

For the analysis, only events from main trigger (T1 events see the next section)

are kept. For E97110, the total rate was typically between 4 kHz and 250 kHz, which

resulted for the latter in a large number of events having multiple tracks for some

kinematics. This occurred especially for elastic and quasi-elastic kinematics as well as

for nitrogen data (a small amount of nitrogen was added to 3He target, see Chapter 6),

and has to be corrected due to detector inefficiency in counting good electrons at high

rates. The VDC multi-track efficiency for E97110 was done by J. Liu [57]. Fig. 5-1

shows the VDC efficiency correction applied to both cross section and asymmetry

analyses.

5.1.2 Scintillator Efficiency

The Right HRS contains two plastic scintillator planes (S1 and S2) separated by

2 𝑚. They trigger the data acquisition [6]. Two trigger types, 𝑇1 and 𝑇2, were used

during the experiment. 𝑇1 is formed if there are signals in both 𝑆1 and 𝑆2 and if
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Figure 5-1: RHRS VDC efficiency vs run number for first period. Different colors
represent different beam energies. Here only 3He target runs are plotted. The first
several data points for each energy are quasi-elastic runs, which high rates explain
their lower VDC efficiency. Elastic runs are not listed.

the particle trajectory has a very small angle with respect to the central ray of the

spectrometer. 𝑇2 is formed if there are signals either in both 𝑆1 and Čerenkov but

not 𝑆2, or in both 𝑆2 and Čerenkov but not 𝑆1. The 𝑇2 type is often from either

cosmic ray events, or particles rescattered off the edge of the acceptance. Only main

trigger events 𝑇1 are used in the analysis, whereas secondary triggers 𝑇2 are used to

determine the trigger efficiency. The trigger or scintillator efficiency is given by

𝜖𝑡𝑟𝑖𝑔 =
𝑇1

𝑇1 + 𝑇2

. (5.2)

In most case, the scintillator efficiency is greater than 99% as shown in Fig. 5-2

and excluding the 𝑇2 events has a negligible impact. However, there are two run

with low trigger efficiency: run 1923 and run 1930 which have efficiencies close to

98%. There were about twenty other runs which exhibits similar efficiency, see Table

5.1. All runs are in the quasi-elastic region (momentum setting 𝐷𝑃 = 10%) and the

higher quasi-elastic rate, explains the lower the trigger efficiency.
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Figure 5-2: Scintillator (or 𝑇1 trigger) efficiency vs run number for the first period
data.

Runs Beam energy (GeV) 𝑃0 (GeV) DP (%)
1921, 1923, 1930, 1931, 1939, 1949-1953, 1.148 1.068 10
1955, 1956, 1958-1964, 1966-1968
1642 1.542 1.418 9
2105, 2106, 2108-2113, 2115, 2116 2.237 2.071 8

Table 5.1: List of runs with 𝜖𝑡𝑟𝑖𝑔 < 98%. All are quasi-elastic runs with high rate and
thus lower efficiency.

5.1.3 Charge Asymmetry

Each production run is different in conditions such as charge asymmetry, liveime,

etc. The beam charge asymmetry is due to a difference between the helicities H+ and

H- gated beam charges 𝑄+ and 𝑄−, where 𝑄+ and 𝑄− are the accumulated charges

for + and − helicity states, respectively.

After applying the corresponding charge and livetime corrections to our measured

asymmetries, we can obtain physics asymmetries which should be independent from

charge and livetime asymmetries. The charge asymmetry is defined as

𝐴𝑄 =
𝑄+ −𝑄−

𝑄+ +𝑄− , (5.3)
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Figure 5-3: Charge asymmetry for first period, calculated using the ×3 gain BCM-
scalers. Each panel corresponds to a different beam energies.

The charge asymmetry for production runs on polarized 3He is shown in Fig 5-3.

Most of the time, the charge asymmetry is small, within 200 ppm [58]. For some

runs, however, beam trips create a large 𝐴𝑄.

5.1.4 Livetime Correction

A large livetime (1 - deadtime) asymmetry can be caused by a large physics asym-

metry, a large charge asymmetry, high deadtime or/and a high DAQ rate. Usually,

the deadtime should be kept below 20% and the DAQ rate around 4kHz (these con-

ditions are for the 6 GeV DAQ setup used for E97-110). The livetime asymmetry is

calculated as the following:
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𝐴𝐿𝑇 =
𝑁+

𝑎𝑐𝑐

𝑁+ − 𝑁−
𝑎𝑐𝑐

𝑁−

𝑁+
𝑎𝑐𝑐

𝑁+ + 𝑁−
𝑎𝑐𝑐

𝑁−

, (5.4)

where 𝑁𝑎𝑐𝑐 is the number of accepted triggers for each helicity, and 𝑁 is the number

of total triggers for each helicity. Fig. 5-4 shows livetime asymmetries for four beam

energies. In this analysis, both 𝑁𝑎𝑐𝑐 and 𝑁 are from the T1 trigger.
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Figure 5-4: Livetime asymmetry for the first E97110 run period with different beam
energies. The solid diamonds are for runs in which the target and beam polarizations
are parallel to each other. Open diamonds are for the perpendicular case.

5.1.5 Dilutions

In the following section, I will discussed dilution analysis which is relevant only

for 3He runs (except for cross section difference analysis), but not for carbon analysis.
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Ideally the experiment yield is contributed purely from the electron scattering

off the 3He target. However, contaminations from the nitrogen gas and the glass

cell walls cannot be simply separated from the reaction channel of interest, i.e. the

inclusive scattering of 3H⃗e(𝑒⃗, 𝑒′). The raw asymmetries measured in the experiment

can be expressed as:

𝐴𝑟𝑎𝑤 =
1

2

Δ𝑌 (3He) + Δ𝑌 (N2) + Δ𝑌 (glass)
𝑌 (3He) + 𝑌 (N2) + 𝑌 (glass)

, (5.5)

with Δ𝑌 = 𝑌 +−𝑌 − and 𝑌 = 𝑌 ++𝑌 −

2
where 𝑌 ± are yield with ± helicity from different

materials in the experimental runs. The unpolarized yield difference Δ𝑌 (N2) = 0

and Δ𝑌 (glass) = 0, so these contaminations only dilute the real asymmetry value

rather than adding unwanted asymmetry. Therefore, a dilution factor is introduced

to correct this effect.

Nitrogen dilution for the elastic reaction

To estimate the dilution caused by the ≈1% unpolarized N2 mixed in the 3He cell,

data were taken on a reference cell filled with N2. The N2 dilution factor 𝑓𝑁2 [67] is

given by:

1− 𝑓𝑁2 =
𝑌𝑁2

𝑌3𝐻𝑒

=
𝜎𝑁2

𝜎3𝐻𝑒

𝑛𝑁2

𝑛3𝐻𝑒

, (5.6)

where 𝑌𝑁2 (𝑌3𝐻𝑒) is the N2 (3He) yield1, 𝜎3𝐻𝑒 is the 3He cross section from the polarized
3He cell data, 𝜎𝑁2 is the N2 cross section from reference cell N2 data, and 𝑛𝑁2 (𝑛3𝐻𝑒)

is the N2 (3He) density inside the polarized 3He cell under running conditions. Since

temperature affects both N2 and 3He densities of the cell in the same way, one can use

fill density measurement results for 3He (performed at room temperature) and the N2

fill density measured when the cell was filled (also given at room temperature). The

cross sections 𝜎3𝐻𝑒 and 𝜎𝑁2 are obtained from data with exactly the same acceptance,

cut in 𝑊3𝐻𝑒 (the invariant mass calculated from Eq. 1.3 using 𝑀 = 𝑀3𝐻𝑒), and PID

cuts.

1Yield = 𝑃𝑆1×𝑁
𝐿𝑇×𝑄×𝜖 , where 𝑃𝑆1 is the prescaler factor for trigger 𝑇1, 𝑁 is number of event, 𝐿𝑇 is

livetime, 𝑄 is charge, 𝜖 is the total efficiency.
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Runs psig atm 𝜎𝑀𝐶
𝑁 (nb) Yieldcor

2081 29 2.973 17519 650.55
2082 73 5.967 17114 1234.58
2083 110 8.485 16753 1767.52
2085 147 11.003 16437 2284.16

Table 5.2: List of nitrogen runs for pressure curve study. The reference cell was filled
with nitrogen at different pressures. The second and third columns are pressure at
different unit. The fourth column is simulated nitrogen cross section. And the last
column is the corrected nitrogen yield.

There are two methods to determine 𝑛𝑁2 from elastic data. The first method

compares the N2 elastic peaks measured from the reference cell and the polarized

target cell. The second method uses reference cell runs in which the pressure of the

nitrogen filling the reference cell was varied and that provide the N2 pressure versus

its yields [59]. This so-called pressure curve and the nitrogen elastic peak in the

polarized target cell to determine 𝑛𝑁2 . Using the pressure curve, it was determined

that the N2 pressure in cell Proteus is 0.122 atm at 320 K, shown in Fig 5-5, which

is equivalent to 𝑛𝑁2 = 0.104± 0.002 amg2 at 273 K. The filling density of Proteus is

0.0914 amg. The two results differ by 15%, which agree within the fit uncertainty,

the statistic uncertainty, and the pressure uncertainty.

