Chiral Effective Field Theory Calculations of Weak Transitions in Light Nuclei
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We report Quantum Monte Carlo calculations of weak transitions in A < 10 nuclei, based on
the Norfolk two- and three-nucleon chiral interactions, and associated one- and two-body axial
currents. We find that the contribution from two-body currents is at the 2-3% level, with the
exception of matrix elements entering the rates of 8Li and ®B beta decays to the first excited state
of ®Be. These matrix elements are suppressed in impulse approximation based on the (leading
order) Gamow Teller transition operator alone; two-body currents provide a 20-30% correction,
which is, however, insufficient to bring theory in agreement with experimental data. For the other
transitions, the agreement with the data is satisfactory, and the results exhibit a negligible to mild
model dependence when different combinations of Norfolk interactions are utilized to construct the
nuclear wave functions. We report a complete study of two-body weak transition densities which
reveals the expected universal behavior of two-body currents at short distances throughout the range

of A=3 to A=10 systems considered here.

PACS numbers:

I. INTRODUCTION

In this work, we present Quantum Monte Carlo (QMC)
calculations, including both variational Monte Carlo
(VMC) and Green’s function Monte Carlo (GFMC) cal-
culations, of Gamow-Teller (GT) matrix elements enter-
ing beta-decay and electron-capture rates in A=3-10
nuclei. These observables are experimentally known (in
most cases) at the sub-percent level, and are used here
primarily to validate our microscopic theoretical model-
ing of the nucleus as a system of nucleons interacting
with each other via effective interactions, and with elec-
troweak probes via effective currents. Specifically, this
modeling is based on local two- and three-nucleon inter-
actions formulated in configuration space, and derived
from a chiral effective field theory (xYEFT) that retains,
in addition to nucleons and pions, A-isobars as explicit
degrees of freedom [1-4]. They are referred to below as
the Norfolk interactions and are denoted as NV2+3. Ac-
companying these interactions are one- and two-body ax-
ial currents—Ilocal in configuration space—derived within
the same YEFT formulation [3-5]. In the calculations to
follow, we include up to tree-level contributions at next-
to-next-to-next-to-leading order (N3LO) in the chiral ex-
pansion, and disregard subleading corrections involving
loops and higher order contact terms.

An analogous study was recently reported by some of
the present authors in Ref. [6]. There, the QMC cal-
culations were based on the Argonne-vig (AV18) two-
nucleon [7] and Illinois-7 (IL-7) three-nucleon [8] interac-
tions, in combination with the axial currents of Ref. [5].
We found agreement with the experimental Gamow-
Teller matrix elements at the =~ 2% level for the A=6

and 7 systems, and at the ~ 10% level in °C. The large
uncertainty in the A =10 transition is primarily system-
atic and results from the narrow energy separation be-
tween the first two J™ =17 states in '°B, which makes
it hard to precisely disentangle them [6]. The study of
Ref. [6] found that two-body currents generate an addi-
tive contribution of the order of &~ 3% and concluded that
the agreement with the data is mainly attributable to the
use of fully correlated nuclear wave functions, rather than
two-body effects in the currents.

In the meantime, no-core shell-model calculations of
weak matrix elements based on chiral interactions and
currents [9] found the sign of the overall correction gen-
erated by two-body currents to be opposite to that ob-
tained in Ref. [6] for the same systems (but in agreement
with a hybrid calculation of the A =6 decay reported in
Ref. [10]). This discrepancy was attributed to the hy-
brid nature of the calculation of Ref. [6], i.e., to the mis-
match between the two- and three-body correlations im-
plemented to construct the nuclear wave functions—and
induced by the AV18 and IL7—and those entering the
axial currents which were instead derived from yEFT.

In this work, by reexamining the evaluation of these
weak matrix elements with the NV2+4-3 chiral interac-
tions [1-4], in combination with consistent chiral axial
currents at tree-level [5], we aim to address and explore
the aforementioned claim. We investigate the sensitivity
of the calculated matrix elements with respect to different
choices of regulators and to different strategies adopted
to constrain the three-body Norfolk interactions (NV3).
This latter aspect is important in order to understand
the interplay between these interactions and the axial
currents, since the strength of the contact current and



that of the three-body interaction of one-pion-range are
rigorously related to each other by the symmetries im-
posed in the YEFT formulation [11-13].

This study has several merits. First, we report new
GFMC results of the energy spectra of A < 10 nuclei
based on two classes of NV2+3 interactions. In addi-
tion to the systems studied in Ref. [6], we study weak
transitions in A =8 nuclei where we find that two-body
axial currents provide a large correction to the one-body
results. Finally, we provide the first calculations of two-
body weak transition densities which shed light on the
role of short-range physics in these observables.

Searches for physics beyond the Standard Model
(BSM) via beta decay are the focus of current and
planned experimental programs at carried out at the Fa-
cility for Rare Isotope Beams (FRIB), the the University
of Washington, and Argonne National Laboratory (see,
e.g., Ref. [14] and references therein). Among the targets
under consideration are °He, 8Li, 8B and '°C. A system-
atic study of axial-current matrix elements in these sys-
tems is a prerequisite for all further investigations and
BSM searches in beta decay. Beta decays are ideal pro-
cesses to assess the validity of the dynamical inputs of ab
inito calculations, namely many-body correlations and
weak currents. The latter also impact calculations of
neutrinoless double beta decay matrix elements, whose
knowledge is critical to the neutrinoless double beta de-
cay experimental program [15].

This paper is structured as follows: a brief review of the
QMC computational method and Norfolk interactions is
given in Secs. II and III. The many-body axial currents
used in this work are reported in Sec. IV. Results and
conclusions are provided in Secs. V and VI.

II. QUANTUM MONTE CARLO METHOD

The Quantum Monte Carlo methods used in this study
have been described in detail in several review articles,
the most recent of which being Refs. [16, 17]. Here, we
sketch the computational procedure and refer the inter-
ested reader to Refs. [16, 17] and references therein.

We seek accurate solutions of the many-nucleon
Schrédinger equation

HY(J™T,T,) = EY(J™;T,T,) , (1)

where J™ are the total angular momentum and parity
of the state, and T and 7, are the total isospin and its
projection, respectively. We use the Hamiltonian

H:ZKi+ZUij+ Z Vijk (2)

1<j i<j<k

where K; is the non-relativistic kinetic energy, and v;;
and V;;; are the NV2 and NV3 local chiral interac-
tions [1-4], collectively denoted as NV2+3.

