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Abstract

Understanding the nucleon-nucleon (N N) interaction is a fundamental task in nuclear
physics, as N N-interaction models are a crucial input to modern nuclear structure
calculations. While great progress has been made toward understanding this interac-
tion, the available state-of-the-art models predict significantly different behaviors at
short distances and high momenta (scale-and-scheme dependence), where two-nucleon
Short-Range Correlations (SRCs) dominate the nuclear wave function. Thus, SRCs
are a unique tool to constrain the NN interaction and vice versa. SRCs are naturally-
occurring high-local-density NN pairs that, as a result of their short-distance (r < 1
fm) repulsive interaction, fly apart with high momenta, hence populating momen-
tum states above the Fermi level (k 2 kr ~ 250 MeV /c). The study of SRCs also
has significant implications for other fields, such as the astrophysics of neutron stars
and the behavior of cold atomic gasses. This thesis describes experimental and phe-
nomenological studies of the short-distance / high-momentum structure of the NN
interaction through the study of SRCs and vice versa. Experimentally, I report the
first measurement of the *He and *H(e, ¢’p) reactions in Hall A of the Thomas Jeffer-
son National Accelerator Facility in kinematics in which the measured cross sections
should be sensitive to the underlying nucleon momentum distributions in the range
40 to 500 MeV /c. The resulting cross-section ratios and absolute cross sections were
compared to momentum-distribution ratios and precise cross-section calculations re-
spectively. Phenomenologically, I report the generalization of the Contact Formalism
(GCF) to nuclear systems, which exploits scale separation and universality to describe
nucleons at short distances and high momenta.

Thesis Supervisor: Or Hen
Title: Assistant Professor
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Chapter 1

Introduction

The scientific quest to understand how two free nucleons interact with each other
and how this interaction conspires to form the complex atomic nucleus has been at
the center of nuclear physics since the birth of this field in 1932 after the discovery
of the neutron [I]. In 1953 Hans A. Bethe famously said that, to this purpose,
“...physicists have devoted [...| probably more man-hours than have been given to
any other scientific question in the history of mankind”. Due to the complex nature
of the Nucleon-Nucleon (N N) interaction, this statement is as valid today as it was
back then, and the quest is far from over. The complexity of the task stems from
the fact that the NN interaction is not fundamental, since it is the residual strong
interaction that binds quarks together to form nucleons, and can be seen reflected in
that there is no unified way of describing ifff] The NN interaction is a crucial input
to modern studies of nuclear structure and reactions, as well as of the properties of
dense astrophysical objects such as neutron stars.

This work studies the NN interaction up to high momenta and short distances,
where Two-Nucleon Short-Range Correlations (SRCs) dominate the nuclear wave
function. This chapter reviews our current knowledge of the NN interaction and
SRCs. Chapter [2| presents the theoretical background to understand electron-induced

quasi-elastic (QE) proton-knockout (e, €’p) measurements in light nuclei, with empha-

'For example, there are over 40 NN models. Furthermore, first-principle techniques like Effective
Field Theory and Lattice QCD make predictions for only limited kinematic ranges.
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sis on identifying kinematics that are sensitive to the nuclear ground state. Chapter
describes an experiment carried out in such kinematics at the Thomas Jefferson Na-
tional Accelerator Facility (JLab) with the goal to constrain precise models of the
three-nucleon-system cross section up to high initial nucleon momenta. Chapter
presents an effective model to describe the nuclear wave function at short distances
and high momenta, where traditional nuclear structure models fail. Applications of
this model are also presented. Finally, chapter [5| summarizes the work presented in

the thesis, and then presents the conclusions.

1.1 The NN interaction

The first attempt at describing the NN interaction is attributed to Yukawa, who
proposed that the interaction is mediated by massive-meson exchanges [2]. Fig.

shows a proton-neutron scattering via one-pion exchange (OPE).

p p

|

|

o |

|

|

—
n n
Figure 1-1: One-pion exchange contribution to the NN interaction.

Modern (post-1990) N N models still make use of the OPE channel to describe the
long-range (r 2 2 fm), as well as the tensor parts of the interaction. Two of the most

used categories of NN potentials are: 1) phenomenological, and 2) Chiral Effective

Field Theory (YEFT) (for a detailed review see, e.g., [3]).

Phenomenological potentials

Phenomenological potentials describe the medium- (1 < r < 2 fm) and short- (r <

1 fm) ranges of the NN interaction via phenomenological parametrizations (~ 45
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parameters) that are fitted to NN elastic-scattering data in the form of phase shifts
and deuteron binding energy. These fits are carried out up to relative momenta that
correspond to the pion-production threshold (E,; ~ 350 MeV), with no significant
constraints at higher energies. The selected parametrization varies from model to
model. The success of these potentials can be seen by its reproduction of the data
it is fitted to, with x2, ~ 1. Fig. shows the central and tensor channels of two
phenomenological potentials: the Argonne v-18 (AV18) potential (which is described
by 18 operators) [4], and its reduction AV4’ (which is a reprojection of AV18’s first four
channels: central, spin, isospin, and spin-isospin) [5]. The tensor force is intentionally
left out of the AV4’ model. These two potentials are “hard interactions”, with a strong
short-distance repulsive core and a significant probability for nucleons to reach high-

momentum states.

400 —_AVI8
300/— — AVA
= N2LO(1.0fm)
3 200~ — NPLO(L.2fm)
£ 100
> 0 -
-100—
40
S
(]
Z 201
> 0
20 05 1 15 2

r [fm]

Figure 1-2: Central (top) and tensor (bottom) channels from four different NN poten-
tials as a function of nucleon-nucleon separation r. The black and red lines correspond
to the phenomenological AV18 [4] and AV4’ [5] respectively. The green and blue lines
correspond to the YEFT N2LO with 1.0 fm and 1.2 fm short-distance cutoffs respec-
tively [6, [7]. The AV4’ potential is intentionally built without a tensor force. The
short-distance behavior is predicted to be very different across different models.

NN potentials need to be complemented with 3N (three-nucleon) forces in order

to accurately describe nuclear properties such as binding energies. The AV18 and

23



AV4’ potentials are typically supplemented with the Urbana-X (UX) and the central
component of Urbana-IX (UIX.) 3N forces respectively (AV18+UX, AV4’+UIX,)
[8, 9]

YEFT potentials

Below the chiral symmetry-breaking scale (A, ~ 1 GeV), the relevant degrees of
freedom are nucleons and pseudoscalar mesons (rather than quarks and gluons). In
this regime, the NN interaction can be described as a systematic expansion of di-
agrams similar to that of Fig. , organized in powers of Q)/A,, where ) refers to
the momentum scale being considered. The Leading Order (LO) corresponds to all
diagrams for which the amplitude is ~ O(Q/A,)°. All the amplitudes corresponding
to ~ O(Q/A,)" vanish due to parity and time-reversal symmetries. Thus, the Next-
to-Leading Order (NLO) corresponds to ~ O(Q/A,)?, the Next-to-Next-to-Leading
Order (N2LO) corresponds to ~ O(Q/A,)?, etcetera. Table shows the first few

diagrams contributing to the chiral NN interaction.

Table 1.1: xYEFT hierarchy of NN forces. Solid and dashed lines represent nucleons
and pions respectively. For more details and for the meaning of the different types of
vertices see, e.g., [10].

\ NN \ 3N
Lo o@Q/A) | —
NLO O(Q/A,)? - —
NLO 0@ L L | e T

The most appealing features of chiral potentials are that 1) the diagrams are cal-
culated based on the laws of the strong interaction (Quantum Chromo Dynamics,
QCD), and that, 2) due to the hierarchical nature of the diagrammatical expansion,
uncertainties can be systematically quantified, and results can be systematically im-

proved based on the order to which the expansion has been carried out. The expansion
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is parametrized with low-energy constants that are determined from fits to scattering
data. Fig. shows two YEFT potentials calculated to N2LO by Gezerlis, Tews and
others [6] [7], with short-distance regulators (or cutoffs) at 1.0 and 1.2 fm. These
regulators make the interactions “softer” (i.e. with a weaker short-distance repulsion
and hence less high-momentum strength compared to phenomenological potentials).
These potentials are complemented with the E1 and ET parametrizations of the 3N

forces [11]. For more details, see [10].

Another example of a chiral interaction used in this work is that of the Norfolk
potentials denoted NV2+3-Xx* (e.g., NV2+43-Ia*), where X (= I or II) refers to the
range of the phase-shift fit and x (= a or b) refers to the cutoffs used. The Nor-
folk potentials differ from the previously described N2LO potentials. For example,
NV2+3-Xx* explicitly include intermediate delta-isobars and their 2-body interac-
tion includes contact terms up to fourth order (N*LO) in the chiral expansion. For

additional details see, [12].