Table 5.2 shows list of runs and filled pressure for each run.

Nitrogen dilution for inelastic kinematics

The inelastic N2 dilution factor is defined as:

𝑓𝑁2 = 1− 𝑌𝑁2 − 𝑌𝑒𝑚𝑝𝑡𝑦

𝑌3𝐻𝑒 − 𝑌𝑒𝑚𝑝𝑡𝑦

× 𝑛𝑝𝑜𝑙

𝑛𝑟𝑒𝑓

(5.7)

where 𝑌𝑁2 , 𝑌𝑒𝑚𝑝𝑡𝑦, and 𝑌3𝐻𝑒 are yields from the nitrogen reference cell, empty cell

and polarized 3He cells respectively. The nitrogen densities in the polarized 3He cell,

and reference cell are given by 𝑛𝑝𝑜𝑙 and 𝑛𝑟𝑒𝑓 . The use of empty cell eliminates the

contribution from cell glass windows.
2An amagat is a practical unit of number density. It is defined as the number of ideal gas

molecules per unit volume at 1 atm and 0∘.
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Figure 5-5: N2 pressure curve. The triangle data are results from the nitrogen refer-
ence cell filled at different pressures. The circle data is the N2 elastic yield from cell
Proteus at 320 K. Each data point has an uncertainty in pressure of 0.1 atm, which
can be significant for low pressure runs. The pressure is molecule pressure. The red
line is a fit through the triangle data, 𝑃 (𝑎𝑡𝑚) = (0.004841 ± 4.9 × 10−5)𝑌 𝑖𝑒𝑙𝑑 +
(−0.06088± 0.07805).

Fig. 5-6 shows the nitrogen dilution factors for the four beam energies at 6∘. The

dilution factors were found to be between 0.45 and 0.91. This result depends on cuts,

and because we will use dilution factor in asymmetry, so the cuts are the same as

asymmetry cuts.

Since collimators were used to remove the target windows from the acceptance,

the dilution from the glass contamination should be small. However, due to a two

step process3, the contamination from the glass actually increases significantly with

decreasing spectrometer momenta. The dilution factor from the glass is defined as

follows:

𝑓𝑔𝑙𝑎𝑠𝑠 = 1− 𝑌𝑒𝑚𝑝𝑡𝑦

𝑌3𝐻𝑒 − (𝑌𝑁2 − 𝑌𝑒𝑚𝑝𝑡𝑦)
𝑛𝑝𝑜𝑙

𝑛𝑟𝑒𝑓

. (5.8)

3Electron from the primary beam scatter off the beryllium entrance window then rescatters off
the glass wall of the target cell [60].
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Figure 5-6: Nitrogen dilution factors for the first period.

Fig. 5-7 shows the contamination from the glass.
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Figure 5-7: Glass dilution factors for the first period.
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5.2 Asymmetry Results

5.2.1 Extraction of Experimental Asymmetry

The longitudinal and transverse physics asymmetries are defined by taking the

ratio of the difference in polarized cross sections to their sum:

𝐴‖ =
𝑑2𝜎↓⇑

𝑑𝐸′𝑑Ω
− 𝑑2𝜎↑⇑

𝑑𝐸′𝑑Ω
𝑑2𝜎↓⇑

𝑑𝐸′𝑑Ω
+ 𝑑2𝜎↑⇑

𝑑𝐸′𝑑Ω

, (5.9)

and

𝐴⊥ =
𝑑2𝜎↓⇒

𝑑𝐸′𝑑Ω
− 𝑑2𝜎↑⇒

𝑑𝐸′𝑑Ω
𝑑2𝜎↓⇒

𝑑𝐸′𝑑Ω
+ 𝑑2𝜎↑⇒

𝑑𝐸′𝑑Ω

, (5.10)

where ↑ and ↓ refer to the electron spin, pointing either parallel or anti-parallel

to the beamline, and ⇑ designates that the target is polarized along the electron

beam direction. For the transverse 𝐴⊥ case, ⇒ indicates that the target is polarized

perpendicular to the beamline.

From data the raw asymmetries are calculated from the number of events within

the chosen acceptance and detector cuts:

𝐴𝑟𝑎𝑤 =

𝑁+

𝐿𝑇+𝑄+ − 𝑁−

𝐿𝑇−𝑄−

𝑁+

𝐿𝑇+𝑄+ + 𝑁−

𝐿𝑇−𝑄−

, (5.11)

where 𝑁±, 𝑄±, and 𝐿𝑇± are the number of accepted events, the total charge and the

correction for the computer deadtime. The ± refers to the electron beam helicity.

The physics asymmetries are then calculated from the raw experimental asymme-

tries using:

𝐴𝑒𝑥𝑝
‖,⊥ = ±

𝐴𝑟𝑎𝑤
‖,⊥

𝑓𝑃𝑡𝑃𝑏

, (5.12)

where 𝑓 is the dilution factor (see Section 5.1.5), and 𝑃𝑏 and 𝑃𝑡 are the beam and

target polarizations, respectively. The sign on the right hand side of Eq. 5.12 depends

on the configuration of the insertable beam half-wave plate (IHWP) and the target

spin direction.
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5.2.2 Asymmetry Sign Convention

The sign on the right hand side of Eq. 5.11 depends on the configuration of the

IHWP and the target spin direction. The status of the IHWP is either ‘IN’ if it is

inserted or ‘OUT’ if not. For each polarized 3He run, the sign should be multiplied by

-1 if the IHWP is ‘OUT’, and +1 if IHWP is ‘IN’ for 2.2 and 3.3 GeV, and opposite

for 1.1 and 1.5 GeV. The target polarization sign depends on the direction that the

target spin is pointing. With the 3He target setup, in particular that of laser system,

there are four possible target orientations: 0∘, 90∘, 180∘ and 270∘. For experiment

E97110, the 90∘ configuration was not used because its configuration entails lower

polarization. Hence, we obtain the following sign convention for target polarization

[6]:

∙ 0∘: longitudinal field points toward the Hall A beam dump, target spin = -1.

∙ 180∘: longitudinal field points toward the Møller polarimeter, target spin = +1.

∙ 270∘: transverse field points toward L-HRS, target spin = +1.

For example, for longitudinal configuration, the sign on the R-HRS of Eq 5.12 is

the product of the sign of the beam IHWP and the target polarization. 𝑠𝑖𝑔𝑛 = +1 if

(IHWP, target) = (OUT, 0∘) or (IN, 180∘) and 𝑠𝑖𝑔𝑛 = −1 if (IHWP, target) = (IN,

0∘) or (OUT, 180∘).

5.2.3 Inelastic 3He Asymmetry Results

Results for the physics asymmetry without radiative corrections are shown in Fig-

ure 5-8 versus the invariant mass 𝑊 4. The parallel configuration is represented with

red squares and the perpendicular with black squares. The error bars are statisti-

cal. The quasi-elastic region is located around 𝑊 = 938 MeV since 𝑀𝑁 was used

in Eq. 1.3. As 𝑊 approaches the Δ(1232) region, both asymmetries cross over zero

near the pion production threshold. As mentioned in the introduction of this chapter,

because only a small part of scattered electrons could make to the detector plane due
4Here, W is defined in terms of the nucleon mass using Eq 1.3
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to the mis-wired septum, the statistic errors are large. In addition, after acceptance

cuts the number of electrons survived become smaller. Moreover, a large contribution

from the two step process dominates the background for large 𝑊 , which contributes

to dilution. Figure 5-9 shows a comparison of parallel asymmetries at 2.2 GeV beam

energy between the first and second periods. As one can see, statistic uncertainties

from the second period are much better.

Source Systematic Uncertainty
Target polarization 10%
Beam polarization 4 %

Dilution < 10%
Pion rejection < 1%

𝛿𝐴exp/𝐴 12%

Table 5.3: 3He asymmetry systematic uncertainty. The target polarization uncer-
tainty is preliminary from online result and will be improved with further study.
Beam polarization uncertainty was given in Sec 2.3. Dilution uncertainty is less than
10%, fortunately, we will use a different method to extract cross section difference
which does not have dilution factor.

In Table 5.3, the systematic uncertainty on the asymmetry is given. The uncer-

tainty on the target polarization is preliminary from online result and will be improved

with further study [63]. Beam polarization uncertainty is estimated to be about 4%

[6].

5.3 Unpolarized Cross Sections

Extraction of the elastic cross section is given by Eq. 4.1. Extraction of the

inelastic unpolarized raw cross section is similar except that there is a 𝐸 ′ dependence:

𝑑𝜎𝑟𝑎𝑤
0

𝑑Ω𝑑𝐸 ′ =
𝑁𝑟𝑎𝑤

𝑁𝑡𝑔

× 𝑃𝑆1

𝐿𝑇 ×𝑄/𝑞 × 𝜖
× 𝑅𝐶 × 𝐴𝑐𝑐

ΔΩ𝑔𝑒𝑜Δ𝐸 ′ , (5.13)

where 𝑁𝑡𝑔 = 𝜌Δ𝑍 (𝜌 is the target density, Δ𝑍 is the target length), Δ𝐸 ′ is the

momentum bite for each spectrometer setting.