The VMC trial function Wy (J7;T,T,) for a given nu-
cleus is constructed from products of two- and three-body

correlation operators acting on an antisymmetric single-
particle state of the appropriate quantum numbers. The
correlation operators are designed to reflect the influence
of the interactions at short distances, while appropriate
boundary conditions are imposed at long range [18-21].
The Uy (J™;T,T,) contains variational parameters that
are adjusted to minimize the expectation value

(Vv [H|Vy)

Ev =
v (Uy |Wy)

Z EO ) (3)

which is evaluated by Metropolis Monte Carlo integra-
tion [22]. The lowest value for Ey is then taken as the ap-
proximate ground-state energy of the exact lowest eigen-
value of H, Ey, for the specified quantum numbers.

A good trial wave function is given by

A A
|\Ilv>=SH 14+ Ui + Z Ug;i.vj
i<j k#i,j

). (4)

The Jastrow wave function VU is fully antisymmetric and
has the (J™;T,T.) quantum numbers of the state of in-
terest, while U;; and (75,]:7 I are two- and three-body cor-
relation operators.

The GFMC method [16] improves on the VMC
wave functions by acting on Wy with the operator
exp [— (H — Ey) 7]. The operator is applied in a sequence
of small imaginary-time steps A7 to produce a propa-
gated wave function

\11(7—) — ei(H*EO)T\I/V — |:67(H7E0)AT:|77/ Uy . (5)

Obviously ¥(r=0)="y and ¥(r — c0) =¥y. Quanti-
ties of interest are evaluated in terms of a “mixed” ex-
pectation value between ¥y and U(7):

{2()|0]Tv)
(W(r)[¥v)

where the operator O acts on the trial function ¥y. The
desired expectation values would, of course, have ¥(7) on
both sides; by writing ¥(7) = ¥y + d¥(7) and neglect-
ing terms of order [§¥(7)]?, we obtain the approximate
expression

OM)m = (6)

o)
O = )
~ (O + (O — (O], ()

where (O)v is the variational expectation value.

For off-diagonal matrix elements required by the tran-
sitions we are interested here, the generalized mixed es-
timate is given by the expression

(W (7)|0]¥ (7))
V(BT ()W (7)) /(Wi (7) [ W (7))
(O)m; +(O(T))aa; — (O)v (8)

Q



ga ha Fx c1 c2 c3 cy b3+ bg
1.29 2.74 184.80 —0.57 —0.25 —0.79 1.33 1.40

TABLE I: Values of (fixed) low energy constants (LECs) used
in this work: g4 and ha are adimensional, F; =2f, is given
in MeV, and the remaining LECs are given in GeV™!. See
text for explanation.

where

Ly AWmIoIw) [(w[v])
OO = gy V@)

and (O(7))p;, is defined similarly. For more details
see Eqgs. (19)—(24) and the accompanying discussions in
Ref. [23].

III. NORFOLK INTERACTION MODELS

We base our calculations of weak transitions in A=6—
10 on the local NV2 and NV3 interactions developed in
Refs. [1-4]. The NV2 model has been derived from a
xEFT that uses pions, nucleons and A’s as fundamen-
tal degrees of freedom. It consists of a long-range part,
vZLj, mediated by one- and two-pion exchanges, and a
short-range part, visj, described in terms of contact inter-
actions with strengths specified by unknown low-energy
constants (LECs). The strength of the long-range part
is fully determined by the nucleon and nucleon-to-A ax-
ial coupling constants g4 and h 4, the pion decay ampli-
tude Fy, and the LECs ¢y, ca, c3, ¢4, and b3 + bg, con-
strained by reproducing wN scattering data [24]. The
LECs entering the contact interactions are fixed by fit-
ting nucleon-nucleon scattering data from the most re-
cent and up-to-date database collected by the Granada
group [25-27]. The value for h4 is taken from the large
N. expansion or strong-coupling model [28]. The value of
the nucleon axial coupling constant used to construct the
nucleon-nucleon interaction accounts for the Goldberger-
Treiman discrepancy [29, 30] and, to distinguish it from
the experimental value of g4 =1.2723(23) [31] entering
the axial currents, we denote it with g4. For complete-
ness, Tables I and II report the values of these constants,
along with the pion and nucleon masses, the A-nucleon
mass difference, the electron mass, and the fine structure
constant « used in the NV2 interactions (these last two
characterize the electromagnetic part of the NV2s [1]).

The contact terms are implemented using a Gaussian
representation of the three dimensional delta function,
with Rg denoting the Gaussian parameter [1-4]. The
pion-range operators are strongly singular at short range
in configuration space, and are regularized by a radial
function characterized by a cutoff Ry [1-4]. There are
two classes (I and IT) of NV2s, differing only in the range
of energy over which they are fitted to the database—
class I up to 125 MeV, and class IT up to 200 MeV. For

J o

(a)

I

(b) (c)

Hox -

(d) (e)

FIG. 1: Diagrams illustrating the contributions to the axial
current up to N3LO used in this work. Nucleons, A-isobars,
pions, and external fields are denoted by solid, thick-solid,
dashed, and wavy lines, respectively. The square in panel (b)
represents relativistic corrections, while the dot in panels (d)
denotes a vertex induced by subleading terms in the m-nucleon
chiral Lagrangian [3].

each class, two combinations of short- and long-range
regulators have been used, namely (Rg, Rr)=(0.8, 1.2)
fm (models NV2-Ta and NV2-1Ia) and (Rg, Ry)=(0.7,
1.0) fm (models NV2-Ib and NV2-1Ib). Class I (II) fits
about 2700 (3700) data points with a x?/datum < 1.1
($1.4)[1,2].

The NV2 models were found to provide insufficient at-
traction in GFMC calculations of the binding energies of
light nuclei [2]. To remedy this shortcoming, a consis-
tent three-body interaction was constructed up to N2LO
in the chiral expansion. It consists of a long-range part
mediated by two-pion exchange and a short-range part
parametrized in terms of two contact interactions [32, 33]
proportional to the LECs cp and cg. These LECs have
been obtained by fitting either observables that involve
exclusively strong interactions [34-37] or a combination
of observables that involve both strong and weak in-
teractions [4, 12, 38]. This last strategy is feasible be-
cause of the relation established in yEFT [11] that links
c¢p with the LECs entering the contact axial current at
N3LO [12, 13, 38] (see next section for details).