1.2 Quantum Monte Carlo (QMC)

The increase of computational power in recent decades enables the use of different

numerical methods to solve the many-body Schrodinger equation:

9 R
h—W, = HU 1.1
ihoVa A (1.1)

from first principles (ab initio) and obtain the ground state of the system [13]. Here,
the nuclear wave function W, has spatial, spin, and isospin degrees of freedom, and

the Hamiltonian is given by:

io— 74V, (1.2)
A A

V = ZVNN(Zuj)+ Z %N(ivjuk)u (13)
1<j 1<j<k

25



where T is the kinetic term, and the potential V has spatial, spin, and isospin op-
erator dependences. Vyxn and Viy can be any of the NN potentials and 3N forces
described in the previous section. One class of these numerical methods is referred
to as Quantum Monte Carlo (QMC), and includes techniques such as Variational
Monte Carlo (VMC, which uses the variational principle to find the parameters of
a trial wave function that minimize the ground state energy) [14], Diffusion Monte
Carlo (DMC, which propagates a trial wave function in imaginary-time) [I5], and
others. Results can also be extrapolated by combining these techniques. Due to com-
putational requirements, QMC calculations are currently mostly limited to light and
medium (A < 12) nuclei. Some heavier, closed-shell nuclei such as 0 and *°Ca can
also be calculated making use of the symmetries of these systems (cluster expansion)

I16].

The resulting QMC wave functions can be used to calculate quantities such as cross
sections, momentum distributions, and coordinate densities. The 1-body momentum
distribution describes the probability to find a nucleon in the nucleus with a given
momentum k. Similarly, the 2-body momentum distribution describes the probability
to find two nucleons with relative momentum ¢, and center-of-mass momentum @
Last, but not least, 2-body coordinate densities describe the probability of finding
two nucleons with some relative separation 7~ and distance from the center-of-mass of

the nucleus R.

There are several issues with current N N-interaction models [17]. Different poten-
tials predict very different behaviors at short distance, as can be seen in Fig.[I-2] Asa
result, the short-distance/high-momentum component of the different nuclear quan-
tities calculated based on QMC wave functions depend on the scheme (specific NN
model) and scale (the short-distance regulator or cutoff used within that model). At
such small distances, Two-Nucleon Short-Range Correlations (SRCs) are expected to
be the dominant component of the nuclear wave function and, consequently, studying

SRCs can help us understand the NV interaction (and vice versa).
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1.3 Two-Nucleon Short-Range Correlations (SRCs)

SRCs are described as pairs of nucleons that interact at short distances and, as a
result of the interplay between the different channels of the NN interaction, fly apart
with high individual- and relative-momenta, and smaller center-of-mass momentum
relative to the nuclear Fermi momentum (kp =~ 250 MeV /c &~ 1.27 fm™', [I8]). For a
detailed SRC review see, e.g., [19]. The study of SRCs also has implications for studies
of nuclear charge radii [20], neutrino-less double-beta decay [21], 22], 23] 24, 25 26],
the partonic structure of nucleons bound in nuclei [19] 27, 28|, 29, [30], neutron stars

[31], 32, 33], and others.

In traditional nuclear physics, nucleons in the nucleus are described as individual
particles interacting through the average potential created by the other A—1 nucleons.
The eigenstates of these Mean-Field (MF) models predict a set of bound single-particle
orbits. One of the most successful of these models is the Independent-Particle Shell-
Model (IPSM). While this single-particle description seems very crude given that the
nucleus is very dense, these models describe many bulk properties of nuclei well. These
models, however, fail to describe the short-distance and high-momentum components

of the nuclear many-body wave function.

The importance of SRCs was introduced theoretically by R. Jastrow in 1955 [34].
He used variational techniques to examine the ground state properties of a strongly-
interacting many-body system. The nuclear wave function is parametrized by an
anti-symmetrized product of single-particle wave functions. In the hard-sphere limit,
which approximates the repulsive core of the VN interaction, the ground state energy
of this system increases without limit. This problem can be remedied through the
introduction of functions that depend on the NN separation 7;; such that: 1 ~
Hlj\i j—1 F(rij). These “correlation” functions, which will be reviewed in more detail in
chapter [4] of this thesis, are defined so that F(r;;) vanishes for » < ry and approaches

unity for r > ro (where rq refers to the range of the strong interaction). This was

the first allusion to the importance of SRCs in nuclei.

Experimentally, ground-state charge-density distributions were calculated using
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semi-realistic NN potentials and Mean-Field wave functions that did not include
SRCs and compared to electron scattering data [35]. The calculated densities over-
estimated the interior density of the nucleus by up to 20%. L. Lapikas compared IPSM
calculations to electron-induced knock-out of protons from different nuclear shells [36].
While these calculations described the shape of momentum distributions for nucleons
in the valence and next deeper sub-shells, the spectroscopic strengths for valence
orbitals were much lower than expected (see Fig. [I-3). Since Mean-Field models
describe nucleons as individual particles, the next step in the potential expansion
corresponds to two-nucleon correlations. Calculations including the effect of long-
range correlations still disagree with experimental observations [37]. The additional
inclusion of SRCs is needed to fully account for the spectroscopic strengths. Within
the theoretical framework used to extract the spectroscopic factors, this leads to an
effective description of the nucleus that has two main regions in momentum space:
1) a Mean-Field region below kp dominated by single-nucleon behavior and long-
range correlations, and containing ~ 80% of all nucleons, and 2) an SRC-dominated

high-momentum tail above kp that contains ~ 20% of all nucleons.

Mean Field Theory

S SI(2j+1)
=

o
@
\

7Li 40,48C 208Pb
12C
0.4+ —
0.2 -
VALENCE PROTONS
0 | I | ‘ 1 I ‘

2
10 10 A

Figure 1-3: Summed spectroscopic strengths for valence orbitals from electron-
induced proton-knockout cross sections compared to Mean-Field theory expecta-

tions [36].
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Inclusive QE electron-scattering measurements in high-Q? and xp > 1 kinematics
have been traditionally used to study SRCs. Here, xp is the fraction of the nucleon
longitudinal momentum carried by the struck quarkﬂ and % is the magnitude squared
of the four-momentum transferred by the probe in the scattering process. See chap-
ter [2] for a formal definition of these variables. In these measurements, it is observed

that the (per-nucleon) cross-section ratios between two nuclei A; and As:

U(Ah IB, Q2)/A1
O'(AQ,JJB,Q2)/A2’

R(Ay, As)

(1.4)

scale for xp > 1.5 (see Fig. . That is, due to the scale separation that exists
between the strong interaction between the two nucleons in the SRC pair, and their
weaker interaction with the rest of the system, when scattering from SRC nucleons
the cross section in different nuclei is approximately the same up to a constant factor
R(A;, As). This factor is interpreted as the relative abundance of SRCs in nucleus
A; relative to Ay. This was observed for the first time at SLAC [38|, where ratios
for different nuclei relative to deuteron, as(A) = R(A,d) were studied. These mea-
surements were subsequently extended at JLab, where a3(A) = R(A,>He) was also
studied [30, 39, 40, 41].

Semi-inclusive electron-induced QE proton-knockout experiments, in which both
the scattered electron and knocked-out proton are detected, provide additional infor-
mation with respect to inclusive experiments. Measurements in which the electron-
scattering process can breakup the *He nucleus into a proton and a deuteron (2-
body breakup) or two protons and a neutron (3-body breakup) carried out at Q* =
1.5 (GeV/c?)? and zp = 1 in Hall A of JLab found good agreement with Plane-Wave
Impulse Approximation (PWIA) calculations up to missing momentaﬂ approximately
equal to the typical nucleus Fermi momentum [42, 44]. However, at higher missing
momenta, the measured and PWIA-based distributions disagreed by up to 400%.

Additional calculations that included non-QE reaction mechanisms were needed to

2In a nucleus of mass number A, zp can take any value from 0 to A, since there can be up to A
nucleons present from which the knocked-out nucleon can take momentum.

3In the PWIA, the missing momentum equals the initial nucleon momentum. See chapter [2| for
details.
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298Ph to deuteron as a function of xp from [30]. At zp > 1.5 the cross sections scale,
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explain the observed discrepancy. See Fig. [I-5] Additional semi-inclusive SRC mea-
surements from JLab have been carried out in deuteron [45] and '?C [46]. Since this
type of measurement is the focus of this thesis, details on the reaction and discussions

about these previous studies will be presented in chapters [2] and

In exclusive or triple-coincidence experiments, information from the two nucleons
from the SRC pair can be obtained. For instance, the measurement of the proton-
induced two-nucleon knockout 2C(p, 2pn) reaction performed at Brookhaven National
Laboratory by the Eva collaboration allowed the determination of the angle between
the knocked-out proton and the recoil neutron, showing that above kp, where SRCs
are expected to dominate, the two nucleons are ejected from the nucleus preferentially
in back-to-back configurations. [47, 48], [49]. See Fig. (left). In this analysis, the
width of the center-of-mass momentum distribution of SRC pairs was determined to
be 0,'C = 143417 MéV /c. This study was expanded by [50] using (e, €'pp) data from
Hall B of JLab on '2C, ?7Al, *%Fe, and 2°Pb. It was found that the pair center-of-
mass motion in these nuclei can be described by a three-dimensional Gaussian with
a width ranging from 140 to 170 MeV /¢, which is approximately consistent with the
sum of two Mean-Field nucleon momenta. See Fig. (right). The 2C result was
consistent with the equivalent result from [47] and [5I]. The extracted widths are

also consistent with calculations from [52, 53, [54) [55], which supports the theoretical

picture of SRC pair formation from temporal fluctuations of Mean-Field nucleons.

