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We present results for the unpolarized parton distribution function of the nucleon computed in
lattice QCD at the physical pion mass. This is the first study of its kind employing the method
of Ioffe time pseudo-distributions. Beyond the reconstruction of the Bjorken-x dependence we also
extract the lowest moments of the distribution function using the small Ioffe time expansion of
the Ioffe time pseudo-distribution. We compare our findings with the pertinent phenomenological
determinations.
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Introduction. — The determination and understanding
of the internal quark and gluon structure of the pro-
ton is a crucial aspect of the precision phenomenology
program of the current and future hadron collider ex-
periments, especially the upcoming Electron-Ion Collider
(EIC). The framework of collinear factorization quantifies
the hadronic structure in terms of Parton Distribution
Functions (PDFs) which encapsulate the pertinent infor-
mation regarding the momentum distributions of quarks
and gluons within the nucleon. Till very recently, the
intrinsic non-perturbative nature of the PDFs was pro-
hibiting an ab-initio computation and the conventional
approach is to employ a variety of experimental data to-
gether with advanced fitting methodologies in order to
extract the PDFs via global fits. The studies of PDFs
are of paramount importance precisely due to the fact
that their uncertainties play a crucial role in many LHC
applications. They affect the measurement of precision
SM parameters, such as the W mass, the strong cou-
pling constant and the determination of the couplings
of the Higgs boson where discrepancies from the strin-
gently fixed SM predictions would serve as indisputable
evidence of BSM physics [1].

The possibility to determine the PDFs with first prin-
ciple lattice calculations is the object of a long endeavor
which recently lead to a culmination of results. The crux
of the difficulties impeding a first principle implementa-
tion was actually associated with the fact that the matrix
elements defining the PDFs involve light-cone separated
fields. In his seminal article that stimulated the recent
efforts, X. Ji [2] proposed to compute matrix elements of
fields separated by a purely space-like distance z = z3

that define the so-called quasi-PDF, the distributions in
the longitudinal momentum p3. In the large p3 limit,
they can be factorized into the light-cone PDF, f(x, µ2).
Subsequently, many articles studying quasi-PDFs, as well
as the pion quasi-distribution amplitude (DA) appeared

in the literature [3–20].
Alternative approaches based on the analysis of equal-

time current correlators [21–24] also aim to study the
PDFs or DAs in lattice QCD. “Good Lattice Cross-
Sections” (LCS), as described in [25], represent a general
framework, where one computes matrix elements that
can be factorized into PDFs at short distances. Works
of [26–30] fall into these categories. For comprehensive
reviews on the topic, we refer the reader to [31–34].

Ioffe time pseudo-distributions. —
Another position-space formulation was proposed

in [35]. In this approach, the basic object is the
Ioffe time pseudo-distribution function (pseudo-ITD)
M(ν, z2). The Lorentz invariant ν = p · z is known as
the Ioffe time [36, 37]. The pseudo-ITD is the invariant
amplitude for a matrix element with space-like separated
quark fields.

In renormalizable theories, the pseudo-ITD exhibits a
logarithmic singularity at small values of z2. These short-
distance singularities can be factorized into the PDF
and a perturbatively calculable coefficient function. The
pseudo-ITD can also be considered as a LCS. A series
of works implemented this formalism and studied its ef-
ficiency [38–43]. For the sake of completeness, the main
points of our formalism are summarized below, but we
refer the reader to [42, 44] for a detailed discussion.

The non-local matrix element,

Mα(p, z) = 〈p|ψ̄(z)γαU(z; 0)ψ(0)|p〉 , (1)

with U being a straight Wilson line, p = (p+, m
2

2p+ , 0T ),

z = (0, z−, 0T ) and γa = γ+ in light-cone coordinates,
defines the MS ITD (introduced in [37]), given a regular-
ization is made for the z2 = 0 singularity. For z2 6= 0, this
matrix element has the following Lorentz decomposition

Mα(z, p) = 2pαM(ν, z2) + 2zαN (ν, z2) . (2)
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The pseudo-ITD M(ν, z2) contains the leading twist
contribution, while N is an entirely higher-twist term.
In the kinematics p = (E, 0, 0, p3), z = (0, 0, 0, z3), the
smart choice α = 0 isolates M. Nonetheless, it still
contains higher twist contaminations O(z2Λ2