In Ref. [37], ¢p and cg were determined by si-
multaneously reproducing the experimental trinucleon
ground-state energies and nd doublet scattering length.
These first-generation NV2+3 interactions, denoted
with NV2+43-Ia/b and NV2+43-IIa/b, have been im-
plemented in both VMC and GFMC codes and used
to study static properties of light nuclei [2, 17, 37,
39-41], and in auxiliary-field diffusion Monte Carlo
(AFDMC) [42], Brueckner-Bethe-Goldstone (BBG) [43,
44] and Fermi hypernetted chain/single-operator chain
(FHNC/SOC) [45, 46] approaches to investigate the
equation of state of neutron matter [47, 48].

In more recent work [4], ¢p and cg were constrained by
fitting, in addition to the trinucleon energies, the empir-



Mg My M,
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134.9766 139.5702 939.56524 938.27192 293.1 0.510999 137.03599

TABLE II: Values of charged and neutral pion masses, proton and neutron masses, A-nucleon mass difference, and electron
mass (all in MeV), and of the (adimensional) fine structure constant .. Note that fic is taken as 197.32697 MeV fm.

Ta (Ta¥) Tb (Ib%) Tla (ITa*)  1Ib (IIb¥)

cp| 3.666 (—0.635) —2.061 (—4.71) 1.278 (~0.61) —4.480 (—5.25)
) (0.55) )

) ) )

i |-1.638 (-0.090) ~0.982 ( 0.55) ~1.029 (-0.35) -0.412 (0.05)
20 | 0.090 (1.035) 2.013 (2.881 2.806 (3.059)

0.615 (1.03

TABLE III: Adimensional ¢p and cg values of the contact
terms in the NV3 interactions obtained from fits to %) the nd
scattering length and trinucleon binding energies [37]; and 44)
the central value of the H GT matrix element and the trinu-
cleon binding energies (starred values) [4]. The adimensional
zo values are obtained using the relation given in Eq. (16).

ical value of the GT matrix element in tritium /S decay.
These second-generation NV2+3 interactions were des-
ignated as NV2+3-Ia*/b* and NV2+3-1Ia*/b*. These
two different procedures for fixing c¢p and cg produced
rather different values for these LECs. They are reported
in Table III.

IV. xEFT AXIAL CURRENTS

Many-body axial currents have been first examined
within yEFT by Park and collaborators in Ref. [49]. In
that work, the authors retained pions and nucleons in
their effective theory and calculated the two-body axial
currents up to one-loop terms. The derivation was incom-
plete and neglected, for example, pion-pole contributions.
More recently, two-body axial currents with pions and
nucleons have been derived by the Bonn group [50] using
the unitary transformation method, and by the JLab-
Pisa group using time-ordered perturbation theory [3, 5].
The two derivations differ in the treatment of reducible
diagrams. When calculating box diagrams entering the
electromagnetic charge and current operators [51-55], the
two methods lead to results that are in agreement. How-
ever, as discussed at length in Refs. [3, 56], the two groups
find different results for the box diagrams in the two-body
axial current operator at NALO. The numerical impact of
this difference has been investigated in Refs. [3, 4], where
both the JLab-Pisa and Bonn versions of the N4LO cur-
rent operators have been implemented to calculate the
GT matrix element in triton beta decay. In those stud-
ies, it was found that the corrections generated by the
JLab-Pisa and Bonn N4LO operators are qualitatively
in agreement (they both quench the GT matrix element
at leading order), and provide, respectively, a ~ 6% and
~ 4% contribution to the total GT matrix element.

Here, we consider two-body axial currents derived
within the same YEFT used to construct the NV2+43 in-
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FIG. 2: (Color online) Propagation of the SHe — °Li transi-
tion matrix element as function of imaginary time 7, based
on the NV2+43-Ia Hamiltonian. Results with the one-body
current at LO and currents beyond LO are indicated with 1b
and 2b, respectively. Dashed and solid lines represent central
values and associated error bars. Black dashed and solid lines
denote the VMC results. See text for further explanations.

teractions [4]. Moreover, we base our calculations on tree-
level corrections only, and disregard the (problematic)
N4LO loop contributions discussed above. This choice
is advantageous also because it allows for a clearer com-
parison with the no-core shell model and coupled-cluster
calculations of Ref. [9], which are also based on tree-level
axial currents alone (albeit derived in a A-less YEFT).
Corrections at N4LO in the present formulation are, in
practice, subsumed in the LECs of the theory, which have
been determined by fits to experimental data.

Before moving on to a (brief) discussion of these ax-
ial currents, it is worthwhile pointing out that many-
body corrections to leading one-body transition opera-
tors have been shown to be crucial for providing a quan-
titatively successful description of many nuclear elec-
troweak observables [57], such as nuclear electromag-
netic form factors [58-61], low-energy electroweak tran-
sitions [6, 52, 53, 62-65], and electroweak scattering [66].
They have also been used in studies of double beta decay
matrix elements [39, 67-69].

The N3LO axial currents used in this work are repre-
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FIG. 3: GFMC propagation of the point-proton radius of the
first excited state of ®Be (upper panel) and ®B (lower panel)
based on the NV2+3-Ta and NV2+3-Ta* Hamiltonians.

sented diagrammatically Fig. 1. We refer the interested
reader to Refs. [4, 5] for additional details and explicit ex-
pressions of the operators; here, we only note that we do
not show diagrams that lead to vanishing contributions
as well as pion-pole terms which give negligible correc-
tions to the matrix elements under study.

The LO term, which scales as Q2 in the power count-
ing (@ denotes generically a low-momentum scale), is
shown in panel (a) and reads

j%fi(q) = —%4 Tia 0T (10)
where g4 is the nucleon axial coupling constant
(9a=1.2723 [31]), fr is the pion-decay amplitude
(fr=92.4 MeV), o; and 7; are the spin and isospin Pauli
matrices of nucleon i, q is the external field momentum,
r; is the position of nucleon i, and the subscript a speci-
fies the isospin component (a =z, y, z).

At N2LO there are two contributions (scaling as Q~1).
The first one is a relativistic correction to the single-
nucleon operator at LO and is diagrammatically illus-
trated in panel (b), while the second involves the excita-
tion of a nucleon into a A by pion exchange, as illustrated
in panel (c). In the tables and figures below, we will de-
note these two contributions with N2LO-RC and N2LO-
A, respectively. We use the same notation introduced in
Ref. [4] and write the cumulative N2LO contribution as

20(q) = jE 2O (q; RC) +j52F%(q; A) . (11)

At N3LO (or Q° in the chiral expansion), there is a
term of one-pion range illustrated in panel (d), and a

contact term shown in panel (e), which together give the
following N3LO correction

330 (q) = ji3O(q; OPE) + j5540(q; CT) . (12)

We will denote the individual terms with N3LO-OPE and
N3LO-CT, respectively.

