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Strong three-body interactions above threshold govern the dynamics of many exotics and conventional
excited mesons and baryons. Three-body finite-volume energies calculated from lattice QCD promise an
ab initio understanding of these systems. We calculate the three-πþ spectrum unraveling the three-body
dynamics that is tightly intertwined with the S-matrix principle of three-body unitarity and compare it with
recent lattice QCD results. For this purpose, we develop a formalism for three-body systems in moving
frames and apply it numerically.
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I. INTRODUCTION

The dynamics of three-body systems above threshold play
a key role in our understanding of strong forces. Many
emblematic resonances exhibit significant three-body decay
channels, such as the Roper resonanceNð1440Þ1=2þ which,
despite its low mass, couples strongly to the ππN channel
leading to a very nonstandard line shape and complicated
analytic structure [1,2]. The ππN channels also play a
significant role for other excited baryons and their descrip-
tion needs a quantitative understanding of three-body
dynamics. Similarly, axial mesons like the a1ð1260Þ and,
supposedly, exotics decay into three particles [3]. In a
related context, understanding multineutron forces is neces-
sary for the equation of state of neutron matter in the
extreme conditions of a neutron star [4]. Recent advances
in lattice QCD (LQCD) on few-nucleon systems [5,6]
complement dedicated experimental programs, e.g., at the
FRIB facility [7].
Indeed, the quantitative understanding of three-body

systems in terms of QCD represents a long-term goal in
hadronic physics. In LCQD, the Hamiltonian is discretized
and its eigenvalues are determined. These numerically
demanding calculations are necessarily performed in a

finite volume with periodic boundary conditions. This leads
to a discrete eigenvalue spectrum in contrast to the continu-
ous spectral density of scattering states in the infinite
volume. These finite-volume effects are determined by
hadron interactions and they offer a key to understanding
these interactions arising from quark-gluon dynamics.
In this study, we compare the results of a recently

developed infinite-volume mapping technique [8] with
new finite-volume energy eigenvalues [9]. These data are
calculated with multipion operators allowing for the
reliable extraction of energy eigenvalues, above threshold
and in different irreducible representation, providing, for
the first time, access to three-body dynamics from first
principles. Similar to the case of the 2πþ system, that
represents the first physical application of the original
Lüscher formalism [10–14], the 3πþ system permits few
partial waves and is an ideal system to study the pertinent
finite-volume effects. This is a first step toward more
complicated resonant systems that usually exhibit a com-
plex pattern into two- and three-body final states.
Recent progress in the three-particle sector is summa-

rized in Ref. [15], see also Ref. [16] for a broader overview.
In elastic two-particle scattering, each energy eigenvalue
can be mapped to a phase shift [17,18]. However, the 3 → 3
reaction has eight independent kinematic variables (not
including spin.) This requires a new formalism to map the
discrete energy spectrum to infinite-volume quantities.
Scattering amplitudes cannot be directly computed

as infinite-volume limits of finite-volume observables.
However, even without fully resolving the three-body
dynamics explicitly, methods exist that take into account
the contribution of three-body states [19–22]. These meth-
ods connect finite-volume data with infinite-volume
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properties either by using the optical potential or by
extracting the spectral density from a correlator.
Methods resolving explicitly the three-body structure of

the amplitude are being developed by different groups, for
bound states [23–27] and energy levels above threshold
[8,24,28–54]. The equivalence of different formalisms was
discussed recently [55,56] (see also Refs. [57,58]). The 1=L
expansion for threshold states was developed in Ref. [59]
and for low-lying excited states in Ref. [60], see also
Ref. [41]. A formalism for coupled two- and three-body
systems was developed in Ref. [42]; higher-spin two-
particle subsystems were considered in Ref. [61]. First
numerical studies [8,39,41] demonstrated the feasibility of
different formalisms.
The first application of a three-body formalism to an

actual physical system above threshold was achieved in
Ref. [30]. Eigenvalues for the 3πþ system were analyzed as
calculated by the NPLQCD Collaboration [62,63].
One of the problems in the lattice QCD calculation of

energies for channels where three-body states are relevant
is the need for many-hadron type operators to reliably
determine the spectrum, as demonstrated, e.g., in Ref. [64].
Indeed, meson-baryon operators are often included in the
operator basis [64–67]. Also, results on the Roper reso-
nance at almost physical masses [64] suggest the need to
map out finite-volume effects in two- and three-body
coupled channels, namely the πN; f0ð500ÞN; πΔ; ρN;…
channels.
In the meson sector, lattice QCD results are available

