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We investigate the predictive power of transverse-momentum-dependent (TMD) distributions as
a function of the light-cone momentum fraction x and the hard scale Q defined by the process. We
apply the saddle point approximation to the unpolarized quark and gluon transverse momentum
distributions and evaluate the position of the saddle point as a function of the kinematics. We
determine quantitatively that the predictive power for an unpolarized transverse momentum distri-
bution is maximal in the large-Q and small-x region. For cross sections the predictive power of the
TMD factorization formalism is generally enhanced by considering the convolution of two distribu-
tions, and we explicitly consider the case of Z and H0 boson production. In the kinematic regions
where the predictive power is not maximal, the distributions are sensitive to the non-perturbative
hadron structure. Thus, these regions are critical for investigating hadron tomography in a three-
dimensional momentum space.
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I. INTRODUCTION

The theoretical study and experimental exploration of the internal structure of nucleons are of fundamental
importance to science [1–3]. In the past decades, we have obtained a detailed knowledge of the so-called collinear
parton distribution functions (PDFs). These collinear PDFs describe the distribution of partons inside a fast
moving nucleon as a function of the nucleon’s longitudinal momentum fraction x, and thus provide us with a
“one-dimensional” (1D) picture of how partons are distributed inside the nucleons. They are indispensable in the
predictions involving high-energy hadrons, such as those at the Large Hadron Collider (LHC), in particular for
the inclusive observables with one large momentum transfer, e.g., the total cross section of W/Z and H0 bosons
computed in the collinear factorization formalism [4].

On the other hand, for the observables with more than one observed momentum scale, such as the transverse
momentum distribution of W/Z and H0 bosons when the transverse momentum is so much smaller than the
mass of the observed particle (qT � Q ∼ MW/Z,H0), a more sophisticated factorization framework, namely the
transverse-momentum-dependent (TMD) factorization [5–9], is needed. In such a TMD factorization framework,
the observables are written in terms of transverse-momentum-dependent PDFs (TMD PDFs), which are usually
just called TMDs for simplicity. The TMDs contain not only the aforementioned longitudinal momentum fraction
x, but also the partonic transverse momentum kT with respect to the direction of the parent nucleon. Because of
this, the TMDs provide us the rich information on “three-dimensional” (3D) motion of the probed active parton
inside the nucleon, often referred to as 3D imaging of the nucleon [1, 2].

Owing to the one of the key defining properties of Quantum Chromodynamics (QCD), the color confinement, we
do not see any quarks and gluons in isolation. It is therefore critically important to have the reliable and controllable
matching between the properties and dynamics of quarks and gluons participating in high energy collisions and the
hadrons observed in the detector, which could be achieved by the QCD factorization. Thus, the investigation of
the TMDs and the associated TMD factorization becomes extremely important. On one side, they have a strong
interplay with high-energy physics, since the uncertainties of hadronic nature as encoded in TMDs are among
the largest ones that dominate the systematic theoretical uncertainties for the precision of QCD calculations of key
observables, which could impact our ability to explore the possible scenarios of Beyond the Standard Model physics.
On the other hand, our knowledge on TMDs are essential for mapping out the nucleon’s 3D partonic structure to
learn and to understand the confined motion of quarks and gluons inside a bound hadron. This is particularly
true in light of the rapid progress towards realizing a US-based Electron-Ion Collider (EIC), a machine aiming at
investigating the multidimensional structure of hadrons and nuclei.
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FIG. 1. Sketch for the Drell-Yan type of heavy boson production with the parton shower.

In both frontiers, one of the most important questions to address would be to understand in which kinematic
regions the perturbative QCD-based formalism of TMD factorization is most predictive, from the point of view of
a controllable perturbative computation. To address this question, it is important to recognize that the probed
transverse momentum (kT ) of the active parton in the hard collisions is not the same as the transverse momentum
of the same parton inside a bound hadron, or sometime, referred as the intrinsic kT0 as shown in Fig. 1 in terms of
a generic Drell-Yan type hard collision. With the hard collision and the large momentum transfer, a large amount
of parton shower was developed during the collision making the kT of the probed active parton different from its
intrinsic transverse momentum kT0 from its confined motion inside the bound hadron. The difference between the kT
and kT0 depends on the hard scale of the collision, Q, as well as the phase space available for the shower or the total
collision energy

√
s. The observed Q and

√
s determine the momentum fraction x of the active parton participating

at the hard collision. The smaller x is, the larger phase is available for the shower. The difference between the
kT and kT0 is encoded in the QCD evolution of the TMDs in terms of the TMD factorization. As demonstrated
quantitatively in this paper, the QCD evolution of the kT -dependence could be dominated by the logarithmic and
perturbatively calculable part of the parton shower, leading to the better predictive power, and the intrinsically
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nonperturbative TMDs could be further factorized into the nonperturbative 1D collinear PDFs convoluted with
dominated and calculable contributions of the parton shower. On the other hand, if the evolution of kT -dependence
is dominated by the nonperturbative dynamics of the parton shower, the TMDs and the corresponding observables
will be more sensitive to the nonperturbative physics. The detailed and quantitative study presented in this paper
will help us figure out in which regions these non-perturbative contributions play a significant role and where the
experimental data are most ideal to be used for constraining the non-perturbative component of the TMDs.

TMD factorization and evolution have been extensively studied in the literature [5–13], together with the matching
to collinear factorization [5, 14–19], the generalized universality properties [20–27], and the impact on high-energy
physics [28–30]. Much of the efforts in TMD phenomenology is devoted to the understanding of the role and
the size of the non-perturbative corrections in different kinematic domains [12, 31–35]. The study of the kinematic
dependence originates from the work of Parisi and Petronzio [36] and Collins, Soper, and Sterman [5], which focused
on the value of the hard scale of the process compared to the infrared scale of QCD. More recently, it has been
shown at the level of the cross section [16, 28, 37, 38] that also the light-cone momentum fraction x, which is
effectively a measure of available phase space for the parton shower, could play an important role in determining
the relevance of the non-perturbative corrections. In this article we extend those arguments to the context of the
modern TMD factorization formalism [9], linking the predictive power of the TMDs to their double scale evolution,
i.e. the ultraviolet and rapidity renormalization scales to be defined below. Our detailed study shows that for
TMDs with the large hard-scale Q and the small momentum fraction x, the non-perturbative contribution plays a
less important role and thus they have the most predictive power. On the contrary, TMDs with the small hard-scale
Q and the large momentum fraction x receive significant non-perturbative contributions, and are better suited for
constraining non-perturbative parameters in the TMDs.

The paper is organized as follows. In Sec. II we present the structure of a TMD PDF in the coordinate bT space,
which is conjugate to the transverse momentum kT . We separate the small and large bT regions, and derive a
functional form that extrapolates the physics from the small to the large bT region. In Sec. III we apply the saddle-
point method to the TMD PDF, and we determine the position of the saddle point as a function of the kinematics
studying the structure of the double-scale evolution of the distribution. In Sec. IV we analyze the predictive power
of the quark and gluon TMDs and comment on the relevance of the large bT region and its components. In Sec. V
we study the transverse momentum distributions for Z boson production and H0 boson production in pp collisions.
They are sensitive to quark and gluon TMDs, respectively. We close the paper in Sec. VI and comment on the
advantages presented by the complementary kinematic regions accessed by different experiments and possibilities
to learn and control the nonperturbative evolution of TMDs.

II. TMDS FROM SMALL TO LARGE bT REGION

Our main focus in this paper is on the TMD PDF for a parton with specific flavor a,

Fa(x, k2
T ;µ, ζ) , (1)

which carries the collinear momentum fraction x of the parent hadron and has a transverse momentum kT with
respect to the hadron’s momentum. On the other hand, µ and ζ are the ultraviolet (UV) renormalization and
rapidity regularization scales, respectively. As we will discuss in Sec. V, these TMDs are indispensable in describ-
ing e.g., the transverse momentum distribution of a vector boson Z and H0 boson production at low transverse
momentum regions qT � MZ,H0 , and carrying rich information on parton’s confined motion in a bound hadron,
which is a fundamental emergent property of QCD dynamics. As shown in Fig. 1, the kT -dependence of the TMD
PDF probed at the hard collision is a combination of parton’s intrinsic kT0

and the amount of kT generated by the
parton shower. Since each radiation from the parton shower could be soft and non-perturbative, and convoluted
with additional radiation before and after, it could be advantageous to study the TMDs in their Fourier transformed
form in the position or bT -space, defined as [5]

Fa(x, b2T ;µ, ζ) =

∫
d2kT e

−ikT ·bTFa(x, k2
T ;µ, ζ) . (2)

When bT is small, much less than 1/ΛQCD, the QCD evolution (or scale dependence) of the TMDs’ bT -dependence
are perturbatively calculable, and otherwise, the QCD evolution is non-perturbative. Once we understand the TMD
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PDF in the bT -space, we then Fourier transform it back into the momentum space:

Fa(x, k2
T ;µ, ζ) =

∫
d2bT
(2π)2

eikT ·bTFa(x, b2T ;µ, ζ)

=
1

2π

∫ ∞
0

dbT bTJ0(kT bT )Fa(x, b2T ;µ, ζ) . (3)

The zero-th order Bessel function J0 emerges from the angular part of the integral and the absence of any dependence
on the azimuthal angle of the transverse momentum kT in the unpolarized case. The above Fourier transform would
require the information of the Fa(x, b2T ;µ, ζ) for the entire bT ∈ [0,∞) region. If the Fourier transform is dominated
by the information of TMDs at small bT , we will have a good predictive power for Fa(x, k2

T ;µ, ζ) in all relevant kT
region modulo the knowledge of the standard collinear PDFs, as we demonstrate below. On the other hand, if the
Fourier transform is sensitive to the large bT region, the evolution kernels for scale-dependence of TMDs at large
bT are non-perturbative and Fa(x, b2T ;µ, ζ) will be sensitive to the non-perturbative physics.