The 3He cross section is determined by subtracting the nitrogen contribution:
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Figure 5-8: Inelastic asymmetries for four beam energies at 6∘, extracted using
Eq. 5.12. These asymmetries are not corrected for radiation effect yet. Error bars are
statistical only.
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Figure 5-9: Inelastic asymmetry comparison between first (black circles) and second
periods (red circles). Data from second period were taken with 2.135 GeV while for
first period it was 2.2 GeV at 6∘. The statistics from second period is much better
than first period for which precision was intended for moments (𝑊 -integrated) only.
Here both data have not been corrected for radiation effects yet.
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𝑑𝜎𝑒𝑥𝑝
0,3𝐻𝑒

𝑑Ω𝑑𝐸 ′ =
𝑑𝜎𝑟𝑎𝑤

0

𝑑Ω𝑑𝐸 ′ −
𝜌𝑁

𝜌𝑁 + 𝜌𝐻𝑒

𝑑𝜎𝑁

𝑑Ω𝑑𝐸 ′ , (5.14)

where 𝜌𝑁 and 𝜌𝐻𝑒 are the atomic densities of nitrogen and 3He, respectively, inside

the polarized cell, and 𝜎𝑁 is the nitrogen cross section.

The extraction of inelastic cross sections differs from that of the elastic case in

several ways:

∙ Inelastic analysis results are not compared to the simulation as in elastic analysis

because no reliable polarized inelastic event generator is available in the M.C.

∙ The target length Δ𝑍: As mentioned in Section 4.2, a target length of 34.3 cm is

used for elastic analysis. In elastic simulation, we simulated an extended target

length of 34.3 cm, and the events that pass the collimators are the events that

should be compared with detected events. However, for inelastic analysis since

there is no simulation that accounts for the collimation, we should use the actual

target length seen by the spectrometer. A target length of 9.15 cm is used for

inelastic cross section. This number is obtained by running the M.C. simulation

with phase space selected for event generation and with same number of events

for one setting without target collimator and the other with target collimator.

Comparing the two numbers of events that arrives at the HRS provides the 9.15

cm determination.

∙ Geometry solid angle ΔΩ𝑔𝑒𝑜 is obtained from simulation (phase-space setting).

∙ The acceptance cuts used are the same as that of the elastic analysis. They

include focal plane acceptance cuts (a 2D cut on 𝜑𝑓𝑝 vs 𝑦𝑓𝑝 plane) and recon-

structed angles cuts (a 2D cut on 𝜃𝑡𝑔 vs 𝜑𝑡𝑔 plane). However, we do not apply

invariant mass cut here.

Figs. 5-10 and 5-11 show the unpolarized cross section versus 𝑊 for the four

incident beam energies without radiative corrections. The unpolarized cross sections

presented show slight discontinuities between momentum settings which is the effect

of small momentum acceptance. Overall, the four spectra looks reasonable, at 2.2
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GeV we can see the Δ(1232) resonance around 𝑊 = 1232 MeV, at lower energy, the

peak is not that clear.
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Figure 5-10: Preliminary unpolarized cross sections for incident beam energies of 1.1
GeV (top) and 1.5 GeV (bottom) without radiative corrections. The horizontal bands
show the systematic uncertainty. Statistic uncertainties are small and not visible in
the plot.

Fig. 5-12 shows a comparison of unpolarized cross sections between first and
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Figure 5-11: Preliminary unpolarized cross sections for incident beam energies of 2.2
GeV (top) and 3.3 GeV (bottom) without radiative corrections. The horizontal bands
show systematic uncertainty. For 2.2 GeV statistic uncertainties are small and not
visible in the plot.

second periods. For an accurate comparison, data from the second period are obtained

by interpolating (linearly) between the 2.1 GeV and 2.8 GeV data from second period

to match the 2.2 GeV energy of first period data.
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Figure 5-12: Unpolarized cross section comparison between first and second periods.
For beam energy 𝐸𝑏𝑒𝑎𝑚 = 2.2 GeV at 6∘. The black circles are the second period, the
red circles are for the first period. Second period data already had radiative correction
applied while first period data are not (this cause the quasi-elastic peak for the first
period to be slightly larger (due to the unsubtracted elastic and quasi-elastic tails).
The two lower bands are systematic uncertainties.

5.3.1 Background Study

The wall thickness of the reference cell differs from that of the polarized cell, and

this needs to be taken into account. The first order correction is the wall thickness

which contributes to the two step process. The thicker the thickness, the higher the

rate of two step process. This first order correction is made by rescaling the glass

contribution when we subtract the glass contribution from the 3He signal. The average

wall thickness of the reference cell is 0.8809 mm and that of the 3He cell is 0.7084

mm. In addition, this correction is different for asymmetry and cross section analyses,

due to the different cuts applied. For cross sections, with a small solid angle cut on

reconstructed angles, the number of events remaining is less than that of asymmetries

(see Appendix A.2). The only backgrounds to consider for cross section are from

two-step process and downstream glass window on reconstructed 𝑦𝑡𝑔. However for

the asymmetries there are upstream, two-step process and downstream backgrounds.
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To determine the correction, the weighted average from three gaussians is fitted to

𝑦𝑡𝑔 for asymmetry and two gaussians is fitted to that of cross section analysis.

In addition, the second order corrections due to differences in radiation lengths

between reference and polarized cells need to be corrected as well. These differences

are due to different gas radiation length (nitrogen versus mostly 3He), densities, and

number in the glass entrance window. Consequently, when subtracting the nitrogen

from 3He, the nitrogen cross section in the reference cell is different compared to that

in 3He cell. The first difference in radiation length is in glass windows and glass

exit thicknesses. The second is nitrogen density and radiation length inside reference

cell ≈ 7.0 amg while that in 3He cell is ≈ 0.105 amg. These differences make the

radiation effects between the two cells different. A simulated elastic nitrogen tail

which takes into account the difference in radiation lengths provides the correction

factor to experimental cross section. This correction is different for various kinematic

because it depends on the value of 𝜈 (or 𝛿𝑝). For all beam energies, this correction

varies from 82% to 95%.

5.3.2 Momentum Acceptance Correction

Ideally, the extracted unpolarized cross section should depends only on kinematics.

However, the cross section extracted here can be distorted by momentum acceptance

(the momentum acceptance of spectrometer) which so far has been assumed to be

100%. Hence, momentum acceptance correction may need to be applied. In the

carbon, 3He, and N2 elastic analysis, we made assumption that the acceptance inside

our analysis cuts is one (no losses). Comparing the experimental extract elastic cross

section to the simulated carbon, 3He, and N2 cross section with momentum gives us

the momentum acceptance correction at the specific 𝛿𝑝 values at which the elastic

peak was set. We then applied a linear fit between the points to obtain the correction

function for any 𝛿𝑝 value within our analysis cuts. The applied function corrects for

momentum acceptance and makes the cross section smooth. The acceptance function

for first period is found to be:
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𝜎𝑐𝑜𝑟
0 = 𝜎0(−4.5× 𝛿𝑝+ 1.0), (5.15)

where 𝛿𝑝 is the reconstructed momentum. The same acceptance function is applied

to all four beam energies.

5.4 Radiative Corrections

The Feynman diagram for electron scattering in Fig. 1-1 is the leading order pro-

cess, i.e. the one photon exchange process, which is considered in the theoretical pre-

dictions. In addition, the measured quantities at the detector plane have kinematics

difference compared with that at interaction vertex. These are due to external radia-

tions, which come from the energy loss of both incident and scattered electrons when

they pass through materials. Furthermore, internal radiations exist, which are due

to internal bremsstrahlung, vertex corrections and vacuum polarization. Therefore,

the measured quantities need to be corrected before to be compared with theoretical

calculations, and these corrections are referred to as the radiative corrections.

There are three major effects that contribute to radiative corrections:

∙ Loop diagram contribution (internal): in addition to the first order Feynman

diagram illustrated in Fig. 1-1, higher orders also contribute to the scattering

process. Next-to-leading-order effects include: vacuum polarization, and vertex

correction. These contributions need to be removed from the measured data.

∙ Ionization (external): electron loses its energy when passing through materials

before and after the interaction vertex. This energy loss change the electron

kinematics at the vertex. This energy loss is expected to be small (few MeV

level) compared to the beam energies at the level of GeV.

∙ Photon radiations via Bremsstrahlung (both internal and external): Bremsstrahlung

is produced by the change in the electron trajectory in the electromagnetic field

of atomic nucleus. The effects are further categorized into internal and exter-

nal Bremsstrahlungs see Fig 5-13. The former happens during the interaction
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between the electron and the nucleon/nucleus on which the hard scattering

of Fig. 1-1 occurs, while the latter is caused by the electron passing through

materials such as the glass cell wall or other 3He atoms.
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Figure 5-13: Radiative correction. In the plot of beam energy vs scattering energy
(left), precise knowledge about the radiative effects requires knowing the cross section
in a triangular region for the data set at a constant energy (indicated by the red
vertical bar). Right plot: An illustration of the external and internal Bremsstrahlung
radiations.