The analysis from [49] also showed that the removal of a proton from the nucleus
with initial momentum between 275—550 MeV /c was 9215.% of the time accompanied
by the emission of an approximately back-to-back neutron, which indicates that the
probabilities to encounter pp or nn SRC pairs in the nucleus are at least a factor of
six smaller than that of pn. This result is known as np dominance of SRCs and has
been studied and confirmed in a variety of analyses. Fig. (left) shows the SRC
pair fractions as a function of missing momentum from the previously mentioned
analysis and also from a measurement from Hall A of JLab [51, 57]. They found
that there are approximately 20 times more np pairs than pp or nn pairs [47, 60].

These np-dominance observations on '2C were extended to 27Al, *Fe, and 2°8Pb by
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Figure 1-6: Center-of-mass momentum distribution of SRC pairs. Left: cosine of the
angle v between the struck proton and the recoil neutron, as a function of recoil-
neutron momentum p,. Above the Fermi momentum, where SRCs dominate, an
angular correlation between the two nucleons is observed [49]. Right: width of the
center-of-mass momentum distribution of SRCs for different nuclei [50]. The red (@)
markers correspond to the result obtained in this analysis. The blue markers corre-
spond to the equivalent result from [47] (W), [51] (¥), and [56] (A). The remaining
markers and lines correspond to theoretical calculations from [52] 53 54, [55].
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Figure 1-7: np dominance of SRCs. Left: SRC pair fraction in '2C [57]. The red
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[49]. Right: pp/np fraction in '2C, 27Al, 5°Fe, and ?**Pb from [58] shown as green
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limits respectively. The markers A and [J correspond to the equivalent results from
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from the Generalized Contact Formalism (GCF) (see chapter {4) using different NN
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32



[59] by analyzing the (e,e’p) and (e, €'pp) reactions, and later bolstered by [58] by
analyzing the (e, e’pn) and (e, ¢'pp) reactions from data measured in Hall B of JLab.
See Fig. [1-7] (right).

The interpretation of this result is that the experimentally-probed momentum
range (300 < k < 600 MeV/c) corresponds to the region of the NN potential around
the point in which the central channel crosses a minimum and the tensor force takes
over and governs the interaction [61], 62] (see Fig. . The tensor force only couples
to spin-1 NN pairs, and since short-distance pp and nn pairs are predominantly spin-
0 (due to the Pauli exclusion principle), pairs in this region are mostly np. This
causes the pp and nn densities as a function of relative momentum to have a dip
around 380 MeV /¢, and this dip is not present in the total pn density. See Fig. [1-8
(right). As nucleons interact at even shorter distances, the scalar force should take
over the interaction (see top panel in Fig.|1-2)), and spin-0 contributions are expected
to increase. This statement is supported by studies of the (e, e'p), (e, €'pp), and
(e, €e'pn) reactions presented in [56, [63], 64].

This tensor-dominated momentum regime is further supported by the result from
a 3He(e, ¢'pp)n measurement carried out in Hall B of JLab [65]. In this study, the
relative and total momentum distributions of pp and pn pairs in *He were measured
by detecting events in which the electron scattered off an uncorrelated nucleon, and
the two (spectator) nucleons from the SRC pair were emitted from the nucleus with
high momenta. Fig. [1-8 (left) shows the ratio of pp/pn (spectator) SRC pairs inte-
grated over relative momentum and as a function of center-of-mass momentum of the
SRC pair. As center-of-mass momentum of the pair is increased, the dip in the pp
distribution gets smeared, and the relative fraction of pp to pn pairs increases. This
is shown in Fig. [1-8| (right), where *He 2-body momentum distributions Fyy(q, Q)
for different values of @ from [66] are shown. The dip in the pp distribution gets filled

as () increases.

Lastly, [60] studied the double ratios of the number of (e,e’N) high-momentum
(SRC) nucleon events to low-momentum (Mean-Field) nucleon events for nucleus A

(*7Al, *Fe, and 2"Pb) relative to ?C:
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Figure 1-8: Effect of pair center-of-mass momentum on relative pp-to-pn abundance.
Left: ratio of pp/pn (spectator) SRC pairs from He(e, ¢/pp)n measurements inte-
grated over relative momentum between 0.3 — 0.5 GeV/c (B) and between 0.4 — 0.6
GeV/c () as a function of center-of-mass momentum of the pair P, [65]. The black
solid and blue dashed curves correspond respectively to a 1-body and a pp/pn bound-
state momentum distribution calculations from [67]. The dotted line at 0.5 shows
the simple pair counting result. The data and the 1-body calculation have been mul-
tiplied by 1.5 to approximately account for the ratio of the average electron-proton
and electron-neutron elementary cross sections. Right: QMC calculations of the 3He
2-body momentum distribution Fxy(g, Q) as a function of relative momentum ¢ for
different values of center-of-mass momentum () = P,,;. The distributions have been
arbitrarily scaled to emphasize their shapes.
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Figure 1-9: Fraction of high-momentum nucleons in nucleus A relative to carbon (see
equation as a function of neutron excess [60]. The red (@) and blue (H) markers
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correspond to the equivalent quantity calculated phenomenologically using an np-
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are drawn to guide the eye. As the number of neutrons increases in the nucleus, the
fraction of high-momentum neutrons stays approximately equal, while the fraction of
high-momentum protons increases.
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A(e, €/N>high/A(e; (EIN) ’low
12C (e, e/N)high/HC(e: &N )iow ’

(1.5)

which describes the increase in the fraction of high-momentum protons and neutrons
in each considered asymmetric nucleus relative to carbon. It was found that the
fraction of high-initial-momentum protons increases by ~ 50% from carbon to lead,
while the fraction of high-initial-momentum neutrons decreases by ~ 10%. See Fig.
[0l This result implies that, on average, protons move faster than neutrons in neutron-

rich nuclei.

1.4 Scope of this work

The main objective of this work is to further the current knowledge on the NN
interaction and SRCs by putting QMC calculations to test both from an experimental
and a phenomenological standpoints. This thesis has two primary parts. In the first
part, I describe how we can use measurements of electron-scattering proton knockout
from light nuclei to constrain the NN interaction. Chapter [2| presents the theoretical
description of the QE electron-induced proton-knockout reaction (e,e’p) in A = 3
nuclei. Chapterdescribes the experimental extraction of He and *H(e, €’p) absolute
cross sections and cross section ratios as a function of missing momentum from an
experiment carried out at JLab, and compares them to a series of calculations using
different models of the NN potential in the momentum range 40 — 550 MeV /c. This
momentum range covers the transition from single-particle (low momentum) behavior
to two-particle SRC (high momentum) behavior.

Since traditional nuclear-structure effective models like the IPSM fail to describe
the high-momentum and short-distance states in nuclei, effective models which in-
clude SRCs are essential to fully describe the nuclear ground state for nuclei for
which “exact” QMC calculations are not feasible. Chapter [4| presents the Generalized
Contact Formalism (GCF) as an effective model to describe SRCs in nuclei. I then
use the GCF together with several NN models to study which SRC properties are

scale-and-scheme dependent, and which are independent. Additionally, a list of appli-
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cations for the GCF is presented, and a GCF-based extraction of nuclear correlation
functions is presented.

Throughout this thesis, I will present equations in natural units (i.e. ¢ =h = 1).

1.4.1 A word on notation changes

Chapters [3] and [ of this thesis are focused on experimental and phenomenological
studies respectively. To be consistent with the nomenclature used in these fields, the
notation between chapters [3| and [4] changes slightly.

Chapter [3] uses ¢ and @ for the electron-scattering momentum transferred by the
virtual photon. In chapter [d, ¢ and @ are the relative and center-of-mass momenta
respectively. The single-particle momentum is written as p in chapter |3, and as k
in chapter [l Lastly, momentum and energy units in chapter [3| are given in powers
of electron-Volts: MeV, GeV, ..., whereas in chapter 4] fm~! is used (the conversion
between these units is done by multiplying or dividing by hc ~ 197.3 MeV - fm).
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Chapter 2

Quasi-Elastic Electron Scattering off

Light-Nuclei

2.1 Introduction

The structure of small objects (e.g. atomic arrays, atoms, nuclei, nucleons, ...) can be
studied by examining how a probe (of known properties) scatters off them. In nuclear
structure studies, the electron is commonly used as a probe due to its lack of internal
structure and its very-well understood electromagnetic interaction. Electrons scatter
from nuclei by exchanging a single virtual photon. By tuning the resolving wavelength
of the virtual photon, A\, (determined by how much momentum it transfers to the
probed object) one can learn about properties of the nucleus at different scales. Fig.
shows a cartoon illustrating the overall features of the electron-nucleus cross section
as a function of transfer energy. At the low end of the spectrum (A, ~ 74, the nucleus
radius) the virtual photon emitted by the electron probe interacts coherently with the
nucleus as a whole (elastic scattering) providing a global description of this system.
At the high end of the spectrum (A, < 7y, the nucleon radius) the virtual photon
elastically interacts with one of the quarks forming the nucleons in the nucleus (Deep
Inelastic Scattering or DIS), allowing us to study the nucleon internal structure. In
the intermediate region, the virtual photon can excite the nucleus or its nucleons into

resonant states (A, N*, ...). Finally, when A\, ~ ry, the virtual photon can interact
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with a (quasi-free) nucleon bound in the nuclear medium, knocking it out of the
nucleus without breaking it (quasi-elastic, QE scattering), providing a description of
the nucleus internal structure. This last process will be the focus of this chapter and

the next one.