Below we first review the behavior and evolution of TMDs in the small-bT region, and we then study how one can
extrapolate the TMD to the large-bT region by extending the work of Ref. [37]. By further studying the behavior
of the TMDs in the bT -space through a saddle-point approximation, we explore quantitatively in which region the
TMDs have the most predictive power.

A. TMDs in the small-bT region

QCD evolution equations of the TMDs take the following form [5]

d lnFa(x, b2T ;µ, ζ)

d ln ζ
= −K (bTµ, αs(µ)) , (4)

d lnFa(x, b2T ;µ, ζ)

d lnµ
= γF

(
αs(µ),

ζ

µ2

)
, (5)

dK (bTµ, αs(µ))

d lnµ2
=

1

2
γK (αs(µ)) , (6)

d γF

(
αs(µ), ζµ2

)
d ln ζ

= −γK (αs(µ)) . (7)

Here the first three equations are well-known and can be found in the literature, see e.g. in Ref. [9], where

K (bTµ, αs(µ)) is called the Collins-Soper evolution kernel, and γF

(
αs(µ), ζµ2

)
is the anomalous dimension of the

TMD PDF. The last equation is obtained from the fact that the differential order in ζ and in µ for Fa(x, b2T ;µ, ζ)
is interchangeable [39], i.e.,

d

d ln ζ

d

d lnµ
lnFa(x, b2T ;µ, ζ) =

d

d lnµ

d

d ln ζ
lnFa(x, b2T ;µ, ζ) , (8)

so long as Fa(x, b2T ;µ, ζ) are differentiable in both µ and ζ in the kinematic regime that we are interested in.
In the perturbative region where 1/bT � ΛQCD, one can compute all the evolution kernels in the above evolution

equations. For example, for a quark TMD PDF with a = q, we have

K (bTµ, αs(µ)) = CF
∑
n=1

(αs
4π

)n n∑
k=0

d(n,k) lnk
(
µ2

µ2
b

)
, (9)

γK (αs(µ)) = Γcusp (αs(µ)) , (10)

γF

(
αs(µ),

ζ

µ2

)
= Γcusp (αs(µ)) ln

(
µ2

ζ

)
+ γ (αs(µ)) , (11)

where we define µb = c/bT with c = 2e−γE and γE = 0.577 the Euler constant. Γcusp (αs(µ)) and γ (αs(µ)) are
the cusp and non-cusp anomalous dimensions, respectively. They generally have the expansion Γcusp (αs(µ)) =



5∑
n=1 Γn−1

(
αs

4π

)n
, likewise for the non-cusp. For a quark TMD PDF, one has Γ0 = 4CF , γ0 = 6CF , etc. At the

same time, we have d(1,1) = 2Γ0, d
(1,0) = 0, etc. Thus at the first non-trivial order, we have

K (bTµ, αs(µ)) =
αs
2π
CF ln

(
µ2

µ2
b

)
, (12)

γK (αs(µ)) =
αs
π
CF , (13)

γF

(
αs(µ),

ζ

µ2

)
=
αs
π
CF

[
(αs(µ)) ln

(
µ2

ζ

)
+

3

2

]
. (14)

The higher-order expressions, and the expressions for gluon TMD PDF can be found in e.g. Ref. [40]. See also
Refs. [41–43].

Solving the evolution equation, one can obtain the evolved TMD PDF as

Fa(x, b2T ;µ, ζ) = Fa(x, b2T ;µ0, ζ0) exp

[ ∫ µ

µ0

dµ′

µ′
γF

(
αs(µ

′),
ζ

µ′2

)] (
ζ

ζ0

)−K(bTµ0,αs(µ0))

, (15)

where µ0 and ζ0 are the initial values for the renormalization scales. Integrating Eq. (7) from µ2 to ζ, one obtains

γF

(
αs(µ),

ζ

µ2

)
= − ln

(
ζ

µ2

)
γK (αs(µ)) + γF (αs(µ), 1) , (16)

and thus we have

Fa(x, b2T ;µ, ζ) =Fa(x, b2T ;µ0, ζ0)

× exp

{
−
[ ∫ µ

µ0

dµ′

µ′

(
ln

(
ζ

µ′2

)
γK (αs(µ

′))− γF (αs(µ
′), 1)

)
+K (bTµ0, αs(µ0)) ln

(
ζ

ζ0

)]}
.

(17)

Finally when both µ0 and ζ0 are in the perturbative region, the TMD PDF Fa at the input scales µ0 and ζ0 can be
re-factorized onto collinear PDFs fb(x, µ0) via an operator product expansion (OPE) at low bT :

Fa(x, b2T ;µ0, ζ0) =
∑
b

Ca/b(x, b
2
T , µ0, ζ0)⊗ fb(x, µ0) =

∑
b

∫ 1

x

dx̂

x̂
Ca/b

(
x̂, b2T , µ0, ζ0

)
fb

(x
x̂
, µ0

)
. (18)

In practice, one typically chooses the following input values for µ0 and ζ0,

ζ0 = µ2
0 = µ2

b , (19)

to eliminate the logarithms in the coefficient functions Ca/b

(
x̂, b2T , µ0, ζ0

)
. At the same time, one usually chooses µ

and ζ to be associated with the hard scale Q, such as the invariant mass of the lepton pair in the Drell-Yan process,
pp→ [γ∗ →]`+`− +X,

ζ = µ2 = Q2. (20)

Thus in the usual phenomenology we write the perturbative TMD PDF in Eq. (15) in the following form

Fa(x, b2T ;Q,Q2) =Fa(x, b2T ;µb, µ
2
b)

× exp

{
−
[ ∫ Q

µb

dµ′

µ′

(
ln

(
Q2

µ′2

)
γK (αs(µ

′))− γF (αs(µ
′), 1)

)
+K (c, αs(µb)) ln

(
Q2

µ2
b

)]}
,

(21)

where Fa(x, b2T ;µb, µ
2
b) will be obtained through Eq. (18).
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B. Extrapolation to the large-bT region

From the discussion of the previous section, we gain the following information. In the kinematic region where Q
is large Q � ΛQCD and for the small-bT region, one can rely on the perturbative result in Eq. (21) to obtain the
information for the TMD PDF Fa(x, b2T ;Q,Q2). However, for the large-bT region, non-perturbative physics kicks in
and the perturbative result is no longer reliable. Several proposals have been introduced to extrapolate the TMD
PDF at small-bT into the large-bT region [5]. In this paper, we follow the spirit of Ref. [37] to keep the TMD PDF at
small-bT unchanged while we derive a functional form to extrapolate the perturbative result in the small-bT region
to the large-bT region. Such an extrapolation would preserve the predictive power of the perturbative calculations
in the small-bT region, which is not affected by the extrapolation at large bT , and at the same time, it would
provide a physically motivated functional form for the large-bT region. In other words, we write the TMD PDF in
the bT -space as

Fa(x, b2T ;Q,Q2) =

{
FOPE
a (x, b2T ;Q,Q2) bT ≤ bmax ,

FOPE
a (x, b2max;Q,Q2)RNP

a (x, bT , Q; bmax) bT > bmax ,
(22)

where the parameter bmax is the largest value of bT at which the perturbative expression for the TMD PDF is trusted
(like the input scale at which the DGLAP evolution starts for the 1D PDFs). We choose a rather conservative value
for bmax = 0.5 GeV−1 throughout this paper. Accordingly, for bT ≤ bmax, FOPE

a (x, b2T ;Q,Q2) is just the perturbative
expression given in Eq. (21)1. Here we use the superscript “OPE” to remind that Eq. (21) is connected with the
collinear PDFs through an OPE, see Eq. (18). For bT > bmax, instead, the non-perturbative correction factor RNP

a

tames the behavior of Fa when the perturbative calculation is not to be trusted. To maintain the continuity of the
TMD PDF at bT = bmax, the extrapolation function RNP

a should satisfy

RNP
a (x, bT = bmax, Q; bmax) = 1 . (23)