for channels where three-body states should be relevant
[68–70], albeit only for pion masses and/or volumes at
which the ρmeson can approximately be considered stable.
At lower pion masses, the three-pion spectrum requires
three pion operators which has only recently been done [9].
In this study, we compute the excited two- and three-

body spectrum of the multipion system at maximal isospin
and compare it to the calculation by Hörz and Hanlon [9].
The work is based on recent formal developments [8,33];
we use the inverse amplitude method (IAM) to one loop
[71–77] to predict the I ¼ 2 pion-pion S- and D-waves
and then use the S-wave two-body input to predict the
three-body finite-volume spectrum. Several eigenvalues are
calculated in moving frames [9] which requires us to extend
our formalism to boosted frames.

II. FORMALISM

The three-body amplitude can be organized in the isobar-
spectator picture; to describe three-body on-shell states,
first, two particles are combined in terms of their quantum
numbers and two-body interactions to form an isobar; the
third particle, called spectator, is then added. Using this
parametrization, a relativistic three-body unitary amplitude
was derived in Ref. [78]. This provides a complete proof of
three-body unitarity above threshold missing in previous
work [79]. The amplitude is derived from dispersion

relations, and can be matched to a Feynman diagrammatic
approach but is a priori independent of it. The isobar-
spectator interaction itself is dictated by unitarity and
develops an imaginary part. It can be represented as particle
exchange as shown on the left-hand side of Fig. 1.
There, solid lines indicate the spectator πþ and double

lines represent the isospin I ¼ 2 isobar; note that any two-
body amplitude, as for example the repulsive I ¼ 2, l ¼ 0
can be mapped to the isobar picture [30,80]. In the present
scheme, three-body forces arise naturally as real parts that
can be added to the interaction without destroying unitarity.
In addition, the ðI;lÞ ¼ ð2; 2Þ ππ interaction is very

small as shown in Fig. 2 for different low-energy con-
stants (LECs).
Perturbative next-to-leading-order (NLO) calculations

(red curves and band) predict very small phase shifts not
in contradiction with the scattered phase shifts from
experiment. See also Ref. [77] for a similar calculation,
comparing also the LQCD phase shifts of Ref. [86]. If one
chirally extrapolates the calculation to the pion mass of

FIG. 1. (Left panel) Partial waves in the isobar-spectator
interaction and S=D “in flight” transitions forbidden in the
infinite volume but allowed in finite volume (schematically).
(Right panel) Momentum labeling of the three-body amplitude as
used in the main text. The shown part corresponds to the second
term in Eq. (3).

FIG. 2. Prediction of D-wave scattering at the physical point
(red curves/area) compared to phase shifts extracted from experi-
ment [81–83]. For comparison, the predicted D-wave at the
pion mass of Ref. [9] is also indicated (blue curves/area). The
respective elastic regions are indicated with the horizontal bars.
Predictions are shown using the LECs from Ref. [84] (GW),
Ref. [85] (GL), and Ref. [72] (DP).
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Ref. [9], of mπ ≈ 200 MeV (blue lines and band), one
can see that the size of the D-wave stays below 1° in the
elastic region.
We also find that there is no apparent sign of aD-wave in

the lattice data under consideration [9]. In all irreducible
representations (“irreps”) in which theD-wave is the lowest
participating wave, the finite-volume energies coincide
with noninteracting levels within uncertainties. For irreps
with S=D-wave mixing, no apparent sign of a D-wave is
found, either, as discussed in Sec. III. For our predictions,
we will, therefore, neglect the ðI;lÞ ¼ ð2; 2Þ ππ interaction
in the following. However, there is no reason to exclude
the relative πþ-isobar D-wave which will turn out to be
important.