Electron-
Nucleus
Scattering
| N | | | Transfer
SIS ~ o R
sz?;‘\ 6;%06 Q}qﬁ\' ~ 93%%90 Energy
6500 & ¥
& N\,

Figure 2-1: Electron-nucleus scattering cross section vs. transfer energy (w) at con-
stant Q? = ¢% — w?, where ¢ is the transfer momentum. As the virtual photon
wavelength is decreased, smaller structures in the nucleus can be resolved.

2.2 Quasi-elastic (e, €'p) scattering

In quasi-elastic fixed-target electron-scattering measurements, electrons of momentum

pt = (Ee,p.) scatter from a nuclear target A of mass m, and momentum pj,, =

(ma,0) into a final state with momentum p, = (E., p,/). In this process, a Virtua

photon of momentum ¢* = p¥ — p!, = (w, ¢) and magnitude squared Q* = —¢* - ¢, =
7% — w? is emitted. As a result of the interaction with the virtual photon, a proton

gets knocked out of the nucleus with momentum ph = (£, p,), and the A — 1 system
recoils with momentum pf._ . See Fig. The plane defined by the incoming

and scattered electron vectors is called scattering plane, and the plane defined by

L A particle is denoted virtual if it is off its mass shell, meaning that it does not satisfy the
energy-momentum relation E2 = p? + m?, where E, p, and m are the particle energy, momentum,
and mass respectively.
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the virtual photon and knocked-out proton vectors is called the reaction plane. The
angle between these planes is denoted ¢. 6. is the electron scattering angle. 6,, and
0,, are the angles between the virtual-photon vector and the knocked-out proton and

recoiling system respectively.

u
precoil

Figure 2-2:  Diagram for (e, ¢'p) reaction kinematics. pf, pl,, p4, pi, and pl,.; are the
Lorentz vectors for the incoming electron, scattered electron, virtual photon, knocked-
out proton, and A — 1 recoiling system respectively. The blue area corresponds to the
scattering plane, defined by the incoming and scattered electron vectors. The green
area corresponds to the reaction plane, defined by the virtual photon and knocked-out
proton vectors.

If only the scattered electron is measured, then it is called inclusive-scattering, and
labeled (e, e') (for an (e, €') review see, e.g., [68]). If the momentum of the knocked-
out proton is measured in coincidence with that of the scattered electron ((e,e'p)),
additional quantities, such as the missing (or undetected) momentum and energy, can

be reconstructed:

ﬁmiss = ﬁp - (77 (21)
Emiss = W= Tp - TA—1> (22)

where T, = E, —m,, is the knocked-out proton kinetic energy, and 7’4 is the recon-
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structed kinetic energy of the recoiling A — 1 system, and can be written as:

Tacs = (@ +ma — Ey) — /(@ +ma — B,)? — [Fiss] (2.3)
(e,e'p) Cross Section and the Plane-Wave Impulse Approximation

The cross section for electron-induced proton knockout (e, e'p) scattering in the one-

photon-exchange approximation (see, e.g., [69]) can be written as:

dSo -
v A
= opott (YW,

2.4
dwd E,dQ2.dS, o (2.4)

where oneig 1S the Mott cross section, and Z/u/ and W:‘V are the leptonic and nuclear-
response (hadronic) tensors respectively. €2, and €2, correspond to the solid angles
for the scattered electron and knocked-out proton respectively. While the leptonic
tensor is well understood, the hadronic tensor cannot be calculated rigorously from
first principles for many-body systems without making approximations because of

QCD having strong coupling in this regime.

A commonly used model in scattering calculations is the Plane-Wave Impulse
Approximation (PWIA). The main assumptions of the PWIA are that: 1) the initial
and final state particle wave functions can be described using plane waves (~ eiE'F),
and 2) the interaction occurs over a very short time scale with respect to nuclear
dynamics (impulse approximation). In PWIA, the nuclear response functions (Wlf},)
are written in terms of nucleon response functions and, consequently, the cross section
from equation [2.4] factorizes into [70]:

d®o

%9 | = Ke,S(pl E), 2.5
Tod B, dnudy, lpwiy — TSP B (2:5)

where K = E,|p,| is a kinematical factor, o., is the elementary cross section for an
electron scattering from a bound proton [71], and S(|7;|, F;) is the spectral function,
the probability to find a nucleon in the nucleus with momentum |p;| and removal

energy F;. That is, in PWIA, the (e, e'p) cross section factorizes into a term that
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describes the interaction of the electron with the bound proton (o), and a term that
describes the configuration of that proton inside the nucleus (S(|p;|, E;)). The integral
of the spectral function over removal energy corresponds to the 1-body momentum

distribution (see section [1.2)):

n(I5i) = / " S5, EndE: (2.6)

The diagrams describing the PWIA processes of interest are shown in Fig. 2-3
In diagram a), the virtual photon interacts with a single nucleon, knocking it out
of the nucleus. Additionally, in diagram b), the two spectator (unstruck) nucleons
can rescatter between themselves (FSly3). As the struck nucleons from these dia-
grams leave the nuclear medium, they do not reinteract. Under these assumptions,
the missing momentum and energy are equal to the initial nucleon momentum and
removal energy respectively (Piniss = Di, Emiss = Fi). Consequently, interpreting an
(e,€'p) cross section measurement through the PWIA allows us to access the spectral

function?.

v v

a) PWIA b) FSL,,

Figure 2-3: Reaction mechanisms of interest: a) PWIA b) PWIA including the con-
tinuum final-state interaction between the two unstruck nucleons (FSIa;).

2.2.1 Quasi-elastic (e, €'p) scattering off A = 3 nuclei

The A = 3 system (namely the mirror nuclei *He and *H nuclei) plays a unique
role in nuclear structure studies in general, and electron-scattering reactions in par-

ticular [72]. This system is complex enough to include some fundamental nuclear

2Tt is worth stressing that spectral functions are not physical observables, and their extraction is
entirely based on the PWIA assumption.
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environment effects (e.g. NN interaction coming from different types of nucleon-
nucleon pairs, in contrast with the lighter deuteron system in which the interaction
is only between a proton and a neutron), but its ground state can still be calculated
very precisely (in contrast with heavier nuclei for which calculations are based on
effective models). Consequently, measurements of *He and *H(e, €/p) cross sections
can be used as a test of precise nuclear-theory calculations that are not feasible for

heavier nuclei, and also as a test of calculations based on equation [2.5]

Isospin symmetry and A = 3 doublet

3He and *H form an isospin doublet with total isospin quantum number 7" = 1/2
and third component T3 = (Z — N)/2 corresponding to T3¢ = 1/2 and Ty" = —1/2
respectively. That is, replacing all the protons with neutrons and all the neutrons

with protons transforms either of these nuclei into the other:

SHe 2P, SH. (2.7)
Since the nuclear force is nearly isospin symmetric, protons and neutrons in *He should
behave similarly to neutrons and protons in *H respectively. This can be tested by
analyzing ratios of 3He neutron to 3H proton momentum distributions, which are more
common than spectral function calculations (see Fig. [2-4). The isospin symmetry

argument is valid within 3% in the nucleon momentum range of interest.
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neutron
nsH e
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Figure 2-4: Ratio of He neutron to *H proton momentum distributions as a function
of nucleon momentum calculated using three different NN models [66], [73]. The dark-
and light-gray areas correspond to the +3% and +5% bands respectively.
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Bound (2bbu) and Continuum (3bbu) Final States

There are two possible final states in the QE (e, €/p) scattering off *He:

e In the case that E; > E;?Ii{ne%bbu = 2m, + m, — msg. = 7.7 MeV, then the
scattering process breaks up the nucleus into three pieces: two protons and a
neutron. Here, m,, m,, and msg, are the proton, neutron, and *He masses
respectively. Therefore, the final state corresponds in this case to three-body
kinematics, and the infinite ways in which energy and momentum can be shared
between the final-state nucleons creates a continuous energy spectrum. This

channel is known as the 3-body breakup (3bbu), or continuum channel, and

labeled 3He(e, e'p)pn.

o If B, = E;,’Ii{‘le%bbu = my + mg — Mmsye ~ 5.5 MeV, then the scattering process
breaks up the *He nucleus into two pieces: a proton and a deuteron. Here,
mg is the deuteron mass. Therefore, the final state will correspond to 2-body
kinematics, and the spectral function will depend on the separation energy as
~ §(E; — E;?Ii{r}j%bu). This channel is known as the 2-body breakup (2bbu), or
bound channel, and labeled *He(e, ¢'p)d.

In the case of (e,€'p) scattering off *H, the two neutrons left after the electron-
proton interaction do not form a bound state, and consequently only the 3bbu (or
continuum) channel exists. The threshold for this reaction corresponds to E; >
ESnd = my, + 2m,, — msy ~ 8.5 MeV, and the energy spectrum is continuous, like
that of the *He 3bbu channel. Here, may is the tritium mass.

