
The Isospin Dependence of Short Range Correlations

through Inclusive Electron Scattering from 40Ca and 48Ca

Dien Nguyen

Thanh Hoa, Vietnam

Bachelor in Physics, Hue University, 2010

A Dissertation presented to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Physics

University of Virginia

December, 2018



2

Acknowledgments

At the beginning of my thesis I want to express my appreciation to people who gave

me so much support and help during my Ph.D. Without them, I would not be able

to finish this thesis.

First of all, I would like to thank my thesis advisor, Prof. Donal Day, who couldn’t

be more supportive and encouraging. He was not only always there for me whenever I

needed him, but he also believed in me and gave me enough freedom to be independent

in my research. He also worked really hard on my bad writing to make this thesis

understandable. I couldn’t reach this point without his help and guidance. I deeply

feel grateful to have him as my advisor.

I would like to thank Prof. P. Q. Hung, who is the father of the ”Advanced Physics

Program in Vietnam” which I attended as an undergraduate. That program really

prepared me for the first steps of my Ph.D. study. Prof. Hung is the one who initiated

my American dream and brought me to UVA. Without him, I couldn’t be here to

pursue my career.

I would like to thank my analysis supervisor, Dr. John Arrington. He is a true

scientist who is extremely knowledgeable and patient. I learned a lot from him while

working together. The discussions with him were always enjoyable and helped clear

my confusions about the analysis. I also love the long emails from him which were

very informative. Thank you so much for giving me your time and guidance even

when you were super busy. I always feel lucky to be your student.

I would like to thank my JLab on-site supervisor, Dr. Douglas Higinbotham. He

brought me to the lab and assigned me many useful tasks which really helped me be

familiar with the experiment quickly. He also gave me a lot of guidance and valuable

suggestions. He always believed in me and encouraged me to believe in myself. He

cheered me up whenever I felt down or doubted myself. Thank you so much for taking

care of me during this long path.



3

I would like to thank Prof. Nilanga Liyanage, Prof. Blaine Norum and Prof. Trinh

Thuan for their time and agreement to be my thesis committee members.

I spent several years of my Ph.D. study at JLab, during which I was so lucky to

have the opportunity to work with scientists at the lab or from other universities.

I would like to thank Dr. Christian Weiss, Prof. Eric Christy, and Dr. Alexandre

Camsonne. I learned a great deal from each of them. They gave me an open view of

research areas outside of my Ph.D. study. I also want to thank Dr. David Mack. He

is such a nice person who always cared about me and spent a significant amount of

time guiding me through my thesis writing. Without his help, I don’t think I could

finish my thesis on time.

I am so happy and grateful to have the opportunity to work with the amaz-

ing tritium group, Argon group, Gmp group and many postdocs at the lab. They

have been great coworkers, giving me so much support and help. I would like to

thank Dustin Keller, Luke Myers, Jixie Zhang, Florian Hauenstein, R.Evan McClel-

lan, Marco Carmignotto and Zhihong Ye for their help and advice. In particular, I

want to say thank you very much to Florian, who spent a lot of time on my thesis

even when he was busy with the run coordinator duty. I want to say thank you very

much to every group member, including Sheren Alsalmi, Tong Su, Shujie Li, Hanjie

Liu, Tyler Hague, Mike Nycz, Jason Bane, Rey Torres, Yang Wang, Hongxia Dai,

Mikhail Yurov, Daniel Abrams, Nathaly Santiesteban and Jessica Campbell. You are

not only great coworkers but also good friends and my family here. Thank you so

much for walking with me along this path. I wish you guys all the best. I want to say

thank you so much to Barak Schmookler. He has been so patient with any questions

I had for him since I moved to JLab and always tried to help me solve my problems.

Our friendship means a lot to me. I wish you all the best in your next steps.

I would like to thank Vinh Hoang, Long Trinh, Hanh Le, Nguyen Ton, Toan

Bui, Dung Ho, Kha Tran, Trinh Le, Dat Duong, Truc Le for all the good time we



4

had together back in school. I will never forget those days. I always remember and

appreciate the support from my friends at UVA, Moran Chen, Luna Yang, Keija Li,

and those friends at JLab, Carlos Gayoso, Zongwen Yang, Longwen Ou, Lei Xing,

Chao Gu, Chao Peng, Ying Jin, Li Ye and Qian Zhang. Thank you so much for

taking care of me. Still there are a lot of people who I want to say thank you to but

I could not explicitly mention here.

Finally, I want to say thank you so much to my parents, my brothers and sisters.

I am the youngest kid in my family and they really did not want me to go so far away

from the hometown. However, they always support me to do what I want. I am so

lucky to be your daughter, and little sister. I love you very much. I also want to

say thank you very much to my American grandparents, Lon Holmberg and Sandy

Stillwell, who have made me feel loved and warm since I moved to US. Special thanks

go to my boyfriend, Longwu Ou, for his love, understanding and support. I am lucky

to have you.



Abstract

Short Range Correlations (SRCs) have been recognized as responsible for the high

momentum tail of the nucleon momentum distribution in nuclei and are necessary to

explain the missing nuclear strength in the mean field theory. One of the important

questions about SRCs is their isospin dependence, yet unseen in inclusive scattering.

An experiment (E08014) took place in Hall A at Jefferson Lab in Spring 2011 aimed

to study SRCs. The inclusive electron scattering cross-sections from different nuclei

including 2D, 3He, 4He, 12C, 40Ca and 48Ca were measured in kinematic region of

(0.8 < Q2 < 2.8 GeV2) and (1 < xbj < 2) where SRCs are expected to be dominant

(xbj = Q2/2mpν, Q2 is the 4-momentum transfer square, and ν is the transfer energy).

The cross section ratios of 4He nuclei to 3He for xbj > 2 were used to search for the

presence of 3N SRCs. The analysis herein focuses on the isospin dependence of SRCs

using the cross section ratio per nucleon of 48Ca to 40Ca.
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Chapter 1

Introduction

1.1 Overview

In 1897, J. J. Thomson discovered the electron through the magnetic deflection of

cathode rays; the result indicated the atom has an internal structure [1]. A decade

after that, in 1910, the Ernest Rutherford’s team discovered the nucleus by performing

an experiment, passing alpha particles through a thin gold foil and observed that a

few particles were scattered through large angles, even completely backward in some

cases [2, 3]. This remarkable result indicated the atom has a very small and dense

nucleus containing most of its mass. In 1932 the neutron was discovered by James

Chadwick [4]. These breakthrough discoveries mark the start of nuclear physics.

Since nuclear physics was established, the main research goal is a complete de-

scription of nuclear structure which requires the understanding of the interaction

between nucleons (protons or neutrons) and how these interactions determine nuclear

properties. In a simple picture, the existence of stable nuclei is evidence that the

nucleon-nucleon (N-N) interaction must be attractive, and much stronger then the

Coulomb forces, to keep the protons bound. However, it cannot be attractive over all

distances because the short distance N-N interaction must be repulsive to keep the
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nucleus from collapsing [5].

The complete description of the nuclear structure can be obtained by solving a

many-body problem. This is very challenging due to the complexities of the nuclear

system. The complexity level increases with A. The solution of this problem is only

available for the few-body systems, and up to A = 12 (12C) [6]. For heavy nuclei,

beyond 12C, this problem was and still is nearly impossible. Many effective models

have been developed in an attempt to describe nuclear structure and they all have

to apply different approximations in order to simplify the many-body problem. The

most successful model for nuclear structure is the independent particle shell model

(IPSM) invented by Goeppert-Mayer and Jensen in 1949. The IPSM can predict

surprisingly well the properties of nuclei such as their angular momentum, parity,

magic number, spin, etc. In the early 1980’s, A(e, e’p) experiments at NIKHEF-K

revealed a significant discrepancy between IPSM model predictions for the strength

of valence-shell protons when compared to data (30% - 40%) [7]. More details are

discussed in the next sections.

One of the possible way to remedy and understand this discrepancy is the existence

of short range correlations (SRCs) which are not included in the IPSM. SRCs refers to

two or more nucleons coming together at a short distances where their wave functions

overlap. The SRCs are assumed to be responsible for the high momentum tail of

the nucleon momentum distribution. Finding the fraction of nucleon in SRCs, as

compared to the fraction of nucleon in mean field gives a better understanding of

short-distance ground state nuclear structure. An area of great interest is the isospin

dependence of SRCs. That is, are the two nucleon SRCs pairs more or less likely to

be iso-singlet (np, T=0), iso-triplet (pp, nn, np, T=1) pairs? The analysis presented

in this thesis may provide a partial answer. The Calcium isotopes 40Ca and 48Ca

provide an ideal test of isospin dependence; while they have equal number of protons,

48Ca has 8 more neutrons.
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The electron is an ideal probe for studying nuclear structure. It is a structureless

particle which interacts with the nucleus via the well-understood electromagnetic in-

teraction. The relative weakness of the electromagnetic interaction not only enables

one to model the process by the exchange of a single virtual photon, but it is also

allows the electron to probes the entire nucleus. The resolution of electron probe is

defined by the wavelength of the virtual photon; smaller wavelength (larger momen-

tum transfer) corresponds to finer resolution. The singular disadvantage of electron

scattering is its small cross section which requires a high intensity electron beam and

thick targets. In addition, high momentum transfer (q) is required to provide the res-

olution neccesary to study nuclear structure at short distances. These requirements

were a challenge for SRCs studies with accelerators available in the 1980’s.

Fortunately, the development in accelerator technologies provides much higher

beam energy and luminosity which, together with much better theoretical under-

standing of nuclear structure, allowed a new generation of SRCs measurements. In

the last 30 years, many electron scattering experiments focused on SRCs have been

completed and many important results have been achieved. A big transition has been

made and SRCs physics has evolved from searching for their existence to mapping

their strength in nuclei, to studying their isospin dependence, exploring the possible

connections between SRCs and the EMC effect, and more. A summary of the main

results of previous SRCs measurements along with the motivation of this thesis ex-

periment is presented in Chapter 2. Experiment E08014’s setup and a summary of

kinematic settings are described in Chapter 3. The analysis details are discussed in

Chapter 4. The procedure of extracting cross section is given in Chapter 5. The

results and discussion can be found in Chapter 6.
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1.2 Independent Particle Shell Model

As mentioned above, the complete description of nuclei can be obtained by solving a

many-body problem [5,8, 9]. The Hamiltonian is defined as:

H = T +
A∑
i<j

V2−body(i, j) +
A∑

i<j<k

V3−body(i, j, k) + ...., (1.1)

where T is the kinetic energy, V2−body and V3−body are the two and three-nucleon

potentials, respectively. The conditions (i < j) and (i < j < k) avoid double counting

of the interaction energy. The main assumption made in the shell model is that

the nucleons move independently of each other in well-defined quantum orbits in the

average potential (mean field VM) created by the surrounding nucleons and that other

interactions are neglected. This approximation significantly reduces the complexity

of the many-body problem to that of a single particle in a potential well. This can

be expressed as:

H =
[
T + VM

]︸ ︷︷ ︸
IPSM

+
[
V2−body + V3−body + ...− VM

]︸ ︷︷ ︸
neglected in IPSM

. (1.2)

The nucleus is a dense system so it is reasonable to expect that there are substantial

interactions between the nucleons inside the nucleus. This raises a question of why

the IPSM works so well. The explanation relies heavily on the Pauli principle: the

scattering of nucleons to occupied states is forbidden which suppresses the interaction

between nucleons. For a given ground state nucleus, nucleons occupy independent

shells and fill up distinct energy levels. The highest energy level is called the Fermi

energy corresponding to the highest momentum, the Fermi momentum kF . In other

words, no nucleon above the Fermi energy and momentum are allowed in the IPSM.

The IPSM also assumed that the protons and neutrons have independent shell states.

The potential experienced by the proton needs to include the repulsive Coulomb
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potential [8]. A sketch of neutron and proton potentials well can be seen in Figure

1.1. The effective potential used in the IPSM is the Woods-Saxon potential with

spin-orbit term (see Refs. [5, 8]) which can be expressed as:

Figure 1.1: The protons and neutrons have independent potentials. The proton
potential is the sum of the neutron potential and Coulomb potential. The difference
from the top of the potential well and the highest energy level is the average binding
energy per nucleon [5].

VM =
[ −V0

1 + exp[(r −R)/a]

]
︸ ︷︷ ︸

Woods-Saxon potential

+
[
Vls(r)L · S

]
︸ ︷︷ ︸

Spin-orbit interaction term

, (1.3)

where V0, a and R are constants; V0 ∼ 50 MeV, a ∼ 0.5 fm, R = 1.25A1/3 fm [8].

The L and S are orbital and spin angular momentum operators, respectively. The

shape of the IPSM potential and the spin-orbit effects can be seen in Figure 1.2. The

spin-orbit interaction has no effect when l = 0, is more attractive interaction when l

and s are parallel and less attractive when l and s are anti-parallel [8, 10, 11]. This

spin-orbit term is the main key to be able to understand the shell structure of the

IPSM. Without the spin-orbit term, the energy states do not depend on the total

angular momentum, defined as J = L + S. For a given energy level the number of
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states a nucleons can occupy is 2(2l+ 1) where l is the angular momentum quantum

number which only can describe the first 3 magic numbers. Including the spin-orbit

term, the energy levels are further split. The number of nucleons which can occupy

a given energy level is (2j + 1) where j is the total angular momentum quantum

number. This then reproduces all magic numbers (see Figure 1.3). A more detailed

discussion can be found in Ref. [5]. In order to understand IPSM predictions, the

spectral function which describes the energy and momentum distributions and the

occupancy of a given shell are discussed next.

(a) The Woods-saxon potential (b) The spin-orbit effect

Po
te
nt
ia
l

Figure 1.2: The effective potential in the independent particle shell model. Figure
(a) [11] is the shape of the Woods-Saxon potential for A = 50 as a function of distance.
At a distance below 2 fm, the potential is flat which indicates no interaction. Figure
(b) [10] shows the spin-orbit effects on the potential. There is no effect when l = 0,
more attractive when s and l are parallel, and less attractive when s and l are anti-
parallel.

Spectral function and occupancy

The nuclear spectral function S(E, p) is defined as the probability of finding a nucleon

with the energy E and initial momentum p inside a nucleus. It is not an experimental

observable but can be extracted from A(e,e’p) cross section measurements [12]. In
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Figure 1.3: The magic numbers can be explained extremely well in the IPSM. The
energy level for a given principle quantum number n is split due to angular momentum
effects and then further split due to the spin-orbit effects. Each energy state is defined
by 3 quantum numbers n, l, j. The number of multiplicity for each states is predict
by the IPSM and it reproduces nicely the magic numbers.

the IPSM, the spectral function can be expressed as:

S(E, p) =
∑
α

|Ψα(p)|2δ(E + εα), (1.4)

where Ψα and εα are the single-particle wave functions and energies. Figure 1.4 shows

the experimental spectral function for nucleus 9Be [12].

The momentum distribution n(p) can be obtained by integrating the spectral

function over energy:

n(p) =

∫
S(E, p) · dE (1.5)

In the IPSM, N occ is occupancy of a shell, determined by energy, can be predicted

using the spectral function:

N occ = 4π

∫ ∫ kf

p2 · S(E, p) · dp · dE. (1.6)
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Figure 1.4: The Be spectral function as a function of separation energy E for various
momentum ranges [12] where several peaks in energy can be seen. These peaks are
identified by knocked out nucleons from different ground state orbitals.

In experiment, the occupancy number can be determined by counting the number of

knocked out protons from a given shell through the A(e,e’p) reaction. The comparison

between the prediction and the data can be used to validate the model.

The IPSM is not only successful in describing the shell structure of nucleus, it is

also successful to predict properties of nuclei such as spin, parities, magnetic dipole

momentum [5, 8]. However, the IPSM also has its limitations due to the mean-field

approximation. The IPSM’s limitations and possible solution for those are presented

below.

1.3 Indirect evidence of SRCs

The IPSM has been the standard model for nuclear physics since the 1950’s. It

motivated a lot of experiments to test the model, and many of them proved its

success. Since the early 1970s, experimental data started showing evidence of the

IPSM’s limitation by observation of a clear discrepancy between the data to the model
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predictions. . In the 1980’s a comprehensive program of A(e, e′p) experiments [7],

detecting the knock-out proton along with scattered electrons, were performed at

NIKHEF. Figure 1.5 shows a diagram of A(e, e′p) reaction where initial electron of

energy and momentum (E0,k) interacts with nucleus A through exchange a virtual

photon of energy and momentum (ν,q). The scattered electron e′ carries the energy

and momentum (E,k’). The transfered energy is given as ν = E0 − E. The missing

momentum is pmiss = q − p with p the scattered nucleon momentum and Em =

ν − Tp − TA−1 is the missing energy with Tp and TA−1 the kinetic energy of the

knock-out proton and the recoiling nucleus, respectively.

e(E0, k)

e’(E, k’)

fx
pA–1

qpq

pscattering plane

reaction plane

(𝜈, 𝒒)

Figure 1.5: The electron scattering for A(e, e′p) reaction.

The experiments at NIKHEF were designed to focus on the single-particle re-

gion, small missing energy (Em < 30 MeV) and moderate missing momentum (pm <

250 MeV). The A(e, e′p) reaction can be treated in the plane wave impulse approx-

imation (PWIA) in which it is assumed that the virtual photon only interacts with

a single nucleon. It is also assumed that there is no interaction between the struck

nucleon and the recoiling nucleus. The cross section measured for each orbit in dif-

ferent nuclei then is used to extract the momentum distribution. The extracted

momentum distribution can be compared to the prediction from the IPSM. In these

knock-out proton measurements, outgoing protons experience a strong interaction
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with the residual nucleus which distorted the momentum distribution. To be able to

compare to the experimental data, the DWIA (Distorted Wave Impulse Approxima-

tion) is applied on the effective potential of the IPSM for theoretical predictions [7].

The comparison is shown in Figure 1.6. Each plot displays the extracted momentum

distribution from valence shell (upper data) and the next deeper shell (lower data) for

different nuclei (each shell indicated by quantum numbers n, l, j). The solid curves

present the results using DWIA. Normalization factors are used to scale the curve

to the data. The shape of the momentum distributions from theory and data agree

together almost perfectly but not in absolute strength.

Another result from this program shows that the extracted spectroscopic factor,

which is the ratio of the observed strength of a given shell to the predicted strength,

is less than 1 for the valence shell (close to the Fermi edge) (see Figure 1.7). For

Figure 1.6: The momentum distribution results from the A(e, e′p) experiments at
NIKHEF [7,13]for different nuclei and quantum states as indicated (data points) and
compared to the calculation from DWIA (solid curves). In each plot, the upper data
is for the valence shell and the lower data is a for the next deeper shell. Normalization
factors were used to scale the theory curves.

nuclei with A > 7, this spectroscopic factor is almost a constant, ∼65%, over a large
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Figure 1.7: Left plot shows the spectroscopic factor for valance shell from A(e, e′p) ex-
periment at NIKHEF as a function of target mass. For nuclei A>7 this spectroscopic
factor is almost a constant ∼65%. Right plot shows a small spectroscopic factor for
the shell above but close to valance shell [7].

range of A. When the two body correlations at the distance of several fermi, long-

range correlations (LRCs), were included in the calculation, there is still a significant

discrepancy from the observed strength to the predicted strength from the IPSM [14].

This is a clear indication that the IPSM overestimates the occupancy of the valence

shells. In addition, the experimental data also observed nucleons in the shells above

but close to the Fermi edge [7] which is also not allowed in the IPSM. A possible

explanation for this significant discrepancy is the presence of two-body short range

correlations in nuclei, not included in the IPSM.

The observation of the difference in spectroscopic factors is considered as an in-

direct evidence of short range correlations. In the following sections, the features of

the SRCs are discussed in more detail which helps to provide a better understanding

of the limitations of the IPSM.
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1.4 The Origin and Features of SRCs

Nucleon-Nucleon potential

As discussed above, the IPSM is extremely successful explaining the shape of the

momentums distribution for valence orbitals, not their absolute normalization. The

IPSM is a single-body approximation, so a natural approach is to account for the two

body correlations, particularly the short range correlations (SRCs). These correla-

tions depend directly on the N-N potential. There are several realistic N-N potentials

extracted from proton-proton and proton-neutron scattering data. The AV18 [15],

Bonn [16] and Reid93 [17] N-N potentials are shown in the left hand side of Figure

1.8 [18]. The right plot shows two individual components (the tensor part and cen-

tral part) and the total N-N potential from AV18 for nucleons in the deuteron [19].

A strong repulsive potential at very short distances is a common feature of all N-N

potentials. The central component of the N-N potential is the dominant interaction

out to a distance of ∼0.7 fm, where it makes a transition from the attractive to the

repulsive, after that the tensor component is the dominant interaction. In addition,

without this tensor component there would be no bound nuclei, since the attractive

strength from the central part is not strong enough. This is the hint of the SRCs

must be deuteron-like in the nucleus.

Momentum distribution

The strong repulsive core and the tensor part the of N-N potential create a strong

interaction between nucleons when they are close together, forming SRCs pairs of

nucleons in the nucleus. These SRCs pairs have small total momentum (center-of

mass momentum) but high relative momentum (above the Fermi momentum). In

other words, these short range correlations can be understood in the way that they

move strength away from the bound-states into the continuum energy and momen-
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Figure 1.8: Left plot [18] shows the central component of the N-N potential from
different groups, indicated in the plots. (Right): two individual components (central
and tensor) and the total N-N potential from the AV18 group [19].
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Figure 1.9: 12C momentum distribution comparison, the dashed line and solid line
present the mean-field momentum distribution and the one including the SRC corre-
lations in the calculation, respectively [20].

tum states which has no strength in the IPSM [14,20,22]. This can be seen clearly in

the comparison of mean-field momentum distributions and the realistic momentum

distributions which include the correlations in their calculation (see Figure 1.9) [20].