To derive a functional form for RNP
a , we take into account the power correction in the evolution kernel [37]. The

Collins-Soper kernel K (bTµ, αs(µ)) has an explicit bT -dependence. When bT > bmax, we add a power correction
into its evolution equation as follows

dK (bTµ, αs(µ))

d lnµ2
=

1

2

[
γK (αs(µ)) +

1

µ2
γK

]
, (24)

where γK is an unknown parameter that characterizes the typical size of the high-twist operator. Such a power
correction to the evolution equation is also referred to as “dynamical power correction” in [37] and we will continue
to use this terminology. For consistency within the TMD evolution equations Eqs. (6) and (7), one would also have

d γF

(
αs(µ), ζµ2

)
d ln ζ

= −γK (αs(µ))− 1

µ2
γK . (25)

With the modified evolution equations, choosing initial scales for the evolution ζ0 = µ2
0 = µ2

bmax
and final scales

ζ = µ2 = Q2, one would obtain

Fa(x, b2T ;Q,Q2) = Fa(x, b2T ;µbmax
, µ2
bmax

) exp

{∫ Q

µbmax

dµ′

µ′

[
γF (αs(µ

′), 1)− ln

(
Q2

µ′2

)(
γK (αs(µ

′)) +
1

µ′2
γK

)]

−K (bTµbmax
, αs(µbmax

)) ln

(
Q2

µ2
bmax

)}
, (26)

where the input scale µbmax
= c/bmax. Setting bT = bmax in the above equation, we would obtain

Fa(x, b2max;Q,Q2) = Fa(x, b2max;µbmax
, µ2
bmax

) exp

{∫ Q

µbmax

dµ′

µ′

[
γF (αs(µ

′), 1)− ln

(
Q2

µ′2

)(
γK (αs(µ

′)) +
1

µ′2
γK

)]

−K (c, αs(µbmax)) ln

(
Q2

µ2
bmax

)}
, (27)

1 In this paper we do not consider the corrections needed for the proper treatment of the region at an extremely small bT [18, 31, 36,
44, 45], which is phenomenologically relevant typically at energies lower than the ones considered in our analyses.
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where we have used bmaxµbmax = c. By comparing Eqs. (26) and (27), we find

Fa(x, b2T ;Q,Q2) = Fa(x, b2max;Q,Q2)RNP
a (x, bT , Q; bmax), (28)

with the extrapolation function RNP
a given by

RNP
a (x, bT , Q; bmax) =

Fa(x, b2T ;µbmax
, µ2
bmax

)

Fa(x, b2max;µbmax
, µ2
bmax

)
exp

{
− ln

(
Q2

µ2
bmax

)[
K (bTµbmax

, αs(µbmax
))−K (c, αs(µbmax

))
]}

.

(29)

In order to find a reasonable functional form for RNP
a , we now need to figure out the following two factors:

Fa(x, b2T ;µbmax
, µ2
bmax

)

Fa(x, b2max;µbmax
, µ2
bmax

)
,

[
K (bTµbmax , αs(µbmax))−K (c, αs(µbmax))

]
. (30)

For the second factor, we turn to the modified evolution equation for K (bTµb, αs(µb)) in Eq. (24). To proceed, we
integrate µ2 from µ2

b to µ2
bmax

and obtain

K (bTµbmax
, αs(µbmax

))−K (bTµb, αs(µb)) =

∫ µ2
bmax

µ2
b

dµ2

µ2

1

2

[
γK (αs(µ)) +

1

µ2
γK

]
,

=
γ

2α(c2)α

((
b2T
)α − (b2max

)α)
+
γ̄K
2c2

(
b2T − b2max

)
,

≡g1

((
b2T
)α − (b2max

)α)
+ g2

(
b2T − b2max

)
. (31)

To obtain the second line on the right-hand side, we approximate the µ-dependence of γK(αs(µ)) ≈ γ(µ2)−α with
parameters γ and α [37]. We further define the prefactors on the second line to be parameters g1 and g2. Realizing
bTµb = c, we thus obtain

K (bTµbmax
, αs(µbmax

))−K (c, αs(µbmax
)) =K (c, αs(µb))−K (c, αs(µbmax

))

+ g1

((
b2T
)α − (b2max

)α)
+ g2

(
b2T − b2max

)
. (32)

Note that the first line on the-right hand side, K (c, αs(µb)) − K (c, αs(µbmax
)), depends only on bT and bmax

through the coupling constant αs, and thus such a term can be combined with g1-term on the second line (given
its connection to the coupling constant), treating g1 and α as fitting parameters.

For the first factor in Eq. (30), we realize that at the input scale µbmax
, one usually mimics the bT -dependence of

the TMD PDF Fa(x, b2T ;µbmax
, µ2
bmax

) to have a Gaussian form, see e.g. Refs. [46–50],

Fa(x, b2T ;µbmax , µ
2
bmax

) ≈ fa(x, µbmax) exp
[
−g2b

2
T

]
, (33)

which describes the intrinsic transverse momentum of the partons. With such an approximation, we thus obtain
the ratio of TMD PDF at the input scale µbmax

in Eq. (29) as

Fa(x, b2T ;µbmax
, µ2
bmax

)

Fa(x, b2max, µbmax
, µ2
bmax

)
≈ exp

[
−g2

(
b2T − b2max

)]
, (34)

Combining all the above factors, we obtain the following form for the extrapolation function

RNP
a (x, bT , Q; bmax) = exp

{
− ln

(
Q2

µ2
bmax

)[
g1

((
b2T
)α − (b2max

)α)
+ g2

(
b2T − b2max

)]
− g2

(
b2T − b2max

)}
. (35)

Such a derivation is motivated by the work presented in Ref. [37]. Our derivation is for an individual TMD PDF,
while Ref. [37] is for the Drell-Yan differential cross section. This new derivation is based on modern TMD evolution
for the TMD PDF, which makes the derivation more transparent and more straightforward.

Our derived extrapolation function RNP
a automatically satisfies the normalization condition in Eq. (23), i.e. RNP

a =
1 at bT = bmax. Besides bmax = 0.5 GeV−1 we have chosen beforehand, it consists of four parameters α, g1, g2, and
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ḡ2. While g2 controls the size of the dynamical power correction, ḡ2 mimics the intrinsic transverse momentum,
which is also referred to as “intrinsic power correction” in [37]. These two parameters are non-perturbative in
nature and generally have to be determined from fits to the experimental data. As we will emphasize below, we
require Fa(x, b2T ;Q,Q2) to be smooth at bT = bmax, in order to determine the other two parameters g1 and α in
the extrapolation function RNP

a . Specifically, we require the first and second order derivatives of Fa(x, b2T ;Q,Q2)
to be continuous at bT = bmax. With these two conditions, g1 and α can be fixed. Accordingly, the RNP

a function
acquires an implicit x-dependence (equivalent to a

√
s-dependence) through these two parameters.

III. SADDLE POINT APPROXIMATION OF A TMD PDF

Once we have the full bT -dependence of a TMD PDF from the extrapolation method discussed in the previous
section, we will be able to compute the TMD PDF in the momentum space through the Fourier transformation:

Fa(x, k2
T ;Q,Q2) =

1

2π

∫ ∞
0

dbT bTJ0(kT bT )Fa(x, b2T ;Q,Q2) , (36)

where we have set ζ = µ2 = Q2 in Eq. (3). Obviously if Fa(x, b2T ;Q,Q2) in the bT -space is dominated by the
small-bT behavior, the integration on the right-hand side, and thus Fa(x, k2

T ;Q,Q2) in the kT -space, will be mainly
controlled by the perturbative physics. On the contrary, if Fa(x, b2T ;Q,Q2) is very sensitive to the large-bT behavior,
the non-perturbative physics will play an important role in the behavior of the TMD PDF Fa(x, k2

T ;Q,Q2) in the
momentum space. Understanding the TMD PDF Fa(x, k2

T ;Q,Q2) in the momentum kT -space, i.e., whether it is
more dominated by perturbative (small-bT ) or non-perturbative (large-bT ) physics, is very important in order to
investigate the predictive power of the TMD PDF and of the TMD differential cross sections, which are based on
these TMD PDFs. This is the main goal of this and the next sections.