The configuration-space expressions of these currents
are given in Eqgs. (2.7)—(2.10) of Ref. [4]. Here, we limit
ourselves to report the expression of the N3LO contact
term used in this work to explicitly show the relation
between the LECs entering this axial current and the
LEC ¢p in the three-nucleon interaction. In r-space the
N3LO-CT current reads

2
. iqg-R,; e %
JIS\I,:;LO(q; CT) =2zpe€ a-Ri; 3/ (Ti X Tj)a (Ui X O'j) R
(13)
where
Rij = (ri+r1j) /2, zij = rij/Rs , (14)

and r;; is the interparticle distance. The d-function in
the contact axial current has been smeared by replacing
it with a Gaussian cutoff of range Rg,

1

e~ (rij/Rs)’? (15)
e ,
7r3/2Rg

Crs(rij) =

as previously done for the contact-like terms of the NV2
interactions. The adimensional LEC zy (reported in Ta-
ble III) is given by

ga 2 1 Mz
2

TTLTr
20 = —5 - CD
0 f2 (msRs)® | 49aAy
mayq mayq
s 2 o 1
+3 (e3 + 64)+6m} , (16)

where cp is the LEC multiplying one of the contact terms
in the three-nucleon interaction [33] given in Table III,
A, =1 GeV is the chiral symmetry breaking scale, c3 and
c4 are given in Table I, and m and m, are the average nu-
cleon and pion masses. It has recently been realized [13]
that the relation between zy and c¢p had been given er-
roneously in the original reference [12], a — sign and a
factor 1/4 were missing in the term proportional to cp.

V. RESULTS

The GFMC energies of the nuclei of interest calculated
using the NV2+-3-Ta and NV2+-3-Ia* models are listed in
Table IV along with the dominant spatial symmetry (s.s.)
of the variational wave functions [77]. The energies are
obtained using ~ 80,000 walkers, and are all well con-
verged by 30 unconstrained steps [78]. All the GFMC
results presented in this article (but for the two cases



TABLE IV: GFMC predictions for A < 10 nuclear states stud-
ied in this work, compared to experimental values [70, 71].
Numbers in parentheses are statistical errors for the GFMC
calculations; experimental errors, being negligible, are not in-
dicated. The dominant spatial symmetry (s.s.) of the nuclear
wave function is given in the second column.

AZ(J7T;T) s.s. E [MeV]
Ta Ia* Expt.
6Li(1t;0) [42] -31.97(6) -31.06(8) -31.99
6He(01;0) [42] -29.32(4) -28.46(5) -29.27
L2751 [43] -39.25(15) -38.27(14) -39.25
TLi(3 75 3) [43] -39.18(15) -37.66(15) —38.76
"Be(2 75 3) [43] -37.75(8) ~36.56(10) -37.60
8He(0F; 1) [422] -31.33(7) ~28.53(6) ~31.40
8Li(2+;1) [431] -41.59(10) -38.89(7) -41.28
8Li(1151) [431] —40.59(7) -37.78(7) -40.30
8B(2+;1) [431] -37.87(8) -35.63(8) -37.74
8Be(271;0) [44] -54.07(7) -53.16(11) -53.47
10B(1;0) [442] —64.61(41) —60.46(30) ~64.03
10¢c(0t;1) [442] -61.01(50) ~56.65(22) -60.32

discussed below) are averages over the imaginary time
7 from 0.2 to 0.82 MeV~!. Results obtained with the
NV2+3-Ia interaction are in statistical agreement with
those published in Ref. [37] based on the same nuclear
Hamiltonian. Model NV2+3-Ia leads to predictions that
are in excellent agreement with the data. We also report
for the first time results based on the second generation
of NV2+3 interactions, specifically model NV2+3-Ta*,
whose three-nucleon interaction has been constrained by
fits to the experimental trinucleon binding energies and
tritium GT matrix element. Results obtained with the
NV2+3-Ia* Hamiltonian display a somewhat less satis-
factory agreement with the experimental data, but still
less than 4% away from them.

A typical imaginary-time evolution of the GFMC tran-
sition matrix elements is shown in Fig. 2. As can be seen,
there is a rapid drop of 3% from the initial VMC estimate
at 7 =0 that reaches a stable value around 0.2 MeV 1.
The results for all transitions presented in this article are
averages over 7 from 0.2 to 0.82 MeV ™!, as indicated by
the dashed lines, with statistical errors denoted by the
solid lines. The calculations of weak transitions involv-
ing the (J™,T) = (2%,0) state of 8Be and the ground
state of 8B are treated differently. For these two states,
we observe that the binding energy, magnitude of the
quadrupole moment, and point-proton radius all increase
monotonically as the imaginary time increases. This can
be appreciated in Fig. 3 where we show the point-proton
radii of the two nuclear states. We interpret this be-
havior as an indication that the resonant excited state
of 8Be is dissolving into two separated «’s, while 3B is
breaking into p+'Be. In the case of ®Be, this issue has
been addressed already in Refs. [64, 65, 79]. Here, we
use similar techniques to treat these systems and extract
matrix elements from the GFMC data. In particular,
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FIG. 4: (Color online) One-body density—defined in Eq. (18)—
of the "Be to “Li(gs) GT RME obtained with models NV2+-3-
Ia/b and NV243-IIa/b.(see text for explanation).
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FIG. 5: (Color online) Same as Fig. 4 but for the ®Li to ®Be
GT RME.

we note that the ground-state energy of 8Be drops very
quickly as the imaginary time increases and reaches sta-
bility around 7 ~ 0.1 MeV~!. The transition matrix
elements involving the two dissolving states have been
determined assuming that, also for these states, 7 ~ 0.1
MeV~! is the point at which spurious contaminations
in the nuclear wave functions have been removed by the
GFMC propagation. We then average in a small inter-
val around this point, typically between 0.06 and 0.14
MeV~!. Calculations involving these two systems are
clearly affected by a systematic error. To have a rather
rough estimate of this error, we study the sensitivity of
the extracted matrix elements with respect to variations
in the imaginary time interval selected for the averaging.
We find that such a procedure generates an additional
uncertainty of ~ 5% which is added in quadrature to the
statistical one, and quoted in Table VI below of GFMC

results.