The 12C mean-field momentum distribution drops rapidly when the momentum ap-
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Figure 1.10: Comparison of mean-field momentum distributions (dashed line), a re-
alistic momentum distributions (solid line) which include the SRC correlations to
experimental data (symbols) [21].

proaches the Fermi momentum while the realistic distribution drops much slower and

has a smooth transition to a high momentum tail. The comparison also clearly shows

that the momentum distribution at low momentum is reduced and enhanced at high

momentum by including the correlations. In addition, the experimental data (see

Figure 1.10) show a very good agreement with realistic momentum distribution [21].

Under the assumption that short range correlations are responsible for the high

momentum tail the experimental data is reproduced very well which was not possible

within the IPSM. This assumption also suggests that the high momentum tails in

different nuclei have a common source, have the same shape, and only differ by a
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scaling factor. This scaling factor depends on the probability of finding SRC pairs

in different nuclei. The momentum distribution at large k for different nuclei can be

scaled from 2D [21]. It can be expressed as:

nA(k) = a2(A) · nD(k), (1.7)

where nD(k) and nA(k) are the 2D and nucleus (with atomic number A) momentum

distribution and a2(A) is the corresponding scaling factor.

Figure 1.11: The momentum distribution for different nuclei, scaled from the 2D
momentum distribution using different scaling factors [21].

There are many reactions that can be used to explore SRCs. Inclusive electron

scattering is the simplest one and will be discussed in the next section.

1.5 Inclusive Electron Scattering

Inclusive electron scattering from nuclei A(e, e′), is a process where an electron e

scatters off a nucleus A and only the scattered electron e′ is detected. This reaction

gives the opportunity to study different properties of nuclear matter depending on the
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kinematic region. Figure 1.12 shows the quasi-elastic diagram of the A(e, e′) reaction.

Figure 1.12: Electron-nucleus quasi-elastic scattering diagram for A(e, e′) reaction
taken from Ref. [23]. M∗A−1 is the mass of recoiling (A− 1) system.

Kinematic variables

The electron with energy and momentum (E0, ~k) interacts with the nucleus A through

exchange of a virtual photon of energy and momentum (ν, ~q). The scattered electron

e′ carries the energy and momentum (E, ~k′). The transfer energy is ν = E0−E. The

invariant mass of the undetected final hadronic state, W 2, and 4-momentum transfer,

Q2 are defined as:

Q2 = ~q2 − ν2 and W 2 = 2mpν +m2
p −Q2. (1.8)

where mp is the proton mass. The most commonly used kinematic variable in SRCs

studies is Bjorken xbj = Q2

2mpν
. There is another common kinematic variable y, which is

defined later. Q2 and xbj are used as a tuning knob to access the different kinematic

regions (see Figure 1.13). The spectrum of inclusive electron-nucleus cross section

is shown as a function of transferred energy ν in Figure 1.13. Different kinematic

regions are sensitive to different physics. Elastic scattering is used to study the
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structure of the nucleon or nucleus: the form factor and charge distribution. Deep

Inelastic Scattering (DIS) is used to study quark distribution functions, and possibly,

their modification inside the nucleus. Quasi-elastic scattering can be used to study

momentum distributions and nucleon-nucleon SRCs.

𝝂

Figure 1.13: The inclusive cross section for electron scattering off a nucleus as a
function of transfer energy ν.

Scaling functions

Scaling is a term used to describe a cross-section, a function of 2 independent variables,

which under some conditions can be described as a function of a single variable itself

derived from the same variables, here Q2 and ν. In inclusive scattering the scaling

function is a very useful way to study a complex system, because the observation

of scaling indicates a simple mechanism or substructure in the system which can be

examined using the scaling function itself. In addition, the violation of the expected

scaling behavior can be used to validate the assumptions in the model that predicts

scaling. For different kinematical regions, there are different scaling functions. In the

following sections we will discuss the quasi-elastic scattering and its scaling function,

F (y).
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1.5.1 Quasi-elastic scattering

Quasi-elastic scattering is defined as a process where a single nucleon is knocked

out from the nucleus by an electron, with the recoiling (A− 1) left in any state, see

Figure 1.12. In electron-nucleus scattering quasi-elastic is the dominant process in the

kinematic region with the energy transfer 0.5 GeV < ν < 2 GeV. The contribution

from inelastic scattering increases with Q2 [24, 25]. The quasi-elastic peak is located

at xbj = 1 but broadened due to the motion of the nucleons inside the nucleus. By

assuming the quasi-elastic model for electron scattering off a single nucleon within the

nucleus to be valid, the peak region can be described in terms of a scaling function

F (y) which will be derived in the next section.

Quasi-elastic cross section

The quasi-elastic cross section can be calculated using the plane wave impulse approx-

imation (PWIA) [23,26]. Two main assumptions are used in this approximation: no

final-state interaction between the knock-out nucleon and the recoiling nucleus, and

the photon interacts only with a single moving nucleon.The inclusive cross section

can be obtained using the expression [26,27]:

d2σ

dEe′dΩe′
=

A∑
i=1

∫
d~p0

∫
dEs · σei · Si(p0, Es)

× δ(ν +MA −
√
M2 + p′2 −

√
M∗2

A−1 + p2
0),

(1.9)

where ~p0 and ~p′ = ~p0 + ~q are the initial and the final momentum of the knock-out

nucleon, Es = M∗
A−1 + M −MA is the separation energy. Si(p0, Es) is the spectral

function of the nucleus (i stands for either the proton or the neutron) and σei is

the electron-nucleon cross section for scattering from a bound moving nucleon. MA

and M∗
A−1 are the nucleus mass and the residual (A − 1) system mass, respectively.

The argument of the δ function is for energy and momentum conservation. The
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spectral function is spherically symmetric so d~p0 = p2
0 · dp0d(cosϑ)dϕ, where ϑ is

angle between ~q and ~p0 and ϕ is the angle between electron scattering plane and the

reaction plane. The difference between the spectral function for protons and neutrons

is usually neglected. Summing over A nucleons and integrating over the angle ϑ, the

cross section can be rewritten as:

d2σ

dEe′dΩe′
= 2π

∫ Emax
s

Emin
s

∫ pmax
0 (Es

pmin
0 (Es)

σ̄0 · S(p0, Es) · p0 · dp0 · dEs, (1.10)

where σ̄0 = σ0 ·
√
M2+~p′

2

q
and σ0 can be expressed as:

σ0 =
1

2π

A∑
i=1

∫ 2π

0

σeidϕ =
1

2π

∫ 2π

0

(Zσep +Nσen)dϕ.

The energy limit Emin
s corresponds to the A−1 system being in its ground state while

Emax
e corresponds to the struct nucleon being at rest.

Emin
s = MA−1 +M −MA and Emax

s =
√

(ν +MA)2 − q2 −MA

The limits of the momentum integration pmin0 and pmax0 are determined by the con-

straint −1 ≤ cosϑ ≤ 1, i.e ~p0 is parallel to ~q.

Scaling function F (y)

The y variable can be obtained from [26]

ν +MA =
√
M2 + q2 + y2 + 2yq +

√
M2

A−1 + y2 (1.11)

The cross section σ̄0 in Equation 1.10 varies extremely slowly with p0 and Es while

the spectral function changes rapidly. This means that it is a good approximation to

replace σ̄0(p0, Es) by its value at the peak of the spectral function σ̃ = σ̄0(pmin0 , Emin
s ).
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The integration limits can be extended to infinity. The rapid decrease of the spectral

function means that the error by extending the integration limits to infinity will

decrease rapidly as Q2 increases (see Ref. [23]). The cross section can be written as:

d2σ

dEe′dΩe′
= 2πσ̃

∫ ∞
Emin

s

∫ ∞
|y|

S(p0, Es) · p0 · dp0 · dEs, (1.12)

where |y| = pmin0 (Emin
s ). The scaling function F (y) is defined as :

F (y) = 2π

∫ ∞
Emin

s

∫ ∞
|y|

S(p0, Es) · p0 · dp0 · dEs. (1.13)

The momentum distribution of a nucleon inside the nucleus n(p0) is the energy integral

over the spectral function.

n(p0) =

∫ ∞
Emin

s

S(p0, Es) · dEs.

The scaling function F (y) can be rewriten as:

F (y) = 2π

∫ ∞
|y|

n(p0) · p0dp0 (1.14)

The momentum distribution can be calculated using the F (y) using experession [28]:

n(p0) = − 1

2πp0

· dF (y)

dy

By using the scaling function F (y), the cross section is separated into two terms (see

Equation 1.12). The first term, σ̃, represents the interaction process. The second

term, F (y), carries the structure of the nucleus, related directly to the momentum

distribution of the strucked nucleon. The F (y) scaling function can be extracted from
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experimental data using the description:

F (y) =
d2σ

dEe′dΩe′
· 1

Zσep +Nσen
· q√

M2 + (~p0 + ~q)2

σep and σen are the off-shell elementary electron-proton and electron-neutron cross

section [29]. In order to understand this scaling behavior, the extracted cross-section

and F (y) for 3He from SLAC data are shown in Figure 1.14 [30,31]. The cross section

for many different kinematic settings collapse into a single line, F (y).

Figure 1.14: The experimental cross section (left) and F (y) (right) for 3He from SLAC
data [30]. The plots courtesy of D. Day. The colored lines cover a range of data with
Q2 from 0.25 GeV2 to 4 GeV2.

F (y) appears to be scale well in the region of −0.6 < y < 0 (independent of Q2)

which supports the underlying assumption of Quasi-elastic scattering. At low Q2 the

final state interactions increase would break the scaling. At high Q2 and large energy

transfer the contribution from inelastic data increases also breaks scaling.

1.5.2 Where to find SRCs in Inclusive Scattering

As discussed above, the SRCs are responsible for the high momentum tail of the

nucleon momentum distribution. SRCs can be studied via inclusive electron scatter-
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ing by working in a special kinematic region where the reaction can only come from

an interaction with a correlated high momentum nucleon which is instantaneously

removed from the SRC. This requirement can be achieved if the energy and momen-

tum transfer scales are much larger than scale characteristic for SRCs [32, 33]. This

condition requires:

ν � VNN and |~q| � 2kF , (1.15)

where VNN is the characteristic potential of the N − N interaction. Another back-

ground which needs to be suppressed is the contribution of long range interactions

through meson exchange. This can be achieved by required Q2 � m2
meson [34].

In order to fulfill the requirement that the minimal momentum of the struck

nucleon, Pmin must be greater than kf , a calculation of Pmin(y) as a function of xbj

and Q2 is shown in Figure 1.15. To access the region where SRCs are dominant, the

electrons have to scatter off the nucleon with xbj > 1.5 and Q2 > 1.5. The condition

of large xbj (xbj > 1) kinematically restricts the scattering from a single nucleon and

therefore gives access to the multi-nucleon reaction. In addition, requiring that the

xbj >1 minimizes inelastic scattering contribution, providing much cleaner data (see

Figure 1.16).

Final state interactions (FSI), a severe concern in SRC studies, fall rapidly as the

energy and momentum transfer increase because of the decrease of the interaction

time (see Ref. [23]). In the kinematical regime of SRCs studies, FSI are not small

but it is considered mainly as the interaction between nucleons in the SRC pair and

not between the struck nucleon and the residual nucleus. This residual FSI effect is

largely cancelled in the ratio of the cross sections. More information about FSI in

SRCs can be found in the Refs. [14, 24,33].

It is worth mentioning that for two nucleon SRCs the specific calculation to de-

termine the kinematic region can be easily performed, but for the 3N or higher SRCs

the calculations become much more complicated. The most recent calculation for 3N-
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Figure 1.15: The minimum momentum of the struck nucleon is shown as a function
of xbj and Q2 for deuterium (Figure (a)) and for different nuclei (Figure (b)). The
red line represents the Fermi momentum [33].

SRC kinematic limits was performed by M. Sargsian (see Figure 1.17) [35,36]. In this

calculation the variable α3N , a light cone variable associated with interacting nucleon

belonging to 3N-SRC, is used. The result of this calculation shows that 3N-SRCs are

dominant when α3N > 1.6. This means that if we want to observe 3N SRCs in the

region of xbj > 2, the minimum Q2 = 5 GeV2 is needed.

In the kinematic region where xbj > 1 and Q2 > 1 the SRCs are expected to be

dominant, as discussed above, and the inclusive cross section can be approximated

as:

σA(x,Q2) =
A∑
j=2

A

j
aj(A)σj(x,Q

2),

=
A

2
· a2(A) · σ2(x,Q2) +

A

3
· a3(A) · σ3(x,Q2) + ...

(1.16)
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Figure 1.16: Schematic representation of inclusive cross section cross section [24].
The total cross section as well as the individual contributions from Quasi-elastic,
resonance, and DIS are presented in the plots as a function of ν in MeV. The region
for SRC studies is indicated in plot where the contribution from other reaction are
suppressed.
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Figure 1.17: The 3N SRCs kinematic calculation as a function of xbj and α3N , a
function of xbj and Q2 [35].



35

The total cross section σA(x,Q2) is the sum of cross section from j-nucleon correla-

tions, σj(x,Q
2). The constant aj(A) is proportional to the probability of finding a

nucleon in a j-nucleon correlation and decreases rapidly when j is increasing. For

the case, A = j = 2, aj(A) = a2(2) = 1. With this definition a2(A) is the prob-

ability of finding a 2N-SRCs in a nucleus A relative to 2D. Another approximation

is σj(x,Q
2) ∼ 0 for x > j. This suggests that the 2N-SRCs are dominant in the

region 1 < x < 2. For x > 2, the static 2N-SRC contribution vanishes (the motion

of the 2N-SRCs in nuclear can broaden it a bit above x = 2) and the scattering is

dominated by contributions of 3N-SRCs or higher. As discussed in Section 1.4, the

high momentum tail of nucleon momentum distribution from different nuclei have

the same shape and they differ only from each other by a scaling factor since they

all come from a common origin, the short range part of N-N potential. Therefore

the cross section ratio should be a constant in the kinematics where 2N-SRCs are

dominant. The cross section ratio from different nuclei to 2D can be described by:

2

A
σA(x,Q2)/σD(x,Q2) =

a2(A) · σ2(x,Q2)

σ2(x,Q2)
= a2(A), (1.17)

where the fraction 2
A

make this cross section ratio per nucleon. If SRCs dominate we

would expect to see in the per nucleon cross section ratios a plateaus for 1.5 < xbj < 2

and the height of the plateaus could provide a2(A). It is a natural choice to move

from 2N to 3N-SRCs by using the ratio of cross section from heavy nuclei to 3He in

the region where 3N-SRCs are dominant. The cross section ratio can be expressed

as:

3

A

σA(x,Q2)

σ3(x,Q2)
= a3(A)|2<x<3, (1.18)

where a3(A) is the probability of finding 3N nucleons in nucleus A relative to 3He.

The results of experiments that have investigated SRCs in both 2N and 3N region

are summarized in the next chapter.
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Chapter 2

SRCs measurements

Experiments have been performed to investigate SRCs at different labs, SLAC (Stan-

ford Linear Accelerator Center), BNL (Brookhaven National Laboratory) and JLab

(Jefferson Lab). These experiments used either electron or proton scattering in inclu-

sive or exclusive reactions, A(e, e′), A(e, e′p), A(p, pn) etc. Many important results

were accumulated and have provided a much better understanding of SRCs. A sum-

mary and discussion of these results is presented in this chapter, followed by the

motivation for E08014 and an outlook for future SRCs studies.

2.1 Results of Inclusive experiments

The first direct evidence of SRC

As discussed in Section 1.5, electron inclusive scattering is the simplest reaction to

study the SRCs. The results from the experiments performed at SLAC are consid-

ered as the first direct evidence of SRC [37]. This experiment collected data in the

kinematic region, xbj > 1 and Q2 > 1, where SRCs are expected to be dominant (see

Section 1.5.2). The cross sections included 2D, 3He, 4He, 12C, 27Al, 56Fe and 197Au

were used to calculate the cross section ratio σA
σD

2
A

. Some of the results can seen in
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Figure 2.1 [37].

Figure 2.1: The first direct evidence of SRC from the SLAC data [37]. The plots
show the cross section ratio per nucleon of 4He to 2D as function of xbj for different
Q2’s.

Figure 2.1 shows the cross section ratio from 56Fe to 2D as a function of xbj.

Scaling (plateaus) was observed in the region xbj > 1.5 which indicates the existence

of SRC. The plateaus also indicate the scattering took place from the high momentum

nucleons (above kF ∼ 250 MeV). The scaling factor a2(A) for different nuclei was

obtained using the expression:

a2(A) =
2 · σA
A · σD

where σA and σD are the cross section from the nucleus A and deuteron, respectively.

The results from SLAC have poor statistics in the region where SRCs are expected
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to be dominant. In addition, the 2D data was taken at a different kinematics compared

to the other nuclei which makes the extraction of a2(A) non trivial.

Results from JLab inclusive measurements

The results from Hall B and Hall C inclusive measurements at JLab are summarized

here.

Hall B

One set of data was taken at Hall B at JLab using the CEBAF Large Acceptance

Spectrometer (CLAS) in the kinematic range of 1 < xbj < 2 and 1.4 < Q2 < 2.6 GeV2

for 2N-SRCs studies. This measurement can be used to compare to SLAC results,

described earlier. Data with xbj > 2 also collected, aiming to study 3N-SRCs [38,39].

For the first time, the cross section ratio of 4He, 12C and 56Fe to 3He (RA
3He = 3σA

Aσ3He
)

were measured under identical kinematic condition. The ratio is shown in Figure 2.2

and it shows scaling (a plateaus) in the region 1 < xbj < 2 for Q2 > 1.4, corresponding

to scattering from high momentum nucleons. The observation is consistent with

the expectation from theory calculation [38] and with the observed scaling in the

kinematical region from the SLAC experiment [37]. This scaling behavior seems to

be independent of xbj and Q2 in the region where 2N-SRCs dominate (xbj > 1.5 and

Q2 > 1.4), see Figure 2.2.

Using the above ratio RA
3He, the probability of finding SRCs in nuclei A relative

to 3He can be obtained using the expression [38,40]:

r(A,3He) = RA
3He ×

A(2σp + σp)

3(Zσp +Nσn)
(2.1)

In order to compare to the SLAC results, the per-nucleon probability of finding
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Figure 2.2: The cross section ratio per nucleon of 4He (left plots) and 12C (right plot)
to 3He. The top plots show the ratio for Q2 < 1.4 without an observation for scaling.
The bottom plots show ratio for Q2 > 1.4 with scaling in the region 1 < xbj < 2 [38].

SRCs in nuclei A relative to 2D, a2(A), has to be calculated using the relationship:

r(A,3 He) ∼ a2(A)/a2(3)→ a2(A) = r(A,3 He)× a2(3), (2.2)

where a2(3) is the per-nucleon probability of finding SRCs in 3He relative to 2D. The

value for a2(3) was obtained experimentally (a2(3) = 1.7 ± 0.3 [37]) and using wave

function calculations (a2(3) = 2 ± 0.1) [39]. A weighted average value of a2(3) =

1.97 ± 0.1 was taken. The details can be found in Ref. [38]. The results, a2(A), are

consistent with the results from SLAC [37].

The ratio r(A,3 He) as a function of xbj for 4He, 12C and 56Fe is presented in Figure

2.3 [39]. The results showed a second plateaus in the region of 2.2 < xbj < 2.8. At

the time of publication, this was claimed as the first evidence for 3N-SRCs. But the

data has its limitations. It was assumed that the 3N-SRCs scaling starts at the same

Q2 as 2N-SRCs. These second plateaus included data averaged over the range of Q2

and the statistics were dominated by the lowest Q2 data. It is difficult to confirm
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that this measurement has reached the region where 3N-SRCs dominate. A detailed

discussion of the results can be found in Ref. [41].

xbj

Figure 2.3: The ratio of cross section from different nuclei to 3He shows 2 scaling
regions. The scaling in the range of 1 <xbj < 2 was claimed as results of 2N SRCs,
while second scaling xbj > 2 was assumed to be the indication of 3N SRCs [39].

Hall C

Along with the data from CLAS, there is also precise data from Hall C. The exper-

iment E02-019 [25, 42] performed at JLab’s Hall C took data with high precision for

2N and 3N-SRCs studies. Information about the experimental setup as well as the

results can be found in the Ref. [25,42]. For 2N SRCs studies in the region 1 < xbj < 2

, the results are in good agreement to the one from Hall B as well as the SLAC data

(see Figure 2.4). A detailed comparison is presented in the Ref. [42].

This experiment also provided a second data set for 3N SRCs in addition to the

Hall B data using the 4He/3He cross section ratio per nucleon (see Figure 2.5). The Q2

values from the two data sets are different, Q2 ∼ 2.9 in E02-019 and Q2 ∼ 1.6 GeV2 for

CLAS. The comparison shows a good agreement in the 2N-SRCs region but the E02-

019 data is significant higher compared to the CLAS data in the region of xbj > 2. This
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Figure 2.4: The cross section ratio per nucleon for different nuclei to 2D from the
E02-019, Hall C at JLab. A clear scaling in the region of 2N SRCs was observed and
is in good agreement with the SLAC data [42].

Figure 2.5: The comparison of the cross section ratio R(4He/3He) per nucleon between
CLAS [39] data and E02-019 data [42].

suggested a Q2 dependence of 3N-SRCs and more studies are necessary to determine

the kinematic region where the signal can be isolated.
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2.2 Results of Coincident Experiments

The observed plateaus in the inclusive data is a strong evidence that the high mo-

mentum tail in different nuclei has a universal behavior. An exclusive experiment

where the scattered electron, scattered proton and recoil nucleon are detected can

provide the confirmation that the observed plateaus in the inclusive scattering ratios

are due to SRCs. In addition, it can provide more information about the nucleons

involved in SRCs. The triple coincident experiment E01-015 was performed in Hall A

at JLab to measure the SRC pair directly. The experimental setup is shown in Figure

2.6. 12C was used as the target and data was taken at xbj = 1.2, Q2 = 2 GeV and

missing momentum Pm > 300 MeV. The scattered electron and proton was detected

using the high resolution spectrometers (LHRS and RHRS) of Hall A at JLab. The

BigBite and HAND detector packages were installed to detect the recoiling proton

and neutron of the pp or pn SRC pair, respectively. There are several important

results from this experiment.