Fig. shows the 3He proton and neutron spectral functions calculated by C.
Ciofi degli Atti and L. P. Kaptari using the AV18 potential [69] as a function of
nucleon momentum and energy. From isospin symmetry arguments, the 3He neutron
spectral function can be interpreted as the 3H proton spectral function. As expected,

only the 3bbu channel is present in this case.
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proton neutron

Figure 2-5: A = 3 AV18 spectral function calculated by C. Ciofi degli Atti and L.
P. Kaptari [69]. The left panel shows the *He proton spectral function normalized
to 2 (number of protons). The z-axis corresponds to p?S(p;, F;). The right panel
shows the *He neutron spectral function normalized to 1 (number of neutrons) which,
following isospin-symmetry arguments, approximately equals the *H proton spectral
function. The blue surfaces show the continuum or 3bbu channel. The red ridge, only
present on the left panel, shows the bound or 2bbu channel.

2.2.2 Suppression of non-QE reaction mechanisms

Besides the processes from the diagrams illustrated in Fig. there are several
reaction mechanisms that lead to the same final-state particles and thus can affect
or obscure the conclusions extracted from the measurement. The most significant of
these are Meson-Exchange Currents (MEC), Isobar Currents (IC), and Final-State
Interactions (FSI) (see diagrams in Fig. [74, [75]. Minimizing the contribution
from these reaction mechanisms is crucial for interpreting experimental results in the

context of PWIA. This has been experimentally studied before in the case of QE
d(e, e'p) studies [45].

MEC

MEC refers to the process in which the virtual photon transfers its energy and momen-
tum to the virtual meson being exchanged between two interacting nucleons. Relative

to the PWIA contribution, the amplitude for MEC is expected to be suppressed by
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a) MEC b) IC ¢) FSI

Figure 2-6: Non-QE reaction mechanisms with the same experimental signature as
the diagrams in Fig. a) Meson-Exchange Currents (MEC), b) Isobar Currents
(IC), ¢) Final-State Interactions (FSI).

a factor of at least (1+ Q?/(1 [(GeV/c?)?])~2 [74, [75]. Therefore, this process can be
reduced by going to high-Q? (Q* > 1.5 (GeV/c?)?) kinematics.

IC

IC refers to the process in which the virtual photon excites a nucleon into a A isobar
configuration in the intermediate state, which subsequently re-scatters off another
nucleon via AN — NN. Relative to the PWIA contribution, the amplitude for
IC is expected to be suppressed by a factor of at least 1/Q?. Therefore, this process
can also be minimized by going to high-Q? kinematics. In addition, A is on-shell
for w = Q*/(2m,) + 300 MeV. Therefore, IC is reduced by going to kinematics at
w < Q*/(2m,). Consequently requiring that x5 = Q?/(2m,w) > 1 limits the selection

to events far from the inelastic threshold, further suppressing the IC contribution.

FSI

FSI refers to the process in which the struck nucleon re-scatters from the other nucle-
ons in the system. Its effect can be minimized by requiring that the angle between the
momentum vector of the recoiling system and the ¢ vector (6,4, see Fig. be small.
To illustrate this, Fig. shows the ratio of a *He(e, €/p) cross section calculation
which includes rescattering of the struck nucleon (opyy), to the corresponding PWIA
cross section calculation (opwra) as a function of 6,, by M. Sargsian. For very small or
very large values of 0,,, opa/opwia approaches 1. The maximum rescattering occurs

for 0,4 = 70°.
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Figure 2-7: Ratio of calculated 3He(e, e'p) full cross section (which includes single
rescattering of the struck nucleon off either one of the other two nucleons) to the
PWIA cross section for p,,;ss= 200 MeV /¢ (blue), 400 MeV /¢ (green), and 500 MeV /¢
(red) as a function of 6,,, the angle between the recoil momentum and ¢ in the
laboratory frame. The vertical band shows the acceptable upper limit for 6,, to
minimize FSI. Calculation by M. Sargsian.

Any residual FSI effect is expected to cancel in the cross section ratio of equal mass

nuclei, since the knocked-out proton can rescatter off the same number of nucleons.

2.2.3 (e,€'p) cross-section calculations for few-body systems

Theoretical calculations for the 3He(e,e’p) and 3H(e, ¢'p) cross sections are carried
out using various techniques, and include contributions from different diagrams. For
instance, in this work, we examine the Cracow-group calculations based on the Fad-
deev formulation of the three-body system [72] 76l [77] which are carried out either
excluding or including FSI,; (see Fig. [2-3| b)), labeled Cracow-PW and Cracow re-
spectively. Furthermore, we consider a calculation based on equation [2.5] using the
3He spectral function from C. Ciofi degli Atti and L. P. Kaptari (see Fig. in-
cluding FSIp; [69] and the 0. electron-nucleon off-shell cross section [71], labeled
CK+CC1. Finally, we also consider a calculation by M. Sargsian [78| that either
excludes or includes FSI of the struck nucleon (see Fig. 2-6] c)) using the general-
ized Eikonal approximation [79, [80] (but excluding FSls3), labeled Sargsian-PW and
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Sargsian-FSI respectively. The cross-section calculations available at the time of this
study are listed in Table We will test the effects of the different approximations

against experimental data.

Table 2.1: List of available *He and *H(e, €/p) cross-section calculations.
| PWIA  PWIA+FSI,; PWIA+FSI

Cracow v v
CK+CC1 v
Sargsian v v

2.2.4 Previous A = 3 electron-scattering measurements

There are many electron-scattering measurements on 3He [81], 82} [83], 84! 85| [86], 87].
The most relevant to this thesis are the QE 3He(e, ¢'p) 2- and 3-body breakup cross-
section measurements from [42, [44]. These measurements were carried out at Q* =
1.5 (GeV/c?)? and xp = 1, near the expected maximum of struck-proton rescattering
and, therefore, suffered from the reaction mechanisms described in section 2.2.2] The
measured cross-sections were lower than PWIA calculations by a factor of ~ 2 for
Pmiss < 250 MeV /¢, higher by a factor of ~ 3 for 400 < piss < 500 MeV /¢, and
even higher for larger p,,;ss, and were only accurately described by calculations that
included large contributions from non-QE mechanisms [33] 43| 88|, [89]. See Figs.
and These calculations included both single- and double-rescattering, as well as
meson exchange (7 and p) and IC. The interpretation of these results was limited due
to the model dependence with which such calculations are carried out.

Tritium measurements, on the other hand, are much more infrequent due to safety
limitations and regulations associated with this radioactive nucleus. 3He and *H,
(e,€') and (e, e’p) were measured in the early 1960’s at the Stanford Linear Acceler-
ator Center (SLAC) [901 91}, 192, 93]. In the late 1980’s, additional (e, ¢’) measurements
were carried out at MIT-Bates and Saclay [94, (95, (96, [97, [98,99]. No new 3H electron
scattering data have been published since.

While the *He measurements are extremely important, the simultaneous mea-

surement of the *He(e, ¢'p) and 3H(e, €'p) reactions allows us to rigorously study the
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A = 3 system as a whole, and further constrain the non-QE reaction mechanism and
ground-state wave function models. Additionally, results from comparing the high-
Pmiss Mmeasured cross sections with calculations carried out using different models of

the NN interaction can be used to constrain NN models at short distances.
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Chapter 3

Measurement of (e, e’p) Scattering off

H And °He

[Phys. Lett. B 797, 134890 (2019), arXiv: 2001.07230 (2020)]

In this chapter, I will describe the first measurement of the 3He and 3H(e, ¢/p) reac-
tions in kinematics in which non-QE reaction mechanisms are expected to be minimal,
and in the range 40 < ppiss < 500 MeV /c. The measurement took place in May 2018
in Hall A of the Thomas Jefferson National Accelerator Facility (JLab).

This chapter is organized as follows. Section describes the experimental setup
used in the measurement, which corresponded to the standard Hall-A equipment with
a newly-designed target cell. Section [3.2|explains how the Hall-A (e, ¢'p) Monte Carlo
event generator was modified to correctly simulate the A = 3 cross section, and sub-
sequently used to determine the kinematical settings for the experiment. Section
describes the detector calibration tasks in which I was most involved. Section [3.4]
outlines the method used to corroborate that the experimental luminosity was well
constrained. Section reports in detail the data-analysis procedures carried out to
extract the He/*H(e, €/p) cross-section ratio [I01] and *He and *H(e, e'p) absolute
cross sections [102]. Lastly, sections and present and discuss our findings.
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3.1 Experimental setup

3.1.1 JLab accelerator

This experiment was carried out at JLab, which operates the Continuous Electron
Beam Accelerator Facility (CEBAF) [103]. Electrons produced in an electron gun
(photocathode) travel through the race-track-like loop shown in Fig. , and gain
energy when traversing the north and south linear accelerators (linacs) located in the
straight sections of the path. The electron beam can circle this race-track-like loop up
to five times (gaining approximately 2.2 GeV in every “pass’) before being delivered

to one of four experimental halls (labeled A through D).

electron north linac Hall

south linac

Figure 3-1: Aerial view of the Continuous Electron Beam Accelerator Facility (CE-
BAF) at JLab. Top: diagram showing the main features of CEBAF. The thick black
lines describe the paths travelled by electrons as they are accelerated and delivered
to the halls. Bottom: an aerial photo of CEBAF. All the components described in
the diagram are underground. However, some service buildings, roads, and the hall
roofs are visible from above.