A. Moving three-body system

In Ref. [8] the finite-volume version of the three-body
amplitude was derived, and, for the first time, the system-
atic cancellation of unphysical singularities and the prac-
tical applicability of a such a formalism was demonstrated,
and projected to the A1 irrep. In Ref. [30], for the first time,
a three-body formalism was compared to LQCD data of a
physical system, πþπþπþ, including a fit of the three-body
force. In summary, the only missing ingredient for the
prediction of the new LQCD data consists in the develop-
ment of a finite-volume formalism allowing for three-body
systems in moving frames.
For the formulation of the three-body T-matrix in finite

volume [8], we took advantage of cubic symmetry which
enabled us to arrange allowed lattice momenta on “shells”
of equal absolute momenta. For moving three-body sys-
tems, cubic symmetry is broken and it is more advanta-
geous to work in a three-dimensional momentum basis,
suitably labeling the allowed momenta r̃i ¼ ð2π=LÞñi with
ñi ∈ Z3. Here and in the following, three-momenta with
tilde are defined in the lattice rest frame, three-momenta
without overscripts are defined in the three-body rest frame,
and starred three-momenta are defined in the two-body
isobar rest frame.
We denote the incoming and outgoing momenta by

q̃i and p̃i, respectively, while the full 3πþ system has
momentum P̃ ¼ q̃1 þ q̃2 þ q̃3 ¼ p̃1 þ p̃2 þ p̃3, where P̃ ∈
ð2π=LÞfð0; 0; 1Þ; ð0; 1; 1Þ; ð1; 1; 1Þg and multiples thereof.
With this, the symmetrized three-body scattering amplitude
in the three-body rest frame reads

hq1q2q3jT jp1p2p3i

¼ 1

3!

X3

n¼1

X3

m¼1

vðqn̄; q ¯̄nÞT̂nmððsÞÞvðpm̄; p ¯̄mÞ; ð1Þ

where ðn; n̄; ¯̄nÞ denotes a circular permutation of (1,2,3),
etc., and v denotes the decay vertex of the isobar, which is
chosen to reproduce exactly the inverse amplitude method
for the two-body subchannel amplitudes [30]. Note that this
vertex also contains a smooth cutoff function which regulates
all two- and three-body integrals. This function is the same
as in Ref. [30], where it is shown that the dependence on the
particular choice of the cutoff is very weak.
The quantity s represents the square of the total four-

momentum of the three-body system, such that the isobar-
spectator amplitude T̂ reads [8]

T̂nmðsÞ ¼ τnðsÞTnmðsÞτmðsÞ − 2EnL3τnðsÞδnm; ð2Þ

TnmðsÞ ¼ BnmðsÞ −
X

x

J̃xBnxðsÞ
τxðsÞ
2L3Ex

TxmðsÞ; ð3Þ

where m, n, x label the incoming spectator momentum pm,
outgoing spectator momentum qn, and intermediate spec-
tator momentum lx, respectively. A graphical representation
of the second (“rescattering”) term of Eq. (3) is given on the
right-hand side of Fig. 1. Furthermore, En ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q2n
p

and analogously for the other momenta. The Jacobian for
the mapping from the lattice frame to the three-body rest
frame is denoted by J̃x.
The momenta in the three-body rest frame are [87]

q ¼ q̃þ
��

P̃0

ffiffiffi
s

p − 1

�
q̃ P̃

jP̃2j −
q̃0ffiffiffi
s

p
�
P̃; ð4Þ

and analogously for the other momenta p and l. In Eq. (4),

q̃0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̃2 þm2

π

p
and P̃0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ P̃2

p
, see Ref. [87]. For a

finite boost, the Jacobian appearing in Eq. (3) is evaluated
from Eq. (4) as

J̃x ¼
����
dli
dl̃j

���� ¼
P̃0

ffiffiffi
s

p −
l̃xP̃ffiffiffi
s

p
l̃0x

ð5Þ

with l̃0x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ l̃2x

q
.

The quantity B denotes one-pion exchange diagram
(indicated in Fig. 1) and three-body term C. It reads in
the unprojected form

BnmðsÞ ¼ −
λðσmÞλðσnÞfðð

ffiffiffi
s

p
− 2Em − EnÞ2 − j2pm þ qnj2Þfðð

ffiffiffi
s

p
− 2En − EmÞ2 − j2qn þ pmj2Þ

2Eexð
ffiffiffi
s

p
− Em − En − EexÞ

− Cðqn; pm; sÞ; ð6Þ
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where E2
ex ¼ m2