Following Refs. [5, 37], we use the saddle-point method to pinpoint if and how the integration on the right-hand
side of Eq. (36) is dominated by the small-bT region. The saddle-point approximation, or the method of steepest
descent, is often used to approximate the integral when the integrand has the form of e−c S(bT ), where c is a constant
and S a smooth function of bT . As the negative exponential function is rapidly decreasing, one only needs to look
at the contribution from where the exponent is at its minimum. Since the TMD PDF in bT -space follows such a
form, see Eqs. (21) and (35), it is natural to apply the saddle-point approximation to analyze the TMD PDF. We
mainly concentrate on the case where kT = 0. In such a case, J0(kT bT ) = 1 and no oscillations are present. When
kT > 0, the Bessel function J0(kT bT ) further suppresses the large-bT region of the bT integration, and our analysis
will be further improved. At kT = 0, we have

Fa(x, k2
T = 0;Q,Q2) =

1

2π

∫ ∞
0

dbT bTFa(x, b2T ;Q,Q2) =
1

4π

∫ ∞
−∞

d
(
ln b2T

)
exp

[
ln
(
b2T Fa(x, b2T ;Q,Q2)

)]
, (37)

and thus the integral is dominated by a saddle point at bspT , which is determined by [5]

d

dbT

{
ln

[
b2T Fa(x, b2T ;Q,Q2)

]}
bT =bspT

= 0 . (38)

In the following, we will study in details the kinematic dependence of the saddle point bspT , in particular the most
relevant x and Q dependence:

bspT ≡ b
sp
T (x,Q). (39)

The approximation relates the integral over bT in Eq. (37) to the evaluation of the integrand at the saddle point
bspT . When the saddle point is small, bspT � 1/ΛQCD, i.e., well in the perturbative region, then one would expect
the TMD PDF Fa(x, k2

T ;Q,Q2) to be mainly controlled by the perturbative physics (always modulo the collinear
PDFs). On the contrary, if bspT is large, i.e. bspT & 1/ΛQCD, the large-bT non-perturbative contribution is very
important and one has to understand/constrain it well, in order to have a full understanding of the TMD PDF. In
other words, we use the information on the saddle point bspT as an indication of the predictive power of the TMD
formalism.
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A. Saddle point: general behavior

To start, we first use the perturbative contribution to Fa(x, b2T ;Q,Q2) to compute the saddle-point bspT . Plugging
the perturbative expression in Eq. (21) into (38), we obtain

d

dbT

{[∫ Q

µb

dµ′

µ′

(
ln

(
Q2

µ′2

)
γK (αs(µ

′))− γF (αs(µ
′), 1)

)
+K (c, αs(µb)) ln

(
Q2

µ2
b

)

− ln
(
b2T
)
− ln

[∑
b

Ca/b(x, b
2
T , µb, µ

2
b)⊗ fb(x, µb)

]}∣∣∣∣∣
bT =bspT

= 0 . (40)

In general, one can evaluate the saddle point bspT of the TMD PDF by solving numerically the above equation. This
is indeed what we do below when we present the results at next-to-next-to-leading logarithmic (NNLL) accuracy
and next-to-next-to-leading order (NNLO) in the strong coupling αs. However, at the leading logarithmic (LL)
accuracy where one keeps the leading order (LO) result in Γcusp and in the coefficient functions Ca/b, one can solve
the above equation and obtain the following simple results

1

2
ln

(
Q2

µ? 2
b

)
Γ0

αs(µ
?
b)

4π
= 1−X (x, µ?b) , X (x, µ) =

d

d lnµ2
ln fa(x, µ) , (41)

where we have introduced µ?b = c/bspT . The function X (x, µ) quantifies the impact of the DGLAP evolution on the
position of the saddle point. Its sign changes according to the value of the light-cone fraction x and determines the
x-dependence of the saddle point.

The saddle point for the resummed contribution to the Drell-Yan cross section differential with respect to the
transverse momentum of the lepton pair has been discussed in Refs. [5, 36]. In that treatment the effect of
the x-dependence was neglected. In our treatment, neglecting the x-dependence corresponds to setting X = 0.
Accordingly, the solution of Eq. (41) reads:

b
sp (0)
T =

c

ΛQCD

(
Q

ΛQCD

)−Γ0/(Γ0+8πb0)

, b0 =
11CA − 4Tf nf

12π
, (42)

where b0 is the one-loop coefficient of the QCD beta function [51], and nf is the number of active flavors. The

expression for b
sp (0)
T is analogous to the one presented in Refs. [5, 36]. It follows the usual wisdom that the larger the

value of Q is, the smaller b
sp (0)
T is, and thus the perturbative contributions to the observable play a more important

role. By including the contribution of X , the solution to Eq. (41) acquires an x-dependence:

10-5 10-4 0.001 0.010 0.100 1
-2

-1

0

1

2

x

d
ln
f a
(x
,μ
)
/
dl
n
μ
2

up , NNPDF30_nnlo_as0118

μ = 1 GeV

μ = 5 GeV

μ = 10 GeV

μ = 100 GeV

10-5 10-4 0.001 0.010 0.100 1
-2

-1

0

1

2

x

d
ln
f a
(x
,μ
)
/
dl
n
μ
2

gluon , NNPDF30_nnlo_as0118

μ = 1 GeV

μ = 5 GeV

μ = 10 GeV

μ = 100 GeV

(a) (b)

FIG. 2. The x-dependence of the X (x, µ) function defined in Eq. (41) for (a) an up quark, and (b) a gluon. Different values
for µ = 1, 5, 10, 100 GeV have been chosen.

bspT =
c

ΛQCD

(
Q

ΛQCD

)−Γ0/[Γ0+8πb0(1−X (x,µ?
b ))]

. (43)



10

Note that the right-hand side of Eq. (43) depends on bspT through µ?b , and thus Eq. (41) needs to be solved by

iterations. A legitimate choice for the first iteration is to evaluate X at b
sp (0)
T . Comparing Eq. (43) with (42),

one observes that if X > 0 (< 0), one would have bspT < b
sp (0)
T (bspT > b

sp (0)
T ). To understand the behavior of

X , as well as for the general numerical investigation, below we rely on the LHAPDF6 library [52] and in particular
on the central PDF set from NNPDF30 [53] at NNLO accuracy with αs(MZ) = 0.118. We also use the APFEL
library [54] to calculate the X function. The result is in agreement with applying the finite differences method to
the NNPDF30 grid. In Fig. 2, we plot X as a function of x for an up quark (left) and a gluon (right), at different
scales µ = 1, 5, 10, 100 GeV, respectively. Apart from the gluon case at µ . 1 GeV, the function X is positive for
x . 0.1 and negative for x & 0.1. Thus its effect is to reduce the value of the saddle point bspT with respect to

the solution b
sp (0)
T for x . 0.1 and to increase it for x & 0.1. Because of this, for the same Q value but smaller x

region, the perturbative contribution (from small-bT region) plays a more important role for the TMD PDF. This
means that in general, away from the limiting cases, the TMD PDF is more perturbatively dominated at large Q
and small x. On the other hand, the TMD PDF is more dominated by the non-perturbative contribution at small
Q and large x. This suggests that even for a moderately large Q, the TMD PDF at large x could become quite
sensitive to the non-perturbative contribution, due to the x-dependence of the X function.

B. Saddle point: detailed analysis

After the above qualitative understanding of the kinematic dependence of the saddle point, we now turn to a
detailed numerical analysis and concentrate on the x and Q dependence. We first choose representative values of
x, and study the Q-dependence of the saddle point bspT . For the small x region, we choose x = 10−3 which could be
relevant to the LHC and the EIC kinematics. While for large x region, we choose x = 0.3 for our illustration below.

Let us first plot the behavior of the x-independent solution b
sp (0)
T and the x-dependent one, bspT , both at LL

accuracy as given in Eqs. (42) and (43). In Fig. 3 the orange curves represent b
sp (0)
T , whereas the purple curves refer

to bspT as a function of the hard scale Q: (a) up quark at small x = 10−3, (b) up quark at large x = 0.3, (c) gluon

at small x = 10−3, and (d) gluon at large x = 0.3. Note that when b
sp (0)
T > c = 2e−γE , the first iteration in the

solution of Eq. (43) is evaluated at the scale µ?b(b
sp (0)
T ) < 1 GeV. Thus, the collinear PDF fa(x, µ) is evaluated, by

extrapolation, at a scale below 1 GeV, where the used phenomenological parametrization is not to be trusted. The
same applies to any other iteration to calculate bspT . For this reason, the orange and purple curves are displayed

only when b
sp (0)
T < 2e−γE .

Several comments are in order. First of all, both orange and purple curves are decreasing as Q increases, as

expected. Just as we have emphasized in the previous section, as Q increases, the saddle point, both for b
sp (0)
T

and bspT , becomes smaller indicating that the perturbative contribution becomes more important. Second of all, one

can see clearly for the small-x region that the purple curves are below the orange curves, i.e., bspT < b
sp (0)
T . This is

driven by the contribution of a positive X as discussed in the previous section. Similarly, for the large-x region, the

purple curves are above the orange curves, i.e., bspT > b
sp (0)
T , again consistent with our analysis above.