QCD). In the

limit of small z2, where higher twist terms are suppressed,
M is factorizable into the ITD (or equivalently, the PDF)
and a perturbative coefficient function, provided that one
removes Wilson line-related UV divergences that appear
at finite z2. These UV divergences are eliminated if one
considers the reduced pseudo-ITD [35, 38] given by the
ratio

M(ν, z2) =
M(ν, z2)

M(0, z2)
. (3)

It contains the same singularities in the z2 = 0 limit as
M, and can be related to the MS light-cone ITD by the
NLO matching relation [45–47]

M(ν, z2) =Q(ν, µ2)− αsCF
2π

∫ 1

0

duQ(uν, µ2)×[
ln

(
z2µ2 e

2γE+1

4

)
B(u) + L(u)

]
, (4)

where B(u) =
[

1+u2

1−u

]
+

is the Altarelli-Parisi kernel [48],

and

L(u) =

[
4

ln(1− u)

1− u − 2(1− u)

]
+

(5)

is the non-logarithmic part.

Extracting the matrix element — The numerical compu-
tation of our matrix elements relies on Gaussian smear-
ing [51] and momentum-smearing [52] for constructing
the nucleon interpolating field, as well as the summation
method for better control of the excited state contami-
nation. The latter is intimately related to the Feynman-
Hellmann (FH) theorem [53] and has been widely used in
Lattice calculations of PDFs [17, 18, 38, 39, 42, 43, 54].

The matrix element is determined from a ratio of cor-
relation functions

R(t) =

∑
τ C3(t, τ)

C2(t)
. (6)

where C2,3 are standard two and three point correla-
tion functions, t is the Euclidean separation between the
source and sink interpolating fields and the operator in-
sertion time τ is summed over the entire temporal range.
The effective matrix element M eff is then constructed as

M eff(t) = R(t+ 1)−R(t) . (7)

The leading excited-state effects can be parameterized by

M eff(t) = M(1 +
∑
i

Aie
−∆t +Bite

−∆t) . (8)

with ∆ being the energy gap between the ground state
and the lowest excited state.

The summation method has a clear advantage over the
typical ratio method. The excited state contamination
scales as exp(−∆t) instead of exp(−∆t/2), which allows
for smaller t to be used to control excited state effects.
This is a major advantage considering that the correla-
tion functions’ signal-to-noise ratio decays exponentially
in t. This means that if N measurements are required to
reach a specific statistical precision for the correlator at
trat with the ratio method, only

√
N measurements are

required to reach the same precision at time tsum = trat/2
for the summation method. In both cases the contamina-
tion from excited states is the same. This feature is im-
portant for calculations at high hadron momentum where
excited state energy gaps can be small and the signal-to-
noise ratio decays much faster than for low momentum
states.

Lattice QCD calculation. — In this study three ensembles
of configurations with lattice spacing a = 0.094 fm with
decreasing value of the pion mass have been employed.
In Tab. I, we list all the parameters of our analysis. The
pion masses of this study are 172 MeV, 278 MeV, and
390 MeV. These ensembles allow for a controlled extrap-
olation to the precise physical pion mass which consti-
tutes an important limit to be taken in order to safely
compare with the PDF determinations of global fits but
also for the first time we can study the pion mass effects
on the ITD. As was done in [42], correlation functions
with several different smearings were simultaneously fit
to determine the matrix element from Eq. (8). The ma-
trix elements extracted from fitting correlation functions
to Eq. (8) are shown in Fig. 1.

Moments of the PDF — Following our suggestion in [40],
we can use the reduced pseudo-ITD to compute the mo-
ments of the PDF. Valuable information for the PDF can
be extracted from the data without dealing with the pit-
falls of the inverse problem. The moments of the MS
PDF, an(µ2), are related multiplicatively to those of the
Fourier transform of the reduced pseudo-ITD,

bn(z2) = Cn(µ2z2)an(µ2) +O(z2Λ2
QCD) (9)

where Cn are the Mellin moments of the matching kernel
C(u, µ2z2) with respect to u. To NLO accuracy,

Cn(z2µ2) = 1− αs
2π
CF

[
γn ln

(
z2µ2 e

2γE+1

4

)
+ ln

]
,

(10)
where

γn =

∫ 1

0

duB(u)un =
1

(n+ 1)(n+ 2)
− 1

2
− 2

n+1∑
k=2

1

k
,

(11)
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ID a(fm) Mπ(MeV) β cSW aml ams L3 × T Ncfg

a091m390 0.094(1) 390(71) 6.3 1.20536588 -0.2350 -0.2050 323 × 64 417
a091m280 0.094(1) 278(3) 6.3 1.20536588 -0.2390 -0.2050 323 × 64 500
a091m170 0.094(1) 172(6) 6.3 1.20536588 -0.2416 -0.2050 643 × 128 175