The radiative corrections to extract Born polarized cross section from measured

values is given as follows:

𝑑𝜎𝐵𝑜𝑟𝑛
0

𝑑Ω𝑑𝐸 ′ =
𝑑𝜎𝑒𝑥𝑝

0

𝑑Ω𝑑𝐸 ′ +Δ𝜎𝑅𝐶 ,

𝑑𝜎𝐵𝑜𝑟𝑛
‖,⊥

𝑑Ω𝑑𝐸 ′ =
𝑑𝜎𝑒𝑥𝑝

‖,⊥

𝑑Ω𝑑𝐸 ′ + (Δ𝜎‖,⊥)𝑅𝐶 ,

(5.16)

where Δ𝜎𝑅𝐶 and (Δ𝜎‖,⊥)𝑅𝐶 are the radiative corrections for unpolarized cross section

and polarized cross section differences, respectively.

Before radiative corrections are applied, the elastic (and quasi-elastic) radiative

tail needs to be subtracted from the experimental cross section. Due to the high
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resolution of the HRS, the elastic peak itself can be well separated from the inelastic

region. However, the radiative effect of the elastic channel produces a long tail that

extends into the inelastic spectrum. Hence it must be subtracted using a calculation.

We used a special procedure due to collimator punch-through effects, which effectively

add radiation length for some of the events [60].

Typically cross section models are used to determined radiative corrections, which

are applied to the measured data using Eq 5.16. This will introduce model depen-

dency. For E97-110 analysis, the model dependency is minimized by an iterative

procedure. In each iteration, the radiative correction results are applied to the mea-

sured cross sections, producing cross sections which is then used to update the input

model of the corrections. The iteration is repeated until the result converges, produc-

ing final results on the Born cross section and the radiative corrections 𝛿𝜎𝑅𝐶 . Details

of the radiative corrections for second period can be found in C. Peng’s thesis [64].

The first period is following the same procedure.

The final uncertainty on the cross section is determined by combining the uncer-

tainty on the radiative corrections 𝛿𝜎𝑅𝐶 with that from the experimental cross section

𝛿𝜎𝑒𝑥𝑝:

𝛿𝜎𝐵𝑜𝑟𝑛 =
√︁
(𝛿𝜎𝑒𝑥𝑝)2 + (𝛿𝜎𝑖𝑛𝑡

𝑅𝐶)
2 + (𝛿𝜎𝑒𝑥𝑡

𝑅𝐶)
2. (5.17)

5.5 Polarized Cross Section Differences Results

The polarized cross section differences are calculated by taking the product of the

results of experimental asymmetries and unpolarized cross sections:

Δ𝜎exp
⊥,‖ = 2 · 𝐴exp

⊥,‖ · 𝜎
exp
0 . (5.18)

There are two ways to proceed to form Δ𝜎. The first way (hereafter called “method

1”) is take the physical asymmetry (after correcting for glass cell, and nitrogen di-

lution) and the physical of cross section (after subtracting glass and nitrogen back-

grounds), see Eq. 5.19.
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𝐴𝑝ℎ𝑦𝑠𝑖𝑐𝑠
3𝐻𝑒 =

𝐴𝑟𝑎𝑤
3𝐻𝑒

𝑓 × 𝑃𝑏𝑃𝑡

,

𝜎𝑝ℎ𝑦𝑠𝑖𝑐𝑠
3𝐻𝑒 ∝ 𝜎𝑟𝑎𝑤

3𝐻𝑒 − 𝜎𝑟𝑎𝑤
𝑁2

− 𝜎𝑟𝑎𝑤
𝑔𝑙𝑎𝑠𝑠,

Δ𝜎𝑝ℎ𝑦𝑠𝑖𝑐𝑠
3𝐻𝑒 = 𝐴𝑝ℎ𝑦𝑠𝑖𝑐𝑠

3𝐻𝑒 × 𝜎𝑝ℎ𝑦𝑠𝑖𝑐𝑠
3𝐻𝑒 .

(5.19)

However, due to the poor determination of 𝑦𝑡𝑔 in the first period, no accurate 𝑦𝑡𝑔

cut can be applied. Hence the full contamination from unpolarized material affects

to our results. All of these contaminations are corrected in the asymmetry by apply-

ing a dilution factor, and corrected in the cross section by background subtraction.

However, the systematic uncertainty due to these corrections is large. The second

way (method 2) is by taking products of diluted 3He asymmetry and background-

contaminated cross section see Eq. 5.20.

𝐴𝑑𝑖𝑙𝑢𝑡𝑒𝑑
3𝐻𝑒 =

𝐴𝑟𝑎𝑤
3𝐻𝑒

𝑃𝑏𝑃𝑡

,

𝑑𝜎𝑐𝑜𝑛𝑡.
3𝐻𝑒

𝑑Ω𝑑𝐸 ′ =
𝑑𝜎𝑟𝑎𝑤

3𝐻𝑒

𝑑Ω𝑑𝐸 ′ ,

Δ𝜎𝑝ℎ𝑦𝑠𝑖𝑐𝑠
3𝐻𝑒 = 𝐴𝑑𝑖𝑙𝑢𝑡𝑒𝑑

3𝐻𝑒 × 𝜎𝑐𝑜𝑛𝑡.
3𝐻𝑒 ,

(5.20)

where the dilution of the asymmetry is cancelled by the background contamination.

If the backgrounds are unpolarized and if the analysis cut for 𝐴𝑑𝑖𝑙𝑢𝑡𝑒𝑑
3𝐻𝑒 and

𝑑𝜎𝑐𝑜𝑛𝑡.
3𝐻𝑒

𝑑Ω𝑑𝐸′

are identical, then the cancellation is exact. This method, does not introduce more

systematic uncertainties due to background subtraction. Ideally, the two methods

should give us the same result. However, due to small acceptance cut imposed for the

cross section analysis by the defective septum, cuts applied to the cross section and

asymmetry are quite different. The cuts on asymmetry are wider compare to that of

cross section since on the one hand statistics is critical for the asymmetry while on

the other hand, good knowledge of the acceptance is unnecessary. Because of this,

the cancellation of background in the second method may not be perfect. Hence a

careful study was conducted to compare results between the two methods.

Fig. 5-14 and Fig. 5-15 show the consistent check between the two methods for
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the 2.2 GeV beam setting. The bottom plot shown the difference between results

from two methods Δ = Δ𝜎method 1 − Δ𝜎method 2 and the estimate uncertainty 𝛿Δ =√︁
1

( 1
𝛿Δ𝜎𝑚𝑒𝑡ℎ𝑜𝑑1

)2−( 1
𝛿Δ𝜎𝑚𝑒𝑡ℎ𝑜𝑑2

)2
. The two methods are consistent with each other, hence,

we trust the background does not contaminate the extracted cross section in both

methods. Because the statistical uncertainty from method 2 is better than that of

method 1, method 2 will be used for our final results on the cross section differences.

Once radiative corrections are applied, the cross section difference is expressed as:

Δ𝜎Born
⊥,‖ = Δ𝜎exp

⊥,‖ + 𝛿(Δ𝜎⊥,‖)
RC. (5.21)

For the analysis presented here, radiative corrections were applied to the cross section

differences directly. Because the polarized cross section differences are generated from

multiplying experimental unpolarized cross sections with parallel or transverse asym-

metries, the systematic uncertainties come from the uncertainties on the experimental

cross sections (≈ 10%) see Table 4.5, and asymmetry (estimate ≈ 12%).

Results for the cross section differences are shown in Fig 5-16. The parallel con-

figuration is represented by the black squares, while the perpendicular is shown by

the red squares.

5.6 Spin Structure Functions Results

From the cross section differences, one can obtain the 3He spin dependent structure

functions:

𝑔1 =
𝑀𝑄2

4𝛼2

𝜈𝐸

(𝐸 − 𝜈)(2𝐸 − 𝜈)

[︂
Δ𝜎‖ + tan

𝜃

2
Δ𝜎⊥

]︂
,

𝑔2 =
𝑀𝑄2

4𝛼2

𝜈2

2(𝐸 − 𝜈)(2𝐸 − 𝜈)

[︂
−Δ𝜎‖ +

𝐸 + (𝐸 − 𝜈) cos 𝜃

(𝐸 − 𝜈) sin 𝜃
Δ𝜎⊥

]︂
.

(5.22)
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Figure 5-14: Difference in the extracted polarized cross sections (parallel) between
two methods, Δ𝜎𝑚𝑒𝑡ℎ𝑜𝑑1−Δ𝜎𝑚𝑒𝑡ℎ𝑜𝑑2, with a constant fit (“offset”). See text for details
for the calculation of the uncertainty. Because the “offset” value is consistent with
zero, we can conclude the two methods are consistent with each other.