The parameter bmax = 0.5 GeV−1 in principle identifies the perturbative region bT < bmax, but, considering that
this is an arbitrary choice, we can allow for some degree of tolerance and identify the “extended” perturbative region
as bT < 1 GeV−1. In terms of detailed numerical values, we find from Fig. 3 that for the small-x region, the purple
curves for up quark is below 1 GeV−1, i.e. bspT < 1 GeV−1 when Q & 60 GeV, indicating that the perturbative or
small-bT contribution plays a more important role for the up quark TMD PDF in the small-x region. On the other
hand, for the large-x region, even when Q & 120 GeV, the saddle point is still larger than 1 GeV−1, suggesting that
the non-perturbative or large-bT contribution would still play a significant role for the up quark TMD PDF in the
large-x region, even though the Q value is already very large. Similar observations apply to the gluon TMD PDF,
in an even better way. Due to the larger color factor (CA vs CF ) in Γcusp, the Sudakov factor makes the gluon TMD
PDF more narrowly concentrate in the small-bT region. For example, for a gluon TMD PDF in both the small
and large-x regions, the saddle point bspT would become smaller than 1 GeV−1 for moderate Q & 20 GeV already,
suggesting that the non-perturbative contribution plays a less important role in determining the gluon TMD PDF.
We also note that the LL solution for the gluon at low x becomes non-smooth in the low-to-intermediate Q region:
this is essentially due to the non-smooth behavior of the X function.

Let us analyze the saddle point by including the extrapolation term RNP
a (x, bT , Q; bmax) in Eqs. (22) and (35). For

that, we evaluate the saddle point of the TMD PDF by directly solving numerically Eq. (40) at NNLL and NNLO.
In such a setup, we include Γ0,1,2 and γ0,1 in the anomalous dimension, and use two-loop results for the coefficient
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FIG. 3. Position of the saddle point for the TMD PDF as a function of the scale Q for: (a) up quark at x = 10−3, (b) up
quark at x = 0.3, (c) gluon at x = 10−3, and (d) gluon at x = 0.3. The orange and the purple curves represent the analytic
leading log solutions, without and with x-dependence respectively. The dots corresponds to the numerical studies of the
saddle point including higher-orders and the large bT corrections. The behavior of the bspT solution for the gluon at low x
presents a non-smooth behavior towards the low Q region due to the non-smooth behavior of the corresponding X function.

functions Ca/b, as given in Ref. [40]. As previously discussed, there are four parameters in the extrapolation function

RNP
a (x, bT , Q; bmax), namely α, g1, g2, and ḡ2. In Ref. [37], the following quantity is defined

g′2(Q) ≡ ḡ2 + g2 ln

(
Q2

µ2
bmax

)
, (44)

and its value at the scale of the W boson mass, i.e.,

g2,W ≡ g′2(Q = MW ) , (45)

is determined to be g2,W = 0.4 GeV2 through a fit to the experimental data. From a given value of g2,W and ḡ2,
the value of g2 can be determined by inverting the above equation. In the analysis below, we either fix the value of
g2 or g2,W , or vary around their value. As we have mentioned before, we require Fa(x, b2T ;Q,Q2) to be smooth at
bT = bmax so to determine the other parameters in the extrapolation function RNP

a . Specifically, we require the first
and second order derivatives of Fa(x, b2T ;Q,Q2) to be continuous at bT = bmax. With two conditions, two of the
parameters can be fixed and we choose to be α and g1. There is a subtly here that requires some caution. In the
context of this analysis, which is focused on the high energy regime, we determine α and g1 through the continuity of
the first and second derivative only if the first derivative in bT = bmax is negative (∂Fa(x, b2T = b2max;Q,Q2)/∂bT < 0)
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FIG. 4. Position of the saddle point for a TMD PDF as a function of the light cone momentum fraction x for: (a) gluon at
Q = MH0 = 125 GeV, (b) up quark at Q = MZ = 91 GeV, (c) gluon at Q = MΥ = 9.46 GeV, (d) up quark at Q = MΥ,
(e) gluon at Q = MJ/Ψ = 3.096 GeV, and (f) up quark at Q = MJ/Ψ. The behavior of the saddle point from high energies
(top) to low energies (bottom) is summarized, for the gluon case (left) and the up quark case (right). The characteristics are
discussed in detail in Sec. III. The overall trend is that the saddle point for a gluon lies at lower bT values with respect to
the quark case at equal or comparable energy scales. The x dependence induced by the perturbative structure of the TMD
PDF is monotonically increasing, and deviations from this trend are generated by the treatment of the large bT region.
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and thus Fa(x, b2T ;Q,Q2) decreases as bT increases to be consistent with the expected physical behavior. On the
contrary, which is usually the case at very large x, when such a first derivative is positive, we set α and g1 to zero.
This is one of the possible methods to avoid an unphysical extrapolation in the large bT region. Other more flexible
strategies that can guarantee non-zero values for α and g1 can be introduced in order to describe events at low
Q, for example in the context of Semi-Inclusive Deep-Inelastic Scattering at fixed-target energies. We leave such a
detailed analysis for future study.

In Fig. 3, we plot the saddle point bspT for three different scenarios: (1) (g2,W , ḡ2) = (0.4, 0.0) GeV2, denoted as
blue dots, (2) (g2,W , ḡ2) = (0.4, 0.2) GeV2, denoted as green dots, (3) (g2,W , ḡ2) = (0.6, 0.2) GeV2, denoted as red
dots. It is evident for the small-x and large-Q region that the numerical values of the saddle points are quite stable
for both quarks and gluons, such as at Q = MZ = 91.18 GeV (Z boson) and Q = MH0 = 125.1 GeV (Higgs boson).
This suggests that the non-perturbative contributions are mild in these cases. On the other hand, for the quark
TMD PDF in the large-x region, the red dots can be different from the blue/green dots even for very large-Q values,
suggesting that the non-perturbative contribution could be quite significant. On the other hand, the situation is
quite improved for the gluon TMD PDF at large-x, thanks to the strong Sudakov resummation effect. A certain
degree of model dependence is left for the gluon at large x and small Q, which anyway vanishes for the gluon at
small x, where the saddle point is almost exclusively in the strict perturbative region bT < bmax.

In Fig. 4, we plot the position of the saddle point for a TMD PDF as a function of the light cone momentum
fraction x for: (a) gluon at Q = MH0 , (b) up quark at Q = MZ , (c) gluon at Q = MΥ = 9.46 GeV, (d) up quark
at Q = MΥ, (e) gluon at Q = MJ/Ψ = 3.096 GeV, (f) up quark at Q = MJ/Ψ. The behavior of the saddle point
from high energies (top) to low energies (bottom) is summarized, for the gluon case (left) and the up quark case
(right). At this point it is important to remark that the x-dependence of the numerical solutions (the dots) for bspT
in Fig. 4 is driven both by the x-dependence of the perturbative part and of the non-perturbative part (RNPa ) of the
TMD PDF via g1 and α. Indeed, when bT > bmax, if one sets manually g1 and α to zero, the x dependence is lost.
As previously discussed, this is also what happens at (very) large x in all cases apart for the gluon at Q = MH0 ,
when the first derivative of the TMD PDF at bT = bmax becomes positive. The x dependence generated by the
perturbative contribution is generally monotonic increasing. A confirmation of this trend can be found in the shape
of the X function. Thus, the changes in concavity in the large x regions are essentially induced by the treatment
of the large bT region and thus model dependent.

The overall trend that we can infer from Fig. 4 is that the saddle point for a gluon lies at lower bT values with
respect to the quark case at equal or comparable energy scales, again due to the different color factor in the cusp
anomalous dimension. It is instructive to point out that, for physical observables which depend on the convolution
in momentum space of two TMD PDFs, such as the transverse momentum differential cross section of W/Z and
H0 boson production, the integrand in the bT -space is more peaked in the low bT region than for the single TMD
PDF. Thus at large Q and small x region, the predictive power is then guaranteed (see Fig. 8 in Sec. V and
Refs. [16, 28, 37, 38]).

In practice, the plots in Fig. 4 suggest that the transverse momentum distribution of H0 and Z bosons at small-x
(or large center-of-mass energy

√
s) would be very well controlled by the perturbative contribution. If we are in the

small-x region while at the moderate scale of Υ mass, MΥ, the non-perturbative contribution to the gluon TMD
PDF could be mild. This suggests that the transverse momentum distribution of the Υ particle could be very well
described by the perturbative physics at the collider energy such as the LHC [16, 55], where the gluon-gluon fusion
channel dominates the production cross section, but not at lower energies. Finally, for the J/ψ production, which is
at a very low mass scale MJ/ψ GeV, the non-perturbative contribution would be more important and could be even
entangled with the formation of the quarkonium [56, 57]. For the quark case, the predictive power is well under
control at Q = MZ , as we shall see in Sec. V, whereas the physical observable receive significant non-perturbative
corrections for Q . 10 GeV.