TABLE I. Parameters for the lattices generated by the JLab/W&M collaboration [49] using 2+1 flavors of stout-smeared clover Wilson
fermions and a tree-level tadpole-improved Symanzik gauge action. More details about these ensembles can be found in [50].
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FIG. 1. The reduced pseudo-ITD calculated on ensembles
with 390 MeV, 278 MeV, and 172 MeV pion masses. The up-
per and lower plots are the real and imaginary component re-
spectively. There appears to be very small mass effects within
this range of ν and z2.

are the moments of the Altarelli-Parisi kernel, and

ln =

∫ 1

0

duL(u)un =2

( n∑
k=1

1

k

)2

+

n∑
k=1

1

k2

+
1

2
− 1

(n+ 1)(n+ 2)

]
. (12)

The even and odd moments can be determined from the
coefficients of polynomials which are fit to the real and
imaginary components respectively. The order of the

polynomial is chosen for each z2 separately to minimize
the χ2/d.o.f. As an example, the first and second mo-
ments calculated on the ensemble a091m170 are shown
in Fig. 2. The z2 dependence of the PDF moments re-
sulting from this procedure can be used to check for the
presence of significant higher twist effects, which do not
seem to be present.
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FIG. 2. The first two moments of the pseudo and
the MS lightcone PDF computed from the ensemble
a091m170, compared to phenomenologically determined
PDF moments from the NLO global fit CJ15nlo [55],
the NNLO global fits MSTW2008nnlo68cl nf4 [56] and
NNPDF31 nnlo pch as 0118 mc 164 [57] all evolved to 2
GeV.

Extrapolation to the physical pion mass — In order to
determine the valence PDF for physical pion mass, our
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results must be extrapolated to 135 MeV. For each en-
semble, a pseudo-dataset with 150 points is generated
assuming a Gaussian distribution with the jackknife es-
timated mean and covariance. These data are fit, inde-
pendently for each z, to a polynomial which is then used
to extrapolate to 135 MeV. The functional form used is

M(ν, z2)=

(
1 +

NC∑
n=1

cnT2n(ν)

)[
1 +m

Nm∑
n=1

dnν
2n

]
(13)

where Ti(x) are Chebyshev polynomials andm is the pion
mass. The number of terms, NC and Nm, is determined
by minimizing the resulting χ2/d.o.f. Several other func-
tional forms have also been tried. These include forms
with quadratic and logarithmic pion mass dependence.
In addition, a mass-dependent finite volume correction
term was added to Eq. (13). All of these forms gave re-
sults which are largely consistent with each other, except
the functional form with the logarithm which consistently
had a worse χ2/d.o.f. Of all of those forms, the one in
Eq. (13) consistently had the lowest χ2/d.o.f. The re-
duced pseudo-ITD extrapolated to 135 MeV is shown in
Fig. 3.
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FIG. 3. The real component of the reduced pseudo-ITD data
is fit to the functional form in Eq. (13) and extrapolated to 135
MeV, independently for each z. Due to the mild pion mass
dependence, the resulting extrapolations differ only slightly
from the original data.

Matching to MS— Similarly to what was done in
Ref. [42] for the heavier pion masses, the matching of
the reduced pseudo-ITD to the lightcone MS ITD at a
given scale µ, is carried out via an inversion of Eq. (4) by
exchanging Q(ν, µ) and M(ν, z2) and flipping the sign of
αs

Q(ν, µ) = M(ν, z2)
αsCF

2π

∫ 1

0

duM(uν, z2)

×
[
ln

(
z2µ2 e

2γE+1

4

)
B(u) + L(u)

]
. (14)

By applying the matching, we obtain a set of
z2-independent curves for Q(ν, µ) at µ = 2 GeV, shown
in Fig. 4a. The slight z2-dependence of the lattice data
(at small distances) has been entirely compensated by the
ln z2 term, indicating that DGLAP evolution is present
in our data [38, 45].

As seen in the moments, the matching procedure has a
small effect on the distribution. The contributions from
the convolution of B and L with the reduced pseudo-
ITD appear with opposite signs. The convolution with L
is slightly larger in magnitude, but by a factor which is
approximately the same as the logarithmic coefficient of
B. This feature may just be a coincidence at NLO, but it
hints that higher order corrections may also be small. An
NNLO or non-perturbative matching is required to check
the effects of the perturbative truncation on the match-
ing. These perturbative effects are of O(αs/π) ∼ 0.1, as
expected.