In this experiment, a 2"¢ pass beam was delivered to Hall A, in which it impinged
on a gaseous target located in the center of the hall. In the next sections, I will
describe the experimental setup used to measure different quantities related to the

incoming electron (3.1.2)), nuclear target (3.1.3), and scattered electron and knocked-

52



out proton (3.1.4). More details on all the information described in the rest of this

section can be found in [104] and references therein.

3.1.2 Hall-A beam line

In this section, I will describe how the incoming-electron vector (beam direction
and energy), as well as the total amount of electrons (delivered beam charge) are

determined.

Beam position and direction (Beam-Position Monitors and Raster)

A combination of the transverse electron orbit in the accelerator (betatron motion)
and other effects cause the transverse beam position at the target to be different from
the nominal (z,y) = (0,0) position. The transverse beam position is measured by a
set of two Beam-Position Monitors (BPMs) located 7.524 m and 1.286 m upstream of
the target respectively. Each BPM consists of four antennas oriented in the direction
of the nominal beam path. As the beam travels through the BPM, each antenna
measures a voltage. Comparing these signals allows the BPM system to determine
the transverse beam coordinates in the BPM plane to within 100 gm (for currents
above 1 pA). Comparing the transverse beam coordinates determined by the two
BPMs allows one to determine the incoming electron direction.

The BPM measurements are non-disruptive to the beam. However, before the
BPMs can be used, they need to be calibrated against wire scanners called harps.
The harp scans are beam disruptive measurements that consist of moving wires in
different orientations across the beam path (at low currents) and reading out the
induced wire signals. Two harps are positioned in the beam line (each adjacent to a
BPM) and are surveyed with respect to the Hall A coordinate system by the JLab
alignment group.

The heat transferred from the electron beam to the target can permanently dam-
age the target cells. In order to avoid this problem, the heat load is spread out by

rastering the beam. This is achieved using a set of four (two vertically- and two
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horizontally-deflecting) dipole magnets located 23 m upstream of the target. These
dipoles deflect the beam in the vertical and horizontal directions at ~ 25 kHz. A
slight mismatch between the vertical and horizontal frequencies creates a Lissajous-
like pattern. The raster is typically calibrated against the BPMs and is set to deflect
the beam over a 2 mm x 2 mm area. The raster induces a phase lag between the real
beam position and the position recorded by the BPMs, and the BPMs only provide
the average beam position. To get the event-by-event transverse beam position, the

raster current is used instead.

Beam energy

This experiment was conducted with a 2" pass beam, which means a fixed nominal
energy of approximately 4.4 GeV. We accurately measured the beam energy using the

arc method.

The electron beam to Hall A is deflected by a series of 8 dipole magnets (see
Fig. 3-2). The momentum of the electron beam is related to the bend angle of the

arc and the field integral of the eight dipole magnets as:

[B-dl
Qbend

where k = 0.299792 GeV -rad - T™' - m~!/c. The bend angle can be measured using

lpe| =k

, (3.1)

four harp scanners (two placed before, and two placed after the 8 dipoles). Since
the eight dipoles are inaccessible, a 9th dipole, which is identical to and powered in
series with the other eight, is used to measure the field integral. The absolute field
measurement is done using a Nuclear Magnetic Resonance (NMR) probe, and the
integral is determined via the “translating coil” method, consisting of moving two
coils separated by a fixed distance through the dipole, and measuring flux changes in
the two coils. Further details on how this procedure is carried out can be found in
[105]. The measured beam energy was determined to be narrowly distributed around

E, = 4.3256 GeV.
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Figure 3-2: Absolute beam-energy measurement using the arc method.

Beam current and charge (Beam-Current Monitor)

The experiment was carried out at a nominal electron-beam current of 22.5 yA. The
delivered beam current is measured continuously and non-intrusively (with an accu-
racy of < 0.5% in the range 1 — 180 pA) using the Beam-Current Monitor (BCM)
system (see Fig.[3-3|) which is located 25 m upstream of the target system [106]. It con-
sists of a parametric current transformer (referred to as an Unser) sandwiched between
two Radio-Frequency (RF) cavity monitors enclosed in a temperature-stabilizing,
magnetic-field-shielding box. The RF cavity monitors are stainless steel pill-box cav-
ities tuned to the electron beam frequency (1.497 GHz). An electron beam passing
through the Unser and RF cavities induces a measurable frequency (f) which is pro-
portional to the input current (i.e. I = (gain) - f + offset). Measuring this frequency
allows one to determine the beam current.

Two of the main advantages of the Unser are 1) it can be periodically self-calibrated
and 2) its gain is very stable. Its main disadvantage is that its offset drifts significantly
(at the pA level) on a time scale of several minutes and, consequently, cannot be used
for a long-term current measurement. On the other hand, the RF cavities have the
advantage that their signal is very stable (within 0.5% on the scale of several months),
but the disadvantage that they cannot be self-calibrated. Thus, the BCM system is

used by doing an Unser self-calibration, calibrating the RF cavities against the Unser
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Figure 3-3: Schematic of the Hall-A Beam Current Monitor (BCM).

immediately after, and subsequently monitoring the current using the RF cavities.
The calibration process for these devices is described in section
The charge delivered by the incoming electron beam is determined by integrating

the measured current over time.

3.1.3 Tritium target assembly

The Hall-A target system consists of a “ladder” that moves vertically to align a given
target with the incoming electron beam (see Fig. [3-4). The ladder is equipped with
five gas cells followed by a series of solid targets. The gas cells include tritium,
deuterium, hydrogen, helium-3, and an empty cell for background studies. The solid
targets are a 25-cm dummy and optics targets, and the carbon hole, raster, aluminum,

carbon, titanium, and BeO targets.

Gas cells

The gas cells used in this experiment (see Fig. [3-5)) correspond to sealed containers
in which the gas is not circulated. This is different from the standard Hall-A high-
current circulating-fluid target cells. The cell was designed to minimize the amount
of tritium required and to provide several layers of tritium confinement. The cells

were fabricated from aluminum 7075-T651. Additional considerations for the cell de-
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Figure 3-4: Target Assembly. (Left) Side view of target ladder used during the
experiment. The areas marked in yellow show the gas target cells, which include
(from top to bottom) tritium, deuterium, hydrogen, helium-3, and an empty cell for
background studies. Below the gas target cells, we find the solid targets, which include
the 25-cm dummy and optics targets (area marked in red) and the carbon hole, raster,
aluminum, carbon, titanium, and BeO targets (area marked in light blue). (Right)
Frontal view of the solid targets. The ladder moves up and down to position any
selected target in front of the electron beam (the direction of which is represented by
a red arrow (left) and cross (right)).

Figure 3-5: Schematic of the gas target cell. (Left) Cell design. (Right) Side view of
the cell. The bright-green area represents the gas volume.
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sign included minimizing the aluminum volume to allow for the beam and scattered
particles to enter and exit the cell with minimal effect from the target walls. Addi-
tional details can be found in [I07, 108]. The gas densities and other properties are

summarized in Table B.1l

Table 3.1: Properties of the gas targets used in the experiment. The thickness is
obtained by multiplying the gas density [mg/cm?| by the target length (25 cm). See
[107, [109) 110] for details.

Target | Fill Pressure [kPa] Fill Temp [K] Thickness [mg/cm?]

SH 1400 296.3 £ 0.1 85.1 £ 0.8
’H (d) 3549 296.1 £ 0.1 142.2 £ 0.8
'H 3549 2974 £ 0.1 70.8 £ 04
SHe 1772 2943 £ 0.1 53.4 + 0.6

Solid targets

In this experiment, the solid targets were only used for beam centering, raster, and

optics calibrations. See section for more details.

3.1.4 High-Resolution Spectrometers (HRS)

The scattered electron and knocked-out proton were measured using the standard
Hall-A detector package, which consists of two (almost identical) High-Resolution
Spectrometers (HRS) [104], labeled “Left” and “Right” according to the side of the
beam line in which they are located, as shown on the left panel in Fig. [3-6l The
target system is located at the center of the hall, and the spectrometers can indepen-
dently pivot around this point to detect particles scattered at specific angles. In each
HRS, four sequential magnets (three quadrupoles (Q), and a dipole (D), in a QQDQ
sequence) focus and bend charged particles of a specific charge upwards to the detec-
tor package, as shown on the right panel in Fig. [3-6l By tuning the magnetic field
in these magnets, one can study particles with momenta centered around a specific

central momentum. The maximum momentum is about 4 GeV /c.
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Detector Package W

Figure 3-6: (Left) Hall-A experimental setup illustrating the beam-line components,
target, and Left and Right High-Resolution Spectrometers (HRS). (Right) Side view
of the HRS showing the QQDQ structure (where Q stands for quadrupole, and D
stands for dipole), and the detector package.

HRS acceptance

The HRS momentum acceptance corresponds to 6 ~ +4.5% of the central spec-
trometer momentum value p.: p = p.(1 + §). The horizontal angular acceptance
is approximately +30 mrad around the spectrometer’s central angle, and the verti-
cal acceptance corresponds to approximately +60 mrad about the horizontal. The

Hall-A HRS acceptance is summarized in Table [3.2]

Table 3.2: Hall-A HRS nominal momentum and angular acceptance.
‘ acceptance

Momentum +4.5%

horizontal | 30 mrad
vertical +60 mrad

Angular

HRS detector package

A schematic of the HRS detector package is shown in Fig.[3-7 The main components
of the detector package are a pair of vertical drift chambers (VDCs), which provide
tracking information, and a pair of hodoscopes (scintillator detectors, labeled SO and
S2) which provide triggering (activation of data-acquisition system, DAQ) and timing
information. These components are identical in both spectrometers. The remaining

components, a CO, Cherenkov detector and a lead-glass calorimeter, provide particle
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identification.