TABLE V: Gamow-Teller RMEs in A= 6, 7, 8, and 10 nuclei obtained with chiral axial currents [4] and VMC wave functions
corresponding to the NV2+43-Ta/b and NV2+43-Ila/b (NV2+3-Ia/b* and NV2+3-1Ia/b*) Hamiltonian models [1, 2, 4, 37].
Columns labeled with LO, N2LO-(RC+A), N3LO-OPE, and N3LO-CT refer to the contributions given by the diagrams
illustrated in panel (a), panels (b) plus (c), panel (d), and panel (e) of Fig. 1, respectively. The cumulative results are reported
in the column labeled “Total”, while results including only corrections beyond LO are listed under “Total-LO”. Experimental
values from Refs. [72-76] are given in the last column. The dominant spatial symmetries of the VMC wave functions are
reported in the first column. Statistical errors associated with the Monte Carlo integrations are not shown, but are below 1%.

Transition Model LO N2LO-(RC+A) N3LO-OPE N3LO-CT Total-LO Total Expt.
6He(0F;1)— SLi(17;0) Ta (Ib)  2.200 (2.254) 0.022 (0.056)  0.039 (0.064) —0.005 (-0.068) 0.056 (0.052)  2.256 (2.306) 2.1609(40)
[42]—[42] Ia (ITb)  2.207 (2.212) 0.027 (0.043)  0.043 (0.055) —0.034 (-0.082) 0.036 (0.016)  2.243 (2.228)
Ta* (Ib*) 2.192 (2.256) 0.021 (0.056)  0.038 (0.063) —0.054 (-0.097) 0.005 (0.022)  2.197 (2.279)
Ia* (IIb*) 2.202 (2.218) 0.027 (0.044)  0.043 (0.056) —0.057 (-0.090) 0.014 (0.010)  2.216 (2.228)
"Be(3T1)-TLi(2751) Ta (Ib)  2.317 (2.294) 0.099 (0.162)  0.076 (0.118) —0.010 (-0.148) 0.165 (0.133)  2.482 (2.427) 2.3556(47)
[43]—[43] Ia (IIb)  2.293 (2.309) 0.102 (0.153)  0.078 (0.113) —0.070 (-0.190) 0.110 (0.076)  2.403 (2.385)
Ta* (Ib*) 2.327 (2.307) 0.098 (0.161)  0.076 (0.117) —0.121 (-0.212) 0.053 (0.066)  2.380 (2.373)
ITa* (ITb*) 2.296 (2.316) 0.103 (0.154)  0.078 (0.114) —0.120 (-0.210) 0.061 (0.058)  2.357 (2.374)
"Be(37T;1)-TLi(1753) Ta (Ib) 2,157 (2.119) 0.066 (0.122)  0.063 (0.100) ~0.009 (-0.125) 0.121 (0.096)  2.278 (2.215) 2.1116(57)
[43]—[43] ITa (TTb)  2.128 (2.145) 0.069 (0.111)  0.065 (0.095) —0.059 (-0.162) 0.074 (0.044)  2.202 (2.189)
Ia* (Ib*) 2.158 (2.124) 0.065 (0.119)  0.063 (0.099) —0.103 (-0.180) 0.025 (0.038)  2.183 (2.162)
ITa* (ITb*) 2.131 (2.148) 0.067 (0.111)  0.064 (0.095) —0.101 (-0.178) 0.030 (0.028)  2.161 (2.176)
8Li(27;1)—=%Be(21;0) Ta (Ib)  0.147 (0.092) 0.032 (0.028)  0.011 (0.011) —0.001 (-0.014) 0.041 (0.031)  0.188 (0.123) 0.286 Ref. [75]
[431]—[44] ITa (ITb)  0.144 (0.101) 0.031 (0.033)  0.010 (0.011) —0.008 (-0.019) 0.033 (0.025)  0.177 (0.126) 0.191 Ref. [76]
Ta* (Ib*) 0.148 (0.099) 0.032 (0.033)  0.010 (0.012) —0.016 (~0.020) 0.026 (0.025) 0.174 (0.124)
ITa* (ITb*) 0.124 (0.121) 0.032 (0.037)  0.010 (0.013) —0.014 (-0.023) 0.028 (0.027)  0.152 (0.148)
8B(2+;1)=8Be(21;0) Ta (Ib)  0.146 (0.092) 0.032 (0.032)  0.011 (0.011) —0.001 (-0.014) 0.042 (0.030)  0.188 (0.122) 0.269(20)
[431]—[44] ITa (IIb)  0.144 (0.102) 0.031 (0.033)  0.010 (0.011) —0.008 (-0.019) 0.033 (0.026)  0.177 (0.128)
Ta* (Ib*) 0.148 (0.098) 0.032 (0.034)  0.010 (0.012) —0.016 (-0.020) 0.026 (0.025)  0.174 (0.123)
ITa* (ITb*) 0.126 (0.118) 0.032 (0.037)  0.010 (0.013) —0.014 (-0.022) 0.028 (0.027)  0.154 (0.145)
8He(0F;1)—8Li(11;1) Ta (Ib)  0.386 (0.363) 0.030 (0.034)  0.009 (0.012) —0.001 (-0.014) 0.038 (0.032)  0.424 (0.396) 0.512(6)
[422]—[431] ITa (IIb)  0.465 (0.370) 0.032 (0.034)  0.012 (0.011) —0.009 (-0.017) 0.035 (0.028)  0.500 (0.398)
Ta* (Ib*) 0.362 (0.377) 0.031 (0.034)  0.009 (0.014) —0.010 (-0.022) 0.029 (0.026)  0.391 (0.402)
ITa* (IIb*) 0.481 (0.364) 0.033 (0.035)  0.012 (0.012) —0.017 (-0.019) 0.029 (0.028)  0.510 (0.391)
100(01;1)—=1°B(11;0) Ta (Ib)  1.940 (2.118) 0.003 (0.026)  0.044 (0.068) ~0.006 (-0.081) 0.041 (0.011)  1.981 (2.129) 1.8331(34)
[442]—[442] Ia (ITb)  2.157 (2.176) -0.002 (0.026)  0.046 (0.072) —0.042 (-0.120) 0.002 (-0.022) 2.159 (2.154)
Ta* (Ib*) 2.015 (2.123) 0.024 (0.022)  0.059 (0.069) —0.119 (-0.117) —0.037 (-0.028) 1.978 (2.095)
[a* (IIb*) 2.071 (2.143) 0.015 (0.031)  0.061 (0.072) —0.126 (-0.123) —0.050 (-0.020) 2.021 (2.123)

A. Weak Transitions in A=6—10 Nuclei

In this section, we present results for the GT reduced
matrix element (RME) defined as

2J 1 (JeM\|jE | ;M
RME = Y 5+ 1 (Jp M5 | JiM) ’ (17)
ga <JiM710|JfM>

where jZ, is the z-component (at vanishing momen-
tum transfer) of the charge-raising/lowering current with
jsx=Jszs £ ij5,, and (J;M,10{J;M) is a Clebsch-
Gordan coefficient.