Determination of the PDF — The inversion of the
Fourier transform defining the ITD, given a finite amount
of data, constitutes an ill-posed problem which can only
be resolved by including additional information. As was
shown in [41], the direct inverse Fourier transform can
lead to numerical artifacts. Many techniques have been
proposed of how to accurately calculate a PDF from lat-
tice data [18, 24, 41, 58]. This issue also occurs in the
determination of the PDF from experimental data.

The approach which is used here (and is common
amongst phenomenological determinations) is to include
information in the form of a model-dependent PDF
parametrization. We have used two different functions
of the form

f(x) =
1

N
xa(1− x)b(1 + cxn) , (15)

where n = 0.5 or 1 and N normalizes the PDF. Other
functional forms were tried, but resulted in Ioffe time dis-
tributions with erroneous large ν behaviors. This func-
tional form includes parameters a, b to capture the domi-
nant small- and large-x behavior and also the parameter
c to allow deviations in the intermediate x range. The
average of the 3-parameter fits are shown in Fig. 4 and
their difference is used to estimate the systematic error.

The PDF obtained from this fit, for x >∼ 0.1 is larger
than the phenomenological fits. This feature is consistent
with the larger value of the second moment 0.095(6) for
this fit compared to the global fits in Fig. 2. Other re-
maining systematic errors could explain this discrepancy.
This calculation was performed on ensembles with a fairly
coarse lattice spacing and uses data with ap ∼ O(1). Dis-
cretization errors have been shown [42] to be potentially
significant. Future calculations at smaller lattice spac-
ings are required to control these effects. There also exist
potentially notable finite volume corrections.

Conclusions. — We presented the first calculation of the
nucleon PDF based on the method of Ioffe time pseudo-
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FIG. 4. (Upper) The MS ITD matched to 2 GeV from the
reduced pseudo-ITD results extrapolated to the physical pion
mass. (Lower) The nucleon valence distribution obtained
from fitting the ITD to the form in Eq. (15). The gray band is
just the statistical error and the magenta band includes addi-
tionally the systematic error originating from the choice of fit-
ting function. The results are compared to phenomenological
determinations from the NLO global fit CJ15nlo [55] (green),
and the NNLO global fits MSTW2008nnlo68cl nf4 [56] (red)
and NNPDF31 nnlo pch as 0118 mc 164 [57] (blue) at a ref-
erence scale of 2 GeV.

distributions and performed at the physical pion mass.
This was an important step that had to be taken in or-
der to have a more meaningful comparison with the per-
tinent phenomenological results. Also, by studying three
ensembles with different pion masses, we were able to in-
vestigate the dependence of the ITD on the pion mass.
We saw that it is relatively mild compared to expecta-
tions stemming from the studies of 〈x〉 [59] and calcula-
tions of quasi-PDFs [14].

Compared to similar studies, our analysis capitalizes
on three key factors. First, the ratio of matrix elements
that yields a clean way to avoid all pitfalls and system-
atics of fixed gauge non-perturbative renormalization.

Second, the short distance factorization, that allows for
matching to MS without relying on large momentum data
with their large statistical noise and potential discretiza-
tion errors. Third, the summation method, that allows
for a better control of the excited state contamination.
Having studied finite volume effects and discretization
errors in [42], in our upcoming work we plan to study in
a systematic way the continuum extrapolation as well as
effects stemming from excited state contaminations.
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Supercomputing Centre (JSC) [60]. This work was per-
formed in part using computing facilities at the College
of William and Mary which were provided by contribu-
tions from the National Science Foundation (MRI grant
PHY-1626177), the Commonwealth of Virginia Equip-
ment Trust Fund and the Office of Naval Research. The
authors acknowledge William & Mary Research Comput-
ing for providing computational resources and/or techni-
cal support that have contributed to the results reported
within this paper. In addition, this work used resources
at NERSC, a DOE Office of Science User Facility sup-
ported by the Office of Science of the U.S. Department of
Energy under Contract #DE-AC02-05CH11231, as well
as resources of the Oak Ridge Leadership Computing Fa-
cility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. #DE-AC05-00OR22725.

[1] J. Gao, L. Harland-Lang, and J. Rojo, Phys. Rept. 742,
1 (2018), arXiv:1709.04922 [hep-ph].