S0 hodoscope
/ CO: Cherenkov

N

\
nominal particle /°

traject
SO Vertical Drift Chambers {VDC)

Figure 3-7: Schematic of the HRS detector package. Particles traverse the detector
from left to right, and from below at 45°.

Vertical Drift Chambers

A pair of Vertical Drift Chambers (VDC), separated by 335 mm, provide tracking
information in each HRS [I11] (see Fig.|3-7). Each VDC consists of two wire planes
in a UV configuration, with the wires in the U and V planes in a 90° angle with
respect to one another, and the two planes together in a 45° angle with respect to the
nominal particle trajectory, as shown in Fig. [3-8 Each (U and V) plane is composed
of 368 sense wires separated by 4.24 mm. The active volume of each VDC consists of
a gas mixture of argon (62%) and ethane (38%). The sense wires are at a potential
of 3.5 kV.

When a charged particle crosses this gas mixture, it ionizes the gas molecules.
The resulting electrons are accelerated by the electric field towards the closest sense
wire, creating an electrical signal in that wire. The wire which the electron drifted
toward, and the hit timing information are recorded. Information from four hits are
used to reconstruct a track. In the spectrometer focal plane, defined by the lower

VDC layer, the position resolution is o,, ~ 100 pum, and the angular resolution is
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Figure 3-8: Schematic layout for the two Vertical Drift Chambers (VDC) in each
Hall-A HRS. Figure taken from [104]. The top and bottom schematics show the side
and top views of the VDC respectively.
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096 ~ 0.5 mrad. This, combined with the long optical path (=~ 23.4 m from target
to focal plane) allows for a momentum resolution of about 2 x 10~% and an angular

resolution of about 2 mrad at the target.

Hodoscopes

In each HRS, a pair of hodoscope detectors labeled SO and S2 provide triggering and
timing information. The SO detector consists of a long scintillator paddle read out
from above and below by two Photo-Multiplier Tubes (PMT). Approximately 2 m
after SO in the particle path, the S2 hodoscope consists of 16 slightly overlapping
paddles, each read out from both sides by two PMTs. See Fig. [3-9. The active areas
of the SO and S2 hodoscopes are approximately 190 x 40 cm? and 220 x 54 cm?

respectively.

nominal particle
trajectory

Figure 3-9: Schematic layout (side view) for the hodoscopes in each Hall-A HRS. The
blue and green areas represent the SO and S2 scintillators respectively. The gray areas
indicate PMTs.

The Hall-A hodoscopes work through the principle of scintillation. When charged
particles traverse a scintillator, they excite the scintillator molecules in their path. As
these molecules de-excite, they emit light that, when coupled to a PMT, is converted
into an electrical signal, amplified, and recorded. Compared to other detectors, scin-
tillators have a very fast time response and, consequently, are commonly used for

timing purposes. For more details about scintillation see, e.g., [112].
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The long optical path from the interaction point to the HRS detector package,
combined with the fast response of scintillator detectors, allows for time-of-flight
particle identification (relative to detected electrons) with a resolution o ~ 0.5 ns in

the case of coincidence experiments such as this ond}

Cherenkov detector

A COy Cherenkov detector (filled at atmospheric pressure, n = 1.00041) is installed in
each spectrometer between the SO and S2 scintillator detectors [I13]. The Cherenkov
light is focused onto 10 PMTs by 10 spherical mirrors.

When a charged particle travels through a medium (of refraction index n) with
velocity v = fc greater than the speed of light in that medium, a characteristic cone of
light with an opening angle 6~ such that cosfs = (fn)~! called Cherenkov radiation
is emitted. Since the cosine function takes a maximum value of 1, the threshold for
this Cherenkov radiation to be emitted corresponds to = 1/n, and consequently,

the momentum threshold for a particle of mass m is:

mc

T (3.2)

P¢ threshold =

Because of the mass dependence, we use Cherenkov detectors for particle identi-
fication. In the Hall-A Cherenkov detectors, the Cherenkov radiation threshold for
pions is p, > 4.8 GeV /¢, and even higher for heavier particles. These detectors iden-
tify electrons with 99% efficiency. The Cherenkov detector signals can be combined

with the hodoscope signals to create different trigger configurations.

Lead-Glass calorimeter

There are two calorimeter layers in each Hall-A HRS. Each layer is composed of
several tens of (~ 10 x 10 x 30 cm?) lead-glass blocks. The exact size of the blocks,
their number, and orientation, is slightly different between each calorimeter layer and

also between the two spectrometers [104].

!This limit is actually set by the readout electronics used in the experiment and not by the
scintillators.
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When a high-energy electron (or positron) interacts in a dense medium, it loses
energy by the emission of a photon (this process is called Bremsstrahlung, see sec-
tion for details). This photon then produces an electron-positron pair. This
pair, and the original electron (or positron) go on to radiate more photons that con-
sequently pair-produce more electrons and positrons. As this process is repeated
many times, a cascade of particles (referred to as electromagnetic shower) is pro-
duced. This shower continues to develop until the average energy of the particles falls
below a critical energy (which depends on the atomic number of the material).

When hadrons (both charged and neutral) interact strongly with the atomic nuclei
in the same medium, they can produce particles that interact further downstream,
producing a cascade of particles (referred to as hadronic shower). Electromagnetic
and hadronic showers develop very differently. While the former is more uniform
(repeating Bremsstrahlung and pair-production steps), the latter is more variable,
since many more final states are produced in high-energy hadronic interactions. Ad-
ditionally, neutral pions produced in the interaction decay via 7° — v, leading to
an electromagnetic component in the shower. Moreover, about a third of the incident
energy is lost in the form of nuclear excitation, making this energy undetectable.
Furthermore, electromagnetic showers develop and die off in a smaller volume than
hadronic ones. All these differences between the two types of showers make their

detection (with calorimeters) a useful particle-identification method.

3.1.5 Trigger setup and efficiency

We recorded all events which had an electron-spectrometer trigger. The trigger setup
for this experiment is summarized in Table [3.3] The DAQ was configured to record
events for which any of the LHRS triggers (T1 through T3) fired. Additionally, the
information from the remaining triggers was saved onto the data stream.

To determine the T1 efficiency, e11, we begin by selecting a good electron sample
Niot with nominal acceptance cuts, a single track reconstructed by the VDCs, a good
signal in the Cherenkov detector, and by requiring that the events fired T3. Of this

sample, we determine Nt3, the number of events that fired T3, but neither T1 nor
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Table 3.3: Trigger setup. SO and S2 refer to signals in the first and second scintillator
planes encountered by particles traversing the detectors. GC refers to a signal in
the gas Cherenkov counter. The symbols “&” and “||” represent the logical operators
“and” and “or” respectively.

‘ Label Trigger Logic

T1 (SO & S2)|LuRs
LHRS trigger | T2 (SO & S2 & GC)|Lurs
T3  ((S0 || S2) & GC)|Lumrs

RHRS trigger | T4 (SO & S2)|rurs
C1 T1 & T4

Coincidence C2 T1 & S2|rurs
C3 T1 & SO|rurs

T2. Consequently, Nt3/Nio corresponds to the combined SO and S2 inefficiency (if
T3 fired, but T1 did not, it is because either SO or S2 did not fire). This is illustrated
in the left Venn diagram from Fig. [3-10] T1 is represented by the entire red area
(including the purple overlap with T3). T3 is represented by the entire blue area
(including the purple overlap with T1). T2 is represented by the purple overlap
between the red and blue areas. Nrg corresponds to the gridded area, and Ny, to
the entire blue area (including the purple overlap with T1). Thus, the T1 efficiency

is determined as:

NT3

€T1:1—

~ 99.7 £+ 0.1%. (3.3)

tot

Figure 3-10: Venn diagram illustrating the relationship between different triggers:
(Left) LHRS, (Right) Coincidence. Note that the red and blue areas on the left
diagram include the purple area from the overlap. Similarly, the yellow and blue
areas on the right diagram include the green area from the overlap.
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The T4 efficiency, ery, is determined by the RHRS SO and S2 efficiencies:

Ncy Ncy

€T4 = GSO|RHRS X €S2|RHRS = (N—C2 X (N—Cs) ~ 984 :I: 01%, (34)

where N1, Neo, and Ngz are the number of events that fire triggers C1, C2, and
C3 respectively, and in which the RHRS particle satisfies the same acceptance and
single-track cuts required in the ep; calculation, and are represented by the green,
yellow (including the green overlap), and blue (including the green overlap) areas in
the right Venn diagram from Fig. [3-10| respectively.