Figure 2.6: The triple coincident experiment E01-015 set up information. The scatter-
ing electron, scattered proton and recoiled nucleon were detected in this experiment
(left plot). The right plot presents the kinematical settings [43,44].

The first result is shown in Figure 2.7. It shows the distribution of the cosine of the

angle between the missing momentum pmiss and recoil momentum prec for the pmiss =
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0.55 GeV kinematics. The data showed that most of the time a scattered proton with

high momentum was detected, a recoil proton or neutron was also detected with

similar momentum in almost the opposite direction. This indicates that the high

momentum nucleons come from correlated pairs with small total momentum and

high relative momentum (a SRCs pair). Because of this small total momentum, the

recoiling nucleons come out with a large angle, nearly n the opposite direction with

respect to the scattered proton direction.
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Figure 2.7: The cos(pmissprec) distribution shown as points [43]. The histogram
presents the events distribution from random event selection and the curve is the
expectation based on simulation.

The second important result from the triple E01-015 is the evidence of the isospin

dependence of SRCs.

Isopspin dependence of SRC

In the simple model, SRCs are assumed to be isospin-independent, with equal con-

tributions from different types of correlated pairs (pp, nn, np). E01-015 provided the

ratio of (e,e’pp)/(e,e’p) and (e,e’pn)/(e,e’p) since for every event (e,e’p), the recoil

proton or neutron is also detected. The results show that most of the (e,e’p) events

(96%± 22%) with a pmiss > 300 MeV have a recoil neutron [44]. The SRC measure-



44

ments show that SRC contribute to 20% of the ground state wave function while 90%

of them come from np pairs (see Figure 2.8). A consistent result was obtained from

an independent experiment performed at BNL using a proton beam to measure the

(p,2pn)/(p,2p) ratio. Results of that experiment showed that 92%±18% of the events

(p,2p) with a pmiss > 275 MeV were detected with a correlated recoiled neutron, see

Figure 2.8 (left) [45].

Figure 2.8: Left plot: the fraction of correlated pair combination in 12C as obtained
from the (e,e’pp) and (e,e’pn) reaction [44], as well as from the (p,2pn) data [45].
Right plot: the average fraction of nucleons in the various initial configuration of
12C [44].

This is a strong evidence for the isospin dependence of SRCs. This dependence has

been explained by several theoretical calculations. Figure 2.9 shows the momentum

distribution along with contribution of np pairs (solid line) and the pp pairs (dash

line) for different nuclei from calculations [46]. These calculations clearly show that

in the region where SRCs are dominant, the contribution from np pairs is much larger

when compared to the one from pp pairs.

The isospin-dependent results motivated many other experiments to seek a better

understanding. Some of them will be presented in the Section 2.4.
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Figure 2.9: The nucleon momentum distribution calculated for different nuclei, in-
dicated in the plots [46]. np contributions are shown by the solid line and pp con-
tributions are shown by dashed line. The np pairs have a much larger contribution
compared to pp pairs in the region where SRC expected to dominate.

Momentum sharing in imbalanced Fermi system

After isospin-dependence was revealed in triple coincident experiment using 12C, an-

other coincident measurment was done in Hall B at JLab using the CLAS detector on

different nuclei 12C, 27Al, 56Fe and 208Pb. This experiment detected (e,e’pN) events

with kinematics chosen to ensure that the knock-out proton belonged to the SRC pairs

(Q2 > 1.5 GeV2 and xbj > 1.2) and missing momentum 300 < pm < 600 MeV). This

was the first attempt to investigate the isospin-dependence of nuclei with A > 12.

The dominance of np SRC pairs over pp SRC pairs appear to be a universal property

for every measured nuclei (see Figure 2.10) [47]. With np dominance, the number

of protons and neutrons having high momentum are the same. So in neutron-rich

nuclei the fraction of neutrons with high momentum is smaller than the fraction of

protons which gives the protons a higher average momentum compared to neutrons.

This result is in opposition to what is expected from the Pauli principle. Without the

SRC interaction the Pauli principle will push the majority nucleons to higher aver-
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Figure 2.10: The evidence of the isospin-dependence for heavy nuclei A>12. The
plots show the fraction of np and pp SRCs pair. The yellow and green bands show
the confident levels. The np SRCs pair fraction is dominant over pp SRCs pair in all
measured nuclei, Ref [47].

age momentum. This would imply that in neutron-rich nuclei the majority nucleon,

neutron, would have higher average momentum.

For light nuclei (A < 12) the average kinetic energy of a proton and neutron can

be calculated by integrating the single-nucleon momentum distribution over the range

of momenta.

〈Tp(n)〉 =

∫
np(n)(k) · k

2

2m
· d3~k, (2.3)

where 〈Tp(n)〉 is the average kinetic energy of the proton (neutron). np(n)(k) is the

proton (neutron) momentum distribution obtained by many-body Variational Monte

Carlo calculations (VMC) which use AV18 potential and Urbana-X potential for 2N

and 3N interactions, respectively. The np(n)(k) distribution needs to be normalized

to 1. ∫
np(n)(k) · d3~k = 1 (2.4)

The results of this calculation, presented in Ref. [9], showed that the average kinetic

energy of the minority nucleons is larger than the one from the majority nucleons.

This is consistent with the expectation of np pair dominance in the high momentum

tail. But this calculation is only available for light nuclei. In order to explain the

np-dominance observed in heavy nuclei, an effective momentum distribution (con-
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tact formalism) is used in calculations. The basic idea of this effective momentum

distribution can be understood using a toy model, described in Figure 2.11.

Figure 2.11: The momentum distribution in an imbalanced Fermi system. Without
SRC interaction (dashed line), the majority nucleon has a higher average momentum.
Including the SRCs interaction (solid line) high momentum tail is created. The same
number of majority and minority nucleons have high momentum which leaves a larger
fraction of majority nucleon at the low momentum states [47].

The solid lines and dashed lines represent nucleon momentum distribution with

and without SRC interactions, respectively. The interacting nucleon momentum dis-

tribution has the same number of minority and majority nucleon which leads to a

larger fraction of majority nucleons in low momentum states. With this assumption,

the momentum distribution np(n)(k) of protons and neutrons in heavy nuclei can be

expressed as follows:

np(n)(k) =


η · nmean-field

p(n) (k) k < k0

A
2Z(N)

· a2(A) · nd(k) k > k0,

(2.5)

where nmean-field
p(n) is the mean-field momentum distribution of the proton (neutron) in

the nucleus A with Z protons and N neutrons. The scaling factor a2(A) is the ratio
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of nuclei A cross section to 2D in the 2N SRC region extracted from data, and the

nd(k) is 2D the momentum distribution.

Integrating the above momentum distributions over the momentum range, the

average kinetic energy of a proton and neutron in different nuclei can be obtained.

The detailed calculation can be found in Ref. [9]. The summary of the results are

shown in Figure 2.12.

Figure 2.12: The average kinetic energy of proton and neutron calculations in different
nuclei using the momentum distribution in the Equation 2.5.

The results showed that by including the np-dominance in the calculation the

average kinetic energy of protons is larger than that of neutrons for heavy nuclei.

This is consistent with the np-dominance observed in different heavy nuclei.

2.3 SRCs and The EMC effect

The EMC effect

Whether the quark structure in a bound nucleon and a free nucleon is the same is

another outstanding question in nuclear physics. The general expectation is that

they are the same. In the 1980s, Deep Inelastic scattering (DIS) measurements were

performed at CERN to extract the DIS structure function F2 for both heavy nuclei

(Fe, Cu) and 2D. The experimental data shows that the deep inelastic structure
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function F2 for heavy nuclei was not the same as for 2D [48]. In other words, the

ratio of FA
2 /F

D
2 is not equal to 1 as expected in the region 0.3 < xbj < 0.7, where the

Fermi motion can be ignored. It is noteworthy that the binding energy is extremely

small (few MeV) compared to the transferred energy (several GeV) in this experiment

and therefore no noticeable effect was expected. In Figure 2.13, the ratio F Fe
2 /FD

2

is shown for data along with theoretical prediction [48]. The observed difference to

the expectation is referred as the EMC (European Muon Collaboration) effect. This

suggests that a bound nucleon inside nucleus behaves differently from a free nucleon.

Figure 2.13: The DIS structure function F2 ratio, F Fe
2 /FD

2 , from data at CERN, and
thetheoretical expectation [48].

After the first observation, there were more experiments conducted to study this

effect in different nuclei [49, 50]. The results can be seen in Figure 2.14 where the

DIS cross sections ratio per nucleon (R) for different nuclei to the 2D is plotted as

a function of xbj for the SLAC data (left plots) [49]and JLab data (right plots) [50].

The EMC effect appears to be universal in different nuclei.

The strength of the EMC effect is taken as the slope of the ratio R (dREMC/dx)
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Figure 2.14: The DIS cross section ratio per nucleon for different nuclei to the 2D.
The left plots present SLAC data [49] while the right plots present JLab data [50].
The results show the EMC effect is universal in different nuclei..

in the region 0.3 < xbj < 0.7 [50]. There are many phenomelogical explanations for

the EMC effect but no general accepted solution so far. The next section will discuss

about a possible explanation of the EMC effect related to SRCs.

Possible connection between SRCs and the EMC effect

As discussed above, the EMC effect was observed in DIS measurement in the region

0.3 < xbj < 0.7 and Q2 > 2 which it is sensitive to the nuclear quark distributions.

The nuclear scaling was observed in the quasi-elastic region xbj > 1.5 and Q2 > 1.5

which is sensitive to SRCs. While the EMC effect is thought to be related to the

medium modification, the SRCs are related to the high momentum tail in the wave

function. They seem to be independent effects. But both of them are related to the

local density (see Refs. [51–53]). A quantitative comparison of the strength of the

EMC effect and SRC scaling factors for different nuclei was performed in Refs. [51,53]
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and the results are shown in Figure 2.15.

Figure 2.15: A quantitative comparison of the EMC strength and SRC scaling factors
for different nuclei. The left plot shows the cross section ratio per nucleon for Fe to
2D as function of xbj. The EMC effect and SRC scaling both is visible. The right plot
shows the correlation between the EMC strength and the SRC scaling over a range
of nuclei.

A strong linear correlation between the EMC strength, dREMC/dx, and the SRC

scaling factors, a2(A), suggested that they are related. This correlation is the first

experimental clue about a common cause of the EMC effects and SRCs

The study of SRCs is still on going to improve out knowledge of the nuclear structure

at short distances. The next section will discuss the motivation for E08-014.

2.4 Motivations of Experiment E08-014

The E08-014 was proposed and approved in 2008. This experiment collected data

in the kinematic region 1.3 < Q2 < 2.2 and for both xbj > 1 and xbj > 2. A more

detailed information about the experimental setup as well as the kinematical setting

will be presented in Chapter 3. This experiment was ran in Hall A at JLab in 2011

and it focus on two main goals which are 1) the study of 3N-SRCs in the region
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xbj > 2 using the cross section ratio 4He/3He and 2) the isospin-dependence for 2N-

SRCs in region 1 < xbj < 2 using the ratio of cross section 48Ca/40Ca. Each goal will

be discussed in the following sections

3N SRCs study using the ratio 4He/3He

At the time the experiment was proposed, there were two sets of data (see Refs.

[39, 42]) in the region xbj > 2 where 3N-SRCs were expected to be dominant, but

they did not agree with each other (see Section 2.1). The original motivation for this

experiment was to collect data in the same kinematic region to provide a third data

set for 3N-SRCs studies with higher statistics and a Q2 dependence check. This study

was carried out by a previous analysis [54] and the result was published in Ref. [55]

(see Figure 2.16)

Figure 2.16: A comparison of 3 different data sets for 3N-SRCs studies from JLab’s
hall A, B and C. They are in good agreement in the 2N-SRCs region 1 < xbj < 2.
For the 3N-SRCs region xbj > 2, the data from E08-014 (hall A) and E02-019 (hall
C) agree with each other but differ from the CLAS (hall B) data [55]

The results gave a very good agreement with both the CLAS (Hall B) and E02-
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019 (Hall C) data in the 2N-SRCs region 1 < xbj < 2. But in the region where

3N-SRCs are expected to be observed, the E08-014 data is significantly higher than

the CLAS data and consistent with the E02-019 data. This supports the comments

on the CLAS data in Ref. [56] that the second scaling in the CLAS data for xbj > 2

is due to the poor energy resolution and a large bin migration.

Evidence for 3N-SRCs is still an open question and one possibility is that much

higher Q2 is required to be able to observe the second scaling, as discussed in Ref. [35].

These results also suggest that it is much more difficult to isolate 3N SRCs, though

there are preliminary indication of 3N SRCs, also in Ref [35].

The 2N SRCs isospin-dependence in A(e, e′)

The other goal of the experiment, also the focus of this thesis, is the isospin-dependence

of 2N SRCs using the per-nucleon cross section ratio 48Ca/40Ca. With and without

the isospin-dependence assumption this ratio would return different results. With

the isospin-independent assumption, the ratio of the number of neutron to number

of proton in SRCs is equal to the N/Z ratio of nucleus. The isospin dependence of

SRCs can be studied using nucleus with different N/Z ratios. In the kinematics of

E08014 (see Chapter 3), the cross section of electron-proton scattering (σp) is about

3 times the electron-neutron scattering (σn). In the isospin-independent assumption,

the cross section ratio per-nucleon from 48Ca to 40Ca can be expressed as [41]:

σ48Ca/48

σ40Ca/40
=

(20σp + 28σn)/48

(20σp + 20σn)/40

σp∼3σn−−−−→∼ 0.92 (2.6)

In the case of the isospin-dependence, there is not yet a precise estimation of this

effect on the cross section ratio per-nucleon for 48Ca/40Ca due to the complexity of

these nuclear systems. Only a hand waving estimation was used for this ratio based

on the total possible combination of np pairs, (Z ∗N), presented in the proposal [41]:
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σ48Ca/48

σ40Ca/40
=

(20 · 28)/48

(20 · 20)/40
= 1.17 (2.7)

Later a theoretical calculation was provided using a realistic potential and taking

into account the isospin-dependence effect it aimed to quantify short-range correla-

tions in nuclei [57]. The results from this calculation can predict the fraction np pairs

prone to SRC from the total possible number of np pair combinations as function of

nuclear mass A, including 40Ca and 48Ca, see Figure 2.17. Using this prediction with
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Figure 2.17: The predicted fraction of np pairs are prone to SRCs from the total
number combination of np pairs (N ∗ Z) for 4He, 9Be, 12C, 27Al, 40Ca, 48Ca, 56Fe,
63Cu, 108Ag and 197Au [57].

the isospin-dependent assumption the ratio of cross section per nucleon 48Ca/40Ca is

around 1.

σ48Ca/48

σ40Ca/40
∼ 1

The detailed analysis of this isospin-dependence study will be presented in the

following chapters. The results and its implication can be found in Chapter 6.

A new SRC measurement, E12-11-112 [58] is running using the mirror targets 3He

and 3H to measure the 2N SRCs region. It will provide a very clear probe of isospin-

dependence. In these A = 3 mirrored nuclei, the effect of isospin-dependence on the
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cross section can be easily estimated. In the isospin-independent case the cross section

ratio σ3He/σ3H can be expressed as (2σp + σn)/(σp + 2σn) ∼ 1.4 with the condition

σp ∼ 3σn. In the isospin-dependent case the cross section ratio is 1, σ3He/σ3H = 1

because both of these nuclei have two np pairs. There is a 40% difference in the cross

section ratio using these different assumptions. This is very large and should be easy

to detect. The results will provide more information about isospin dependence in

light nuclei.
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Chapter 3

The Experiment Setup

3.1 Overview

This chapter will give an introduction to the setup of E08014 [41, 54]. Only a short

introduction to the accelerator, the beam line components and detector package in

the Hall A will be presented here.

3.2 E08014

E08014 (also known as x > 2) was performed in Hall A of the Thomas Jefferson

National Accelerator Facility (JLab) during the Spring 2011. A single beam energy

of 3.356 GeV was used during the experiment to do inclusive measurements at 9

kinematic settings on 6 different targets: 2D, 3He, 4He, 12C, 40Ca and 48Ca. Each

kinematic setting is defined by the central scattering angle angle θ0 and central spec-

trometer momentum P0 of the spectrometer. Table 3.1 presents θ0, P0 and the central

kinematic variables Q2
0, x0

bj for each kinematic setting. The kinematic range of Q2

and xbj is shown on Figure 3.1.
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Table 3.1: The central kinematic variables for each kinematic setting, including cen-
tral momentum (P0), central angle (θ0), Q2

0 and x0
bj.

Kin K3.1 K3.2 K4.0 K4.1 K4.2 K5.0 K5.05 K5.1 K5.2 K6.5

P0 (GeV) 2.905 3.055 2.6 2.855 3.035 2.505 2.650 2.795 2.995 2.845

θ0(◦) 21 21 23 23 23 25 25 25 25 28

Q2
0 (GeV2) 1.29 1.36 1.38 1.5 1.61 1.57 1.66 1.75 1.88 2.23

x0
bj 1.53 2.41 0.97 1.62 2.69 0.98 1.26 1.67 2.78 2.33

ers.  

 

Kin3.1 
Kin3.2 

Kin4.1 Kin4.2 

Kin5.1 
Kin5.2 

Kin5.0 

Kin6.5 

Kin5.05 

E0 = 3.356GeV 

Figure 3.1: Kinematic coverage for every settings as a function of Q2 and xbj. The
beam energy is fixed for all kinematic settings. Each color band indicates a fixed
angle and the associated range of momentum.
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3.3 CEBAF

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab was

designed to deliver high quality electron beams simultaneously to three different ex-

perimental Halls A, B, C [59]. The recent 12 GeV upgrade increases the maximum

beam energy from 6 GeV to 12 GeV and added another experimental, Hall D. The

layout of the experimental halls is shown in Figure 3.2.

Figure 3.2: The Hall A end station at CEBAF. The electron beam is produced at the
injector, accelerated through two linacs then extracted to the experimental halls.

The electron beam is produced at the injector then accelerated to 45 MeV. The

beam is further accelerated by recirculating the beam up to 5 times through two

superconducting linacs in the 12 GeV design. Each pass increases the beam energy

by 1200 MeV. The beam can be extracted to four different experimental halls simul-
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taneously and the beam current to each hall can be controlled independently.

3.4 Beam Line

The basic beam line components in Hall A [60] for E08014 are shown schematically

in Figure 3.3. The function of each component will be described in the following

sections.

Beam 
dump

Target

Beam 
Position
Monitors

A B
Raster

Beam Current 
Monitors

Arc

Figure 3.3: Hall A Beam line layout for Experiment E08-014

3.4.1 Beam Position Monitors

In Hall A, Beam Position Monitors (BPMs) are used to provide information of the

beam position and angle at target [61]. The beam position is an important parameter

for optics calibration and acceptance studies of the spectrometers. There are two

BPMs, A and B, located at 7.345 m and 2.214 m upstream of the target, see Figure

3.3. Each BPM is comprised of 4 antennae arranged at 90◦ to one other, oriented

±45◦ to the horizontal. They are used to extract the relative position of the beam to

within 100 µm for currents above 1 µA. The signal produced in the antennae by the

beam passing through the BPMs is inversely proportional to the distance from the

beam. The absolute position of the beam can be determined by calibrating them with
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respect to wire scanners called ”harps”, located adjacent to the BPMs, see Figure 3.4.

Position in Hall A coordinator system

Target

-7.345 m -2.214 m

Figure 3.4: Hall A BPMs and Harp schematic, see text.

3.4.2 Raster

The inherent beam size at CEBAF is small (on order of 100µm) and with the high

beam current used in this experiment (40µA - 100µA), local boiling of cryogenic

targets can occur. This is due to the deposited energy from the beam, and results in

a non-uniform target density. To reduce this effect, the beam was rastered, increasing

the effective spot size. The raster system is installed 23 m upstream of the target

and consists of horizontal (X) and vertical (Y) dipole magnets. The dipole magnetic

field is driven with frequency close to 25 kHz by a triangular waveform. There is a

small difference in the frequency of raster X and raster Y to avoid dwelling Lissajous

curves. In addition, the rasters can be read out much faster than BPMs (due to the

transmission time of the signal) which allows the beam position to be recorded event

by event while BPMs provide only average beam position information.
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3.4.3 Beam Current Monitor (BCMs)

Most Hall A experiments need to measure the beam current with absolute accuracy

of about 1%. The CEBAF accelerator delivers continuous wave (CW) electron beams

making precise current measurement more difficult than at a pulsed machine. The

beam current monitors (BCMs) are designed for a stable, low-noise, non-interfering

beam current measurement. It consists of an Unser monitor, and two RF cavities

referenced as Up and Down (see Figure 3.5) and are installed in a temperature-

controlled housing 25 m upstream of the target. The Unser monitor is a parametric

current transformer which provides an absolute reference since it can be calibrated

with a precision wire current. The two stainless steel, cylindrical RF cavities are on

either side of the Unser and have a Q∼500.

Figure 3.5: Hall A BCMs schematic including the Unser, up(down) BCMs and how
the signal from these devices connected to scales and transfer to Data stream.
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3.5 Target Setup

There are three target loops in the cryogenic target system. Loop 1 and Loop 2

each have two aluminum cylindrical target cells mounted to a target ladder, with

the lengths of 10 cm and 20 cm, respectively while the Loop 3 has two 20 cm long

cylindrical cells, also made of aluminum. The target assembly is installed inside the

scattering vacuum chamber and includes the cryogenic target system with cooling,

gas handling, temperature and pressure monitoring, target controller, and a solid

target ladder.