π þ ðqn þ pmÞ2 and the square of the
invariant mass σi ¼ s − 2

ffiffiffi
s

p
Ei þm2

π for i ¼ m, n. Here
we have replaced the vertex v projected to the S-wave by a
product of a form factor f and a contact term λ, to be
discussed below.
The dynamics of the interacting two-body pair is

described by the isobar propagator τ, graphically indicated
in Fig. 1 to the left. The latter is not at rest in the three-body
rest frame. Thus, an additional boost by −l has to be
performed for the pertinent summation of momenta k� in
the self-energy of the isobar. This is detailed in Eqs. (11)
and (12) of Ref. [8] and reads in the current notation

k�ðk; lmÞ ¼ kþ lm

�
klm
l2m

� ffiffiffiffiffiffi
σm

p
ffiffiffi
s

p
− l0m

− 1

�
þ

ffiffiffiffiffiffi
σm

p
2ð ffiffiffi

s
p

− l0mÞ
�
;

ð7Þ

where the quantity σm ¼ sþm2
π − 2

ffiffiffi
s

p
l0m is the square of

the invariant mass and l0m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ l2m
p

. The Jacobian of
this boost reads

Jm ¼
ffiffiffiffiffiffi
σm

p
ffiffiffi
s

p
− l0m

: ð8Þ

With this the isobar propagator in Eqs. (2) and (3) reads

τ−1m ðsÞ¼σm−M2
0−

1

L3

X

i

J̃mJmðλðσmÞfð4ðk�i Þ2ÞÞ2
2k0�i ðσm−4ðk0�i Þ2Þ ; ð9Þ

where k�i ≡ k�ðkðk̃iÞ; lmÞ, k̃i ∈ ð2π=LÞZ3, and k0�i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k�2i
p

. The numerator in Eq. (9) and one-pion-
exchange part of Eq. (6) contains also the isobar S-wave
decay vertex v ¼ λf with a form factor f, which regulates
the appearing integrations/summations over momenta.
Following the discussion of Ref. [30], we choose fðQ2Þ ¼
1=ð1þ e−ðΛ=2−1Þ2þðQ=mπÞ2=4Þ with Λ ¼ 42. The dependence
of the results on Λ has been checked thoroughly in
Ref. [30] and was found to be very mild. Similarly, various
analytic forms of the form factor have been evaluated
and compared in the same publication. Furthermore, the
matching to NLO IAM is expressed as [30]

λðσÞ2 ¼ ðM2
0 − σÞ

�
d
4π2

þ TLO − T̄NLO

T2
LO

�
−1
; ð10Þ

where TLO is the leading-order chiral ππ scattering ampli-
tude, and T̄NLO denotes the next-to-leading-order amplitude
without the s-channel loop. The latter part depends on four
LECs, which are fixed as discussed below. The parameter
d ¼ 0.86makes a connection between the regularization by
form factors (performed in this work) and the dimensional
regularization on the level of ππ scattering amplitudes. This
matching is necessary due to the fact that we use the LECs

extracted in the latter scheme. Further details on this
technicality are discussed in Ref. [30]. Overall, the above
choice of the coupling λ leads to the form of the two-body
subchannel amplitudes, which match the inverse amplitude
method [71,73]. This type of amplitudes matches the chiral
perturbation theory amplitude up to the next-to-leading
order exactly, allowing also for addressing all three isospin
channels of the ππ system in a large energy region as
recently demonstrated in Ref. [84].
In summary, for incoming and outgoing spectator

momenta p̃i and q̃i, the 3πþ system has momentum P̃ ¼
q̃1 þ q̃2 þ q̃3 ¼ p̃1 þ p̃2 þ p̃3. A boost of lattice momenta
by P̃ provides the three-momenta entering Eqs. (2) and (3)
that is solved in the three-body rest frame; another boost
to the isobar rest frame is necessary as the pertinent
summations are carried out in that frame. Schematically,
this two-step process is represented in Fig. 3.
As a result of the formalism (see the Appendix), the

three-body system in moving frames is entirely expressed
in terms of lattice momenta p̃m; q̃n ∈ ð2π=LÞZ3, and the
invariant s. Its poles indicate the energy eigenvalues after
projection to irreps. Specifically, in the two-body sector,
the positions of the poles of the two-body scattering
amplitude T22 ¼ vτv give the two-body energy eigenvalues
in the Aþ

1 irrep. In the three-body case, the projections to the
corresponding irreps are performed similarly to the method
of Refs. [9,88], see also Ref. [33]. In particular, for Eq. (1),

T ΓðsÞ ¼
X

i;j

χΓðRiÞχΓðRjÞhRjq1;2;3jT ðsÞjRjp1;2;3i; ð11Þ

where the indices i and j run over all group elements and
the coefficients χ are the characters of the group elements,
see, e.g., Refs. [9,88]. Here, Γ denotes the irreps A−

1u, E
−
u ,

A−
2 , B

−
2 , and E−.