And results on the virtual photoabsorption cross section can be calculated as:

𝜎𝑇𝑇 =
4𝜋2𝛼

𝑀𝐾

(︂
𝑔1 −

𝑄2

𝜈2
𝑔2

)︂
,

𝜎𝐿𝑇 = 𝛾
4𝜋2𝛼

𝑀𝐾
(𝑔1 + 𝑔2) ,

(5.23)
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Figure 5-15: Difference in the extracted polarized cross sections (perpendicular) be-
tween two methods, Δ𝜎𝑚𝑒𝑡ℎ𝑜𝑑1 −Δ𝜎𝑚𝑒𝑡ℎ𝑜𝑑2, with a constant fit (“offset”). See text for
details for the calculation of the uncertainty. Because the “offset” value is consistent
with zero, we can conclude the two methods are consistent with each other.

where we used the Gilman convention 𝐾 =
√︀

𝜈2 +𝑄2. Or in term of measured cross
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Figure 5-16: Preliminary cross section differences for four beam energies for first
period. The Δ𝜎‖ is represented by black square. The Δ𝜎⊥ is represented by red
square. The error bars are statistical uncertainties and the error bands are systematic
uncertainties. Results are corrected for radiative effect.

section differences:

𝜎𝑇𝑇 =
𝜋2𝑄2

𝛼𝐾

1

(1− 𝑦)(2− 𝑦)

[︀
Δ𝜎‖ − (Δ𝜎‖ cos 𝜃 +Δ𝜎⊥ sin 𝜃)(1− 𝑦)

]︀
, (5.24)

where 𝑦 = 𝜈
𝐸

.

The 3He spin structure functions are plotted versus 𝑥, as measured at constant
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energy, in Fig. 5-17 and Fig. 5-18. The error bars represent statistical uncertainties

and the error bands represent systematic uncertainty. Proceeding right to left along

the horizontal axis, we encounter the quasi-elastic peak, the Δ(1232) resonance, and

then the inelastic region.

Fig. 5-19 shown 𝜎𝑇𝑇 at constant energy for four beam energies. Results are before

radiative corrections. An estimate of Γ1 (given in 1.29) and its statistical uncertainty

are shown in Fig. 5-20.

In resonance region, and at low 𝑄2, one does not know how to do extract of

neutron results from 3He for 𝑔1, 𝑔2, 𝜎𝐿𝑇 , 𝜎𝑇𝑇 . So these results remain on 3He.

5.7 The Phenomenological MAID Model

The MAID model [30] uses phenomenological fits to photo- and electroproduction

data on the nucleon to provide various scattering cross sections and partial cross

sections in the domain from the pion-production threshold to 𝑊 = 2 GeV. It satisfies

gauge invariance and unitarity. The model contains Born terms, mesons and nucleon

resonances up to the third resonance region. The model assumes the resonances have

the Breit-Wigner shape as follows:

𝜎1/2(3/2) =
4𝑀

𝑊𝑟𝑒𝑠Γ𝑟𝑒𝑠

𝐴2
1/2(3/2)𝐵(𝜈,𝑄2), (5.25)

where 𝑊𝑟𝑒𝑠 and Γ𝑟𝑒𝑠 are the mass and width of the resonance, respectively. 𝐴1/2(3/2)

are the helicity dependent amplitudes. 𝐵(𝜈,𝑄2) represents the generalization to elec-

troproduction of the Breit-Wigner form.

The model agrees well, in general, with existing experimental data for pion photo-

and electroproduction on the nucleon for both unpolarized and polarized differential

cross sections. The model agrees well with data from the proton GDH sum rule.

However, it does not agree with GDH sum at the real photon point for the neutron.
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Figure 5-17: Preliminary results on neutron structure functions 𝑔1 at constant beam
energy. The error bars represent statistical uncertainty and the error bands represent
systematic uncertainty. Results are before radiative correction.

5.8 Conclusions and Outlook

The E97-110 experiment successfully collected data to extract the cross section

difference in the 𝑄2 range from 0.02 to 0.3 GeV2. In this thesis, the preliminary

results of asymmetry, unpolarized cross section, cross section difference, spin structure

function, 𝜎𝑇𝑇 , and Γ1 are presented. The generalized GDH sum rule of 3He is firstly
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Figure 5-18: Preliminary results on neutron structure functions 𝑔2 at constant beam
energy. The error bars represent statistical uncertainty and the error bands represent
systematic uncertainty. Results are before radiative correction.

measured for 𝑄2 < 0.1 GeV2, and the experimental data reveal the “turn-over” point

of 𝐼𝐺𝐷𝐻(𝑄
2) at around 0.1 GeV2. In addition, our data exhibit a sharp change in slope

of 𝐼𝐺𝐷𝐻(𝑄
2) at lower 𝑄2, and hence suggest the recovery of the GDH sum rule at the

real photon point. Radiative correction and target polarization are ongoing. Once

these two numbers are finalized, interpolation at different energies will be required

to obtain Γ1 and 𝐼𝑇𝑇 at constant 𝑄2. After that, these are final results and reach
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Figure 5-19: Preliminary results on 𝜎𝑇𝑇 (𝜇b) at constant beam energy. The error
bars represent the statistical uncertainty. The error bands represent the systematic
uncertainty. Results are before radiative correction.

publishable level.
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Figure 5-20: Γ𝑛
1 preliminary results on both period. Black squares are first period

data, red squares are second period data. Results from first period are before radiative
correction. Results from second period are after radiative correction. The bands are
systematic uncertainties.
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Chapter 6

The Upgrade of The Polarized 3He

Target

The 6 GeV era 3He target has been using in many experiments at JLab.This

chapter will discussed about the upgrade of the polarized 3He target at JLab.

6.1 JLab 3He Lab Setup

The target system at JLab includes a laser/optic system, an oven, the 3He cell and

three pairs of Helmholtz coils as shown in Fig. 6-1. The cell is held at the center of

the target where the pumping chamber of the cell is mounted inside the oven that is

heated to 250∘C. Three pairs of Helmholtz coils are used to create a uniform magnetic

field in three dimensions. The magnetic field average strength is 25 G and a typical

gradient in the region occupied by the cell is 2-10 mG/cm.

6.1.1 Upgrade in Laser and Hybrid Mixture

In recent years, an advanced technique called Rb-K hybrid spin-exchange optical

pumping was developed and greatly improved the spin-exchange efficiency. The main

reason is that K relaxation is much slower than Rb, thus the spin-exchange efficiency

is about one order of magnitude higher. However, there is no commercial and high-
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Figure 6-1: Target overview during Transversity experiment E06010 [65].

power narrow-width laser to polarized K directly. On the other hand, K can be

polarized through the fast Rb-K spin-exchange and the K vapor can reach almost

the same polarization as Rb vapor. Hence, the tradition Rb cell is replaced by Rb-K

hybrid cell.

In addition, the optical pumping has been greatly improved with the advance of

laser techniques. The newly available narrow-linewidth diode lasers (COMET, QPC,

Raytum) with FWHM≈ 0.25 nm provide a much higher optical pumping efficiency

than the board-width diode lasers (Coherent) with FWHM≈ 1.5 nm and the in-beam
3He target polarization subsequently increased from 40% (during E97-110 in 2003) to

60% (during Transversity [69] in 2009). If the laser light has a very large line width,

a significant amount of light is not within the absorption line-width and wasted. In

addition, the unusable light also adds to the thermal depolarization.
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6.1.2 Target Cells

The target cell is a glass cell containing high pressure 3He gas with very thin

windows. A typical target cell of the 6 GeV era is shown in Section 2.7. With this

type of cell, the polarization is transferred from pumping to target chamber through

diffusion which takes a long time and creates a large polarization gradient between the

two chambers. The larger the length of the transfer tube, the larger the polarization

difference. This polarization gradient can be reduced by using a convection cell where

the gas inside circulates faster thanks to a convection flow. This convection flow is

accomplished by using two transfer tubes instead of one, and a heating coil to create

the convection as shown in Fig. 6-2. The convection-type cells are planned to be used

for the 12 GeV running of JLab.

40 cm

𝚽 = 𝟑. 𝟔”

Figure 6-2: Convection-type cells for upgrade 3He target.
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6.2 NMR Polarimetry

For JLab 3He target, there are three methods to measure the 3He polarization -

Nuclear Magnetic Resonance (NMR) polarimetry, electron paramagnetic resonance

(EPR) polarimetry and Pulse Nuclear Magnetic Resonance (PNMR) polarimetry.

There is another way to measure the polarization is using elastic asymmetry. The

NMR measures the electromagnetic signal induced by the 3He spin reversal through

the adiabatic fast passage (AFP) [68] and is used to extract the 3He polarization

relatively. The EPR measures the frequency shift in the Rb EPR and provides an

absolute polarization measurement to calibrate the 3He NMR and PNMR signal.

PNMR measure the signal induced by the precession of 3He spin decaying after being

brought to resonance.