This experiment ran in two time periods and we had two different target config-

urations [62], see Table 3.2. For period one (04/11/2011 - 04/19/2011), the 20 cm

loop 1 cell was filled with 4He and the Loop 2 was filled with liquid deuterium (LD2),

while Loop 3 was kept as a spare. For the second period (04/21/2011 - 05/15/2011),

Loop 2 did not change but Loop 1 was filled with 3He. The solid targets 40Ca, 48Ca

were installed in the former Loop 3 location (see Figure 3.6), Ref. [63, 64]. Since the

doubly magic 48Ca is very expensive, it was installed in an aluminum target cell to

protect it. 40Ca was treated similarly to have consistent the aluminum backgrounds.

Table 3.2: The Cryogenic Target configuration for the two run periods [62]

Target Loop
Run Period 1

(04/11/11 - 04/19/11)
Run Period 2

(04/21/11 - 05/15/11)

Loop1 20 cm cell 4He 3He
Loop2 20 cm cell LD2 LD2

”Loop3” 20 cm cells Spare 40Ca and 48Ca

The operating pressure and temperature for cryogenic targets are provided in

Table 3.3 and Table 3.4. The position of each target on the target ladder can be

found in Table 3.5. The window thickness of the cryogenic targets is listed in Table

3.6 [62]. Other targets are available for calibration included a Dummy target, an

optics target and a single 12C foil. For optics calibration we used 7 carbon foils cut
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Target configuration period 1

Beam

Target configuration period 2

Beam

Figure 3.6: The target configuration for 2 run time periods. The left plot is target
configuration for run period 1 while the right plot is for the run period 2 Refs. [63] [64]

Table 3.3: The operating information for Cryogenic Targets, Period 1 [62]

Target Material Pressure (psia) Temperature (K)

Loop1 20 cm cell 4He 202 20

Loop2 20 cm cell LD2 30.5 22

from the same sheet. The upstream face of each foil is located at 0 cm, ±5 cm, ±10

cm and ±15 cm. The Dummy targets are used for endcap contamination studies,

and consist of two thick aluminum foils located at ± 5 cm or ±10 cm around the

nominal center for 10 cm and 20 cm dummy targets, respectively. A BeO target, a

single 12C foil and an empty target were installed below the 10 cm dummy target.

Detailed information about solid targets can be found in Table 3.7.
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Table 3.4: The operating information for Cryogenic Targets, Period 2 [62]

Target Material Pressure (psia) Temperature (K)
Loop1 20 cm cell 3He 211 17
Loop2 20 cm cell LD2 30.5 22

Table 3.5: The encoder position of each target on the Target ladder [62]

Target Material/Description BDS Encoder

Loop1 10 cm He 35185744

Loop1 20 cm He 31610960

Loop2 10 cm LD2 28036176

Loop2 20 cm LD2 24461392

Loop3 Spacer Ca48 20886608

Loop3 Spacer Ca40 17311824

Optics Carbon 14397294

Dummy 20 cm Aluminum 13365584

Dummy 10 cm Aluminum 11739984

BeO BeO 9179984

Solid Carbon Carbon (5mm) 7554384

Slanted Carbon Carbon 3035983

Empty N/A -10000000

Table 3.6: The window thickness information for Cell targets [62]

Position
Entrance Window

Thickness (in)
Exit Window
Side Wall (in)

Exit Window
Nose (in)

Loop1 10 cm 0.0107±0.0002 0.0132±0.0007 0.0142±0.0005

Loop1 20 cm 0.0108±0.0001 0.0129±0.0006 0.0139±0.0005

Loop2 10 cm 0.0104±0.0001 0.0126±0.0006 0.0141±0.0002

Loop2 20 cm 0.0107±0.0001 0.0129±0.0011 0.0142±0.0002

Loop3 20 cm 0.0107±0.0001 0.0129±0.001 0.0141±0.0002
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Table 3.7: Solid Targets information

Target Name Material Purity Thickness (g/cm2)
BeO BeO 99.0% 0.149±0.001

Carbon C12 99.95% 0.8918±0.0008
Slanted Carbon C12 99.9% 0.419±0.005

Optics (7 foils)
each foil

C12 99.5% 0.0248±0.001

Dummy 10 cm
Upstream

Downstream
Aluminum
Aluminum

N/A 0.275±0.0003
0.270±0.003

Dummy 20 cm
Upstream

Downstream
Aluminum
Aluminum

N/A 0.427±0.0003
0.429±0.003

Ca48 Calcium 48 N/A 0.779±0.005
Ca40 Calcium 40 N/A 0.819±0.01
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3.6 Spectrometers

In Hall A, there are two identical High Resolution Spectrometers (HRS) [59], the

Left and Right, where Left and Right are respect to the beam line direction. Each

spectrometer is a combination of two parts, a magnetic particle transport system

and a detector package. There are 3 quadrupoles (Q) and a dipole (D) in the magnet

system, see Figure 3.7. Each detector package includes Vertical Drift Chambers, a Gas

Cherenkov detector, scintillator counters, and a lead glass Calorimeter. A summary

of the characteristics of the HRS can be found in the Table 3.8 and the arrangement

of detector packages can be seen in Figure 3.8. The following sections will discuss the

functions and characteristics for each detector in detector package.

1.80

1.80

4.42

3.57

1.50

1.25

0.80

1.69

45°
30°

30°

8.40

10.37

3.05

HRS Design Layout
(design magnet effective lengths displayed)

Q1
Q2

Dipole

Q3

20.76

1st VDC Plane

Dimensions in meters

1 m

Figure 3.7: Hall A magnet system for HRS. The Q1 is convergent in the vertical
plane. The Q2 and Q3 provide the transverse focusing. The Dipole is designed to
have uniform field at the center for the bending angle [59].

3.6.1 Vertical Drift Chambers

Tracking information is provided by a pair of Vertical Drift Chamber (VDCs) in each

HRS, described in detail in Refs. [59] and [65]. Each VDC is composed of two wire
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VDCs

S1

Cer

S2

Pion_rejection1

Pion_rejection2

Scattering 
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Scattering 
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Figure 3.8: The Hall A HRS detector package. The left and right figures are for
left and right HRS, respectively. Each of spectrometer includes the Vertical Drift
Chambers (VDCs), scintillator counters (S1 and S2), a gas Cherenkov (Cer), and
Calorimeters (For the left HRS they are called Pion-rejection1 and 2 (PR1, PR2).
For the Right HRS they are called the Preshower and the Shower).

planes, separated by 3.35 cm, in a standard UV configuration. The U and V planes

are oriented 90◦ to one another and lie in the horizontal plane of the hall, at an angle

45◦ with respect to the dispersive and non-dispersive directions, see Figure 3.9. There

are a total of 368 sense wires in each plane with a spacing of 4.24 mm. The nominal

particle trajectory crosses the wires planes at angle 45◦.

The VDCs are filled with a mixture gas of argon (62%) and ethane (38%). The

VDC electric field is shaped by gold plated Mylar planes, and generated by applying

a high voltage of around 4kV. The charged particles enter the VDCs, collide with

gas molecules creating electron-ion pairs which drift along the electric field lines,

and rapidly accelerate toward the closest wire. This acceleration generates many

secondary electrons resulting in a signal which is ampliffed and sent to a TDC card.

On the average, electrons that travel at nominal angle 45◦ with respect to VDC planes

normally fire 4 - 6 wires per plane as shown in Figure 3.10. An important advantage
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Table 3.8: The characteristics of Hall A where the resolution values listed are FWHM.
See Ref. [59]

Configuration QQDQ vertical bend
Bend Angle: 45◦

Optical Length: 23.4 m
Momentum Range: 0.3-4.0 GeV/c

Momentum Acceptance: −4.5% < δp/p < +4.5%
Momentum Resolution: 1× 10−4

Angular Range LHRS 12.5− 150◦

Angular Range RHRS 12.5− 130◦

Angular Acceptance Horizontal ± 30 mrad (Horizontal)
Angular Acceptance Vertical ± 60 mrad (Vertical)

Angular Resolution Horizontal 0.5 mrad
Angular Resolution Vertical 1.0 mrad

Solid Angle at δp/p = 0, y0 = 0 6 msr
Transverse Length Acceptance: ± 5 cm
Transverse Position Resolution: 1 mm

of the two-chamber design is that it provides a long lever arm for the measurement

of track angles, resulting in excellent angle tracking resolution [59].

3.6.2 Scintillators

The scintillators are used to form the trigger for the DAQ system as well as provide the

timing information for each event. There are two Scintillators (S1 and S2) separated

by a distance of about 2 m as shown in Figure 3.11. The S1 plane is composed of 6

identical overlapping paddles made of thin plastic scintillator, while the S2 plane is

made up of 16 paddles of a thicker scintillator. Each scintillator paddle is viewed by

two PMTs, one at each end. When charged particles cross the scintillator paddles,

they create the light that will be detected by both PMTs then converted to an analog

signal. The average timing between two PMTs is called the mean time of a paddle.

The difference of S1 and S2 mean times provides the time of flight for each particle.

The time resolution per plane is approximately 0.30 ns [59] .
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Figure 3.9: The lay-out of a pair of Vertical Drift Chamber for one HRS. The top
plot, each VDC consists of one U and one V wire plane. The bottom plot, the VDCs
are inclined at angle 45◦ with respect to the dispersive and non-dispersive planes.

3.6.3 Gas Cherenkov

The Gas Cherenkov is responsible, along with the calorimeters, for particle identifica-

tion in the HRS detector package. The Cherenkov is located between scintillators S1

and S2. The working principle of the Gas Cherenkov is that when a charged particle

moves faster than the speed of light in a medium, it emits a small number of photons

at a fixed angle θ determined by the velocity of particle v (β = v/c) and the index of

refraction of the medium n,

β ≥ 1

n
⇒ cos(θ) =

1

βn
. (3.1)



70

Figure 3.10: Showing a normal track fires 5 wires. The trajectory of a hypothetical
particle as it fires 5 wires [59].

Scintillators

S1

S2

PMTs

Figure 3.11: Hall A Scintillator Diagram

The momentum threshold for the production of Cherenkov radiation is based on this

velocity threshold for different particles with different mass, as here

pthreshold =
mc√

(n2 − 1)
. (3.2)



71

In this experiment, the Cherenkov detectors were filled with CO2 at atmosphere

Spherical Mirrors

(80cm focal length)

PMT

(Burle 8854)

Figure 3.12: A Diagram of the Gas Cherenkov showing the spherical mirrors focusing
the Cherenkov light to 10 PMTs.

pressure, which has an index of refraction of n = 1.00041. For CO2, the momentum

threshold for electrons is 0.017 GeV/c, whereas the threshold for pions is 4.8 GeV/c,

well above the maximum momentum of HRS. In this way the detection of Cherenkov

light is a very effective way for electron/pion discrimination, since only electrons

create a significant signal. Once the Cherenkov light is produced, it is detected by 10

PMTs, (see Figure 3.12), installed on both sides of the detector. The signals from 10

PMTs are summed together, and used for particle identification cuts in data analysis.

3.6.4 Calorimeters

The calorimeters provide further electron/pion discrimination by measuring the en-

ergy deposited by particles that pass through it. An accelerating high energy electron

emits photons through Bremsstrahlung. These photons undergoes pair production,

producing electron-positron pairs, and the process is repeated such that the number
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of charged particles increases exponentially with the depth in the calorimeter. This

process gives the calorimeter another name, a shower detector.

Electrons and positrons deposit almost all of their energy in the calorimeter but

pions deposit a smaller amount of energy due to direct Cherenkov light and occasional

π0 production, etc. If E/p ∼ 1 then the particle is an electron (E is deposited energy

in calorimeters and p is particle momentum).

SF-5

XP2050
Al 25 mm

14.5 x 14.5 x 30 (35) cm50 mm

XP2050 14.5 x 14.5 x 35 cm

R 3036

Al 19 mm

Al 13 mm

SF-5

10 x 10 x 35 cm

TF-1

HRS-L

HRS-R

Figure 3.13: Schematic lay-out of part of the shower detector in HRSL and HRSR,
see Ref. [59]

The configuration of calorimeters in HRS-L and HRS-R are a bit different. For

HRS-L, the calorimeter is a combination of two layers made of 34 lead-glass blocks,

called pion rejector 1 and 2 (PR1, PR2). Both layers are oriented perpendicular

to the particle trajectory. The dimension of blocks in these two layers are 15cm x

15cm x 30cm. The HRS-R calorimeter also has two layers of lead-glass blocks, called

the Preshower and the Shower. The Preshower is comprised of 48 lead-glass blocks,

oriented perpendicular to the particle trajectory and each block is 10cm x 10cm x

35cm. The shower is made of 80 lead-glass blocks, oriented parallel to the particle
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trajectory and each block is 15cm x15 cm x35cm. The calorimeter in the LHRS is

not a full energy deposition calorimeter, while the RHRS is a total energy absorber.

The light produced by the cascade is linearly proportional to the energy deposited

and is collected by PMTs mounted to each lead-glass block.

3.6.5 Trigger Design

Three detectors were used to build the trigger for DAQ system for E08014 and they

are S1, S2 and the Gas Cherenkov.

Main Trigger

S1

S2

Cer

AND
T1 - Right

T3 – Left

Efficiency Trigger

S1

S2

T6	– Right

T7	- Left	
AND

Additional Trigger

S1

S2

Cer

AND
T2 - Right

T4 - Left

OR

Figure 3.14: Trigger Design for the Experiment E08014

For the production data we used the main trigger consisting of the coincidence

signal of S1, S2 and Gas Cherenkov. To be able to check the efficiency of the main

trigger, another trigger was built using coincidence of S1 and S2. We have addi-

tional triggers in this experiment which are coincidence of either S1 OR S2 AND the

Cherenkov. Figure 3.14 is the summarizes of how all triggers are designed.
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Chapter 4

Data Analysis

4.1 Overview

This chapter will discuss the calibrations of the beam line components and detectors.

Some of the calibrations was done in a earlier analysis [54]. Here the focus is on the

calibrations and the corrections necessary to improve the quality of the results. The

optics calibrations and the acceptance studies will be discussed in this Chapter along

with the beam charge and live time calculations and the efficiency studies of particle

identification and tracking. The trigger efficiency will not be included here as it needs

a special treatment that will be discussed in Chapter 5. The analysis presented here

provides all needed information for extracting the cross section.

4.2 Beamline Calibration

4.2.1 BPM calibration

The BPM calibration provides the parameters to convert the BPMs signals to beam

positions, necessary to get the vertex information for each event. The results of

the calibration from the previous analysis was the starting point. But during this
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analysis, it was determined that the sign of the BPM position in the X direction was

flipped while the sign of the BPM position in the Y direction was correct. The Hall

A coordinate system and accelerator coordinate system (MCC) are left handed and

right handed, respectively, see Figure 4.1 [66]. It means that the BPM information in

the root files, which uses the Hall A coordinate system and BPM information from

MCC which uses the accelerator coordinate system, must have opposite signs in the

X direction. We can use what is called Bulls-eye data listed in table 4.1 to confirm

the convention of coordinates and then confirm that the BPM in X direction was

flipped.

Run number
BPMA-X

(mm)
BPMA-Y

(mm)
BPMB-X

(mm)
BPMB-Y

(mm)
movement (MCCs)

3877 0.7 1.673 -1.49 2.988 +1mm in Y

3878 0.667 -1.058 -1.51 0.99 -1mm in Y

3880 1.482 0.33 -0.499 2.003 +1mm in X

3881 -0.117 0.294 -2.499 2.004 -1mm in X

3882 0.631 0.308 -1.512 1.99 Nominal position

Table 4.1: Bulls-eye Scan Data includes 5 runs, for each run the beam position is
moved from the nominal position to left or right, up or down, then back to nomi-
nal. The beam position information at each location is recorded in both Hall A and
accelerator coordinate.

Using the beam X convention in the Hall A coordinate system (see Figure 4.2),

if beam moves to positive X direction then Ytg will move in the positive direction as

well. It means that Ytg of run 3880 should be more positive compared to the one from

Run 3882 (as the beam moves +1mm in X direction in Run 3880 compare to Run

3882). But that is not what happened. As can be seen in Figure 4.3 which shows the

reconstructed Ytg distribution from data for these two Runs, it moved in the opposite

direction. This confirmed that the X direction in Hall A and MCC were opposite.

But the BPMs information in the root files had the same sign as MCC values. This

is confirmation that the BPM in the X direction was flipped.
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opposite directions. For details see Ref. [66].
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Figure 4.2: Beam X convention in the Hall A coordinate system

This problem needed to be fixed to provide the correct BPM information. It was

not necessary to do new BPM calibration. In order to get beam information from the
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Figure 4.3: Ytg distribution of Bull-eyes scan runs for beam x convention. The beam
was moved +1mm in the Run 3880 compared to Run 3882 but the Ytg distribution of
Run 3880 is more negative compare to the one of Run 3882 what indicates the beam
was moving in negative direction in Hall A coordinator system.

BPMs, one uses Equations 4.1 and 4.2 and a set of coefficients shown in Table 4.2.

BeamX

BeamY

 =

C1 C2

C3 C4


RotX

RotY

+

C5

C6

 (4.1)

BeamX = C1 ∗ RotX + C2 ∗ RotY + C5 (4.2)

Table 4.2: BPMs coefficients from an early Calibration for E08-014, Ref. [54]

BMP C1 C2 C3 C4 C5 C6

A 0.66899 -0.684665 0.672353 0.683605 0.000147627 -0.00063362

B 0.659737 -0.836241 0.646295 0.839493 0.00493647 -0.00602042

The RotX and RotY are the beam position in the rotated coordinate system of

the 4 wire antennas, as in Figure 3.4. The BPM calibration provide the 2x2 rotation

matrix and offset terms to be able to convert the beam position from the rotated
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coordinate system to the lab coordinate system, BeamX and BeamY. Hence the sign

of three coefficients C1, C2 and C5 must be flipped to fix the sign of BeamX.

Using the data with the raster off (only using the BPM information) and the

flipped sign of coefficients, C1, C2, C5 it can be confirmed that the values agree

well with MCC values and have the opposite sign. Upon examination of the event

distribution as function of Z-vertex, determined from the BPM information, a large

improvement can be seen. Previously there was a large unexplained offset in Z-vertex

(1cm) but after this fix the offset is about 1 mm which is not unreasonable for the

target offset. See Figure 4.4.

Figure 4.4: The Z-vertex distribution before and after fixing the BPMX. Before the
fix, there is a large offset (1 cm) in the Z-vertex. After the fix the offset is around 1
mm.

The corrected average beam position now can be obtained using the updated

BPM coefficients. In order to get the beam information for each event, a new raster

calibration is required as it was based on the BPM’s information.
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4.2.2 Raster Calibration

During production data taking, the beam raster was used to increase the beam spot

size. Subsequently, the beam position information comes from the raster system. The

raster calibration determines the parameters to convert the raster current to a beam

position at the location of BPMA, BPMB and the target (see Figure 3.4). The BPM

information and the raster current are both needed for the calibration to provide the

separate parameters sets for each location. There is a phase lag between the actual

beam position recorded by raster current and the one recorded by BPMs, see Figure

4.5. This phase lag is due to the fact that the raster current signal can be recorded

instantaneously what gives the actual beam position at the moment but the BPMs

signal arrives later due to transmission time, so when BPMs signal is recorded it

reflects the beam position from few moment earlier. The BPMs are only used for the

average position. The raster current is recorded for each event and used to get beam

position event by event [66–68].

Figure 4.6 shows an event distribution for beam X at the target and raster current

X, it is similar for beam Y and raster current Y. Recall that, we only measure the

beam position at BPMA and BPMB. The BPM distribution at the target is the

projection from the one BPMA and BPMB based on their distance to the target.

The only tricky problem for the raster calibration is determining the direction beam

moves when the raster current changes. The sign of Kx and Ky in equation 4.3 must

be determined.

Xoffset = tax − rax · dtax/drax ·Kx

Xslope = dtax/drax ·Kx

Yoffset = tay − ray · dtay/dray ·Ky

Yslope = dtay/dray ·Ky,

(4.3)
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Figure 4.5: The phase lag in the beam position recorded by BPMs and from raster
current. See the text for more information.
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where tax, dtax, rax, drax are the mean and the width of BPM X distribution at

target and the raster current X distribution, respectively. The beam position can be

calculated from the raster coefficient as follows:

Xbeam = Xslope ·Xcurr +Xoffset

Ybeam = Yslope · Ycurr + Yoffset

(4.4)

To be able to determine the sign of Kx we can use the plot of raster current X versus

the Ytg as in Figure 4.7. When the raster current increases (i.e the ADC channel

increases), Ytg is more positive and this means that the position of the beam moves

in the positive direction. The beam X position is proportional to the raster current

X and Kx = +1.

Figure 4.7: Determining the sign of Kx for Raster Calibration using the raster current
X vs the reconstructed Ytg. The Ytg moves to positive direction when the raster X
current’s ADC channel increases. This indicates the beam X position is proportional
to the raster current X.
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It is more difficult to determine the sign of Ky. During E08-014 no specific data

was taken for this determination. However optics data taken with a sieve can be

used. The sieve is a thick plate with many small holes so that the particles going

through the same hole are taken to have the same scattering angle and others are

absorbed. If we select events from a specific hole with the raster on we are able to

see the small variance in the out-of-plane angle (θtg). The first step in this work is to

select the central foil from the multiple foils target data. Then we select the central

hole from the sieve pattern of the central foil. See Figure 4.9. In the end we will see

Figure 4.8: The Ytg distribution of the multiple foils target run. There are 13 foils,
each foil is presented by a peak in this plot. The central foil is located at position
where Ytg is close to 0. The event from the central foil is selected using the Ytg cut.

the distribution of selected events of the central hole of the central foil as function

of the raster current Y and the out-plane angle. See Figure 4.10. From Figure 4.10,

when the raster current increases (ADC channel gets bigger) the out-plane angle goes

more negative. This indicates that the beam position moves down in the negative

direction. The beam Y is negative proportional to the raster current Y or Ky = -1.