Results for the GT RMEs in A =6-10 nuclei based on
variational wave functions are reported in Table V for
the eight different NV2+-3 interactions discussed above,
namely the NV2+4-3-Ta/b, NV2+3-Ila/b and correspond-
ing starred models. The one-body axial current at LO,

illustrated in panel (a) of Fig. 1, leads to contributions to
the matrix elements reported in the third column of Ta-
ble V. One-body relativistic corrections (N2LO-RC) and
two-body currents of one-pion range (N2LO-A) at N2LO,
displayed in panels (b) and (c) of Fig. 1, are added up
and given in the fourth column of Table V labeled with
N2LO-(RC+A). A rough estimate of the size of the RC
corrections can be obtained suppressing each LO term
by a factor of (Q/m)? ~ 0.01, where we used a “typical”
nucleon’s low-momentum () ~ 100 MeV. Contributions
at N3LO are given in the columns labeled by N3SLO-OPE
and N3LO-CT, corresponding to the one-pion range and
contact currents (and displayed in panels (d) and (e) of
Fig. 1). The cumulative contributions are given in the
next to last column, while the contributions beyond LO
only in the column labeled “Total-LLO”. Experimental



TABLE VI: Gamow-Teller RMEs in A= 6, 7, 8, and 10 nuclei obtained with chiral axial currents [4] and GFMC (VMC)
wave functions corresponding to the NV2+3-Ia and NV2+-3-Ia* Hamiltonian models [1, 2, 4, 37]. Results corresponding to the
one-body current at LO (column labeled “LO”), and to the sum of all the corrections beyond LO (column labeled “Total-LO”)
are given, along with the cumulative contributions (column labeled ‘Total’) to be compared with the experimental data [72-76]
reported in the last row. Results from Ref. [6] based on the AV18 and IL7 nuclear Hamiltonian are also shown where available.
Statistical errors associated with the Monte Carlo integrations are not shown, but are below 1%. Transitions for the A =8
systems are affected by an additional systematic error of ~ 5%, see text for explanation.

Transition Model S.8. LO Total-L.O Total Expt.
6He(0F;1)— SLi(1+;0)  Ia [42]—[42]  2.130(2.200)  0.070(0.056) 2.201(2.256)  2.1609(40)
Ta* 2.107(2.192)  0.011(0.005) 2.118(2.197)
Ref. [6] 2.168(2.174)  0.037(0.030) 2.205(2.211)
TBe(2 )= LR T5Y)  Ia [43]—[43]  2.273(2.317)  0.164(0.165) 2.440(2.482)  2.3556(47)
Ta* 2.286(2.327)  0.052(0.053) 2.338(2.380)
Ref. [6] 2.294(2.334)  0.061(0.050) 2.355(2.384)
TBe(2 i )-TLi(A L) Ia [43]—[43]  2.065(2.157)  0.103(0.121) 2.168(2.278)  2.1116(57)
Ia* 2.061(2.158)  0.009(0.025) 2.070(2.183)
Ref. [6] 2.083(2.150)  0.046(0.046) 2.129(2.196)
SLi(2+;1)—5Be(2+:0) Ia [431]—[44]  0.074(0.147)  0.029(0.041)  0.103(0.188)  0.284 Ref. [75]
Ia* 0.096(0.148)  0.025(0.026) 0.120(0.174)  0.190 Ref. [76]
8B(2+;1)—8Be(2+0) Ia [431]—[44]  0.091(0.146)  0.035(0.042)  0.125(0.188)  0.269(20)
Ta* 0.102(0.148)  0.024(0.026)  0.126(0.174)
8He(0;1)—5Li(1+;1) Ia [422]—[431]  0.262(0.386)  0.040(0.038)  0.302(0.424)  0.512(6)
Ia* 0.297(0.362)  0.025(0.029) 0.322(0.391)
0O+ 1)»10B(1T0)  Ia [442]—[442]  1.928(1.940)  0.050(0.041) 1.978(1.981)  1.8331(34)
Ia* 2.086(2.015)  -0.031(-0.037)  2.055(1.978)
Ref. [6] 2.032(2.062)  0.016(0.015) 2.048(2.077)

data from Refs. [72-76] are reported in the last column
of Table V.

All the calculations use axial currents at tree-level
which are consistent with the specific NV24+3 model
used to generate the VMC wave functions. VMC results
based on different nuclear Hamiltonians are qualitatively
in agreement. In particular, for the A = 3,6,7 and 10
systems the LO contribution provides about 97% of the
total matrix elements with currents beyond LO giving
the remaining < 3% correction. This correction adds up
constructively to the LO contribution for all nuclei be-
ing considered, but for the A =10 transition. For this last
transition, we find that the contributions beyond LO give
a correction that quenches the LO results obtained with
all the starred models, and with the un-starred NV2+3-
IIb interaction. More details about this calculation will
be given in the following section. We emphasize that the
“Total-LO” column includes, in addition to two-body
contributions, also a small correction resulting from the
one-body N2LO-RC current.

Transitions involving A =8 nuclei exhibit a large sup-

pression at LO. This behavior is attributable to the fact
that the initial and final VMC wave functions are charac-
terized by different dominant spatial symmetries, which
make their overlap small compared to cases in which both
the initial and final states display the same dominant
spatial symmetry. As a consequence, in these cases the
LO term is only about ~40-50% of the total matrix el-
ement, with two-body currents providing a large correc-
tion. Two-body currents, while improving the agreement
with the experimental values, are insufficient to fully ex-
plain them. Because of the reduced overlap between dom-
inant components in the wave functions, these matrix
elements are particularly sensitive to small components,
which are poorly constrained and model dependent. This
can be appreciated by looking at the one-body transition
densities, p'®(r;), defined as

RME(1b) = RME(LO) = 4ﬁ/dri r2p(r),  (18)

where r; is the distance of nucleon ¢ from the center-of-
mass of the system.
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FIG. 6: (Color online) Ratios of GFMC to experimental val-
ues of the GT RMEs in the 3H, ®*He, "Be, ®B, 8Be, ®He and
10C weak transitions. Theory predictions correspond to the
xEFT axial current at LO (empty symbols) and up to N3LO
(filled symbols) obtained with the NV2+3-Ia and NV2+3-Ia*
models. Results from Ref. [6] based on the AV18+IL7 nuclear
Hamiltonian and N4LO currents from Ref. [5] are also shown.
Result for the *H weak transiton were reported in Ref. [4].