6.2.1 NMR Principle

In order to describe the NMR principle, suppose we are in an isolated spin system

where spins do not interact with each other (if they interact, which will be discussed

later, spin start to relax to equilibrium). As the first step, consider a magnetic

moment 𝑀⃗ placed in a static magnetic field 𝐻⃗, the spins will precess with an equation

of motion:
𝑑𝑀⃗

𝑑𝑡
= 𝛾𝑀⃗ × 𝐻⃗, (6.1)

with 𝑀⃗ = 𝑀𝑥𝑥̂ + 𝑀𝑦𝑦 + 𝑀𝑧𝑧 and 𝐻⃗ = 𝐻0𝑧 and 𝛾 is the 3He gyromagnetic ratio

(𝛾 = −3.243 kHz/G).

Solving this differential equation we obtain:

𝑀⃗ = 𝑀𝑥0(cos𝜔𝑡𝑥̂− sin𝜔𝑡𝑦) +𝑀𝑧0𝑧. (6.2)

This means that the magnetization rotates clock-wise around z-axis with angular

velocity 𝜔 = 𝛾𝐻0.

Then, a second, rotating field 𝐻⃗1 is added perpendicular to the static field 𝐻⃗.
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The rotating field can be expressed as

𝐻⃗1 = 2𝐻1 cos(𝜔𝑡)𝑥̂ = 𝐻1[cos(𝜔𝑡)𝑥̂− sin(𝜔𝑡)𝑦] +𝐻1[cos(𝜔𝑡)𝑥̂+ sin(𝜔𝑡)𝑦]

= 𝐻𝐶𝑊
1 +𝐻𝐶𝐶𝑊

1 ,
(6.3)

where CW (CCW) stands for clockwise (counter clockwise) with respect to lab frame.

In the rotating frame (𝑥′, 𝑦′, 𝑧) of the magnetization 𝑀⃗ , the clockwise component is

static, while the counter clockwise component is rotating at twice the frame frequency

and in opposite direction, thus 𝐻⃗1 = 𝐻1𝑥̂
′ +𝐻1(cos 2𝜔𝑡𝑥̂

′ + sin 2𝜔𝑡𝑦′).

In the clockwise frame:

𝜕𝑀⃗

𝜕𝑡
= 𝛾𝑀⃗ × (𝐻⃗ − 𝜔⃗

𝛾
). (6.4)

where 𝜔⃗
𝛾

is the fictitious field due to rotation and 𝜔 is the angular velocity of the

rotating frame. The equation of motion can be rewritten as:

𝜕𝑀⃗

𝜕𝑡
= 𝛾𝑀⃗ × 𝐻⃗𝑒𝑓𝑓 , (6.5)

with 𝐻⃗𝑒𝑓𝑓 = (𝐻0 −
𝜔

𝛾
)𝑧 +𝐻1𝑥̂

′. (6.6)

At resonance, 𝜔 = 𝐻0𝛾, the magnetization will rotate around 𝐻⃗1.

Now let us examine the other component of 𝐻1, rotating in the opposite direction:

𝐻⃗𝑒𝑓𝑓 = (𝐻0 +
𝜔0

𝛾
)𝑧 +𝐻1𝑥̂

′′

= 2𝐻0𝑧 +𝐻1𝑥̂
′′

(6.7)

The magnitude of the effective field is |𝐻𝑒𝑓𝑓 | =
√︀

4𝐻2
0 +𝐻2

1 . The angle between

magnetization 𝑀⃗ and the main field 𝐻⃗ is 𝜃 = tan−1(𝐻1/2𝐻0), with 𝐻1 ≪ 𝐻0 and

thus the angle is very small. So the effect of the counter clockwise component is very

small compare to the clockwise one.

In summary, 𝑀⃗ would follow 𝐻⃗1 and can be flipped completely if 𝐻⃗1 is applied a

long enough time. In the next section we explain the adiabatic fast passage (AFP),
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which is a condition that minimizes polarization loss during such spin flips.

Adiabatic Fast Passage

For minimal losses of polarization to occur during an AFP magnetic field sweep,

two conditions must be satisfied. First, the sweep must be slow enough for the

magnetization to follow the effective field adiabatically. This is possible only if the

rotation of magnetization around the static field in the laboratory frame (which is

characterized by frequency 𝜔) is much faster than the rotation of the effective field

𝐻𝑒𝑓𝑓 . This condition ensures that the initial relationship of the magnetization with

respect to the effective field remains valid throughout the sweep.

If the variation of the field with time is slow enough, the angle of magnetization

with the instantaneous direction of the fields is also a constant of motion. In the

rotating frame, the effective field is given by Eq. 6.6. If the static magnetic field is

varied in time, then 𝐻𝑧 is a time-varying field 𝐻𝑧(𝑡), the change of effective field with

time is

𝑑𝐻⃗𝑒𝑓𝑓

𝑑𝑡
=

𝑑𝐻0𝑧

𝑑𝑡
= 𝐻̇0𝑧

= cos 𝜃
𝐻̇0

𝐻𝑒

𝐻⃗𝑒 + sin 𝜃
𝐻̇0

𝐻𝑒𝑓𝑓

(𝑛̂× 𝐻⃗𝑒),

(6.8)

where the unit vector along 𝐻0 can be rewritten as 𝑧 = cos 𝜃𝐻̂𝑒𝑓𝑓 + sin 𝜃(𝑛̂× 𝐻̂𝑒𝑓𝑓 ).

𝑛̂ is a unit vector orthogonal to 𝐻⃗0 and 𝐻⃗1. The variation with time of a vector 𝐻⃗

can be written as
𝑑𝐻⃗

𝑑𝑡
= Ω⃗× 𝐻⃗ + Ω1𝐻⃗. (6.9)

Comparing this equation to Eq. 6.8 gives

Ω = sin 𝜃
𝐻̇0

𝐻𝑒𝑓𝑓

= 𝐻1
𝐻̇0

𝐻2
𝑒𝑓𝑓

. (6.10)

Combining with the adiabatic condition |Ω| ≪ |𝛾𝐻𝑒| [68], we have 𝐻̇0 ≪ 𝛾𝐻2
𝑒

sin 𝜃
. At

resonance, 𝐻̇0 ≪ 𝛾𝐻2
1 . This is the first condition of AFP.
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The magnetic field sweep rate is chosen so that no appreciable relaxation takes

place during the sweep. It means that it must be fast enough so that minimal trans-

verse relaxation occurs during sweep. This condition ensures that the magnetization

vector remains constant in length during the sweep (or not so much loss). In partic-

ular, if the nuclei were in thermal equilibrium with the surrounding to begin with so

that the macroscopic magnetization pointed along the static field, it will follow the

effective field during the passage and will end up 180 degrees rotated by the passage.

In our AFP-NMR, 𝑑𝐵𝑧/𝑑𝑡 =1.2 G/s, 𝐵1 ∼0.1 G, and the resonance frequency is

𝑓3𝐻𝑒 = 91 kHz. Therefore, 𝑑𝐵𝑧/𝑑𝑡
𝐵1

≪ 𝜔.

6.2.2 NMR Setup and Analysis

When spins pass through the nuclear magnetic resonance, they will induce an EMF

signal in a pair of pickup coil set around the cell. The signal height is proportional to

the target polarization. Hence, the polarization can be extracted from signal height.

However, we need to calibrate this signal with a well-known polarization, such as that

measured for the thermal polarization of water through the water NMR measurement.

There are three sets of coils for NMR polarimetry: the Helmholtz coils provide

the uniform main holding field (along z-axis which is pointing along the main holding

field). The RF coils provides the RF field perpendicular to the main holding field

with a much smaller magnitude compared to the holding field (a typical RF field is

∼ 100 mGauss whereas the main holding field is 25 Gauss). The third sets of coils

is the pickup coils. These are mounted perpendicular to both the main and the RF

fields. A imperfect mounting of the pickup coils can introduce noise into our signal.

There are two types of AFP sweeps. The first is the NMR-AFP field sweep, in

which the RF field magnitude is kept 91 kHz while the main holding field is swept

from 25 Gauss through resonance (∼ 28 Gauss) to 32 Gauss then swept back. The

signal from pickup coil is sent to a preamplifier. The signal is then fed to a lock-in

amplifier as shown in Fig. 6-3. The second type of sweep is the NMR-AFP frequency

sweep, the main field is kept constant at 25 Gauss and the RF frequency is swept

from 78 kHz to 85 kHz.
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The pickup coils are mounted on both sides of the target chamber as shown in

Fig. 6-3. This orientation will reduce background and enhance the signal. The de-

tected signal is proportional to the 3He magnetization and polarization as follows:

𝑆𝑁𝑀𝑅(𝑡) ∝ 𝑀𝑇 ∝ ⟨𝑃3𝐻𝑒⟩
𝐻1√︁

(𝐻(𝑡) + 𝜔
𝛾
)2 +𝐻2

1

, (6.11)

where 𝑃3𝐻𝑒 is the 3He polarization. The second term comes from the transverse

component of the magnetization as a function of the magnetic field, where the angle

between the total magnetization and z-axis can be written as follow:

𝜃 = arctan
𝐻1√︁

(𝐻 + 𝜔
𝛾
)2 +𝐻2

1

. (6.12)

A typical NMR signal is shown in Fig. 6-4. This signal is fitted with

𝑆(𝑡) =
ℎ𝐻1√︀

𝐻2
1 + (𝐻(𝑡)−𝐻0)2

+ 𝐴𝐻(𝑡) +𝐵, (6.13)

where ℎ is the signal height, 𝐻1 is the RF field, 𝐻0 is the field at resonance, 𝐴 and

𝐵 are coefficients to account for a linear background.