Note that, the raster calibration depends on the beam energy and the beam po-
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Figure 4.9: The plot show the sieve pattern of the selected event from the central foil
(See Figure 4.8). The events from the sieve’s central hole are selected using the cuts
on in-plane-angle and out-of-plane angle, indicated as red circle in the plot.

Figure 4.10: Determining of the sign of Ky for raster calibration using the distribution
of events from the central hole corresponding to the central foils of the optics data.

sition. It means that different beam energies or different beam positions we need to

have a different calibration. The raster coefficients can only reflect the beam position

which was used in calibration and does not take into account beam movement. The
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easiest solution, and that taken, is to keep beam position fixed.

4.3 Detector calibration

4.3.1 VDC Calibration

The VDC configuration and their working principle was discussed in Section 3.6.1.

The drift times of all the wires in each wire plane are measured using the Time-to-

Digital Converter (TDC) [59]. The TDCs were operated in the common-stop mode

which means that larger TDC channel correspond to shorter drift time and vice

versa. Figure 4.11 (left panel) shows the drift time spectrum of the VDC wire plane.

Different regions in the drift time spectrum can be understood based on the position

of the trajectory in the drift cell, see Figure 4.11 (right panel) [65]
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Figure 4.11: Left plot: the VDCs raw-time distribution as a function of TDC channels.
Right plot: A drift cell for a wire with 4 different trajectories crossing the cell.

• Region A: This region corresponds to the particles that have a large trajectory

angle and small intersection path with the drift cell. These particles are further

away from the sense wise and have less ionization which give them a smaller
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probability to be detected.

• Region B: In this region, the particles trajectories cross an area where the field

lines are parallel and the drift velocity almost a constant. The drift time is flat

for this region.

• Region C: Here the particle trajectory gets close to the wire where the field

lines change from parallel to quasi-radial. The detection probability increases

in this region and it corresponds to a transition in the drift time spectrum.

• Region D: The particle trajectories cross the quasi-radial field line region where

track density is a maximum and the drift velocity is increasing rapidly. The

probability of detecting a particle in this region is maximum and it corresponds

to the peak in the drift time spectrum.
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Figure 4.12: The VDC corrected time distribution after the VDC calibration for
different wire planes.
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The main goal of VDC calibration is to determine t0, the time offset for each wire,

in order to compare the drift times of all the wires in a plane. This time offset t0

comes from the variations in cable lengths and signal processing times. The first

step of the VDC calibration is to find the rising edge of the drift time spectrum and

then calculate the derivatives numerically in this region. Next the maximum slope is

identified and extrapolated to the drift time axis and the intercept used to define t0.

Figure 4.12 shows the VDC corrected time after the VDC calibration.

4.3.2 Cerenkov’s ADC calibration

As mentioned in Section 3.6.3, the Cherenkov detector is responsible for discriminat-

ing electrons from pions. The Chereknov sum signal is used for this in the analysis.

However the Gas Cherenkov includes 10 individual PMTs and they have different

gain factors. Before making a sum from 10 individual signals, a calibration is needed

to make sure every PMTs have the same response to the same signal. The goal of

this calibration is to align the single photon electron peak (SPE) at ADC channel 100

for each PMT. The SPE indicates the response of the PMTs when only one photo-

electron is emitted and we can use it as a unit for measurement of total number of

photo-electrons. The gain factors is calculated using

C =
100

SPEobser − PED
, (4.5)

where SPEobser is the observed SPE channel before calibration and PED is the pedestal

channel. In this experiment the Gas Cherenkov was included in the main trigger with

a threshold level so we can not see the SPE when using the main trigger. Any other

trigger which does not include the Gas Cherenkov can be used to study the SPE.

The previous calibration result was used to check the alignment of SPE. In Figure

4.15, it can be seen that only 7 out of 10 PMTs were aligned in initial calibration.
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A new calibration was done. The first step is to determine the PED. The pedestal

subtracted signal is used to find the SPE and calculate the new coefficients. Figure

4.13 shows the ADC channel distribution of PMT1 before and after calibration.
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Figure 4.13: The SPE location before and after calibration for PMT1.
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Figure 4.14: The PMT3’s ADC spectrum. This is the noisy PMT. No SPE peak is
seen and the pedestal is not easily determined.
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Applying these new coefficients we can check the alignment again on the same data

and it is much improved, as seen in Figure 4.16. The alignment works better after

the new calibration. It was found that PMT3 was a bit noisier compared to the other

PMTs and it was harder to define the PED or the SPE for this PMT. See Figure 4.14.

Figure 4.15: The SPE alignment using the initial calibration coefficient.

4.3.3 Calorimeter Calibration

The configuration and working principles of the calorimeter were mentioned in Section

3.6.4. The calorimeter provides a additional electron/pion discrimination working

in combination with the Cherenkov. The calorimeters in both LHRS and RHRS

are segmented into many individual lead-glass blocks, each of them is connected

to a PMT. When a high energy particle passes through calorimeter it can produce

γ, e+, e−. This process continues through the calorimeter and creates a cascade of

secondary particles. The energy of original particle is converted to the light and
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Figure 4.16: The SPE alignment with new calibration.

recorded by the PMTs. Normally, a cascade can fire several lead-glass blocks at the

same time which defines a shower cluster. In order to get the deposited energy (E)

of particle, the recorded ADC signal from the PMTs needs to be converted to energy

and summed over from all adjacent blocks, as in Equation 4.6.

E =
n∑
i

Ei =
n∑
i

Ci × Ai, (4.6)

where Ei is the energy in block i and n is number of block in a cluster. Ai is the

recorded ADC value from block i and the Ci is the coefficient to convert the ADC

channel to energy.

The main goal of the calorimeter calibration is to determine the Ci’s such that

the total deposited energy is equal to the momentum of the electron or E/p ∼ 1. The

calibration is based on χ2 minimization where χ2 is defined as:

χ2 =
N∑
i

( n1∑
j

CjA
i
j +

n2∑
k

CkA
i
k − P i

)2
, (4.7)
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with P i the momentum of event i, n1 and n2 are number of the block in a cluster

in prl1 (pre-shower), prl2 (shower) for the LHRS (RHRS), respectively. N is total

number of events selected for the calibration. There is a difference in the LHRS and

RHRS calorimeter calibration. As the RHRS total energy is deposited while in LHRS

it is not. Details can be found in Refs. [54,69].

Figure 4.17 shows the performance of the calorimeter after calibration at different

kinematics. The left plot is for P0 = 2.505 GeV, θ0 = 25◦ and the right plot is for

P0 = 3.035 GeV, θ0 = 23◦. The peak is nicely located around 1 and the width of the

peak implies a resolution around 5% in both cases.
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Figure 4.17: E/P distribution after calibration. The left plot is for kin5.0, central
momentum P0 = 2.505 GeV and θ0 = 25◦. The right plot is for kin4.2, central
momentum P0 = 3.035 GeV and θ0 = 25◦. Note that the distribution peaks at
E/p ∼ 1.

4.4 Optics Calibration

This section will give a general introduction to the working principles of the optics

and optics calibration procedure [70–72]. The goal of this calibration is to determine

the optics matrix in order to get the reconstructed target variables ytg, θtg, φtg and

δ for each event. The idea of this reconstruction problem is that after the electron
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beam scatters in the target, a scattered electron comes out and goes through the

magnetic fields of the QQDQ magnet configuration of the Hall A HRS before they

are detected in the hut. The optics matrix takes the detected information and returns

the reconstructed information including the position and direction of each event at

target. The optics matrix is a mathematical expression of the magnetic field of HRSs

and we use a polynomial function in this case. We use special data to do the optics

calibration. For example, data from the multiple foils target and the sieve slit are

used for the position and angle calibration, respectively. We also need a detailed

survey for target position as well as spectrometer offsets to calculate the expected

value. The calibration is based on a χ2 optimization to determine the coefficients for

the polynomial function which form the optics matrix. An introduction to the HRS

coordinate systems is provided in the following section in order to understand the

calculation of expected quantities.

4.4.1 HRS coordinate systems

There are five different right handed coordinate systems used in the HRS analysis.

Only a short introduction is presented here, a detailed description for each of coordi-

nate system can be found in Ref. [70].

• Hall Coordinate system (HCS): The origin of HCS is the Hall A center,

which is defined as intersection of the electron beam and the vertical axis of the

target. The positive z is along the beam direction, positive y is vertical up and

positive x pointing to the left of the beam direction as seen in Figure 4.18

• Target coordinate system (TCS): The ztg is defined as central ray of the

spectrometer which is perpendicular to the sieve slit surface and goes through

the sieve slit central hole. The positive ztg points away from the target. The

ytg axis points away from beam direction. The xtg axis points down as can be
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Figure 4.18: Hall coordinate system (HCS) (top view).

seen in Figure 4.19. In the ideal situation where the beam, spectrometer and

sieve slit have no offset, the origin of the TCS is the same as hall center.

• Detector coordinate system (DCS): The intersection of wire 184 of the

VDC1 U1 plane and the perpendicular projection of wire 184 in the VDC V1

plane onto the VDC U1 plane defines the origin of DCS. The z axis is perpen-

dicular to VDC1 U1 plane pointing vertically up, x is along a symmetry axis of

the lower VDC pointing away from the hall center See Figure 4.20.

• Transport coordinate system (TRCS): The TRCS is generated by rotating

the DCS clockwise around its y axis by 45◦, so that the z axis coincides with the

central ray of the spectrometer in the ideal case See Figure 4.21. The TRCS is

used to transport the DCS to the focal plane coordinate system which is used in

the optimization, described in the later section. The TRCS coordinates of each

event can be expressed in term of DCS coordinates by the following equation
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Figure 4.19: Target coordinate system for top view and side view.

Figure 4.20: Detector coordinate system, top and side view.
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4.8.

θtran =
θdet + tan ρ0

1− θdet tan ρ0

φtran =
φdet

cos ρ0 − θdet sin ρ0

xtrans = xdet cos ρ0(1 + θtran tan ρ0)

ytran = ydet + sin ρ0φtranxdet

(4.8)

and ρ0 = −45◦ is the rotation angle.

Figure 4.21: Transport coordinate system (side view).

• Focal plane coordinate system (FCS): The FCS is the coordinate system,

generated by rotating the DCS clockwise around its y axis by the angle ρ where

ρ is the angle between the local central ray and the z axis of the DCS, see Figure

4.22. This coordinate is chosen for the HRS analysis and can be calculated from
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the TRCS coordinates by following equation:

xfp = xtran

tan ρ =
∑

ti000x
i
fp

yfp = ytran −
∑

yi000x
i
fp

θfp =
θdet + tan ρ

1− θdet tan ρ

φfp =
φdet −

∑
pi000x

i
fp

cos ρ− θdet sin ρ
,

(4.9)

where ti000, yi000, pi000 are the terms in the optics matrix which were calibrated

based on the offset of VDC package.

Figure 4.22: Focal plane coordinate system (side view).

4.4.2 Optimization procedure

Expected target variables

Using the survey information and the geometry of the spectrometer the expected

value for each target variable can be determined using the Equation 4.10. This is the
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first step forward calculating the χ2 for optimization.

θtg =
xsieve +Dx + ybeam

L− Zreact cos(θ0)− xbeam sin(θ0)

φtg =
ysieve +Dy − xbeam cos(θ0) + Zreact sin(θ0)

L− Zreact cos(θ0)− xbeam

xtg = xsieve − Lθtg

ytg = ysieve − Lφtg

(4.10)

L, Dx, Dy come directly from spectrometer survey. For more details see Figure 4.19.

These target variables are used to calculate the scattering angle and the reaction

points along the beam (Zreact) using:

θscat = arccos(
cos θ0 − φtg sin θ0√

1 + θ2
tg + φ2

tg

)

zreact =
−(ytg +Dy) + xbeam(cos θ0 − φtg sin θ0)

cos θ0φtg + sin θ0

,

(4.11)

where θ0 is the central angle of the spectrometer. The xsieve and ysieve come from the

sieve survey.

Reconstructed target variables from data

In the DCS coordinates, for each event, two angle coordinates θdet and φdet and two

spatial coordinates xdet and ydet are directly measured with the VDCs. These vari-

ables are corrected for any detector offsets to provide the focal plane variables which

are used to calculate the reconstructed variables at the target. The transformation

between focal plane variables to the target variables can be written as:
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The relative momentum δ is defined as:

δ =
P − P0

P0

,

where P is the measured momentum of the particle and P0 is the central momen-

tum setting of the spectrometer. In the optics calibration, to reduce the number

of unknown variables at target, the xtg is effectively set at zero. Other target vari-

ables δ, θtg, φtg and ytg can be calculated using the initial optics matrix following by

Expression 4.12.

ytg =
∑
j,k,l

Yjklθ
j
fpy

k
fpφ

l
fp

θtg =
∑
j,k,l

Tjklθ
j
fpy

k
fpφ

l
fp

φtg =
∑
j,k,l

Pjklθ
j
fpy

k
fpφ

l
fp

δ =
∑
j,k,l

Djklθ
j
fpy

k
fpφ

l
fp,

(4.12)

where the tensors Yjkl, Tjkl, Djkl are polynomials in xfp, for example:

Yjkl =
∑
i

CYjklxifp.
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χ2 minimization

For each event the χ2 is defined as the variance of reconstructed data from their

expected values.

χ2 =
∑
N

(
∑
j,k,l

Xjklθ
j
fpy

k
fpφ

l
fp −X0)2, (4.13)

where N is total number of measured events for the calibration. The Xjkl can be

any of the tensors Yjkl, Tjkl, Pjkl, Djkl and the X0 can be the expectation value for

any variable ytg, θtg, φtg, δ. A optimization package, TMINUIT, minimizes χ2 to

determine the optics matrix elements for all target variables.

4.4.3 Reconstruction after optimization

E08014 did not have enough optics data nor sufficient survey data so the optics

calibration did not perform well. The initial optics matrix for this analysis had a

reconstruction issue for the θtg variables, and detailed information will be provided in

Section 4.6. In principle the optics is sensitive to the magnet tune of the spectrometer,

i.e, the ratio of magnetic field in Quadrupoles (Q) to the magnetic field in Dipole (D).

If the magnets follow the same tune, the same optics matrix can be used in the nominal

range of momentum and angular acceptance. The Gp
M experiment (E12-07-108) ran

in Spring 2016 with high precision optics using the same magnetic tune, so their data

was used in this analysis. The following is the reconstruction check using the Gp
M

optics matrix elements on both position, the angle and momentum [73,74].

• Position reconstruction Zvertex : The multiple foil target which covers the full

length of long target was used to take data for the position calibration See

Figure 4.23.

• Angle reconstruction θtg, φtg : The sieve slit data taken with multiple foils target

was used for the angle calibration See Figure 4.24.
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Figure 4.23: Zvertex after the optimization in Gp
M optics using Spring 2016 optics data.

The blue lines are the expected values. The black curves are the event distribution
for different target foils.

• Relative momentum reconstruction: See Figure 4.25

4.4.4 Performance of Gp
M optics on E08014 data

Applying the Gp
M optics on the E08014 optics data as check of the performance of

the optics matrix.

Multiple foils target data

Using the multiple foils target data, we can check the position reconstruction perfor-

mance See Figures 4.26 and 4.27.
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Figure 4.24: Reconstructed angle after the optimization in GP
m optics using Spring

2016 optics data. The cross points present the expected position of each sieve hole.
The event distribution after optimization for each sieve hole shows a good reconstruc-
tion.

Multiple foils targets with sieve on data

Using the sieve on data on the multiple foils target we can check the angle recon-

struction performance of the optics See Figure 4.28.

The optics matrix using the Gp
M data performs well for the E08014 data and is

used for this analysis.



101

Figure 4.25: Relative momentum reconstruction after the optimization in GP
m optics

using Spring 2016 optics data. The blue lines are the expected value of the relative
momentum and the black curves are the event distribution after the optimization.
The red curves are a gaussian fit to the event distribution. The reconstruction has
good resolution (σ ∼ 10−3)

Ytg
0.04− 0.02− 0.00 0.02 0.04

co
u

n
ts

0

500

1000

1500

2000

Ytg distribution for multiple foils run

Figure 4.26: Multiple foils target, Y reconstruction
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Figure 4.27: Multiple foils target, in plane angle vs Ytg reconstruction. The foils are
well separated and the reconstructed positions agree well with the expected position
of each foil.
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4.5 Efficiency Studies

4.5.1 Beam Charge Calculation

In Hall A BCMs were responsible for measuring the beam current. Scalers were used

to record the information from BCM signals and timing signals. The clock sends a

pulse signal and get counted in a time scaler. The number of clock count in the scaler

increases with time and is proportional to the clock rate See Figure 4.29.

Figure 4.29: The number of BCM counts from bcm-u1 vs number of count from the
clock. When beam trips, the bcm count doesn’t change.

The clock rate used in this experiment was 1042 Hz, and the number of clock

counts was updated every 4 seconds. Using the time scaler we can extract the running

time. The BCM scalers record the accumulated counts from BCM signals. The beam

current is the pulse signal with frequency, higher current corresponding to higher

frequency and can be expressed as:

I = m× f + b, (4.14)
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where f is frequency, m and b are two parameters provided by the BCM calibration

[75] (m is the slope while b is an offset term). The total beam charge is the integration

of current over the total time:

Q =

∫
Idt =

[
m×

∫
fdt
]

︸ ︷︷ ︸
First term

+
[
b×

∫
dt
]

︸ ︷︷ ︸
Second term

. (4.15)

The First term is the total count from BCM scalers. The current may change

during runtime through changing the frequency but we don’t need to worry about

the change in f , the integral will give total count from BCMs. In an ideal situation

when there is no current f is zero and no counts are recorded from BCMs. In the

real situation the BCMs have an offset which means that the BCMs still have some

counts when there is no beam. The parameter b will take care of the BCM offset.

The second term is the total count from the time scaler which provides the run time

using: ∫
dt =

Clkcount
Clkrate

(4.16)

where Clkcount and Clkrate are the number of counts from clock scaler and the clock

rate. Beam trips need to be handled. From the plot of BCMs count as function of

time, Figure 4.29, BCMs count are constant when there is a beam trip. We only

care about total charge when beam is on. To be able to do that we can calculate the

accumulated charge and live current between two consecutive scaler events.

BCMi
count = BCMi+1 − BCMi

∆ti = (Clki+1 − Clki)/Clkrate

I i = m ∗ BCMi
count/∆t

i + b

Qi = I i ·∆ti.

(4.17)

We can set the condition for this live current to select events without a beam

trip. Two different scalers, Up (U) and Down (D), for both the Left and the Right
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HRS were set up to do the measurement for the same BCMs signal but with different

amplification factors (x1, x3, x10), labeled as U1(D1), U3(D3), U10(D10). E08014

used current above 40 µA so U10(D10) were unusable. The read-back of the HRS

Left scalers was unstable for the entire experiment, so the Right BCM scalers read-

back was used to determine the charge and current for production data [54,75]. There

are two sets of BCM parameters from two calibrations which can be used to estimate

the beam charge uncertainty. The difference in the calculated beam charge using two

parameter sets the uncertainty at the level of 0.5%.

4.5.2 Livetime

The dead-time of concern is the computer dead-time. Events will be skipped if they

come while the DAQ is busy processing the current event. The dead-time will be

evaluated as the percentage of the trigger events being skipped to the total trigger

event over a certain period of time. The dead-time mainly depends on the trigger

rate. The dead-time can be reduced by applying a pre-scale factor for each trigger.

In this way the DAQ processes at a lower rate so the chance that DAQ misses an

event is lower and this means lower dead-time.

Online dead-time is monitored by using the electron dead time monitor module

(EDTM) which mixes pulse with fixed frequency send to TDC signal. The total

number of pulses in a fixed amount of time is known and total number events detected

by DAQ is known as well. So the dead-time is a percentage of events which are not

recorded by DAQ. The dead-time can be adjusted by changing the pre-scale factor.

For offline analysis, dead-time is calculated for individual triggers. The average

value of the dead-time for the main trigger will be calculated by dividing the total

number of events recorded by DAQ (scaled by pre-scale factor) to the total trigger

events was sent to DAQ. So the average dead-time (DT) for each trigger can be
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expressed by:

DTi = 1− PSi ∗N record
i

N sent
i

, (4.18)

where DTi is the dead-time for a specific trigger Ti, PSi is pre-scaler factor, NDAQ
i

is the number of events recorded by DAQ and Nscaler
i is the total number of events

counted by the scaler for the same trigger. The NDAQ
i can be defined using the trigger

type cut while the Nsent
i can be calculated as the total accumulated count of the trigger

event using the trigger scaler. The value that is used in data analysis is Livetime (LT)

where LT = 1 − DT . The number of good events for each run will be corrected by

LT:

NEX = PSi.
N selected
i

LTi
(4.19)

where Nselected
i is total number of selected events after selection cuts. After applying

the LT correction, the expected total number of events, NEX , can be obtained. This

will be used in the cross section calculation.

4.5.3 Particle Identification Efficiency

The combination of the Gas Cherenkov and the calorimeter are responsible for e−/π

discrimination. Specifically, the cuts on the Cherenkov sum signal (cer-sum) and the

total energy deposited in calorimeter (E/p) are used to separate the e− from the

π. These cuts eliminate the most of the π contamination but they can also remove

some of the good e−’s. The goal of the particle identification efficiency study is to

find the optimized cuts which minimize the π contamination while maximizing the

number of good e−’s. An understanding of the behavior of different types of particles

in the Cherenkov and calorimeter is needed in order to do this study. Good electrons

produce a large signal in cer-sum and E/p is centered at 1.0 as seen in Figure 4.30.