III. RESULTS

Taking the two-body input from IAM [71–77] and lattice
setups addressed in the calculation of Ref. [9] we predict
the energy eigenvalues for the πþπþ and πþπþπþ systems.

FIG. 3. Summary of the boost procedure between three
reference frames required for the calculation of the three-body
finite volume spectrum. P̃ denotes the total momentum of the
three-body system, where the constituent momenta are denoted
here by q with q3 being the spectator for this example only.
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There are multiple sources of uncertainties of statistical and
systematic nature in this procedure. Statistical ones origi-
nate from the propagation of experimental errors in the ππ
phase-shift measurements via the fits of the low-energy
constants. Often no correlations on LECs are quoted in the
literature which leads to an uncontrolled overestimation of
the prediction error. Furthermore, the way of determining
such LECs may differ depending on, e.g., whether cross
channels are used, or whether a unitarization of two-body
interaction is performed or not. Therefore, we concentrate
on a study of this second systematic source of uncertainty
in this paper, comparing our prediction using central
values for LECs from three different analyses [77,84,85],
see Table I.
For the LECs of Ref. [85], results are quoted in

Tables III, IV and V. For all results, the D-wave isobar

is neglected as discussed before, and the three-body term is
set to zero, C ¼ 0 (see discussion below). The predictions
for the two-body (three-body) spectrum are represented in
the upper (lower) part of Fig. 4. For some of the irreps,
phases are extracted and shown together with chiral
predictions in Fig. 5 for illustration. Overall, the predictions
from different LECs vary surprisingly little given the
different origins of their determination. Furthermore, the
predictions are all quantitatively very good.
In all Aþ

1 irreps with nonvanishing boost, S- and
D-waves mix in the πþπþ system. At higher energies,
one could therefore expect deviations of the predictions
from the data as we have neglected theD-wave throughout.
However, the quality of our predictions, even beyond the
elastic threshold, adds another piece of evidence that the
D-wave can be neglected. Of course, only an S=D-coupled
partial-wave fit can provide ultimate clarity for this point
(see, e.g., Refs. [86,87]). In Ref. [92], some evidence for a
nonvanishing D-wave was found by fitting only irreps in
which the lowest participating wave is the D-wave.
The quality of our predictions can be assessed by

evaluating the correlated χ2=n with n being the number
of lattice eigenvalues in the respective elastic regions. For
LECs set to the values of Ref. [85] we obtain the values
quoted in Table II for the two-, three-, and combined two-
and three-pion sectors, including the cross-correlations
of energy eigenvalues. The χ2 values for the LECs from
Refs. [77,84] are very similar to the quoted ones.

TABLE I. Central values of the low-energy constants (dimen-
sional regularization, μ ¼ 770 MeV) used in this study.

flri ji ¼ 1;…4g=103 Ref. Comment

f−4.07;þ5.14;þ0.01;þ9.05g [84] NLO-IAM fit to
GW lattice results

f−6.03;þ5.46;þ0.82;þ5.60g [85] Chiral NLO fits to
experimental data

f−5.19;þ3.98;þ10.16;þ16.37g [77] Chiral NLO fits to
experimental data

FIG. 4. (Top panel) Prediction of the two-body spectrum for irreps in which the S-wave participates. The ππD-wave is set to zero as
discussed in the text. The lattice data [9] are represented with the shaded bars and chiral predictions with the symbols, depending on
different values for low-energy constants from Ref. [77] (right pointing triangle), Ref. [84] (diamond, based on lattice results of the GW
group [89–91]), and Ref. [85] (circle). Dashed and solid gray bars represent the noninteracting levels and interaction thresholds,
respectively. (Bottom panel) Predictions for the three-body sector for the same choice of LECs and vanishing three-body force. Note that
the upper indices of the irreps indicate the G-parity, and the values in parentheses show the size of the respective boost, following the
notation of Ref. [9].
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The predictions were obtained with a vanishing three-
body force C. In Ref. [30], C was fitted to the ground-state
level and found to be negligible. However, the present data
[9] are more precise than the NPLQCD data [63]. Any
deviation of the prediction in the three-body sector,
especially at higher energies, could be a sign for a non-
vanishing three-body force at the chosen regularization.
This is obviously not the case as χ2ð3Þ is within the 1σ

interval. Moreover, a large part of the overall χ2ð2 and 3Þ ≈ 39

arises from the correlations of one point at low energies in
the πþπþ sector [σ1=2 ≈ 2.4mπ , A