Overall we can conclude that the kinematic domain in which the predictive power is strongest is the large-Q and
small-x region, where the saddle point bspT for the transverse momentum distribution is comparable to or smaller
than 0.5 GeV−1. We emphasize again that in addition to the value of the hard scale Q, this analysis shows that also
the value of the light-cone fraction x contributes to determining how relevant the non-perturbative part of the TMD
PDF is. This is essential also to understand which experiments and kinematic configurations can be more useful to
investigate the properties of the non-perturbative structure of hadrons and which other experimental configurations
are more suited for testing the predictive power of the theory. It is certainly important to keep in mind that the
predictive power of any theory always depends also on the precision of the specific observable studied in order to
test and falsify the theory itself (see Sec. V A).
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IV. RELEVANCE OF NON-PERTURBATIVE CORRECTIONS

Apart from the saddle point of the TMD PDF, it is also useful to directly look at the integrand in bT -space of
the TMD PDF at kT = 0 , which is simply

bT Fa(x, b2T ;Q,Q2)/2π . (46)

The shape of this function is also useful to quantify the relevance of the large-bT part of the TMD PDF. In this
section, we will assess the relevance of non-perturbative contributions more quantitatively.
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FIG. 5. The integrand bTFa(x, b2T ;Q,Q2)/2π at NNLL/NNLO for an up quark at (a) Q = MZ and x = 10−3, (b) Q = MZ

and x = 0.3, (c) Q = MΥ and x = 10−3, and (d) Q = MΥ and x = 0.3. The non-perturbative corrections (specified by the
values of the parameters g2,W and g2) have a larger impact on the normalization of the TMD PDF at lower Q and larger x.

In Fig. 5 the behavior of the bT -space integrand is displayed for an up quark at Q = {MZ , MΥ} and x =
{10−3, 0.3}. On the other hand, in Fig. 6 the same quantity is presented for a gluon at Q = {MH0 ,MΥ} and
x = {10−3, 0.3}. In these figures, it is possible to identify three distinct regions: (I) bT . bmax = 0.5 GeV−1, (II)
bmax . bT . 1 GeV−1, and (III) bT & 1 GeV−1. In region I, the integrands are completely determined by the
perturbative calculation, see also Eq. (22). Note that by construction this region is not affected at all by the details
of the model at large bT . The value of bmax = 0.5 GeV−1 is marked with a vertical dashed line in Figs. 5 and 6.
Region II is a transition region from the perturbative to non-perturbative region. Since we require the TMD PDF to
be smooth at bT = bmax, the parameters (α, g1) in the extrapolation function RNP

a shape the integrand in this region.
Finally region III is dominated by the physics beyond the leading power/twist QCD perturbative calculations and
non-perturbative, and the values of the parameters (g2, ḡ2) which quantify the strength of the power corrections
would mainly determine the behavior of the integrand. Naturally, if the area under region III is very small, the
TMD PDF Fa(x, k2

T ;Q,Q2) in the momentum space will be dominated by the perturbative contribution, up to the
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knowledge of 1D PDFs as indicated in Eq. (18). On the contrary, if such an area is very large, the TMD PDF in
the momentum space will be very sensitive to the non-perturbative contributions.
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FIG. 6. The integrand bTFa(x, b2T ;Q,Q2)/2π at NNLL/NNLO for a gluon at (a) Q = MH0 and x = 10−3, (b) Q = MH0 and
x = 0.3, (c) Q = MΥ and x = 10−3, and (d) Q = MΥ and x = 0.3. As for the quark case, the non-perturbative corrections
have a sizable impact on the normalization of the TMD PDF at lower Q and larger x, even if the impact is less significant
with respect to the quark case presented in Fig. 5.

In Fig. 5 and 6, we fix ḡ2 = 0.2 GeV2, and vary g2,W by a factor of 2 up and down from its best fit value
0.4 GeV2. As one can see clearly from Fig. 5, for the small-x and large-Q region (x = 10−3 and Q = MZ), the
non-perturbative contribution from the large bT region bT & 1 GeV−1 is moderate. But, at the same time, we find
that in this region changing g2,W by a factor of 2 leads to minor changes in the integrand, as can be seen from the
difference in red and blue curves. This suggests that our derived extrapolation function RNP

a is mainly determined
by g1 and α and thus be very good in characterizing the non-perturbative contributions in the large-bT region.

For the case of gluons (Fig. 6), the regions I and II dominantly determine the large-bT behavior of the integrand
at small x = 10−3, for both values of Q = {MH0 ,MΥ}, while the non-perturbative contribution from the large
bT & 1 GeV−1 to the integrand becomes very small. At large x = 0.3, instead, the power corrections have a mild
impact at the H0 mass scale and a large impact at the Υ mass scale. Once again, this shows that the value of both
the hard scale Q and of the collinear momentum fraction x play an important role in determining the relevance of
the large-bT input in a TMD PDF.

A. Impact of power corrections

Let us now study the impact of the power corrections: the dynamical power correction as controlled by g2 and the
intrinsic power correction described by ḡ2. To quantify the impact of these power corrections on the normalization
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of Fa(x, kT = 0;Q,Q2), we study the following ratio:

Rpc(x,Q ; g′2) =
Fa(x, kT = 0;Q,Q2)|g′2
Fa(x, kT = 0;Q,Q2)|g2,b

, (47)

where g2,b denotes the value of g′2(Q) corresponding to g2,W = 0.4 GeV2, along with ḡ2 = 0.2 GeV2 that represents
the intrinsic power corrections. This ratio Rpc allows one to focus on the impact of g′2(Q) only. In Sec. IV B, instead,
we will focus on the role of the overall extrapolation term.

We consider g′2 = 2g2,b, g
′
2 = g2,b, and g′2 = g2,b/2, which correspond, respectively, to the blue, the black, and

the red curves in Figs. 5 and 6. In Tab. I and Tab. II we present the values of the Rpc ratio for x = 10−3 and
x = 0.3, respectively, choosing three different values of Q. Fixing x, the impact of the power corrections is generally
larger at lower Q, which means that the TMD PDF is increasingly affected by the non-perturbative corrections at
low energies. Viceversa, at fixed Q the impact of the power corrections is more relevant at larger x, which means
that in the large-x region TMD distribution are affected by potentially large non-perturbative effects. At small x
(Tab. I), by changing Q from MZ to MΥ, the impact of the power corrections on the quark TMD PDF increases
by 4− 5%, whereas at large x (Tab. II) the increase in the quark case ranges from 12% to 65% for the same change
in Q. Keeping the value of x and Q fixed, the power corrections are less relevant for the gluon, since its TMD PDF
is peaked at a lower value of bT with respect to the quark case (e.g. compare the Q = MΥ cases in Fig. 5 and
Fig. 6), due to the Casimir rescaling in the evolution kernel. At small x (Tab. I), the impact of power corrections
on the gluon TMD PDF is very low and is not affected at all by changing Q from MH0 to MΥ, whereas at large x
(Tab. II) the impact is comparable to the quark case. Overall, this is a complementary way to prove that TMDs at
large Q and small x regions are perturbatively dominated. The choice kT = 0 is the simplest case since it implies

x = 0.001

Rpc(x,Q ; g′2) Q = MH0 Q = MZ Q = MΥ

up quark {+4.4% ,−6.4%} {+8.4% ,−11.8%}
gluon {+0.02% ,−0.01%} {+0.02% ,−0.01%}

TABLE I. Variations of Fa(x, kT = 0;Q,Q2) as a function of the strength of the power corrections at x = 0.001 for different
Q values. The reference value (the black curve in in Figs. 5 and 6) corresponds to g2,W = 0.4 GeV2 and g2 = 0.2 GeV2 (see
Eqs. (44) and (45)). The blue numbers correspond to g′2 = 2g2,b (the blue curves in Figs. 5 and 6) and the red numbers
correspond to g′2 = g2,b/2 (the red curves in Figs. 5 and 6).

x = 0.3

Rpc(x,Q ; g′2) Q = MH0 Q = MZ Q = MΥ

up quark {+13.1% ,−18.6%} {+78.0% ,−30.1%}
gluon {+2.69% ,−5.13%} {+68.4% ,−23.4%}

TABLE II. Variations of Fa(x, kT = 0;Q,Q2) as a function of the strength of the power corrections at x = 0.3 for different
Q values. The reference value (the black curve in in Figs. 5 and 6) corresponds to g2,W = 0.4 GeV2 and g2 = 0.2 GeV2 (see
Eqs. (44) and (45)). The blue numbers correspond to g′2 = 2g2,b (the blue curves in Figs. 5 and 6) and the red numbers
correspond to g′2 = g2,b/2 (the red curves in Figs. 5 and 6).

J0(0) = 1 in Eq. (3). This eliminates any oscillation from the Bessel function, and allows a better insight into the
physics of the small-bT and large-bT regions. When kT > 0, the Bessel function J0(kT bT ) further suppresses the
large-bT region of the bT integration.