The π−’s do not normally create a Cherenkov signal because of the velocity threshold
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Figure 4.30: The left plot is the Cherenkov sum distribution. The right plot is the E/p
distribution, electrons are centered around E/P∼1, pions are centered at E/P∼0.1.
Only loose acceptance cuts and single track were applied on both plots.

and deposit only a small amount of their energy in the calorimeters. These π− are

found in the region A of the left plot in Figure 4.31. When the π−’s go through the

Cherenkov gas they can produce a knock-on (secondary) electron which can create a

Cherenkov signal and fire the trigger. These secondary e− produce a small signal in

the calorimeters, see the left plot region B in Figure 4.31. In addition with very small

probability, the π−s can produce photons through the channel π−p → π0n → γγ.

These photons create a large signal in calorimeter but have no Cherenkov signal, see

the left plot region C in Figure 4.31. The main trigger cut can help to get rid of the

events from the region A and C, as shown as the right plot of Figure 4.31.

For the kinematic settings of E08014, the π/e− ratio is small, see Table 4.3. In

addition, as the Cherenkov is added to the main trigger, removing pions at hardware

level, makes the π contamination even smaller. To be able to study the π rejection

efficiency, an efficiency trigger is used to select a π sample. We can start with the

kinematic setting which has largest ratio π/e−. If the contamination for this setting

is negligible we don’t have to worry about other the settings.
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Figure 4.31: The left plot shows the 2D distribution of the Cherenkov sum vs E/p.
Only loose acceptance cuts and single track were applied. The region A, these events
are pions, they has small energy deposited and no Cherenkov signal.The region B, the
events have big Cherenkov signal but small energy deposited in calorimeter. These
events are secondary electron. The region C, the events come from photon production.
The right plot is the 2D distribution of the Cherenkov sum vs E/p with an additional
main trigger cut.

The first step for the PID studies for both cer-sum and E/p cuts is selecting a

sample of events with loose cuts on the acceptance, single track and trigger cuts, a

sample is shown in Figure 4.32. The subsequent steps in this study will be described

in the following sections.

Cherenkov sum cut efficiency

Determination of the Cherenkov sum efficiency requires a nearly pure electron and

pion samples using the calorimeter signal. See Figure 4.33. The electron sample are

the events with the large energy deposited in both the pion rejection layer 1 (prl1)

and the pion rejection layer 2 (prl2) with E/p is close to one. The pion sample are

the events that have little energy deposited in both prl1 and prl2 with E/p is close
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Figure 4.32: Top left plot shows event distribution of the track number (L.tr.n).
The top right plot is event distribution for relative momentum variable (L.gold.dp).
The left and right bottom plots are event distributions of the in-of-plane (L.gold.ph)
angle and out-of-plane (L.gold.th) angle, respectively. Only events pass selection cuts,
the single track cut (L.tr.n=1), and loose acceptance cuts (abs(L.gold.dp)<0.05 &
abs(L.gold.ph)<0.035 & abs(L.gold.th)<0.05), are selected. The green region shows
the selection cut applied on each variables.

to 0.1. See Figure 4.35. Geographic cuts were used to select the electron and pion

samples, see Figure 4.34. Once a sample is selected, we scan (change) the value of

the cer-sum cut systematically on the electron and pion samples to see how many

electrons remain and how many pions are rejected. The electron efficiency of the

cer-sum cut, εe
−
cer−sum, is defined as:

εe
−

cer−sum =
Ne−

cal,cer−sum

Ne−

cal

. (4.20)
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samples.
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Figure 4.35: The 1D E/p distribution of electron and pion samples. The loose accep-
tance, single track, trigger 7 and geographic cuts were applied to select the electron
and pion samples exactly as in 2D sample plots.

Similarly, the pion rejection efficiency of the cer-sum cut επ
−
cer−sum is defined as:

επ
−

cer−sum = 1−
Nπ−

cal,cer−sum

Nπ−

cal

, (4.21)

where Ne−

cal and Nπ−

cal are the number of electron and pion in the samples selected

using the calorimeter signal, respectively. The Ne−

cal,cer−sum and Nπ−

cal,cer−sum are the

number of remaining electrons and pions in the samples after the cer-sum cut. The

uncertainty of the efficiency follows the binomial distribution and can be calculated

using approximation, expressed as:

Uncertainty = ε
e−(π)
cer−sum ∗

√
(N

e−(π)
cal − N

e−(π)
cal,cer−sum)

.
N
e−(π)
cal (4.22)

Figure 4.36 shows the cer-sum cut efficiency for both the electron and pion rejec-

tion efficiencies. The cer-sum >50 ADC channel is chosen for PID cut where we can

keep more than 99% of electrons and reject more than 96% of the pions. Note that
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Figure 4.36: The Cherenkov sum cut efficiency for both electron and pion rejection
efficiency as function of number of Cherenkov sum ADC channels.

π/e− ratio is small, the largest one is around 5%, so the remaining pions are less than

0.25% after the cer-sum cut. With any reasonable E/p cut we can easily bring the

remaining pions to well below 0.1% which is negligible. The pion rejection can be

taken to be 100% without any uncertainty.

E/p cut efficiency

For the E/p cut efficiency study, the procedure is similar to that for the cer-sum. The

only the difference is that now we will select the electron and pion samples shown in

Figure 4.37 using the Cherenkov sum signal as .

The E/p cut is scanned on the samples to see how many electrons and pions

remain after the cut. The electron efficiency and pion rejection efficiency of the E/p

cut are defined by

εe
−

E/p =
Ne−

cer,E/p

Ne−

cer

and επ
−

E/p = 1−
Nπ−

cer,E/p

Nπ−

cer

, (4.23)



113

Figure 4.37: The electron sample using the Cherenkov sum to calculate the E/P
efficiency. The cuts applied are a trigger cut, the loose acceptance cut and cer-sum
>300 ADC channels. The right plot show (prl2 vs prl1) distribution of selected event
on the left plot.

where Ne−
cer and Nπ−

cer are the number of electrons and pions in the samples selected

using the Cherenkov signal, respectively. The Ne−

cer,E/p and Nπ−

cer,E/p are the number of

remaining electrons and pions in the samples after the E/p cut.

As discussed in Section 4.5.3, only the electron efficiency is calculated for this

experiment and the pi contribution can be ignored. Figure 4.38 shows the electron

efficiency of E/p cut as a function of E/p. The cut E/p > 0.5 is chosen as calorimeter

PID cut which allows a retention of more than 99% of the electrons while insuring

make we have good pion rejection in combination with the cer-sum cut. Table 4.3 is

the summary of cer-sum > 50 ADC channel and E/p > 0.5 electron efficiency cut for

different kinematic settings.

As a summary for PID efficiency cut, the cut cer-sum> 50 ADC channels has

an efficiency of 99.5% for every run, 0.3% normalization uncertainty and 0.1% un-

certainty point to point. The E/p>0.5 cut has an efficiency of 99.6% for every run,

0.3% normalization uncertainty and 0.1% uncertainty point to point. These uncer-

tainties are applied to the absolute cross section. For the cross section ratios only
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Figure 4.38: The E/p electron efficiency as function of number of E/p.

Table 4.3: Particle Identification efficiency summary

Kin π/e−(%) Cer-sum cut εe
−
cer−sum (%) E/p cut εe

−

E/p (%)

kin5.0 4.7 50 99.4 0.5 99.7
kin5.05 3.3 50 99.4 0.5 99.7
kin5.1 3.7 50 99.6 0.5 99.5
kin3.1 1.0 50 99.4 0.5 99.6
kin3.2 1.0 50 99.5 0.5 99.4
kin4.1 1.7 50 99.5 0.5 99.6
kin4.2 2.5 50 99.4 0.5 99.1

0.1% uncertainty point to point applied because the cancelation, Ref. [76].

4.5.4 Tracking Efficiency

The VDCs are responsible for the tracking information in the HRSs. This tracking in-

formation is used to reconstruct the position and angle of the particle trajectory which

is required to determine the kinematic variables for each event. A quick check on the

VDCs wires efficiency is performed to make sure that the VDCs work properly at the

hardware level. Then a detailed discussion on the tracking efficiency determination
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will be provided.

Wire efficiency

For a given wire plane, the wire efficiency can be estimated by scanning through

every wire in that plane for every event. A wire is efficient if it fires when it is located

between two wires which have fired [65]. The efficiency for each wire is obtained using

the following expression:

Efficiency =
k

k + λ
,

where k and λ are the number of times that a given wire fires or doesn’t fire, re-

spectively. Figure 4.39 shows the wire efficiency as function of wire number for each

wire plane U1, V1, U2, V2 for the two VDCs. The wire efficiency is high and looks

reasonable for all wires planes. This gives confidence that the VDCs wires work

properly.

Single track efficiency

Simply stated, the tracking efficiency is defined as a percentage of good events for

which a good track is reconstructed in the VDC [69, 77, 78]. First we will describe

how the track is reconstructed in VDC so that we can define whether a track is good

or not. When a charged particle passes through the VDC, it ionizes the gas. The

electrons created by the ionization drift to the wire along the electric field line which

has the shortest time path, schematically as arrows in Figure 4.40. The nominal

trajectory can fire 4 to 6 wires [59] which define a cluster. A cluster consists of hits

with consecutive wire numbers and are allowed to have gaps of one wire without a

hit to account for any inefficiency. Figure 4.40 shows a typical 5 cell cluster.

The drift times ti from the trajectory to different wires are measured by TDCs

then converted to drift distances di, the dashed lines in Figure 4.40. After the drift

distances are determined, a linear fit of drift distance vs. wire position is performed to
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Figure 4.39: The wire efficiency as function of wire number for the 4 wire planes of
the two VDCs. The top two plots are for U1, V1 wire planes. The two bottom plots
are for U2, V2 wire planes.

determine the local cross-over point U(V )1,2 and the local angle of the track ΘU(V )1,2

for each wire plane. While the ΘU(V )1,2 determination depends on the tracking algo-

rithms strongly, the U(V )1,2 can be determined with high precision and is insensitive

to the tracking algorithms as well as the local track angle information [65,80]. This is

the advantage of the VDCs. The global track angles ΘU and ΘV are obtained using

measurements from the two track cross-over points in the two VDCs as expressed in

Equation 4.24, where d is the distance between two U or V wire planes. See Figure

4.41 for context.

tan(ΘU,V ) =
U(V )2 − U(V )1

d
. (4.24)
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Figure 4.40: A cluster with 5 cells in a wire plane in the VDCs [65,79].

Figure 4.41: The global track using two cross-over points from two VDC chamber,
Figure from Ref. [65].

Once the global track is reconstructed, one more iteration is needed to recalculate

the drift distance and then a new linear fit is performed to get the new local cross-
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over and local angle of the track. By following this approach, the global track angle

has good accuracy [80]. The number of tracks depend on the number of the clusters

on each wire plane. As a result, the number of tracks can be zero, single track or

multiple tracks. The main reason for zero track events is one of the wire plane has

no cluster. The reason for multiple tracks is at least one of the VDC planes has more

then one cluster. The multiple clusters may occur for several reasons such as noise

or true multiple tracks from the target [59]. Figure 4.42 shows the total number of

clusters in the wire plane U and V for each VDC for zero track event (left plot) and

multiple track event (right plot).
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Figure 4.42: Total number of cluster from wire plane U, V for each VDC chamber.
The left plot is for the Zero tracks, showing that at least one of wire planes has no
clusters. The right plot is for Multiple tracks, showing that at least one of wire planes
have more than one cluster.

In this analysis only single tracks are considered as good tracks, so the track

efficiency is the single track efficiency. Only single track events are used in the analysis

to get the yield, so the yield is divided by this efficiency to account for the zero and

multiple track events. In the first step, we need to evaluate the fraction of zero track
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events. To calculate this efficiency, the good electron sample is selected using the

trigger cut, PID cut (cer-sum> 300 and E/P0> 0.8). Because we are calculating
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Figure 4.43: The track number distribution in the selected sample for tracking effi-
ciency calculation. The plot is for the target 12C and kin5.0

the tracking efficiency, no tracking information can be used when we select sample

otherwise a bias is introduced. For the PID cut, the total deposited energy in the

calorimeter is divided by the central momentum P0, not the measured momentum of

the event. this done because measured momentum of each event is obtained by using

the reconstructed relative momentum what requires the tracking information. Then

the zero track efficiency, εzero track, can be calculated as following expression.

εzero track =
N0(Trigger, PID, Track =0)

Nsample(Trigger, PID)
(4.25)

The zero track events in the selected sample have a good trigger and pass PID cuts

which means that it is potentially by a good electron and should have at least one

track. The fact that there is no track in the VDC indicates that the VDC was

inefficient for that event. The zero track efficiency corrects this. In this experiment

the zero track fraction was very small, as can be seen in Table 4.4. Next the single
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track and multiple track efficiencies can be calculated. The concern in this study

is that some of the events are lost not because of inefficiency but because of the

background. For example, there might be an event in the corner of the VDCs that

missed one plane and is outside the nominal acceptance or an event scatters into the

detector from the Q3 exit. We don’t want to correct for these because they are not

a part of real inefficiency. A new sample is selected using the trigger, PID cuts and

loose acceptance cuts. The acceptance cuts help to get rid of irrelevant events. Then

the single track efficiency is the fraction of events in this electron sample that have

one track. See Equation 4.26. A similar calculation is applied for the multiple track

efficiency. Note that in the new sample there are no zero track events, so the total

efficiency of single tracks and the multiple tracks is 100%.

εsingle track =
N1(Trigger, PID, loose acceptance cuts, Track =1)

Nsample(Trigger, PID, loose acceptance cuts)
(4.26)

Multiple track events that may have multiple good electrons are discarded by the

single track cut in the analysis. The single track efficiency can correct for these

lost electrons as well [77]. The tracking efficiency depends on the event rate, so we

need to calculate this efficiency for different kinematics. In addition, the pre-scaler

for each run in the same kinematic can change and this requires the an efficiency

calculation run by run in the analysis. Table 4.4 shows the zero, single and multiple

track efficiency for a pre-scale 1 run in each kinematic setting for 12C target as an

example.

The uncertainty of the single track efficiency follow the binomial distribution be-

cause the event can either have single track or not. Because of the variance in the

single track efficiency from different kinematics, in addition, the cross section analysis

will use tighter acceptance cuts which means that we may lose more good events. In

the end a single track efficiency of 98.5% is applied to every run with a 1% normal-
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Table 4.4: Tracking efficiency for zero, single, multiple track for each kinematic

Kin Target Run Zero Single Multiple
kin5.0 12C 3634 0.03 99.2 0.8
kin5.05 12C 4209 0.05 98.9 1.1
kin5.1 12C 3825 0.09 98.6 1.4
kin3.1 12C 3664 0.08 98.2 1.8
kin3.2 12C 3663 0.13 98.0 2.0
kin4.1 12C 4163 0.08 98.5 1.5
kin4.2 12C 3692 0.15 98.0 2.0

ization uncertainty and 0.3% point to point uncertainty [76].
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4.6 Acceptance Study

This section will give an introduction to the acceptance study for the Hall A HRS.

The acceptance is defined as the probability that a particle will make it through the

spectrometer. The three ingredients needed for the acceptance study are the magnetic

optics, the simulation and a cross section model. The optics was discussed in Section

4.4, the following sections present the discussion on the simulation and the model.

The comparison between simulation and data for reconstructed target variables help

to define how well the acceptance is modeled. In the end, the main goal of this

acceptance study is to determine a set of cuts for the target variables (acceptance

cuts) in the cross section analysis.

4.6.1 Simulation (SAMC)

The Single Arm Monte Carlo (SAMC) simulation package is used in this analysis, see

Ref. [81]. The SAMC was originally developed in Fortran then converted to C++ by

Huan Yao [82] and modified by Z. Ye [54]. The working principle of this simulation

can be summarized as the following steps:

• Generate events: Uniform generation of target quantities including in-plane

angle φtg, out-plane angle θtg, relative momentum dptg and the beam energy fol-

lowing a Gaussian distribution while adding smearing of the energy resolution.

• Forward transportation: After events are generated at the target, the for-

ward matrix transports the events from the target to the focal plane. This

transportation is step by step through every aperture and checks are made to

whether a particle pass through or get stopped. In the SAMC, only 5 differ-

ent locations are checked; the check locations and the distance from the target

following the trajectory path are listed in Figure 4.44. The size of each aper-

ture used in SAMC are given in Table 4.5. The apertures location is matched
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to the technical drawing information [83]. Only events which pass through all

apertures are recorded as detected events at the VDCs. At that point VDC

smearing is added.

159.03

Q1 entrance Q1 exit Dipole entrance Dipole exit

235.13 996.069 1657.72 1756.0 1997.9

Before Q3 Q3 exit

Distance follow the path (cm) 

Target

0

Figure 4.44: The location of aperture that are checked in the SAMC. The distance is
the particle path from target in cm.

Table 4.5: SAMC apertures check list

Aperture name Location(cm) Aperture size check (m) notice

Q1 exit 253.13
√
x2 + y2 < 0.1492 Q1 radius

D Entrance 996.069
|x| < 0.4

|y| < 0.125 ∗ (1− 1.25 ∗ x/8.4)
Shape of D

D exit 1657.2
|x| < 0.4

|y| < 0.125 ∗ (1− 1.25 ∗ x/8.4)
Shape of D

Q3 entrance 1756
√
x2 + y2 < 0.3 Q3 radius

Q3 exit 1997.9
√
x2 + y2 < 0.3 Q3 radius

• Backward transportation: The backward matrix is used to reconstruct the

detected events at VDC back to the target.

The forward and backward matrix were generated by J. Lerose based on the

SNAKE program [84]. The SAMC version used in this analysis is an unweighted

simulation. This means that no cross section model is included in the simulation of

events. The inputs required for this simulation are the beam energy, scattering angle,
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central momentum, target makeup and all offset information from the spectrometer,

beam line and the target. A detailed pointing study is performed in the next section

to provide the input information for the simulation. An external cross section model

XEMC [85] is used to add the weighting factor for each reconstructed event from

simulation before they can be compared to the data. The structure of simulation

package can be found in Figure 4.45.

SAMC.C
Main code

SAMC.h

Physics constant

Input.dat

Setup-information

SAMCEvent.h

Monte_trans_hrs.fTransport	to	Focal	Plane

Generator	events

Reconstruct	event	to	
target

Left_funcs.f
Right_funcs.f

Rootfile_SAMC

XEMC

Radiative	cross
section

Weighting

Cross-section Model

Simulation SAMC package Structure 

Figure 4.45: The SAMC package structure.

4.6.2 Pointing Study

The goal of the pointing study is the determination of the central angle of the spec-

trometer and the spectrometer offsets [86, 87]. These are required to calculate the

vertex variables and physics quantities for the simulation as well. To be able to do

this study we need to have survey information. But no survey was performed during

the E08014. The survey data from E08-008 that was running in the same period of
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time are used to complete this study [88]. The process is described in detail below.

Spectrometer mis-pointing

In the ideal situation the spectrometer movement is only the rotation around the

center of the hall, and the central ray of the spectrometer points to the hall center.

In reality, the spectrometer has translational movement that causes the central rays

to miss the hall center in both the horizontal and vertical directions. The horizontal

offset refers to the spectrometer mis-pointing or Spec-off. Figure 4.46 describes the

layout with the following definitions:

where:

Convention for the spectrometer miss-pointing

Figure 4.46: The convention for mis-pointing study in the Lab and the target coor-
dinator system.

• HC : Hall center

• θ0 : The central angle

• Spec-off: The spectrometer offset

• R: Radius on the floor mark and R = 8.458 m



126

• θs : The corrected angle: θs = θ0 −∆θ where ∆θ = spec-off/R

The spectrometer offset is not reproducible. It means that even we move spectrometer

back to the same angle location at a different time the value of spectrometer offset

(Spec-off) will be different. The survey can provide the information necessary to find

both the spectrometer offset and the vertical offset. Unfortunately, surveys take a lot

of time and surveys are not done for every angle setting; usually they are done only

for optics data taking.

For the settings for which we don’t have survey data we can use Ytg reconstructed

from what is called ”the pointing data” on the single 12C target to calculate the

spectrometer offset. But we need to have a reasonable optics matrix before we can do

this calculation. In ideal situation, everything is perfect we only have the spectrometer

offset (see Figure 4.46) the calculation proceeds through the following expression:

Ytg = spec-off. (4.27)

In fact we have other offsets, the beam offset and the target offset. They all contribute

to the offset on Ytg. To be able to derive a solution we must consider the contribution

from each offset individually.

• Beam X offset: In the ideal case the beam direction goes through the HC

otherwise we have a beam offset. But only the beam X offset effects the Ytg

and spec-off because they are all in horizontal direction. In the case everything

else is perfect we only have beam X offset (see Figure 4.47) and its contribution

to Ytg is:

Ytg = Beam X ∗ cos(θs). (4.28)

• Target offset: In the ideal case the target is installed at the HC otherwise we

have a target offset. In case of everything being perfect only the target has an
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offset (see Figure 4.48) and its contribution to the Ytg is:

Ytg = −Target-off ∗ sin(θs). (4.29)

• Optics offset: The optics matrices are not perfect so we have the offset left from

the optics reconstruction which contributes to the Ytg as well.

Ytg = optic-off. (4.30)

LHRS

The beam offset contribution on the Ytg

Figure 4.47: The plot shows the contribution of the beam offset in X direction to the
Ytg.

In the total we have an equation for Ytg including all offset contributions:

Ytg = spec-off + Beam X ∗ cos(θs)− Target-off ∗ sin(θs) + optic-off (4.31)

The Ytg, beam-X offset can be obtained from data while the spec-off and target-off

come from the survey. A survey is needed to determine optics-off and then to calculate

the spec-off for other settings of spectrometer.
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LHRS

The target offset contribution to the Ytg

Figure 4.48: The plot shows the contribution of the target offset to the Ytg.