In Figs. 4 and 5, we show one-body densities for two
transitions, namely the e-capture of the “Be ground state
to the “Li ground state and the 8Li $-decay. The former,
involves initial and final states with the same [43] (dom-
inant) spatial symmetry, while for the latter the initial
state is in a [431] spatial symmetry configuration and
the final state is in a [44] one. The densities are calcu-
lated using the NV2+43-Ta/b and NV2+3-ITa/b interac-
tions. From the figures we can see that the A=7 one-
body densities are well constrained and essentially model
independent, while the A =8 ones are particularly sensi-
tive to the nuclear Hamiltonian used to generate the wave
functions. Of course, these considerations are based on
VMC results. A GFMC propagation might mitigate the
observed model dependence.

In all the cases we studied, the contact-like current at
N3LO provides a correction that quenches the LO terms,
while the currents of one-pion range at N2LO and N3LO
add up constructively to the LO contributions (see Ta-
ble V). The main difference between the un-starred and
starred calculations is observed in the size of the contact
contribution. In particular, starred models are character-
ized by a larger value of 2z (see Table III), which in turns
leads to a larger (in magnitude) N3LO-CT correction.

We performed GFMC propagations only for the
NV2+3-Ia and NV2+3-Ta* models. GFMC results are
reported in Table VI, where, for completeness, we also
show the corresponding VMC values in parentheses along
with the GFMC results from Ref. [6]. We summarize the
GFMC results in Fig. 6 and compare them (where pos-
sible) to the results of Ref. [6] based on the AV18+IL7
nuclear Hamiltonian.

The effect of the GFMC propagation in imaginary time
is to reduce the VMC results by < 4% in all selected
transitions (but for the A =10 transition obtained with
the NV2+3-Ia* model). The agreement with the data,
after the inclusion of two-body currents, is at the ~ 2%
(S 2%) level for the A =6 transition with the NV2+3-Ia
(NV2+3-Ia*) model; and at the S 4% (S 1%) level for
the A="7 cases with the NV2+3-Ia (NV2+43-Ia*) model.
These results are in agreement with those obtained for
the same transitions in the calculations of Ref. [6] which
were based on the AVI8+IL7 interactions. The NV2+3
models lead to a more satisfactory agreement with the
data for the A=6 RME primarily because, with these
interactions, the LO term is 2% smaller than obtained
using AV18-IL7 model.

The largest discrepancy generated by the use of dif-
ferent nuclear Hamiltonians, including AV18+4IL7, is ob-
served in the A =10 transition. This can be appreciated
looking at both Table V and Table VI. From the former,
we observe a rather large cutoff dependence (models a vs
models b), and also a large sensitivity to the class (either
Tor IT) used to generate the nuclear wave functions. From
Table VI, we see that the results of Ref. [6], based on the
AV18+IL7 Hamiltonian, lie between models Ia and Ia*.
This large model and cutoff dependence can be traced
back to the existence of two nearby J™ = 17 excited states
in 19B, the lower one a predominantly 3S;[442] state and
the upper one a 3D;[442] state (in LS coupling), which
are only 1 MeV apart. The transition from the °C(0%)
state, which is predominantly 'Sy[442], is large in the
S — S components, but about five times smaller in the
S — D components. This makes the GT matrix element
particularly sensitive to the exact mixing of the 3S; and
3D; components in the two °B(1%) states produced by
a given Hamiltonian. It would appear that none of the
interactions models studied here gets quite the right mix-
ing of these components. In particular, results based on
the NV2+4-3-Ia and NV2+-3-Ia* interactions over-predict
the data by ~ 7% and 12%, respectively, which gives an
indication of the spread of the theoretical estimates.

Predictions for the RMEs of A =8 transitions are the
first QMC calculations for these systems that include
corrections from two-body axial currents. As discussed
above, RMEs are suppressed at leading order which gives
only ~ 50% and ~ 40% of the experimental values for
the 8B — ®Be and ®He — 3Li transitions. Two-body
currents provide about 20-30% correction in the right
direction which is, however, still insufficient to reach
agreement with the experimental data. These transi-
tions are challenging not only from the theoretical but
also from the experimental point of view. For example,
in Tables V and VI we quote two results for the RME of
the 8Li — ®Be decay obtained from the log( ft)-values of
Ref. [75] and Ref. [76] via the following formula [74]

1 6139 £ 7
RME(EXPT) = ?‘/Ji el (19)
A

where J; is the angular momentum of the parent nucleus.



The Fermi transition strength is small enough in this case
that it can be neglected in the above formula. We then
obtain two values, namely, RME(Ref. [75])=0.284, and
RME(Ref. [76])=0.190. We note that Refs. [73, 80], re-
port a different overall factor of 6147 instead of 6139
in the formula given above. In our estimate we used
ga=1.2723. Despite this additional uncertainty in
the deduced experimental values, our predictions still
severely underestimate the data. For example, the cal-
culated Ia* RME provides only ~ 40% and ~ 60% of
the experimental values given in Ref. [75] and Ref. [76],
respectively.

B. Two—Body Transition Densities

In order to have a better understanding of the two-
body terms in the axial current and their contributions,
it is helpful to study the associated two-body transition
densities, which we define as [81]

RME(2b) = 47 /0 T 0 (20)

where 7 is the interparticle distance, and 2b=N2LO-A,
N2LO-OPE, and N2LO-CT.

