
Automated and Distributed Monte Carlo

Generation for GlueX

Thomas Britton

February 2020

1 Abstract

MCwrapper is a set of systems that manages the entire Monte Carlo production
workflow for GlueX and provides standards for how that Monte Carlo is pro-
duced. MCwrapper was designed to be able to utilize a variety of batch systems
in a way that is relatively transparent to the user, thus enabling users to quickly
and easily produce valid simulated data at home institutions worldwide. Addi-
tionally, MCwrapper supports an autonomous system that takes user’s project
submissions via a custom web application. The system then atomizes the project
into individual jobs, matches these jobs to resources, and monitors the jobs sta-
tus. The entire system is managed by a database which tracks almost all facets
of the systems from user submissions to the individual jobs themselves. Users
can interact with their submitted projects online via a dashboard or, in the case
of testing failure, can modify their project requests from a link contained in an
automated email. Beginning in 2018 the GlueX Collaboration began to utilize
the Open Science Grid (OSG) to handle a bulk of simulation tasks; these tasks
are currently being performed on the OSG automatically via MCwrapper. This
talk will outline the entire system of MCwrapper, its use cases, and the unique
challenges facing the system.

2 Genesis

GlueX is an experiment housed in Hall-D, one of Jefferson Laboratory’s four
experimental halls and is comprised of an international collaboration of 116
members across 27 different institutions. It collects roughly two PetaBytes of
data a year at a rate of approximately one GigaByte each second when running.
In order to produce some physics results GlueX relies on Monte Carlo simula-
tion. This simulation workflow involves the precise configuration and running
of several different programs each of which can be grouped into 4 major steps
(Generation, Geant, Smearing, Reconstruction/Analysis).

Like all good projects MCwrapper was born out of necessity by one Postdoc-
toral researcher; everyone had their own personal script(s) to run the workflow,

1

students shared second hand scripts that often had missing options of param-
eters, many of the parameters involved with the workflow had to be mirrored
across several different configuration files. All of this lead to a system prone
to human error and unable to provide for proper provenance for any data pro-
duced. Not wanting to deal with these intricacies more than once, MCwrapper
was created.

Ultimately MCwrapper seeks to be a ”one-stop-shop” for simulation in GlueX
and Hall-D. To accomplish this MCwrapper must be able to complete the entire
production chain, provide basic standards of simulation, accommodate special
configurations for individual studies, utilize available batch systems, and provide
support for new users. Special attention was given to the utilization of avail-
able computational resources, going beyond Jefferson Laboratory’s local cluster
and enabling users to almost seamlessly utilize the batch systems of their home
institutions.

The ”engine” of MCwrapper is run by a script (gluex MC.py) which takes
user parameters via both a special configuration file (although MCwrapper is
agnostic as to the name of this configuration file it is generically referred to, by
the users, as the ”MC.config file”) as well as the command line. This ”engine”
actually handles the sourcing of needed resources necessary to complete the
workflow and configures the underlying programs, handling outputs as specified.
A basic graphical representation of this system is given in Figure 1.

Figure 1: The basic structure of MCwrapper’s underlying system. Parame-
ters from MC.config and the command line are fed to gluex MC which breaks
the request into the necessary jobs, configuring one or many instances of
MakeMC.(c)sh to run. Each run of MakeMC.(c)sh is responsible for obtaining
needed resources, configuring the underlying software packages, and marshalling
output.

It is the gluex MC.py script which contains the knowledge of how to deploy
the individual workflows on several underlying batch systems. At the time of
CHEP 2019 this list includes PBS, condor, SLURM, as well as a few special
instances thereof. These few batch systems cover approximately 90% of collab-
orator home institutions. There are also two special implementations which can

2

be utilized by MCwrapper, these implementations cover the Open Science Grid
(OSG), which is ultimately based on the condor batch system, and Jefferson
Laboratory’s own homegrown workflow management system which is based on
the SLURM system. Given the workflow knowledge encapsulated by MCwrap-
per there are minimal changes a user must make to configure MCwrapper to use
one or another system (e.g. configuring MCwrapper to run on the OSG versus
at Jefferson lab requires changing a single string in the MC.config file).

3 Towards Automation

After the integration of submissions to the OSG there quickly grew a demand
for centralized production. Growing tired of managing everyone’s simulation
by hand on the OSG the flexibility of MCwrapper could be exploited to auto-
matically manage Monte Carlo production. The automatic arm of MCwrapper
(referred to as MCwrapper-bot) desired to maintain an extremely low barrier to
entry. To accomplish this the flexibility had to be restricted (users have always
been able to produce their own simulations with all of the power and flexibility)
but in exchange users need answer only a minimal set of questions and gain
the benefits automation can offer, including easy access to the OSG as well as
automatic job monitoring and re-submission.