6.2.3 Extracting Polarization From AFP-NMR Signal

3He polarization is contained in the value ℎ in Eq. 6.13. The polarization can be

extracted from ℎ by performing an NMR water measurement. The water is contained

in a glass cell made similarly to the helium cells. The proton in water have a magnetic

moment that can be aligned in a magnetic field which gives the water a small, but

well-known polarization. This polarization can be described by 𝑃𝑤 = 𝜒𝐻 where

𝜒 = 3.4616× 10−10/Gauss at 22∘C.

The polarization of the NMR [49] can be extracted as follows:

𝑃3𝐻𝑒

𝑃𝑤

=

(︂
ℎ

ℎ𝑤

)︂(︂
𝜇𝑝𝑛𝑝Φ𝑡𝑜𝑡

𝜇3𝐻𝑒(Φ𝑝𝑐𝑁𝑝𝑐 + Φ𝑡𝑐𝑛𝑡𝑐 + Φ𝑡𝑡𝑛𝑡𝑡)

)︂(︂
𝐺𝑤

𝑝 𝐶
𝑤
Δ𝐶

𝑤
𝜏

𝐺𝑝𝐶Δ𝐶𝜏

)︂
, (6.14)
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H (Gauss)
26.5 27 27.5 28 28.5 29 29.5 30

 N
M

R
 a

m
pl

itu
de

 (m
V)

0

5

10

15

20

25

30

H1

h

Resonance

Figure 6-4: NMR signal at the target chamber. The signal width is proportional to
𝐻1 (∼ 90 mGauss). 𝐻0 (28.1 Gauss) is the field at resonance for 3He at 91 kHz.
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Parameter Description
ℎ/ℎ𝑤 NMR signal height of 3He/water
𝑃𝑡ℎ Thermal polarization of water (7.481× 10−9)
𝜇3𝐻𝑒 magnetic moment of 3He (1.155× 10−13 MeV/T)
Φ𝑝𝑐,𝑡𝑐,𝑡𝑡 magnetic flux of PC, TC and TT through pickup coil
Φ𝑡𝑜𝑡 Total magnetic flux of cell through the pickup coil

𝑛𝑝𝑐,𝑡𝑐,𝑡𝑡
3He density in PC, TC and TT

𝑁𝑐 number of windings in pickup coils
𝐺𝑐 Gain of the pickup coils
𝐺𝑝 Gain of the pre-amplifier
𝐺𝑙 Gain of the lock-in amplifier
𝐶Δ Correction factor due to the holding field gradient
𝐶𝜏 Correction factor due to the lock-in time constant
𝐶𝛼 Correction factor due to the attenuation in the cable

Table 6.1: Parameters used in extracting polarization from NMR signals. PC: pump-
ing chamber, TC: target chamber, TT: transfer tube.

where parameters are given in Table 6.1. Since 𝑃𝑤 is known, after measurement of

the water signal ℎ𝑤 a calibration constant 𝑐𝑤 is calculated:

𝑐𝑤 =

(︂
𝑃𝑤

ℎ𝑤

)︂(︂
𝜇𝑝𝑛𝑝Φ𝑡𝑜𝑡

𝜇3𝐻𝑒(Φ𝑝𝑐𝑛𝑝𝑐 + Φ𝑡𝑐𝑛𝑡𝑐 + Φ𝑡𝑡𝑛𝑡𝑡)

)︂(︂
𝐺𝑤

𝑝 𝐶
𝑤
Δ𝐶

𝑤
𝜏

𝐺𝑝𝐶Δ𝐶𝜏

)︂
(6.15)

then the polarization from NMR measurements on 3He can be extracted with 𝑃3𝐻𝑒 =

𝑐𝑤ℎ.

6.3 EPR Polarimetry

The second polarimetry measures the shift of electron paramagnetic resonance

(EPR) frequency in the rubidium electrons states when the polarization direction of

the polarized 3He nuclei is reversed. The EPR frequency is caused by the Zeeman

splitting between electron state 𝐹 = 3,𝑚 = −3 to 𝐹 = 3,𝑚 = −2 (the D2 line). This

frequency depends on the total magnetic field which is the sum of main holding field

and a much smaller contribution from the polarized 3He nuclei. From the frequency

difference between before and after reversing the spins, one can precisely determine

the additional magnetic field due to the polarized 3He gas. Unlike NMR polarimetry,
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EPR provides an absolute polarization measurement for the 3He in the pumping

chamber.

The frequency difference is measured by the frequency at which electrons in the

𝐹 = 3,𝑚 = −3 state can absorb photons and be transferred to the 𝐹 = 3,𝑚 = −2

state. This is done by using an excitation coil near the pumping chamber of the target

cell. This perturbation (EPR RF) field greatly increases the electron population in

the 𝐹 = 3,𝑚 = −2 state. The increase in 𝐷2 light is large enough to be measured

by a photodiode. The EPR frequency shift is shown in Fig 6-5.
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Figure 6-5: EPR frequency shift spectrum during AFP frequency sweep when pumped
by 𝜎+ light.

The frequency difference (2Δ𝜈) is proportional to the polarization:

2Δ𝜈 =
4𝜇0

3

𝑑𝜈𝐸𝑃𝑅

𝑑𝐵
𝜅𝜇3𝐻𝑒𝑛𝑝𝑐𝑃3𝐻𝑒, (6.16)

where 𝜇3𝐻𝑒 is the magnetic moment of 3He, 𝑛𝑝𝑐 is the number density of the pumping

chamber, 𝑃3𝐻𝑒 is the polarization of the 3He in the pumping chamber and the deriva-

tive 𝑑𝜈𝐸𝑃𝑅/𝑑𝐵 and 𝜅 are constants obtained from atomic physics measurements.
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Detailed analysis of 𝑑𝜈𝐸𝑃𝑅/𝑑𝐵 and 𝜅 can be found in [67].

6.4 Pulse NMR Polarimetry

While a beam current of up to 15 𝜇A was used in the 6 GeV era (E97-110 used

typically a few 𝜇A. The typical current for other experiments was 10 𝜇A), future

experiments of the 12 GeV era will require the target to withstand beam currents of

up to 60 𝜇A. To handle this high current, the glass windows of the current cell design

will be replaced by metallic ones. The metal windows introduce challenges as well:

NMR RF field cannot penetrate metal parts, and cannot be used to reliably determine

the target polarization. It is consequently important to have another polarimetry

which can operate locally along the glass transfer tube. The Pulsed NMR (PNMR)

method was developed for this purpose.

6.4.1 Pulse NMR Principle

As described in Section 6.2, the NMR frequency sweep is a method to record a

spectrum in the continuous wave mode by applying monochromatic RF radiation to

a sample and varying its frequency to locate absorption maximum. Whereas, Pulse

NMR uses a radiation right at the absorption maximum and record the spectra.

When magnetization is created inside a magnetic field, there exists a macroscopic

magnetization vector parallel to the applied field. This magnetization is a result

of the individual orientation of each nucleus being quantized with respect to the

static magnetic field. The macroscopic magnetization obeys the Larmor relation and

precesses about any static magnetic field. The precession occurs with a constant cone

angle in the absence of external work or friction. Once the rotation field is removed,

the spin or magnetization decays back to equilibrium by transmitting energy to the

surrounding. If we apply a magnetic field rotating at the Larmor frequency in the

plane perpendicular to the static field, we can cause the individual nuclear magnetic

moments to flip which causes the magnetization to tip away from the static field.

The method of tipping the spins away from the static field is the same as for NMR.
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However, instead of completely reversing the spin as in AFP, the magnetization is

rotated by a desired amount by using an appropriate combination of the intensity

and rotating field duration. If the RF is turned on at resonance for a time 𝑡𝑝𝑢𝑙𝑠𝑒,

the magnetization vector will be rotated by an angle 𝜃𝑡𝑖𝑝 = 1
2
𝛾𝐻1𝑡𝑝𝑢𝑙𝑠𝑒 with 𝐻1 the

strength of RF field.

After the RF is turned off, the magnetization will precess freely and eventually

return to equilibrium. If a coil is mounted perpendicular to the static field, the

decaying magnetization can induce an RF current at the Larmor frequency. The signal

induced in the coil is a free precession signal and its decay is called free induction

decay (FID).

The FID induces a signal in the PNMR pick up coil. The signal amplitude 𝑆(𝑡)

is proportional to the 3He polarization [70]:

𝑆(𝑡) ∝ 𝑀𝑧 sin(𝜃𝑡𝑖𝑝)𝑒
−𝑡/𝑇2 , (6.17)

where 𝑀𝑧 is the longitudinal magnetization (z-axis is pointing along the main holding

field), 𝜃𝑡𝑖𝑝 is the tipping angle between the magnetization and main field and 𝑇2 is

the transverse relaxation time, as described below.