B. Impact of the complete extrapolation term

Let’s introduce a cutoff bc for the upper bound of the bT -space integration in Eq. (3):

ω(bc, kT ) =
1

2π

∫ bc

0

dbT bT J0(kT bT )Fa(x, b2T ;Q,Q2) , (48)
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where Fa(x, b2T ;Q,Q2) is defined in Eq. (22). To test the influence of the large bT -region on the entire TMD PDF,
let’s introduce the ratio [37]:

R(bc, kT ) ≡
ω(bc, kT )

ω(bc → +∞, kT )
. (49)

The ratio Rc represents the fraction of the total integral (bc → +∞) generated by the 0 < bT < bc region. Fig. 7
shows the Rc(bc, kT = 0) ratio for an up quark at Q = MZ and Q = MΥ, and for a gluon at Q = MH0 and Q = MΥ.
In each panel the ratios computed with x = 10−3 and x = 0.3 are compared.

Let’s consider the value b̄c such that Rc(b̄c, kT = 0) = 0.75. The latter is highlighted by a horizontal dashed gray
line in Fig. 7. For an up quark at Q = MZ , b̄c ∼ 1 GeV−1 at low x, whereas at high x one has b̄c ∼ 1.5 GeV−1.
Namely, in order to reproduce 75% of the normalization, a wider portion of the large bT region is needed at large x,
where it is thus affected by potentially large non-perturbative corrections. The same trend can be observed in the
other three cases too. Comparing with Fig. 5 (a), this also confirms that for an up quark at Q = MZ and x = 10−3

the dominant part of the large-bT correction is the term proportional to g1 (which is completely determined by
imposing the continuity of the first and second derivatives at bmax), whereas at Q = MZ and x = 0.3 also the
dynamical and the intrinsic power corrections play a significant role.

Comparing the panels (a) vs (b) and (c) vs (d) in Fig. 7 one sees that, in general, the ratio saturates faster for
gluons than for quarks. This is because the gluon TMD PDF is peaked at lower bT values with respect to the
quark distributions (see Figs. 5 and 6) due to the stronger suppression in bT space generated by the Collins-Soper
kernel K and by the UV anomalous dimension γF [9, 58, 59], as already discussed. Looking at Fig. 7 (a) vs (c) and
(b) vs (d) one can see that the effect of lowering the value of the hard scale Q is to increase the sensitivity to the
power corrections, both for quarks and gluons and both at low x and large x. Comparing Fig. 7 (b) with Fig. 6 (a)
and (b) we can see that for a gluon at Q = MH0 only the term proportional to g1 is relevant to build the 75% of
the total integral. A similar argument holds for Fig. 7 (d), but comparing with Fig. 6 (c) and (d) we can see that
lowering Q the distribution becomes increasingly more sensitive also to the power corrections at large x, on top of
the g1 term. In all cases apart from the gluon at Q = MH0 and x = 10−3, comparing with Figs. 5 and 6 one can see
that both the g1 term and the power corrections (namely the overall non-perturbative functions that extrapolates
the low bT behavior into the large bT region) become relevant to determine the 95% of the TMD PDF at kT = 0.
Eventually, from Fig. 7 (b) we determine that for a gluon with Q = MH0 and x = 10−3 the fully perturbative
region determined by bT < bmax = 0.5 GeV−1 generates the 90% of the TMD PDF at kT = 0, whereas at x = 0.3
it accounts only for 50% of the distribution. This shows that, in principle, the transverse momentum distribution
of a Higgs boson produced in gluon-gluon fusion in hadronic collisions can receive non-negligible non-perturbative
corrections when one of the two collinear momentum fractions is very large [58], e.g., for the kinematic region far
away from the central-rapidity region at the LHC.

V. CROSS SECTIONS

In order to compute the transverse momentum distribution of a Z boson or a Higgs boson produced in hadronic
collisions we need to calculate the convolution of two TMD PDFs in momentum space. This corresponds to
multiplying the two TMD distribution in the bT -space.

A. Z-boson

For Z production in pp collisions the cross section differential in the transverse momentum qT and in the rapidity
of the produced Z in the low qT �MZ region reads [31, 50, 60]:

dσZ(→`+`−)

dy d2qT
=
HZ0
2π

∑
q

(
V 2
q +A2

q

) ∫ +∞

0

dbT bT J0(bT qT )Fq/A(xA, b
2
T ;MZ ,M

2
Z)Fq̄/B(xB , b

2
T ;MZ ,M

2
Z) , (50)

where we have neglected the large qT corrections O(qT /MZ) to TMD factorization and the correctionsO(ΛQCD/MZ)
to collinear factorization. The factors Vq and Aq are the vector and axial couplings respectively of the Z boson to
the quark. The HZ0 function is the hard function for Z-production:

HZ0 = σ
Z(→`+`−)
0 H , σ

Z(→`+`−)
0 =

√
2πGFM

2
Z

sNc
BR(Z → `+`−) , (51)
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FIG. 7. The ratio Rc(bc, kT = 0) defined in Eq. (49) is plotted as a function of bc for (a) up quark at Q = MZ , (b) gluon at
Q = MH0 , (c) up quark at Q = 9 GeV, and (d) gluon at Q = 9 GeV, respectively. The red and blue curves are generated
with different choices for the parameters that govern the power corrections (see the legenda).

where σZ0 is the leading order term [50] and H is the hard function for Drell-Yan with the lowest order normalization
H(0) = 1, which we consider at NNLO [61]. We also adopted the narrow-width approximation, i.e., we neglect
contributions for Q 6= MZ . The value of the branching ratio into leptons is BR(Z → `+`−) = 0.033658 [62].

As already mentioned, the net effect of multiplying two TMD PDFs in bT space is that the predictive power for
the cross section calculation at a specific value of x and Q is increased with respect to the computation of a single
TMD distribution, since the product of two TMDs is peaked at a lower bT with respect to a single TMD PDF.

For example, from Fig. 7 (a) we determined that the term ∝ g1 in the extrapolation function RNP
a , as well as

the power corrections play a role in determining the value of the quark TMD PDF at Q = MZ , both at low and
high x. Instead, in Fig. 8 (a) we show that we can reproduce the data collected by the CMS experiment at the
LHC with

√
s = 7 TeV and central rapidity −2.1 < y < 2.1 [63] without including any dynamical or intrinsic power

correction in the TMD PDF. The g1-term in RNP
a is sufficient (and necessary) to capture the behavior of the TMD

PDF at large bT needed to describe the experimental data. No fit to the data has been performed to reproduce the
experimental data in Fig. 8 (a). In Fig. 8 (b), instead, the normalized integrand of the differential cross section in
bT space is displayed for qT = 0. For the rapidity values y = ±2.1 and y = 0 the peak of the integrand lies well in
the perturbative region. It is also straightforward to check that the peak of ln (bT × the cross section integrand),
which corresponds to the analogue of the saddle point for the TMD PDF discussed in Eq. (40), lies at bT < 0.5
GeV−1. This result is obtained implementing the OPE on the collinear PDFs at small bT at O(α2

s) and working at
NNLL accuracy with the Collins-Soper kernel K and the UV-anomalous dimension γF .

The x range spanned by the data in Fig. 8 is ∼ [10−3, 10−1] (calculated as (Q/
√
s) e±y). We checked that for the

data collected at more forward rapidity, where one of the momentum fraction x lies in a large x region (e.g. the one
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FIG. 8. (a) Normalized differential cross section for Z boson production at CMS [63] as a function of transverse momentum
qT and (b) its normalized integrand in bT space at qT = 0. Both for y = 0 and |y| = 2.1 the peak of the integrand and the
saddle point of the cross section lie well in the perturbative region (bT < 0.5 GeV−1). Thus the formalism is predictive and
we can describe the data at low qT just with the perturbative contribution plus g1-term in the extrapolation function, but
without intrinsic or dynamical power corrections. The theory-data comparison in (a) is not the result of a fit. We evaluated
numerically the inclusive cross section σ and we find σ = 12.46 nb.

by the LHCb experiment [64–66]), the perturbative contribution plus the g1-term alone is not sufficient to correctly
describe the data, given also their very high precision. This is consistent with our expectation as the relevance of
the non-perturbative contribution increases as x gets larger. Indeed it has been recently shown that the large bT
part of the TMD PDF is relevant if one wants to describe the very precise LHC data at forward rapidity, and it is
also important to take into consideration its kinematic dependence [32–34].

Along these lines, we remind that the predictive power is not an absolute concept, but is always related to the
precision of the observable under consideration. For example, there might be extremely precise observables for
which the perturbative plus the g1-term alone is not sufficient to capture the correct behavior at relatively large bT
needed to give an accurate description of the quantity considered, even at large Q and small x. This is the case,
for example, of the W boson mass, whose determination is sensitive also to the intrinsic transverse momentum
dependence and its flavor decomposition [29, 30].