Essentially, MCwrapper-bot is just a wrapper around MCwrapper. This
single abstraction allows for the creation of a web-based interface to a central
production system. The dynamic request submission interface is shown in Figure
2. The added integration with other GlueX systems means the barrier to enter
stays incredibly low. A new graduate student can easily put in a request and
produce valid MonteCarlo simulations without having a deeper knowledge of
individual configurations needed. This is accomplished by specifically building
an interface that presents options in plain text (e.g. the analysis submit form
accessible from the submit page), dynamically showing or hiding specific options
to reduce total form complexity, and localizing all configuration parameters to
a single place.

After submission users receive an email confirming receipt of the request and
are presented with a link to a dashboard (Figure 3 that shows system statistics,
projects which progress dynamically, and gives users, and administrators, the
ability to interact with active projects. Projects then automatically test run
a small sample locally with the same software stack as requested to be used
to produce the Monte Carlo. This ”go no-go” testing ensures the batch jobs
submitted to the OSG, or local farm, are likely to succeed, saving a bulk of the
resources for ”typo free” projects likely to produce usable simulation results. If
a user’s project fails to test they receive an automated email containing infor-
mation on the crash (stdout and stderr) as well as a custom link allowing the
user to make corrective changes to the request. Once corrected, the project is
automatically flagged for a retest. The entire system is supported by a database
which contains information from every submitted project and submitted job.

The system itself has the ability to run on several systems automatically,

3

Figure 2: Shown is part of the dynamic web form which is used to submit a
project to MCwrapper bot. This form includes knowledge of the GlueX software
stack, a bevy of options, and integration with other GlueX systems (in the
pop-up window). The system shown in the pop-up window allows users to set
up reactions, in plain text, that will be searched for in the simulated data;
mimicking the process real data goes through.

making the decision on which system to run on automatically on a job-by-job
basis. This allows for global load balancing across multiple platforms. The sys-
tem could, with additional development, dynamically aggregate jobs to target
payloads specific to the systems MCwrapper-bot utilizes. Further optimizations
can be achieved by leveraging the go no-go tests locally to better tailor compute
resource requests for each project or job aggregations. Each submitted job is
monitored in near real time. The system has some understanding of common
failure modes, automatically taking appropriate corrective actions and resub-
mitting these jobs.

With increased usage MCwrapper and MCwrapper-bot has seen its share
of scaling challenges. For example, many simulations end up needing access to
”random trigger” events (a 100 Hz asynchronous trigger is used to collect hit
level information from detectors allowing the use of backgrounds coming from
actual data) to be merged in with pure simulation output. These files vary
in size with a mean close to 1 GB. Each job needs only a slice of one of the
files. The naive solution has every job take an entire copy of the needed file and
proceeds to get the necessary chunk on the worker node. This, when a sufficient
number of jobs are submitted, would lead to an I/O limited state on the submit
node and did, in cases, saturate the entire out-bound bandwidth of Jefferson
Laboratory. To reduce the load XRootD was implemented to stream parts of
files to the worker node as needed. Utilizing this technology reduced bandwidth
consumption by 90% and allowed for the files to be hosted separately from the

4

submit host.
Since its inception MCwrapper is heavily utilized collaboration wide, sup-

planting most, if not all means of producing Monte Carlo in GlueX. MCwrapper-
bot has seen increased usage month-over-month use. At the time of writing
MCwrapper-bot has been used by 48 unique users (40% of GlueX members)
to produce over 52 TeraBytes of simulation with almost 1.8 million jobs which
consumed almost 400 cpu-years. In the future MCwrapper-bot should utilize
a more sophisticated decision making algorithm to dynamically scale and dis-
tribute elastic workflows, shuttling jobs to locations to optimize throughput,
and provide multi-cluster load balancing for simulation production in Hall-D
and beyond.

5

Figure 3: Shown is part of the dynamic dashboard (emails have been redacted
to protect user information). Each request has a progress bar which updates in
near real time without the need for page reloading. The Status column shows
failed tests (red), successfully tested and running projects (green), and projects
currently being tested (an animated ellipses). The rest of the table shows basic
information about the request. The rows can be right-clicked to interact with
the project (user’s options are privilege dependent). Left-clicking on a row
generates additional tables with more detailed information. Not shown are
heart beats from the components of the automated system, the current load as
seen from the submit host, and a world showing the geo-locations of the current
active projects or, if a project has been selected, the scraped geo-location of the
selected project’s jobs.

6