Spectrometer survey

E08014 was running with 3 other experiments in the same period of time [89]. A

survey was performed at beginning of the period and this information is listed in

Table 4.6 [88]. Run 1212 which was taken right after the survey using the multiple

Table 4.6: Survey results for Spectrometer mis-pointing [88]

Survey Angle (◦) cor-Angle (◦) Vertical-offset (mm) Specoff (mm)

A1379 16.5 16.489 2.31 (upstream) 0.54 (up)

foils target is used to determine the optics-off. The events from the central foil are

selected to get Ytg information. Using Equation 4.31 and combining information from

data and survey, the optics-off is obtained. This offset is used for other single foil

targets from different kinematics to calculate the spectrometer offsets.

Pointing results

Table 4.7 is the summary of the pointing study for every run in the E08014 data set.

The pointing study was performed whenever the spectrometer moves from one angle
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to another. The correction to the angle setting is very small based on this study. For

the kinematic settings of this experiment, this small correction in the scattering angle

can introduce a 1.5 % to 2% variation in the cross section based on the XEMC cross

section model. It is necessary to correct for this offset.

Table 4.7: Summary of Pointing study through every run in XGT2 data

Run Number Setting Left Angle (◦) Corrected Left Angle (◦)

3565 - 3656 25 24.98

3657 - 3683 21 20.98

3684 - 3708 23 22.98

3735 - 3891 25 24.98

3892 - 3916 –No Left— —No Left —

3917 - 4071 28 27.98

4073 - 4103 21 20.99

4112 - 4179 23 22.98

4181 - 4241 25 24.97

4242 - 4250 21 20.99

4251 - 4299 28 27.98

4.6.3 Cross section Model (XEMC)

The XEMC cross section package is written in C++. The structure of the XEMC

package is summarized in Figure 4.49. This cross section model provides both the

Born and the radiative cross section. The Born cross section is the sum of Deep

Inelastic (DIS) cross section and the quasi-elastic cross section. The global fitting

of DIS, encapsulated in routine, F1F209, is used for the DIS cross section and the

scaling F (y) function is used for the quasi-elastic cross section. To be able to get

the radiated cross section the elastic tail and quasi-elastic tail are calculated. The

radiative correction procedure follows that of Ref. [90]. Note that in this cross section

model package the energy loss is included and based on the amount of material the
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particle passes through. This radiative cross section is used to weight the output of

the SAMC and it is compared to the data to get the yield ratio and then the cross

section (Section 5.2). After the first iteration a cross section obtained, and a new fit

is performed to improve the cross section model. Only a few iterations are required

to get the final cross section model.

XEMC.hInput.dat

XEMCEvent.h
CalcXS()

XEMC_Born.h
XEMC_Born()

XEM_SigCal.h
gCal_Sigma()

XEMC_Main.h

XEM_Const.h

XEMC_Target.h

XEM_F1F2.h
gCal_F1F2()

XEM_Fy2Sig.h
gCal_Fy2Sig()

Target_Table.datCalcuateQuasiTail()

CalcuateTail()

F1F209.f

Radiative	Cross	section
CS_QE_tail +	tail

Born	Cross	section
CS_DIS	+	CS_QE

Cross section model XEMC package structure

Figure 4.49: The cross section model XEMC package structure

4.6.4 Data and simulation comparison

After all offset information was set in the simulation, the initial radiative cross section

tables are created, we are ready to compare data and simulation. How the absolute

scaling factor work to scale the simulation is discussed detail in Chapter 5. Figure

4.50 shows the comparison over the full acceptance using the initial optics which had a

problem in θtg reconstruction as mentioned in the Section 4.4. After the optics change

to the Gp
M optics, the dip in the θtg reconstruction was fixed, see Figure 4.51. The

offset information from the pointing and all correction are included in the simulation
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to provide the comparison in the Figure 4.52. The data and simulation agree with

each other very well over a large range of the acceptance in both momentum (±3.5%),

in-plane angle φtg (±30 mrad) and out-plane angle θtg (± 35 mrad). This result is

a big improvement because we get the good agreement over a much wider range to

compare to nominal cuts used in cross section analysis in Hall a. The above cuts are

used for the cross section analysis of this data.

Figure 4.50: Data and simulation comparison using initial optics.
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Figure 4.51: Data and simulation comparison using Gp
M optics.

Data, simulation comparison after every correction

Figure 4.52: Data and simulation comparison after applying every correction.
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Chapter 5

Cross Section Analysis

5.1 Overview

This section will give an introduction to the procedure and the methods for the

extraction of the cross section from the data. Only data from the LHRS is used

in this analysis. The approach for inclusive experiments starts with the number of

detected electrons, N , after selection cuts as discussed in Chapter 4 and summarized

here:

• Tracking cut: only select events with a single track (Section 4.5.4).

• Trigger cut: only select events from the trigger of interest.

• PID cuts: select electrons using (cer − sum > 50) and (E/p > 0.5) which

means that the ADC channel for the sum of the Cherenkov signals must be

greater than 50 and the ratio of the deposited energy E in the calorimeter to

the momentum p of the particle has to be greater than 0.5 (Section 4.5.3).

• Acceptance cuts: use a range from target variables

|dptg| < 0.035 , |θtg| < 0.035, |φtg| < 0.025 and |Ytg| within ±5σ (Section 4.6).
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Here, the number of detected electrons, N , is related to the cross section [91, 92]

through

N =
dσ

dEdΩ
· L ·∆E ·∆Ω · Acor ·Bcor · ε (5.1)

where dσ
dEdΩ

is the double differential cross section which we want to extract, ∆E and

∆Ω are the momentum and solid angle phase-space, respectively. The terms Acor

and Bcor are the acceptance and binning corrections, respectively, while ε is the total

detection efficiency. L is the integrated luminosity, the product of target areal density

in terms of nuclei/cm2 and the total beam charge in terms of the number of electrons;

L = Qe ·
ρv · l
A
·NA, (5.2)

where Qe is the total beam charge, ρv and l are the volume density and the thickness

of the target, A is the atomic weight and NA is Avogadro’s number. If we know

every quantity in the Equation 5.1, the cross section can be obtained. The following

sections will present the methods used to extract the cross section.

5.2 Two Methods to extract the cross section

The two most common methods of extracting the cross section are 1) the acceptance

correction method and 2) the yield ratio method [23, 25, 93]. Note that when we

extract the cross section from data we bin it in the kinematic variables, such as ν

or xbj. Henceforth the differential cross section for each bin, dσ
dEdΩ

, will be referred

to as σ(χi0, θ0), where χ can be any kinematic variable we use to bin data, θ0 is the

scattering angle for each setting and χi0 is the center of bin χi.
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Acceptance correction method

This method uses the efficiency corrected Yielddata(χi, θ0) for each bin i, defined as the

total number of detected electrons for that bin corrected by the detection efficiency.

Yielddata(χi, θ0) =
N i

ε
= σdata(χi0, θ0) · Ldata ·∆E ·∆Ω · Acor ·Bcor, (5.3)

The ∆E, ∆Ω, Acor, Bcor are calculated for each bin χi. This method assumes all

corrections can be calculated and applied separately to get the cross section. The

most difficult part is getting the correction factors Acor and Bcor, the acceptance and

bin centering corrections. Incorporating radiative correction is also challenging in this

method.

• Acceptance correction: The acceptance was defined in the Section 4.6. It is

the probability that a particle will pass successfully through the spectrometer.

This probability depends on the vertex coordinates defined by (x, y, z) and the

momentum vector defined by (E, θtg, φtg) of the particle at the target. So the

acceptance correction then can be written as a function A(x, y, z, E, θtg, φtg).

The cross section is independent of (x, y, z) if the target is thin enough so the

loss of beam intensity can be ignored so that it is just a function of E, θtg and

φtg. Since θ is a function of θtg and φtg, the acceptance can be properly averaged

over (x, y, z) and is a function A(E, θ) [23]. A simulation is used to determine

this correction by checking whether the trajectory of each event either passes

through the spectrometer or is lost. The acceptance correction can be calculated

bin by bin by taking the ratio of the number events which passed all apertures

and recorded N i
rec(E, θ) to the total generated N i

gen(E, θ) for that bin,

A(Ei, θi) =
N i
rec(E

i, θi)

N i
gen(Ei, θi)

. (5.4)
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• Binning correction: The cross section is to be quoted at the center of the

bin χi0 and the central angle θ0. If the cross section is the linear function of

the kinematic variable χ and scattering angle θ then there is no bin centering

correction. This never is the case. The binning correction is defined as ratio

of the cross section at the central of the bin to the average cross section in the

same bin.

B(χi0, θ
i
0) =

σ(χi0, θ0)

〈σ(χi, θi)〉
=

σMC(χi0, θ0)∑
N i

rec
σMC(χi, θi)/N i

rec(χ
i, θi)

. (5.5)

Yield ratio method

For this method we need to apply the same correction factors as above but in a

different way. The effects appearing in data such as the acceptance correction, are

applied in simulation to generate pseudo data for the different kinematic settings and

are weighted by radiative cross section from the model, as discussed in Section 4.6.

The yield from the simulation, YieldMC(χi, θ0), using the same cuts and binning as

data can be written as:

YieldMC(χi, θ0) = σMC(χi0, θ0) · LMC ·∆E ·∆Ω · Acor ·Bcor, (5.6)

where σMC(χi0, θ0) is the cross section from the model. The luminosity LMC is set

to the same as value as the measured data. If the experimental effects are properly

simulated, the yield ratio (Yielddata/YieldMC) should be very close to 1. The yield

ratio is the only correction factor in the cross section calculation. The experimental

cross section is the product of the yield ratio and the cross section from the model,

σdata(χi0, θ0) =
Yielddata(χi, θ0)

YieldMC(χi, θ0)
· σMC(χi0, θ0). (5.7)

These two methods were used in analyses of a previous experiment [25] and the
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cross sections obtained using both methods were found to be in good agreement.

While the acceptance correction method assumes that all the correction factors fac-

torize and can be calculated and applied separately, the yield ratio method considers

the acceptance and binning corrections together which automatically includes the cor-

relations between the corrections and reduces the systematic uncertainty. The yield

ratio method also assumes the radiation and resolution effects are described correctly

in the simulation. The bias caused by the choice of different cross-section models and

simulation tools is also reduced in the yield ratio method. In addition, the yield ratio

approach allows for easy checks of the spectrometer acceptance and data quality. In

this analysis, we used the yield ratio method to extract the cross section from the

comparison between data and the simulated spectra. The details are discussed in the

next section.

5.3 Yield ratio for overlap kinematics

Overlap kinematics are the kinematics which have the same scattering angle and an

overlap in momentum. The utility of overlap kinematic settings is that the entire

procedure can be tested before we extract the cross section. As mentioned above the

yield ratio method is that if everything is handled correctly the yield ratio should be

very close to one. The primary factors that cause the yield ratio to deviate from one

are the optics, the acceptance and the cross section model. In the overlap region, the

optics and the cross section are the same and the acceptance is nearly identical (98%

agreement over the acceptance range) as presented Section 4.6. The expectation is

that the yield ratio will agree very well in the overlap region. A check was performed

on the three overlap kinematics (kin5.0, kin5.05, kin5.1) using the 12C target. The

yield ratio binned in both E and xbj is shown in Figures 5.1 and 5.2. The agreement

in the overlap region was not as expected and when binned in E’ the difference was
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Figure 5.1: Data/MC Yield ratio for 3 different overlap kinematics binned in Ep

Figure 5.2: The Yield ratio for 3 different overlap kinematic settings binned in xbj.
The yield ratio in the overlap region was not in good agreement.

found to be 10%. When binned in xbj the disagreement was worse, as large as 15%.

This suggested that there were still some problems to be investigated and taken

into account. The drop in the yield ratio in E
′

bins happens at high E
′

for every

kinematic setting and almost at the same value of the relative momentum dp∼3%.
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This suggested there may a local inefficiency yet undiscovered. The following section

will discuss about how the issue was located and resolved.

5.4 Local efficiency issue

As just mentioned the yield ratio of overlap kinematics indicated a low local ineffi-

ciency in the data. All the inputs to the yield ratio are reasonable and there is good

agreement of the acceptance when data and simulation are compared for all target

variables in 1-dimension. But the acceptance is complicated and is multiple dimen-

sional, so a local efficiency is very difficult to detect in a 1 dimensional acceptance

comparison. It is natural to check the yield ratio in higher dimensions to locate the

problem.

Yield ratio in higher dimension

Following the same method of calculation used for the yield ratio we now calculate

it in two dimensions of the target variables (θtg : φtg), (φtg : dptg) and (θtg : dptg).

Figures 5.3 and 5.4 show the yield ratio in a 2-dimensional phase space of the target

variables. Figure 5.3 shows that the yield ratio is uniform all over the two-dimensional

phase space acceptance except for a few points at the edge where the acceptance is

not well described. Figure 5.4 shows an obvious low yield ratio in a specific region,

dp= 3% and −0.005 < φtg < 0.03, which indicates a local efficiency problem.

Local efficiency at Trigger level

The local efficiency was confirmed and it could come from various sources: detec-

tors, tracking or trigger efficiency. After checking through all possible sources the

inefficiency was isolated to the trigger. The trigger design of this experiment was

discussed in the Section 3.6.5. The main trigger (T3) used in the analysis is (S0&S2&
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Figure 5.3: 2D Yield ratio as function of in plane angle φtg (rad) vs out plane angle
θtg(rad) shows a uniform distribution except few points at the edge where acceptance
was not modeled well.

Cer) while the efficiency trigger (T7) is the combination (S0&S2). The event distri-

bution in phase space of Cherenkov detector (cerx vs cery) corresponds to two type

of event triggers, T3 and T7, are shown in the Figures 5.5 and 5.6, respectively. The

T3 event distribution shows a dip around cerx= 0.4 (where it is normal for the T7

event distribution) and the projection of the events in the low yield ratio area seen in

the Figure 5.4 onto the phase space of Cherenkov appear at the same location of the

dip seen in Figure 5.5. Figure 5.7 shows the locations of 10 PMTs in the Cherenkov.

The location of the low efficiency region is at the position of PMT7. The next steps

describe how to calculate and correct this local inefficiency in the yield ratio.
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Figure 5.4: The 2D Yield ratio as function of in plane angle φtg (rad) vs relative
momentum dp shows a specific region where the yield ratio drops. This occurs at
dp∼0.03 and φtg > −0.005.
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Figure 5.5: The Trigger 3 event distribution on the Cherenkov phase space. The dip
is obvious at the location within the red circle.
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Trigger 7 events distribution on the Cherenkov phase space 
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Figure 5.6: The trigger 7 events distribution for the same data as in Figure 5.5. It is
clear that the dip region doesn’t exist in the distribution when we switch from Trigger
3 to Trigger 7

Cer_track_X (m)
1.0− 0.5− 0.0 0.5 1.0

C
e
r_

tr
a
c
k
_
Y

 (
m

)

0.1−

0.0

0.1

0.2 PMT-1

PMT-2

PMT-3

PMT-4

PMT-5

PMT-6

PMT-7

PMT-8

PMT-9

PMT-10

PMTs location in Cherenkov phase space

Figure 5.7: The location of each of the 10 PMTs in the Cherenkov phase space.
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Local efficiency calculation

There are two ways to calculate the local efficiency correction. The first is to calculate

the efficiency as a function of the Cherenkov position (cerx:cery) as seen in Figure 5.8.

Then, this map can be used to apply the correction event by event depending on the

track position in Cherenkov phase space.

Figure 5.8: The plot shows the local efficiency as function of Cherenkov position.

The second way is to calculate the efficiency as the function of xbj or E
′

with the

same binning as we have for the yield ratio, then apply the correction to the yield ratio

bin by bin. See Figure 5.9. The difficulty in calculating of the local trigger efficiency

comes from the fact that when the data taking was set up a high pre-scale factor

was applied to efficiency Trigger T7. This means that the statistics for the efficiency

calculation are low. This issue can be worked around by summing all the data in

the same kinematic setting for each target together. However a bigger problem was

that pre-scale factor for T7 was changed multiple times throughout the data taking

period. With the different pre-scale factor on T7 we need to be very careful when
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Local eff as function of Xbj Local eff as function of dp

Xbj Dp

Figure 5.9: The left plot is the local efficiency as function of xbj for one kinematics
setting. The right plot is the local efficiency as function of dp for the same setting as
in the left plot.

combining runs together. The first step was to set loose cuts on the acceptance, on

the tracking and on the PID using the E/p to select events. The second step was to

select the sample, N7, of events which pass the selection cuts and fire T7. The sample

N73 includes the events in the sample N7 which also fires T3. The efficiency can be

determined as

Eff =
N73

N7
(5.8)

With this selection sample, N7, we don’t need to worry about about the difference

in pre-scale factor of trigger T7 but this calculation only works if the Trigger T3 has

pre-scale factor of 1. The uncertainty accompanying our calculation must also be de-

termined. This uncertainty follows from the binomial distribution [87,91] because the

events in sample N7 either fire T3 or not. The approximation [87] for the uncertainty

can be calculated using:

Uncertainty = Eff ∗ sqrt(N73 ∗ (1−N73/N7))

N7
. (5.9)

This local efficiency depends on the kinematic setting and the target length. Fig-
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ure 5.10 shows the local efficiency as function of dp for every kinematic setting for

12C. The unique map to apply this correction needs to be averaged over all differ-

ent kinematic settings and over different target lengths. The calculation has many

different steps and are not presented here but can found in Ref. [94].
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Figure 5.10: The local efficiency as a function of dp for every kinematic setting for
Target 12C. The local efficiency varies over the different kinematics.

Improvement in yield ratio

After the local efficiency was calculated bin by bin in both E
′

and xbj for each kine-

matic setting, it can be used as a correction factor to the yield ratio. This results in

a significant improvement in the yield ratio for overlapping kinematic settings. The

yield ratio in the overlap region now have very good agreement, within a few percent

over different kinematic settings in E
′

and around 5% in xbj. See Figure 5.11 and

5.12.

Both approaches for applying the local efficiency correction in the yield ratio were

studied and both returned good agreement. See Ref. [95].
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Figure 5.11: The red points are the yield ratio binned in E
′

for two overlap kine-
matics settings, Kin5.0 and Kin5.05, before the local efficiency correction was applied
while the blue points are the result after the correction. The overlap region shows a
significant improvement after application of the correction.
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Figure 5.12: The red points are the yield ratio as function of xbj for two overlap
kinematic settings, Kin5.0 and Kin5.05, before the local efficiency correction, and the
blue points are the results after the correction.
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Figure 5.13: The Red point are the yield ratio before local efficiency was applied.
The blue points are the yield ratio after local efficiency correction was applied bin by
bin in dp. The green points are the yield ratio after local efficiency was applied using
the unique map of Cherenkov positions.

In the end, the approache of applying efficiency to the yield ratio bin by bin in dp

and in xbj binning was used in analysis since it is easier to propagate the uncertainty

in the yield ratio.

5.5 Acceptance dependence

After applying all corrections, now we have very good results for the yield ratio for

every kinematic setting. This section will discuss the stability of the yield ratio as

acceptance cuts are changed. To be able to conduct this study we need to have

multiple set of acceptance cuts as listed in Table 5.1 [96]. A more detailed study of

this study was presented in the Ref. [97].

The acceptance Cut1 plays the role of a reference cut. In each other cut, the

range in one of target variables is changed systematically. The yield ratio bin-to-

bin for both E
′

and xbj for each set of the acceptance cuts are calculated. The
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Table 5.1: The sets of acceptance cuts on the target reconstructed variables

Cut-name dp (%) θtg (mrad) φtg (mrad) ytg (σ)

Cut1 3.5 40 25 5

Cut2 3 40 25 5

Cut3 4 40 25 5

Cut4 3.5 35 25 5

Cut5 3.5 40 20 5

difference in the yield ratio from the Cut2-Cut5 to the reference cut is a measure of

the acceptance dependence (see Figures 5.14, 5.15, 5.16, 5.17). The variation in the

yield ratio using different cuts compared to the yield ratio using the reference cut

is very stable. For the most part, the scatter is less than 2% in bin xbj except for

certain cuts at the very edge of the acceptance. For the final results, the xbj range

is limited to stay away from the edge points where the acceptance is not modeled

well. In addition, some of the cuts in the acceptance dependence studies dramatically

change the statistics at the edge points. It means that the variation may come

from statistics and data, not because of the acceptance. The bottom line is that we

don’t need to worry about the large variations at the edges. So for the absolute cross

section, a 2% normalization uncertainty and 1.5% point-to-point are very conservative

for the acceptance dependence. For the cross section ratio of different solid targets,

the acceptance effects are canceled almost exactly. The normalization uncertainty is

negligible and point-to-point uncertainty should cancel as well. A 0.2% point-to-point

uncertainty for cross section ratio to account for the different offsets between 2 targets

position.
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Figure 5.14: The acceptance dependence as a function of E
′
for θ0 = 21◦ and θ0 = 23◦.

The variations of the yield ratio binned in E
′

using different cuts (Cut2 - Cut5) to
the yield ratio using the reference cut are very small for different kinematic settings.
Two red dashed lines show ±5% variation from one.
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Figure 5.15: The acceptance dependence as a function of E
′

for θ0 = 25◦ settings.
The variations of the yield ratio binned in E

′
using different cuts (Cut2 - Cut5) to

the yield ratio using the reference cut are very small for different kinematic settings.
Two red dashed lines shows ±5% variation from one.
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Figure 5.16: The acceptance dependence as a function of xbj for θ0 = 21◦ and θ0 = 23◦.
The variations of the yield ratio binned in xbj using different cuts (Cut2 - Cut5) to
the yield ratio using the reference cut are very small for different kinematic settings.
Two red dashed lines show ±5% variation from one.
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Figure 5.17: The acceptance dependence as a function of xbj for θ0 = 25◦ settings.
The variation of the yield ratio binned in xbj using different cuts (Cut2 - Cut5) to
the yield ratio using the reference cut are very small for different kinematic settings.
Two red dashed lines show ±5% variation from one.
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5.6 Yield ratio for 40Ca and 48Ca

Yield ratio for 40Ca and 48Ca using initial cross section model

The procedure for extracting the yield ratio and cross section was fully checked, and

worked well with the 12C target. The same procedure can be used to extract the

40Ca and 48Ca yield ratios. As discussed in the Section 4.6.3, in the cross section

model XEMC the total cross section is a sum of the quasi-elastic and deep inelastic

contributions. The quasi-elastic contribution is calculated from a scaling function

F (y) which is extracted from data for each target. Subsequently a new F (y) fit is

performed on the extracted cross section to obtained an iterated cross section model

which is used as input to the cross section extraction for next iteration. This process

is repeated until good agreement between data and the model was achieved. However

there are no preexisting in this kinematic region for 40Ca and 48Ca targets. This means

that we did not have a good starting F (y) cross section model for these targets. The

scaling function for aluminum was used in the first iteration for both 40Ca and 48Ca

which is used as a starting point of this analysis.