Two-body transition densities, calculated for selected
nuclei with variational wave functions corresponding to
the Hamiltonian models NV2+3-Ia (Ia) and NV24-3-Ia*
(Ia*), are presented in Fig. 7. These models produce
similar N2LO-A and N3LO-OPE densities, since they
are based on the same underlying NV2 interaction and
only differ in the NV3 interaction. Specifically, what dif-
fers is the strength zp of the contact current—Ilinked to
the (contact) three-nucleon interaction via the relation in
Eq. (16). Because of the different methodologies adopted
in constraining ¢p and cg (the LECs parameterizing the
contact piece of the three-nucleon interaction), zg turns
out to be much larger for Ia* than for Ia, see Table III.
Since the contact current is proportional to zg, this also
explains why the corresponding density for Ia* is much
larger (in magnitude) than for Ia. Note that they are
both negative. As a consequence, the total density (black
symbols in Fig. 7) develops a node at around 1 fm in the
case of model Ia*.

Another interesting feature of Fig. 7 is the difference
between the N2LO-A and N3LO-OPE densities at sepa-
rations r 2 2 fm for the transitions in the larger systems,
especially those involving the A =28 resonant states. In
the limit of vanishing momentum transfer we are consid-
ering here, the corresponding currents have the same op-
erator structure [4], up to a momentum dependent term,
absent in the N2LO-A current, which, however, we have
explicitly verified to give a numerically small contribu-
tion by direct calculation. Examination of Egs. (2.9)
and (2.10) of Ref. [4] shows that this common operator
structure involves two independent correlations functions
I(l)(,uij;ap) and I(z)(,uij;ap) with p;; =mg r;;, propor-
tional to different combinations of LECs, denoted by «y

10

(af) and az (ab') in the OPE (A) current, with

A A A A
« c « c
L - 4 ~089, —2 =3 x~36,
o ey +1/(4m) o cs3
A
of 1 oy
— = — ~-1.0 21
OéQA 4 (65) ( )

using the values in Tables I and II (m is the av-
erage nucleon mass). Here, 5 =—h?%/(9man) and
cg =h?% /(18 may). Indeed, the N2LO-A current reads

. 2 s\

PO — (7 x 7)., o.ixol(_;)_fj)a Ogj)—i—(z =17), (22)
with

0 = IV (uij;02) o) + I (piji 02 £i5 0 - 1y . (23)

sN3LO

A similar expression holds for j; with a, replacing
A

a,'. There are cancellations between the terms propor-

tional to OZ(;) and Og) in each of these currents, and
these cancellations are sensitive to the values of the ra-
tios o /ad and a;/az, and to the overlap between the
wave functions of the states involved in the transition.

To gain insight into how short-range physics impacts
these weak transitions across different nuclei, we dis-
play in Fig. 8 the densities corresponding to the in-
dividual two-body contributions, each normalized as
412 p?° (1) /(4772 p*P) max, Wwhere (477r2p%P) ., is the
maximum attained value (in magnitude); so all curves
peak at 1. We also display the total densities and note
that, since both a positive peak and a negative valley are
present in this case, each curve is normalized so that the
value of the positive peak is 1.

The universal behavior exhibited by the N2LO-A,
N3LO-OPE, N3LO-CT densities is quite striking, as the
curves corresponding to different nuclei and different
Hamiltonian models, essentially overlap for r» < 1/my.
(It is even more striking when the weighing r? factor is
not included). Such behavior can be understood as fol-
lows.

In a charge-raising process the two-body weak tran-
sition operators primarily convert a pn pair with total
spin/isospin S/T' =1/0 (nn pair with S/T'=0/1) to a pp
pair with S/T=0/1 (pn pair with S/T'=1/0) [81]—of
course, similar considerations apply to a charge lowering
process. These operators, at least in light systems, do not
couple T'T, =10 and 00 to 77, =11 in a significant way,
since P-wave components are small in that case. At sep-
arations S 1/m., where these transitions operators are
most effective, the pair wave functions with S/T'=1/0
and 0/1 in different nuclei are similar in shape and only
differ by a scale factor [82]—those corresponding to the
Ia* model are illustrated in Fig. 9. This is the origin for
the universal behavior observed in Fig. 8. Note that in
Fig. 9 we also show the densities of pairs in S/T=0/0
and 1/1, which do not scale. A complete analysis and
interpretation of these results—in particular, of the role
played by the tensor component of the nuclear interaction
in shaping these densities—can be found in Ref. [82].
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FIG. 7: (Color online) Two-body transition density—see Eq. (20)—for selected nuclei obtained with the NV2+3-Ta and NV2+3-

Ta* models (see text for explanation).

However, at separations 7 2 1/m, the N2LO-A and
N3LO-OPE densities (especially the former) do not scale,
particularly in the case of the heavier systems with
A > 8, presumably due to delicate cancellations between
the terms proportional to the operators Ogjl-) and OZ(?)
present in these currents (P-wave components in the wave
functions of these systems may also play a significant
role). As a matter of fact, because of the different long-
range behavior present in the A > 8 transitions (note,
e.g., how the N2LO-A density in the '°C transition as-
sumes negative values at large separations, all the other
densities being positive), and because of the rather large
size of the contact contribution in the Ia* model, the total
densities exhibit nodes when calculated with the starred
interactions, which leads to non-trivial cancellations.

VI. CONCLUSIONS

In this work, we reported on a detailed study of
weak matrix elements in A =3-10 systems based on chi-
ral (two- and three-nucleon) interactions and associated
(one- and two-body) axial currents at high orders in
the chiral expansion. A summary of our results is dis-
played in Fig. 6. Agreement with the experimental data

is obtained when correlated nuclear wave functions are
adopted. For these transitions the contribution of correc-
tions beyond LO in the axial current is typically at the
~ 2% level of the value calculated with the LO Gamow-
Teller operator. These findings are in line with those
reported in the hybrid study of Ref. [6] for the same
transitions. Here, we also present calculations of ma-
trix elements entering the rates of the 8Li, 8B, and ®He
beta decays. These matrix elements are found to be sup-
pressed at LO, and N2LO and N3LO currents provide
a large correction (= 20-30%) which is, however, insuf-
ficient to explain the experimental data. We attribute
the large suppression at LO to the fact that the Gamow-
Teller operator is, in these transitions, connecting large
to small components of the initial and final wave func-
tions. Improving on these calculations will require the
development of more sophisticated wave functions with
better constrained small components.

Finally, we also reported on a careful analysis of one-
and two-body transition densities shown in Figs. 4-8.
The latter are especially interesting because they allow
us to understand the spatial distributions of the vari-
ous two-body current operators, that is their behavior as
functions of interparticle distance. We have shown that,
for each set of interactions and consistent currents (ei-
ther NV243-Ta or NV2+3-Ta*), the two-body transition
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densities exhibit a universal behavior at short distance L. Sobotka for useful discussions at various stages of
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