6.4.2 Relaxation

There are two relaxation mechanisms happening to nuclear spin: the longitudinal

and the transverse relaxations. Longitudinal relaxation described how fast spins go

to equilibrium (a measure of the coupling of spin to its environment).

When spins are in the transverse plane, magnetic moments interact with one an-

other and lose their phase coherence in the xy-plane (this plane is perpendicular to

the main holding field along z-axis). The loss of transverse polarization is character-

ized by the time constant 𝑇2, called spin-spin or transverse relaxation time. 𝑇2 decay

is not due to the tilting of the magnetization vector away from the transverse plane,

however. It is due to the interaction of all of spins dephasing from each other. The

main field in the coil area is not perfectly uniform so 3He in different parts of the coil
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precess at slightly different frequencies and become out of phase with one another,

thereby gradually decreasing the net magnetization.

6.4.3 PNMR Setups

There are two designs for the PNMR method. The first design uses an oscilloscope

to record data. This setup can record the data very fast but it cannot handle low

signal very well. The second design is an improved version of the first design. It

uses a Lockin amplifier and a DAQ card to record signals and it can improve the

signal-to-noise ratio. I will discuss the setup and results for each design below.

The Oscilloscope Setup

The PNMR system schematic with the oscilloscope setup is shown in Fig. 6-6.
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Figure 6-6: PNMR oscilloscope setup at JLab. The signal is controlled by the trigger
from the gate generator. The output signal is recorded by an oscilloscope and then
transferred to the acquisition computer.

Labview sends a software trigger to the gate generator (which generates a square
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wave, TTL signal). This gate controls the function generator, switches and the os-

cilloscope. The TTL signal has a high, and a low signal, and based on low or high,

switches either connect to 50 Ω terminal or connect to other instruments. If the TTL

signal is high, the function generator will receive a TTL trigger from the gate genera-

tor. The function generator then sends a sine signal at Larmor frequency at ∼ 81 kHz

to the PNMR coil. When the TTL signal is low, a FID signal from the coil passes the

lower switch, then goes through the rest of the setup including Preamplifier #1 and

the mixer. After passing through Preamplifier #2, the signal is in the radio frequency

range and is sent to the oscilloscope. Data recorded by the oscilloscope are then sent

to the computer.

In order to test this new polarimetry, several tests were conducted and compared

with AFP-NMR. First, both NMR and PNMR coils are mounted on the target cham-

ber. The expected relation between the two polarimetries is linear, which we verified,

see Fig. 6-7. The reason for linearity is that the PNMR and NMR signals are in polar-

ization equilibrium and the polarizations at these two locations are almost the same

(since the coils are located near each other) on the target chamber. This measurement

confirmed the reliability of our new polarimetry.

During actual 12 GeV experiments in the future, the PNMR pick-up coil will

be mounted along the transfer tube in order to minimize background introduced by

electrons rescattering off the coil1. Therefore, another measurement was done with

the PNMR coil located on the transfer tube and the NMR coils located on the target

chamber, see in Figs. 6-8 and 6-9. The nonlinear behavior in Fig. 6-8 is due to the

fact that the initial polarization from these two locations are not in equilibrium. The

polarized gas moves from the pumping chamber to the target chamber via diffusion

if there is no convection. Due to the long diffusion time, polarizations at the two

locations are not the same, which explains the reason why signals detected by two

pick-up coils are not linear in proportion. If the gas is circulated by convection, then

the polarization at the target chamber is expected to achieve equilibrium quickly with

1During experiment E97-110, it was found that events scattering off the NMR pickup coils caused
some background.
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PNMR vs NMR

Figure 6-7: PNMR vs NMR signals when both PNMR and NMR coils are located
on the target chamber. This measurement was performed during a “hot spindown”,
which is the polarization decay process when there is no optical pumping and the
oven is kept at high temperate, and the convection was not occuring. Measurements
were done every two hours.

the one in the transfer tube. In this case, the linear relationship is restored, as shown

in in Fig. 6-9. Results shown in Fig. 6-9 indicate that PNMR can be used to provide

reliable measurements on the target chamber polarization during actual experiment.

Lockin Amplifier with DAQ Card Setup

In the second setup, a Lock-in amplifier is used to detect the signal. Backgrounds

at frequencies other than the signal frequency can be attenuated and the signal-to-

noise ratio can be improved.

The PNMR system schematic with Lockin Amplifier and DAQ card is shown in

Fig. 6-10.

Several measurements were done to test this new configuration. Unfortunately,

they are not linear. Fig. 6-11 show the non-linearity of the measurement using DAQ

card and Lockin Amplifier. More works need to be done to make the new system

work and achieve our polarimetry uncertainty goal.
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Figure 6-8: PNMR vs NMR Polarimetry signals for the case where the PNMR coil
was at the transfer tube and NMR coils at target chamber. This measurement was
performed during a “cold spindown”, which is polarization decay as a function of
time when there is no optical pumping, the oven is kept at room temperature, and
convection is not occuring. Measurements were done every two hours.
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Figure 6-9: Same setting as Fig. 6-8 but with convection enable.
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Figure 6-10: PNMR lockin setup at JLab. The signal is controlled by the trigger
from the DAQ card. The output signal is recorded by a Lockin amplifier and then
transferred to the DAQ card.

NMR mV
25 30 35 40 45 50 55 60 65

pN
M

R
 m

V

100

120

140

160

180

200

220

240

260

280

Hot spindown with convection at transfer tube

Figure 6-11: PNMR vs NMR measurements using DAQ and Lockin.
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6.5 Conclusion

The JLab polarized 3He target had a world-record performance during the 6 GeV

era. R&D activities are ongoing to upgrade the target for the 12 GeV program. Initial

tests of the convection cells and the pulsed NMR system have been made and proven

successful. Full polarization tests and systematic studies are being studied further

by new students. The target is ready for the 𝐴𝑛
1 experiment and it will run from

November 25, 2019 to May 6, 2020.
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Appendix A

Appendix

A.1 Acceptance cut on the focal plane

A.1.1 Acceptance cut on the focal plane

A six-corner polygon is used to define the 2D cut on the focal plane. The corners

are given in Table A.1

Corner 𝑦𝑓𝑝 𝜑𝑓𝑝

𝛿𝑡𝑔 offset 𝛿𝑡𝑔 offset
1 -0.227484 0.009650 -0.120625 0.027118
2 -0.162115 -0.017178 -0.088537 0.012184
3 0.203004 -0.015755 0.209205 -0.020337
4 0.524234 0.012906 0.677652 -0.029080
5 -0.260981 0.024819 0.105192 0.044547
6 -0.394433 0.020599 -0.057926 0.047079

Table A.1: Acceptance cuts at focal plane. We make an assumption that inside this
cut the acceptance is equal to one. An event passing this cut is considered to be a
good event.
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A.2 Cuts Applied for Asymmetry and Cross Section

Analysis

Due to the defective Septum magnet, the number of events that survive at the

detector is much smaller compare to that of second period. For cross section and

asymmetry analysis, different cuts are applied. The cuts applied for asymmetry

analysis are listed as follows:

1. Cherenkov cut: 350 < 𝑅.𝑐𝑒𝑟.𝑎𝑠𝑢𝑚𝑐 < 100000.

2. Loose shower cut: 𝐸.𝑝𝑠.𝑒 > 10 and 𝐸.𝑠ℎ.𝑒 > 10.

3. (𝐷𝑅.𝑒𝑣𝑡𝑦𝑝𝑒𝑏𝑖𝑡𝑠&(1 ≪ 1)) > 0

4. 𝑅.𝑡𝑟.𝑛 = 1

5. Six-corner polygon acceptance cut at focal plane, as mentioned in the previous

section.

6. Momentum cut: −2.5 ≤ 𝛿𝑝 ≤ 3.5 which is wider than the optic optimization

range (−2.0 ≤ 𝛿𝑝 ≤ 3.0).

For cross section all above cuts are applied, and an additional cut on the re-

constructed angles (𝜃𝑡𝑔, 𝜑𝑡𝑔) was applied. These cuts are listed in Table 4.4. This

additional cut makes the number of events that pass all cuts to be much less than

that of asymmetry analysis.

A.3 Spectrometer Acceptance

As mentioned in the cross section analysis (Chapter 4), the solid angle acceptance

ΔΩ is determined from simulation. Due to the fields created by the spectrometer

magnets, the acceptance may not coincide with the geometrical aperture of the spec-

trometer. The acceptance instead depends on the particle’s trajectory, momentum
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and interaction vertex. Hence, the acceptance is determined from a Monte Carlo

simulation.

In the simulation [62], random trajectories are generated that cover an illuminated

area that is larger than the actual acceptance in the momentum and the solid angle.

The simulation uses the forward transport matrix obtained from optic study and a

set of analysis cuts (see Table 4.4) to determine if a randomly generated ray reaches

the spectrometer’s focal plane. The acceptance is then extracted by forming the ratio

of number of events that pass through the spectrometer apertures and analysis cuts,

to the total number of generated events.
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