Figures 5.18 and 5.19 show the yield ratio (data/MC) for 40Ca and 48Ca for both

E
′
and xbj binning using the initial cross section model. As expected, the yield ratio is

not close to 1 yet since the initial cross section model can not describe data well. Even

though the yield ratio in the overlap region is in very good agreement indicating that

the acceptance is well described. This yield ratio used to obtain the initial extracted

cross section for 40Ca and 48Ca, as shown in Figures 5.20, 5.21. The uncertainty

shown is only statistical.

Refitting F(y) fitting for 40Ca and 48Ca data

After the initial cross section of 40Ca and 48Ca was extracted, it was used to obtain

a new F (y) fit. The F data(y) can be extracted from data by taking the initial cross
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Figure 5.18: The 40Ca (left), 48Ca (right) yield ratio as a function of E
′
(Ep) using the

initial cross section model. Two red dashed lines show ±5% variation from one.
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Figure 5.19: The 40Ca (left), 48Ca (right) yield ratio as function of xbj using the initial
cross section model. Two red dashed lines show ±5% variation from one.
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Figure 5.20: The initial extracted 40Ca cross section using the initial cross section
model. The left plot is the cross section as a function of E

′
(Gev). The right plot is

the cross section as a function of xbj.

E' (GeV)
2.4 2.6 2.8 3.0 3.2

C
ro

ss
 S

ec
tio

n 
(n

b/
Sr

/M
eV

)

4−10

3−10

2−10

1−10

1

Single foil Ca48, E0 = 3.356 GeV, Theta: 21, 23, 25 

kin5.0, P0 = 2.505 GeV,Theta=25

kin5.05, P0 = 2.65 GeV,Theta=25

kin5.1 , P0 = 2.795 GeV,Theta=25

kin3.1, P0 = 2.905 GeV,Theta=21

kin4.1, P0 = 2.855 GeV,Theta=23

kin4.2, P0 = 3.035 GeV,Theta=23

XBJ
1.0 1.5 2.0 2.5

C
ro

ss
 S

ec
tio

n 
(n

b/
Sr

/M
eV

)

4−10

3−10

2−10

1−10

1

Single foild Ca48, E0 = 3.356 GeV, Theta: 21, 23, 25 

kin5.0, P0 = 2.505 GeV,Theta=25
kin5.05, P0 = 2.65 GeV,Theta=25
kin5.1 , P0 = 2.795 GeV,Theta=25
kin3.1, P0 = 2.905 GeV,Theta=21
kin4.1, P0 = 2.855 GeV,Theta=23
kin4.2, P0 = 3.035 GeV,Theta=23

Figure 5.21: The initial extracted 48Ca cross section using the initial cross section
model. The left plot is the cross section as a function of E

′
(GeV). The right plot is

the cross section as a function of xbj.

section, subtracting the inelastic contribution (calculated by the inelastic part of

XEMC cross section model) and dividing out the kinematic factor and the sum of

electron-nucleon cross section as shown in Equation 5.10.

F data(y) =
(σdata − σxemcdis )

(Zσp +Nσn)
· q√

M2 + (~p+ ~q)2
, (5.10)
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A parameterization of the scaling function F (y), given in equation 5.11, is used to

perform a fit on the F data(y). The fit provides the new parameters to update cross

section model and is used for the next iteration to get updated yield ratio and updated

extracted cross section.

F (y) = (f0 −B)
α2e−(ay)2

α2 + y2
+Be−(by)2 (5.11)
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Figure 5.22: The new F(y) fit on the initial extracted 40Ca cross section. The solid
points are the F(y) extracted from data, different colors represent different kinematic
settings. The crosses are the DIS contribution corresponding to each kinematic set-
tings. The old parameters in the legend are for initial cross section model while the
new parameters, obtained from the fit, are for updated cross section model.

Yield ratio of 40Ca and 48Ca using updated cross section model

Using the updated cross section model for 40Ca and 48Ca, the updated yield ratios

(data/simulation) are obtained as shown in Figures 5.24 and 5.25. The yield ratio
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Figure 5.23: The new F(y) fit on the initial extracted 48Ca cross section. The solid
points are the F(y) extracted from data, different colors represent different kinematic
settings. The crosses are the DIS contribution corresponding to each kinematic set-
tings. The old parameters in the legend are for initial cross section model while the
new parameters, obtained from the fit, are for updated cross section model.

is much closer to 1 compared to the yield ratio using the initial cross section model

after only one iteration. In addition, the good agreement in the overlapping regions

was retained. At the lowest Q2 kinematic setting, kin3.1, the cross section may suffer

a larger final state interaction, but this behavior is consistent for both 40Ca and 48Ca

and would cancel in the cross section ratio. In the end, another iteration is needed to

improve the cross section model. The variation of the extracted cross section using a

newly iterated cross section model can be used to study the model dependence.



156

Ep (GeV)
2.85 2.90 2.95 3.00

 Y
iel

d r
ati

o

0.6

0.7

0.8

0.9

1.0

1.1
Yield ratio for Cross section cuts, Angle 21

Ca40,kin3.1

Ep (GeV)
2.8 2.9 3.0 3.1

 Y
iel

d r
ati

o

0.6

0.7

0.8

0.9

1.0

1.1
Yield ratio for Cross section cuts, Angle 23

Ca40,kin4.1

Ca40,kin4.2

Ep (GeV)
2.6 2.8

 Y
iel

d r
ati

o

0.6

0.7

0.8

0.9

1.0

1.1
Yield ratio for Cross section cuts, Angle 25

Ca40,kin5.0
Ca40,kin5.05
Ca40,kin5.1

Ep (GeV)
2.85 2.90 2.95 3.00

 Y
iel

d r
ati

o

0.6

0.7

0.8

0.9

1.0

1.1
Yield ratio for Cross section cuts, Angle 21

Ca48,kin3.1

Ep (GeV)
2.8 2.9 3.0 3.1

 Y
iel

d r
ati

o

0.6

0.7

0.8

0.9

1.0

1.1
Yield ratio for Cross section cuts, Angle 23

Ca48,kin4.1

Ca48,kin4.2

Ep (GeV)
2.6 2.8

 Y
iel

d r
ati

o

0.6

0.7

0.8

0.9

1.0

1.1
Yield ratio for Cross section cuts, Angle 25

Ca48,kin5.0
Ca48,kin5.05
Ca48,kin5.1

Figure 5.24: The 40Ca (left), 48Ca (right) yield ratio as a function of E
′
(Ep) using the

iterated cross section model. The yield ratio is much closer to 1 compared to the yield
ratio using the initial cross section. The two red dashed lines show ±5% variation
from one.
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Figure 5.25: The 40Ca (left), 48Ca (right) yield ratio as function of xbj using the
iterated cross section model. The yield ratio is much closee to 1 compared to the
yield ratio using the initial cross section. The two red dashed line show ±5% variation
from one
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5.7 Model dependence

The yield ratio method for extracting cross section depends on the cross section

model. After each new F(y) fitting, the iterated cross section is obtained and is used

to get the updated yield ratio and then updated extracted cross section. To see cross

section model dependence effects, a comparison of the extracted cross sections using

the initial cross section model and the first iterated cross section model is performed.

First of all, we can compare the difference in these two cross section models for each

target, 40Ca and 48Ca, as shown in Figures 5.26 and 5.27. The difference between the

two cross section models is at level of 10%-15% at quasi-elastic peak and at level of

20% for large values of E
′
. Even so, this difference in the cross section models has

very small impact in the extracted cross sections as seen below
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Figure 5.26: Top plots:The initial (old) and the first iterated (new) 40Ca cross section
model comparison for θ = 21◦, 23◦, 25◦ as a function of E

′
(Ep) or xbj, respectively.

The bottom plots: the ratio new/old of cross section models which shows difference at
the level of 10%-15% around the quasi-elastic peak and 20%-30% for large E

′
values

and less when binned in xbj.
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Figure 5.27: Top plots:The initial (old) and the first iterated (new) 48Ca cross section
model comparison for θ = 21◦, 23◦, 25◦ as a function of E

′
(Ep) or xbj, respectively. The

bottom plots: the ratio new/old of cross section models which shows differences at
the level of 10%-15% around the quasi-elastic peak and 20%-30% for large E

′
values.

Figures 5.28 and 5.29 show the variation in the extracted cross section when using

the initial cross section model and the first iterated cross section model as a function

of E
′

and xbj for both 40Ca and 48Ca. The variation in the extracted cross sections

is at level of 2%. But the overall deviation is much smaller, the RMS scatter of the

points is about 0.5%. So this is a reasonable upper limit for the model dependence.

One thing to be aware of is that the variation in the xbj binning is smaller compared

to the E
′

binning is explained through Figure 5.30. When the cross section is binned

in E
′
, each bin covers a large range of xbj which means that the cross section change

significantly across the bin and that is why it is much more sensitive to the model for

E
′

binning (see Figure 5.30, left plot). When the cross section binned in xbj, the cross

section is much flatter across the bin which makes it less sensitive to the model (see

Figure 5.30, right plot). Detailed studies of the model dependence effects are found
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in the Refs. [98–100].
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Figure 5.28: The ratio of the extracted cross using the first iterated cross section
model to the extracted cross section using initial cross section model section as a
function of E

′
for different kinematic settings. The left plots are for 40Ca while the

right plots are for 48Ca. Two red dashed lines in each plot shows ±5% variation from
one.

If we do additional iterations on cross section model the uncertainty from the

model dependence can be reduced. But for this state of the analysis a 0.5% uncer-

tainty from the model dependence on the cross section point to point is acceptable.

The F(y) fit was performed separately on 48Ca and 40Ca which implies that uncer-

tainty from model dependence can be slightly different for these two nuclei. There

can be some cancellation when we take the cross section ratio 48Ca/40Ca. So it is

reasonable to apply 0.5% uncertainty from model dependence point to point for the

cross section ratio 48Ca/40Ca as well [87].
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Figure 5.29: The ratio of the extracted cross using the first iterated cross section
model to the extracted cross section using initial cross section model section as a
function of xbj for different kinematic settings. The left plots are for 40Ca while the
right plots are for 48Ca. Two red dashed lines in each plot shows ±5% variation from
one.

Figure 5.30: The left plot shows the (dp : φtg) phase space after the selected cuts of
the cross section analysis. The red band presents the phase space corresponding to a
dp (E

′
) bin. The cross section changes a lot crossing the dp bin. The right plot shows

the (dp : φtg) phase space after the selected cuts of the cross section analysis within
the selected range of xbj. Each color band represents a phase space of each xbj bin.
The cross section is much flatter crossing the xbj bin compared to the E

′
bin.
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5.8 Systematic uncertainty estimation

The extracted cross section and the cross section ratio were corrected for many effects.

The systematic uncertainly associated with each correction needs to be studied. The

systematic uncertainty of the acceptance correction, the model dependence as well

as the trigger and PID efficiencies have been studied in this analysis. The remaining

uncertainty studies are the radiative corrections and the target density. The expensive

48Ca was well made and its density was determined with high precision (0.1%). The

density of the less expensive target 40Ca was not well defined and we estimate an

uncertainty of ∼1%. A conservative estimate for the radiative correction is 1.5%.

The detail studies of these uncertainties will be updated for eventual publication.

A summary of normalization (norm) and point-to-point (pt-pt) uncertainty of each

correction for both absolute cross-section (δσ/σ) and cross-section ratio (δR/R ) can

be found in Table 5.2 with the marker (∗) indicating an on-going study.

Table 5.2: Systematic Uncertainty summary

Systematic δσ/σ (Norm) δσ/σ (pt-pt) δR/R (Norm) δR/R (pt-pt)
Acceptance dependence 2% 1.5% - 0.2%

Model dependence - 0.5% - 0.5%
Tracking efficiency 1% 0.3% - 0.2%

Cer efficiency 0.3% 0.1% - 0.1%
E/p efficiency 0.3% 0.1% - 0.1%

Target density∗ 1% - 1% -
Beam Charge∗ 0.5% - - 0.5%

radiative correction∗ 1.5% - - 0.5%
Total 2.9% 1.6% 1% 0.9%
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Chapter 6

Results and discussion

In this chapter the preliminary absolute cross section results are presented for three

targets: 12C, 40Ca and 48Ca. In addition, the cross section ratios for 48Ca/40Ca are

presented. Due to the absence of theoretical predictions of the cross section for these

heavy nuclei we are necessarily limited in our discussion. However, the precision of

these data will provide the possibility for comparison to advanced calculations as

they become available. The cross section ratios do however provide an opportunity

for some discussion as the expectation is that the ratios, in the region where 2N

SRCs should dominate, will be largely determined by whether 2N-SRCs are isospin

dependent or isospin independent.

6.1 Absolute Cross section

The absolute cross-sections of 40Ca and 48Ca have been measured for the first time in

a region of kinematics (Q2 > 1 and the xbj > 1) where SRC should play an important

role. At a minimum these results will allow the construction of precise models for these

two nuclei for future studies. In addition, by exploiting the connection between the

longitudinal scaling function F (y) and the momentum distribution n(k) a comparison

can be made with predictions whose starting point is the NN potential [21].



163

12C absolute cross section

(a) 12C cross section as function of Ep
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(b) 12C cross section as function of xbj
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Figure 6.1: 12C absolute cross-section as a function of E
′

(left panel) and xbj (right
panel) for different kinematic settings. The solid lines represent the model and the
points represent the E08014 data.

40Ca and 48Ca absolute cross section

(a) 40Ca cross-section as function of Ep
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(b) 40Ca cross-section as function of xbj
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Figure 6.2: 40Ca absolute cross-section as a function of E
′

(left panel) and xbj (right
hand panel) for different kinematic settings. The solid lines represent the cross section
model and the points represent the E08014 data.
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(a) 48Ca cross-section as function of Ep
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Figure 6.3: 48Ca cross-section as function of E
′

(left panel) and xbj (right panel) for
different kinematic settings. The solid lines represent the cross-section model and the
points represent the E08014 data.

6.2 Cross section ratio 48Ca/40Ca

The focus of this thesis is the isospin-dependence of 2N SRCs using the cross sec-

tion ratio 48Ca/40Ca per-nucleon. As discussed in Section 2.4, with the isospin-

independent assumption, the ratio of neutron to proton in SRCs is equal to the N/Z

ratio of nucleus. In the kinematics of E08014, the cross section of electron-proton

scattering (σp) is about 3 times the electron-neutron scattering (σn). In the isospin-

independent assumption, the cross section ratio per-nucleon from 48Ca to 40Ca can

be expressed as [41]:

σ48Ca/48

σ40Ca/40
=

(20σp + 28σn)/48

(20σp + 20σn)/40

σp∼3σn−−−−→∼ 0.92

In the case of the isospin-dependence, it is not possible to give a rock-solid estimate

for the ratios due to the complexity of large nuclei. In the proposal [41] for E08014 a

guesstimate, based on the total possible combination of np pairs, (Z ∗N), was given:

σ48Ca/48

σ40Ca/40
=

(20 · 28)/48

(20 · 20)/40
= 1.17 (6.1)
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Subsequent to this a theoretical calculation [57] took into account the role of

isospin-dependence effect in short-range correlations for a range of nuclei. The results

have already been shown in Figure 2.17 in Chapter 2. By picking off the value of Npn

(NZ)

from Figure 2.17, for 40Ca and 48Ca, multiplying by their associated (N × Z) and

then dividing by 48
40

, the prediction for isospin-dependence of the ratio of cross section

per nucleon 48Ca/40Ca is around 1,

σ48Ca/48

σ40Ca/40
∼ 1

The following figures show the cross section ratio of 48Ca/40Ca per nucleon in this

analysis for different angle settings. The discussion of these results is in the next

section.
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Figure 6.4: The cross-section ratio 48Ca/40Ca per nucleon for θ0 = 21◦, Q2 ∼ 1.3
GeV2, binned in E

′
converted to xbj (left panel) and binned in xbj (right panel). The

short black line shows the linear fit on the data in the region 1.6 < xbj < 2.
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Figure 6.5: The cross-section ratio 48Ca/40Ca per nucleon for θ0 = 23◦, Q2 ∼ 1.5
GeV2, binned in E

′
converted to xbj (left hand side) and binned in xbj (right hand

side). The short black line shows the linear fit on the data in the region 1.6 < xbj < 2.

Ep>xbj
1.0 1.5 2.0

0.85

0.90

0.95

1.00

1.05

1.10

 / ndf 2χ  11.89 / 9

Prob   0.2196

p0        0.005466± 0.9897 

 / ndf 2χ  11.89 / 9

Prob   0.2196

p0        0.005466± 0.9897 

Cross section ratio Angle 25

Xbj
1.0 1.5 2.0

0.85

0.90

0.95

1.00

1.05

1.10

 / ndf 2χ  36.46 / 27

Prob   0.1057

p0        0.003608±  0.99 

 / ndf 2χ  36.46 / 27

Prob   0.1057

p0        0.003608±  0.99 

Cross section ratio Angle 25

Figure 6.6: The cross-section ratio 48Ca/40Ca per nucleon for θ0 = 25◦, Q2 ∼ 1.7
GeV2, binned in E

′
converted to xbj (left panel) and binned in xbj (right panel). The

short black line shows the linear fit on the data in the region 1.5 < xbj < 2.

6.3 Discussion

The cross section ratio per-nucleon 48Ca/40Ca shows a SRC plateau in the region

1.5 < xbj < 2. The value of this plateau is very close to 1 for different kinematic

settings. This result is consistent with the theoretical prediction of the cross sec-

tion ratio per-nucleon in the isospin-dependent case [57] as well as the observed

isospin-dependence results from different nuclei using the exclusive data in Ref [47].

Therefore, these results can be considered as the first evidence of 2N SRCs isospin-
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dependence using inclusive scattering data. It allows the unequivocal statement that

proposal for experiment made a significant overestimate for the fraction of np pairs

participating in SRCs (see Section 2.4) [41].

In addition, the calculation in Ref. [101] provided the values of a2(A) for 40Ca and

48Ca. See Table 6.1.

Table 6.1: Theoretical a2(A) calculation for 40Ca and 48Ca [101,102]

2H 1.128 40Ca 1.637
4He 1.327 48Ca 1.629
9Be 1.384 56Fe 1.638
12C 1.435 108Ag 1.704
16O 1.527 197Au 1.745
27Al 1.545 208Pb 1.741

The a2(A) can be obtained by taking ratio of the numbers in Table 6.1 subtracted

by one because they are the extra effect caused by SRC on top of the mean field value

of 1.

a2(40Ca) =
σ40Ca/40

σ2D/2
=

(1.637− 1)

(1.128− 1)
= 4.97

and:

a2(48Ca) =
σ48Ca/48

σ2D/2
=

(1.629− 1)

(1.128− 1)
= 4.92

The per-nucleon cross section ratio from this calculation is:

σ48Ca/48

σ40Ca/40
= 4.92/4.97 = 0.989

Since these two nuclei have the same number of protons, this result has very

interesting implications. It shows that increasing the number of neutrons will increase

the fraction of protons prone to SRCs, otherwise the number of np pairs would be

the same in the two nuclei and the cross section ratio per-nucleon will be equal to

the ratio of nuclear masses (40/48 ∼ 0.83). This is consistent with the observation in

Ref [103] that the average kinetic energy of protons is higher than the average kinetic
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energy of neutrons in neutron-rich nuclei, because the fraction of protons having high

momentum is higher than the fraction of neutrons in the high momentum tail. The

result can be understood in a simple way that, by increasing the number of neutrons,

the total possible combination of np pairs (Z ∗N) also increases which gives np pairs

a higher probability to be a SRC np pair. A hand-waving argument to describe this

relative probability can be expressed as:

σ48Ca/48

σ40Ca/40
=

(20 · 28)/(48 · (48− 1)/2)

(20 · 20)/(40 · (40− 1)/2)
∼ 0.97 (6.2)

where (20 · 28) is the total number of combinations of np pairs and (48 · (48− 1)/2)

is the total combination of two-nucleon pairs for 48Ca. It is similar for the 40Ca case.

In a later stage of the analysis of E08014, 2D data will allow the extraction of a2,

the 2N SRC scaling factor, for both 40Ca and 48Ca. This will be very useful in the

study of the linear correlation of the EMC strength and SRCs as well as the density

dependence of a2(A) [104].

6.4 Outlook

The isospin-dependence is one of the most important questions underlying the dynam-

ics of SRCs. Pursuing it will give a clearer understanding of short-distance nuclear

structure. SRCs imply high momenta, short distances and extremely high, though

fleeting states of high density. Consequently, it will test the mechanism by which nu-

cleon properties might be modified (the EMC effect for example) and expose whether

they share a common origin. Furthermore, the SRCs are important for the inter-

pretation of neutrino-oscillation measurements where nuclear structure is necessary

for neutrino beam energy reconstruction [105]. They are also relevant for the under-

standing of neutron rich systems such as neutron stars [33]. The SRCs may affect the

equation of state of neutron stars and make it stiffer.
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