Another interesting information available from Fig. 8 is that the TMD cross section given in Eq. (50) (valid in
principle at qT � MZ , can accurately describe the data in a range of transverse momenta up to ∼ MZ/3, which
is comparable to the values quoted in, e.g., Refs. [34, 35]. The determination of the range of applicability of the
TMD formalism depends both on the perturbative accuracy of the calculation and also on the separation of the bT
regions and on the parametrization of the large bT behavior. The determination of the qT range in which the TMD
factorization/approximation describes well the data should be, in principle, combined with the error associated to
the TMD factorization [19] and can be a useful piece of information in the context of the matching studies [18, 19].

B. Higgs boson

In this section we present the calculation for the transverse momentum differential cross section for Higgs boson
production from gluon-gluon fusion in pp collisions at

√
s = 13 TeV based on the discussed structure for the TMD

PDFs. We calculate the cross section in TMD factorization as [59]:

dσH
0

dy d2qT
=
σ0

2π
C2
t H

∫ +∞

0

dbT bT J0(bT qT )Fg/A(xA, b
2
T ;MH0 ,M2

H0)Fg/B(xB , b
2
T ;MH0 ,M2

H0) , (52)

where we have convoluted two gluon TMD PDFs in momentum space. The coefficient σ0 is the Born-level cross
section, Ct is the coefficient that integrates out the top quark [59], and H is the hard function for Higgs boson

production, with the normalization H(0)
=1 in the lowest order. For the analytic expression of these coefficients
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FIG. 9. (a) Cross section for Higgs boson production differential with respect to transverse momentum qT and (b) normalized
integrand in bT space of Eq. (52) at qT = 0. The blue band in (a) is built using HqT2.0 and by varying the perturbative
scales around the central value MH0 by a factor of 2. The red curve represents the calculation in TMD factorization with
Eq. (35) assuming an extrapolation to the large bT region without power corrections (g2 = ḡ2 = 0). The predictions with
g2,W = 0.4, 0.6 and ḡ2 = 0.2 are identical to the red curve. This is because the support of the integrand in (b) is almost
entirely in the perturbative region (bT < 0.5 GeV−1).

we refer to Ref. [59]. The resummation of large logarithms in the cross section is done by evaluating each pertur-
bative coefficient at its natural scale, and evolving them up to a common scale by using the respective anomalous
dimensions [59].

Since there are not enough precise experimental data yet, we compare our formalism to another evaluation of the
same observable performed in the framework of collinear factorization with transverse momentum resummation.
Specifically, we compare to the resummed result available from the public code2 HqT [44, 67].

Since in this paper we focus only on the unpolarized TMD PDF, we have decided to omit the contribution of the
linearly polarized gluons [68] from Eq. (52). Their role in Higgs boson production has been addressed in Ref. [45,
59, 69–71] and, more recently, in Ref. [72]. Their contribution to the Higgs transverse momentum distribution is
known to be of the order of a few percent, depending on the perturbative order and on the implementation of the
non-perturbative corrections [45, 59, 69]. At the phenomenological level the role of the linearly polarized gluons
in hadronic collisions is more relevant in the semi-inclusive production of lighter states, such as (pseudo)-scalar
quarkonium production at low transverse momentum [56, 73–76]. In Fig. 9 (a) we compare Eq. (52) at NNLL and
NNLO accuracy in TMD factorization with the calculation from HqT at the same perturbative accuracy. The red
curve is the calculation based on the formalism presented in this paper assuming an extrapolation to the large
bT region without power corrections (g2 = ḡ2 = 0). HqT implements the so-called complex-bT [77] prescription to
separate the small and the large bT regions. A Gaussian smearing factor in bT space governed by a single parameter
gNP is included to account for the potential non-perturbative effects at large bT . The blue band in Fig. 9 (a) has
been obtained by setting gNP = 0 GeV2 and varying the resummation, renormalization, factorization scales by a
factor of 2 around the central value MH0 [44, 67].

Changing the parameters controlling the non-perturbative corrections in both approaches has a small impact. In
particular, the predictions obtained within our formalism using g2,W = 0.4, 0.6 and ḡ2 = 0.2 are identical to the red
curve in Fig. 9 (a). This is because, at least at qT = 0, the support of the bT -space integrand in Fig. 9 (b) is almost
entirely in the perturbative region (bT < 0.5 GeV−1).

The two calculations are in good agreement and compatible within the uncertainty band, and the differences
(especially for qT & 20 GeV) could be due to the different methods employed to separate the small and the large
bT regions.

2 The code is available at http://theory.fi.infn.it/grazzini/codes.html.

http://theory.fi.infn.it/grazzini/codes.html
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VI. SUMMARY AND OUTLOOK

In this paper we have discussed the predictive power of unpolarized transverse momentum dependent parton
distribution functions (TMD PDFs, or simply, TMDs), as a function of the light-cone momentum fraction x and
of the energy scale Q. Such TMD PDFs are essential ingredients in the modern TMD factorization formalism,
which generally describes the observables with more than one momentum transfer, such as hadron production in
semi-inclusive deep inelastic scattering (SIDIS), and the transverse momentum distribution of vector boson W/Z
and H0 production in hadronic collisions. We have determined that the predictive power is maximal in the large Q
and small x kinematic region, for example for vector boson production at hadron colliders with

√
s of the order of

the TeV and at central rapidity. In other words, the transverse momentum dependence of the TMDs, probed in this
region, is dominated by the leading power and perturbatively calculable contributions from the parton shower in
the hard collision, and, therefore, the TMDs in this kinematic region, so as the transverse momentum distributions
of the bosons, are well predicted by the TMD factorization formalism. Outside of this region, the non-perturbative
contributions (as represented by the dynamical and intrinsic power corrections in our study) become increasingly
relevant, according to the kinematics explored (non-central rapidity, low Q, large x). Of course this should not be
seen as a problem, rather an advantage for probing the nature of hadron structure.

We emphasized that the transverse momentum kT -dependence of parton (quark or gluon) TMDs probed with
two-scale observables, Q � qT & ΛQCD, in high energy scattering is different from the intrinsic kT -dependence of
quarks or gluons inside a bound hadron. The difference between the measured kT -dependence of an active parton
participating in the hard collision and the parton’s intrinsic motion is a result of the QCD evolution of the TMDs.
If the evolution is dominated by the perturbatively calculable kernels at small bT , the observed kT -dependence is
effectively generated perturbatively, as pointed out in this paper in the region where Q is large and x is small. Such
measured kT -dependence of the TMDs is not sensitive to the details of non-perturbative hadron structure other than
that included in the 1D PDFs, while its predictiveness is critically important for understanding the production of
Higgs particles and other relevant observables. On the other hand, if the measured kT -dependence and its evolution
is dominated by the non-perturbative large bT region, which corresponds to the large x and/or not too large Q regime
as pointed out in this paper, experimental data of such observables could provide the much needed information for
extracting the non-perturbative kT -dependence of the TMDs so long as the TMD factorization formalism is valid.
In particular, together with the recent development in extracting the non-perturbative evolution kernels at large-bT
from lattice QCD calculations [78, 79], we could perform QCD global analysis of such experimental data to extract
the intrinsic parton transverse momentum distributions inside a fast moving hadron to shed some lights on the
confined motion of quarks and gluons, the fundamental property of hadron structure.

Hadron production at low transverse momentum from SIDIS in the fixed-target mode is probably the configuration
where the predictive power from the perturbative contribution alone is the least, and the most sensitive one to the
non-perturbative effects [31, 48, 49, 80, 81]. It is also the most challenging one from the point of view of factorization
theorems [82–85], given the fairly low value of Q being a couple of GeVs. Vector boson production at RHIC probes
a very interesting kinematic region, namely large Q, which guarantees that the factorization approximations are
well under control, and relatively large x ∼ 0.1, where the sensitivity to the non-perturbative effects is larger (see
Figs. 5 and 7, where we can see a moderate sensitivity to non-perturbative physics for a quark at Q = MW/Z

and large x). This could be an optimal kinematic window to study TMD effects, such as the sign change of the
Sivers function [24, 86, 87]. This also naturally applies to the Drell-Yan measurements at COMPASS [88]. Another
potentially interesting experimental configuration in the same large-Q/large-x kinematic region is a fixed-target
configuration at the LHC [89, 90], where several (un)polarized hadron structure measurements could be performed
with very high experimental precision, theoretical control on the factorization approximations, and sizable sensitivity
to hadron structure effects. Last but not least, also the future US-based Electron-Ion Collider [2] will provide new
insights in the quest for hadron structure and hadronization and, in particular, on the TMD PDFs and fragmentation
functions (FFs) [91–95]. According to this analysis, a good configuration to probe the quark structure of hadrons in
SIDIS at the future EIC could be

√
s ∼ 100 GeV for Q ∼ 10 GeV at central rapidity. At the same Q and rapidity

and at higher energies, instead, we would be increasingly sensitive to the perturbative structure of the transverse
momentum distributions.

This investigation can be expanded in several different directions, for example including small-x resummation
effects, polarization effects, studying fragmentation functions, and confronting the given parametrization of RNPa
with experimental data from low to high energies. We leave these studies for future publications.
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