þ
1 ð1Þ irrep] with the 3πþ

sector. Without this point, χ2ð2 and 3Þ ≈ 28, i.e., within the 1σ

interval, and it is difficult to explain this change with the
discussed simplifications of our formulation because it lies
at low πþπþ energies where the D-wave cannot play
any role.
As a final remark, consider the excited-state 3πþ energy

shifts in A−
1uð0Þ and E−

u ð0Þ highlighted in Fig. 4. The shift
from the noninteracting level in the S-wave [A−

1uð0Þ irrep]
is about twice as large as for the D-wave [E−

u ð0Þ irrep].

The relative and absolute sizes of these shifts are governed
by the structure of the exchange term B shown in Fig. 1
because that term directly determines the strengths of
S-wave vs D-wave interactions in the partial-wave projec-
tion, if the interaction is not too strong: Indeed, the cos θ
dependence on the scattering angle mainly comes from the
inherent u-channel exchange propagator of Eq. (6). On the
other hand, that term arises as a consequence of three-body
unitarity which requires the three pions to go on shell
during this rearrangement process. The exchange B then
develops finite-volume poles as first noticed in Ref. [8]. It,
therefore, contributes to the power-law finite-volume
effects [8]. In conclusion, for the first time, three-body
unitarity is directly visible in LQCD data. This conclusion
would hold similarly for any parametrization of the two-
body sector, i.e., it is independent of the IAM model we
choose for our predictions.

IV. CONCLUSIONS

Using a two-body unitary amplitude that matches chiral
perturbation theory up to next-to-leading order (IAM), the
isospin I ¼ 2 two-body body eigenvalues of a recent lattice
QCD calculation [9] were predicted in a restriction to
S-wave. With this two-body input, three-body unitarity
served as the S-matrix constraint to predict the three-body
spectrum with a correlated χ2ð3Þ=n ≈ 10=11, i.e., no sign of a

substantial three-body force was seen for the given regu-
larization. Yet, if correlations of the two- and three-body
sector are combined, a χ2ð2 and 3Þ=n ≈ 1.8 indicates a residual

tension. We want to stress that the LECs are not fit to the
lattice data; the tension is likely to disappear if we adjust the
LECs to minimize χ2. Overall, the predictions, depending
only on low-energy constants from independent studies
(and, very weakly, on the regularization), are in good
agreement with the data. Furthermore, the correct predic-
tion of the S-wave and D-wave excited-level energy shifts
in A−

1uð0Þ and E−
u ð0Þ depends only on the structure of the

spectator-isobar interaction, which, in turn, is dictated by
three-body unitarity. For the first time, this fundamental
S-matrix principle is directly visible in lattice QCD data.
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Note added.—Recently, an independent study appeared
[92] presenting a similar analysis of the πþ spectra
generated by Hörz and Hanlon [9].

TABLE II. The correlated χ2 values for the two-body, three-
body, and combined sectors with nos. of data nð2Þ; nð3Þ; nð2 and 3Þ.
The last two columns show the limits of the 1σ intervals.

Sectors χ2 n χ2=n χ2lowð1-σÞ χ2upð1-σÞ
2-body 21 11 1.9 6 16
3-body 10 11 0.9 6 16
2- and 3-body 39 22 1.8 15 29

FIG. 5. Predictions of the I ¼ 2 S-wave phase shift for low-
energy constants and their uncertainties from Ref. [85] (red solid
line) and Ref. [77] (gray dashed line). For comparison, we also
extract some phases from the eigenvalues of Ref. [9] (data points).
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APPENDIX: PREDICTED ENERGY EIGENVALUES

The predicted energy eigenvalues for different sets of LECs are shown in Tables III–V.
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