[2] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).
[3] H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys.

Rev. D91, 054510 (2015), arXiv:1402.1462 [hep-ph].
[4] J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, and J.-H.

Zhang, Nucl. Phys. B911, 246 (2016), arXiv:1603.06664
[hep-ph].

[5] C. Alexandrou, K. Cichy, V. Drach, E. Garcia-
Ramos, K. Hadjiyiannakou, K. Jansen, F. Stef-



6

fens, and C. Wiese, Phys. Rev. D92, 014502 (2015),
arXiv:1504.07455 [hep-lat].

[6] C. Alexandrou, K. Cichy, M. Constantinou, K. Had-
jiyiannakou, K. Jansen, F. Steffens, and C. Wiese, Phys.
Rev. D96, 014513 (2017), arXiv:1610.03689 [hep-lat].

[7] C. Monahan and K. Orginos, JHEP 03, 116 (2017),
arXiv:1612.01584 [hep-lat].

[8] J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, and H.-W. Lin,
Phys. Rev. D95, 094514 (2017), arXiv:1702.00008 [hep-
lat].

[9] C. Alexandrou, K. Cichy, M. Constantinou, K. Had-
jiyiannakou, K. Jansen, H. Panagopoulos, and F. Stef-
fens, Nucl. Phys. B923, 394 (2017), arXiv:1706.00265
[hep-lat].

[10] J. Green, K. Jansen, and F. Steffens, Phys. Rev. Lett.
121, 022004 (2018), arXiv:1707.07152 [hep-lat].

[11] I. W. Stewart and Y. Zhao, Phys. Rev. D97, 054512
(2018), arXiv:1709.04933 [hep-ph].

[12] C. Monahan, Phys. Rev. D97, 054507 (2018),
arXiv:1710.04607 [hep-lat].

[13] W. Broniowski and E. Ruiz Arriola, Phys. Rev. D97,
034031 (2018), arXiv:1711.03377 [hep-ph].

[14] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen,
A. Scapellato, and F. Steffens, Phys. Rev. Lett. 121,
112001 (2018), arXiv:1803.02685 [hep-lat].

[15] J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang,
J.-H. Zhang, and Y. Zhao, (2018), arXiv:1803.04393
[hep-lat].

[16] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen,
A. Scapellato, and F. Steffens, Phys. Rev. D98, 091503
(2018), arXiv:1807.00232 [hep-lat].

[17] C. Alexandrou, K. Cichy, M. Constantinou, K. Had-
jiyiannakou, K. Jansen, A. Scapellato, and F. Steffens,
Phys. Rev. D99, 114504 (2019), arXiv:1902.00587 [hep-
lat].

[18] T. Izubuchi, L. Jin, C. Kallidonis, N. Karthik, S. Mukher-
jee, P. Petreczky, C. Shugert, and S. Syritsyn, Phys. Rev.
D100, 034516 (2019), arXiv:1905.06349 [hep-lat].

[19] J. R. Green, K. Jansen, and F. Steffens, (2020),
arXiv:2002.09408 [hep-lat].

[20] Y. Chai et al., (2020), arXiv:2002.12044 [hep-lat].
[21] W. Detmold and C. J. D. Lin, Phys. Rev. D73, 014501

(2006), arXiv:hep-lat/0507007 [hep-lat].
[22] V. Braun and D. Müller, Eur. Phys. J. C55, 349 (2008),

arXiv:0709.1348 [hep-ph].
[23] A. J. Chambers, R. Horsley, Y. Nakamura, H. Perlt,

P. E. L. Rakow, G. Schierholz, A. Schiller, K. Somfleth,
R. D. Young, and J. M. Zanotti, Phys. Rev. Lett. 118,
242001 (2017), arXiv:1703.01153 [hep-lat].

[24] J. Liang, T. Draper, K.-F. Liu, A. Rothkopf, and Y.-B.
Yang, (2019), arXiv:1906.05312 [hep-ph].

[25] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. Lett. 120, 022003
(2018), arXiv:1709.03018 [hep-ph].

[26] G. S. Bali et al., Proceedings, 35th International Sympo-
sium on Lattice Field Theory (Lattice 2017): Granada,
Spain, June 18-24, 2017, Eur. Phys. J. C78, 217 (2018),
arXiv:1709.04325 [hep-lat].

[27] G. S. Bali, V. M. Braun, B. Gläßle, M. Göckeler, M. Gru-
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