Coincidence events were selected from the difference between the electron and
proton event times (T1-T4). Therefore, the coincidence-trigger efficiency is defined

as:

€coinc = €T1 X €14 ~ 98.1 £ 0.1%. (35)

3.2 Simulation studies

SIMC is a Monte Carlo event generator that emulates the Hall-A experimental con-
ditions [IT4]. SIMC generates events following the QE (e, e’p) PWIA cross-section
model from equation Radiation, Coulomb, energy loss, and other corrections can
be added to the generated data. Subsequently, these events are propagated through a
realistic HRS model to account for detector acceptance and resolution effects. These

events can then be analyzed just as measured data.

A = 3 cross section

The standard SIMC package could be used to simulate the d(e,e’p) breakup and
A > 3 continuum reactions. In the case of d(e, €'p), the cross section is calculated

following equation [2.5] with the spectral function:

Sa(|Bil, Bi) = na(|5:)6 (E; — Eg™), (3.6)
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where n, is the deuteron 1-body momentum distribution from Wiringa [115], and
EPnd s the deuteron binding energy. In the case of A > 3 continuum reactions, the
cross section is calculated using a series of spectral functions by Benhar et al. [116].
I added to SIMC the 3He spectral function calculated by C. Ciofi degli Atti and L.
P. Kaptari [69] and shown in Fig. . Due to the lack of a 3H proton spectral function,
SIMC was modified to assume isospin symmetry, and the 3H(e, €'p) calculation was
carried out using the *He neutron spectral function from [69] instead. As shown in
section this assumption is valid within ~ 3% in the p,,;s range studied.
Finally, the 3He(e, ¢'p) 2-body breakup (2bbu) channel needed to be added to the
simulation. To achieve this, I created a new, independent simulation mode. In this
new mode, SIMC treats the kinematics for scattering off 3He(e, €'p) identically to
d(e, €'p), with the replacement of the appropriate variables (e.g. target mass: mg —
Mspe, and binding energy: E5nd — E%}%w), and using the 2bbu spectral function

from [69]. The 2- and 3-body breakup simulations are then run independently, and
subsequently added.

Kinematics selection and optimization

We chose Q% = 2.0 (GeV/c?)?, and xp = 1.4 to reduce non-QE reaction mechanisms.
We then chose a 2" pass beam (E, = 4.4 GeV) so the scattered electron could be
detected in the HRS. This gave a central angle and momentum for the scattered
electron in the LHRS of (0., po) = (20.88°, 3.543 GeV/c).

We ran simulations for these conditions and considering knocked-out protons
with any final-state momentum and angles. Given the limited HRS acceptance, two
separate kinematical settings were needed to cover a missing momentum range of
40 < Priss < 550 MeV /¢, with the low-p,,;ss kinematical setting extending up to about
Pmiss ~ 250 MeV /¢, and the high-p,,;ss kinematical setting covering higher p,,;ss. This
range ensured complete coverage of the transition between single-particle and two-
nucleon SRC behavior. Two (one for each kinematical setting) large-acceptance 6,

vs. p, histograms were created (with counts in the z axis), only including events

for which 6,, < 37.5° to minimize FSI (see section [2.2.2). Since the cross section
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is larger at lower-p,,iss, the low-p,.iss kinematical setting is determined by scanning
the resulting 6, vs. p, histogram with a “box” the size of the HRS angular (hori-
zontal) - momentum acceptance (see Table and determining the spectrometer
central kinematics as the box position which yields the maximum number of counts.
The candidate high-p,,;ss kinematical setting was selected by additionally requiring
events for which pp,ss > 300 MeV/c, and then repeating the process of scanning
this 0, vs. p, histogram with the acceptance box. The resulting low- and high-p,,ss
kinematical settings were determined to be (6,, p,) = (48.82°,1.481 GeV/c) and
(58.50°,1.246 GeV /c) respectively.

An additional kinematical setting was determined similarly for the measurement
of H(e, €'p) elastic scattering. This kinematically-overconstrained reaction is used for
calibration and resolution studies. In order to minimize RHRS motion, the proton-
arm kinematical setting was fixed to be that of the low-p,,;ss kinematics, and the 6 —p
plot used for the kinematics determination was created with electron variables. The

experimental kinematics are summarized in Table [3.4]

Table 3.4: Kinematical settings used in the experiment.
| LHRS setting (6., po) | RHRS setting (6,, p,)

58.50°, 1.246 GeV/c
48.82°, 1.481 GeV /¢

Bigh-pmis, Kinematics | o goo 5 543 Gy /e
low-piss Kinematics

H(e, €'p) kinematics 17.80°, 3.543 GeV /¢

We also measured d(e, €/p) in the low-p,,;ss kinematical setting.

3.3 Calibrations

The JLab Hall-A Tritium program included four experiments run by dozens of physi-
cists, including over 13 graduate students. While the physics goals varied, the cali-
bration measurements were done concurrently, and shared among experiments. Here,

I summarize the calibration tasks in which I was most involved.
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3.3.1 BCM calibration

The BCM system is calibrated in two steps: 1) the Unser is self calibrated (without
electron beam), and 2) the RF cavity monitors are then calibrated against the Unser

(with electron beam).

The Unser is calibrated by passing a known DC current through an internal wire,
and creating a map between the frequency measured by the Unser and the input cur-
rent. The current is passed through the wire in 90-second steps, increasing the wire
current in every step (2,3, 5, 10, 25, 40, 60, 80, 90, 100 nA) (see Fig. a)). The wire
current is turned off before and after each step. These zero-current steps are measured
to subtract the Unser DC background (pedestal). This sequence can be repeated to
improve the measurement statistics. After the pedestal has been subtracted, the
frequency distribution measured in each current step is fitted with a normal distri-
bution, and the resulting mean is taken to be the measured frequency. The error
in the Unser frequency response is given by %ﬁze (where step size = 90 sec). 1
plotted input DC current vs. Unser frequency and fitted it with a linear function
Linput = (8ainy,eey) - funser + Offsetunser. The fit parameters correspond to the Unser

gain (stable) and offset (drifting). See Fig. b).

The RF cavity calibration requires turning the electron beam on and off several
times, and simultaneously measuring the RF cavity and Unser responses. A beam
profile corresponding to 90-second steps of 3,7,12,18,22.2 yA with additional 0 puA
steps between each step is requested. Since the calibration is done with the beam-
line equipment, the nuclear target in the hall is irrelevant. See Fig. |3-11| ¢). The
pedestal in the resulting Unser spectrum is subtracted as described above. Since the
RF cavity monitors are low noise devices, their spectra do not need to be background
subtracted. The frequency distributions measured by the Unser and RF cavities in
each current step are fitted with normal distributions, and the resulting means are
taken to be the measured frequencies. The Unser gain parameter obtained in the
Unser calibration step is then used to determine the beam current, which is plotted

vs. the measured RF cavity frequency. This plot is fitted with a linear function
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Figure 3-11: (Top) Unser calibration:  a) frequency measured by the
Unser as a function of time. The steps correspond to different values
(2,3,5,10,25,40,60,80,90, 100 xA) of the input current passed through the Unser’s
internal wire. The lowest frequency values correspond to the pedestal measured when
the wire current is set to zero. b) Input wire current as a function of the pedestal
subtracted Unser frequency. A linear fit allows one to extract the Unser calibration
parameters (gain and offset). (Bottom) RF cavity calibration: ¢) frequency measured
by the Unser and RF cavity monitors as a function of time. The steps correspond
to different values (3,7,12,18,22.2 pA) of the electron beam current. The lowest
frequency values in the Unser signal correspond to the pedestal measured when the
beam current is set to zero (beam turned off). d) Beam current determined from
the calibrated Unser as a function of RF cavity frequency. A linear fit allows one to
extract the RF cavity calibration parameters (gain and offset, see Table .
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Tunser = (gaingp) - frr + offsetgp. Finally, the RF cavity gain and offset are stored
and used to determine the beam current in subsequent runs. See Table and

Fig. d).

Table 3.5: RF-cavity calibration parameters. See text for details.
| gaingp [pA/Hz]  offsetpp [pA]
Upstream RF cavity | (2.96 £0.03)e-04 —0.10 £ 0.10
Downstream RF cavity | (3.35+0.03)e-04 —0.09 £ 0.10

3.3.2 HRS optics calibration

Particles detected in the HRS travel about 23 m from the target to the spectrometer
focal plane, where their coordinates are measured by the VDCs. We measured the
spectrometer “optics” in order to be able to reconstruct the particle’s coordinates at
the target (9,6, y, ¢);, from the measured coordinates at the focal plane (x,6,y, @) sp.
The reconstruction of coordinates at the target from the coordinates measured at the

focal plane is described by an optics tensor (T) [117]:

4] x
0 0
=T (3.7)
Y Y
L g - 4 fp

The variables measured at the focal plane correspond to the position of the particle
and the tangent of the angle made by its trajectory along (zy,, 0y,) and perpendic-
ular to (ysp, ¢fp) the dispersive direction. The variables reconstructed at the target
(0, Yig, Prg, Oig) are related to physical variables (momentum, z-coordinate of the
interaction vertex, and in- and out-of-plane angles). The elements of T are written

as:
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Yig = > b, 5,8 (3.8)

j7k7l

Oig = Z Tjkle}pyl;pélfp’ (3.9)

j7k7l

¢tg = Z P]klgipy?pgslfp’ (310)

Jk,l

0= Z Djklej”pyl}:pwfp? (3.11)

gkl

where the tensors Y, Tji, Pjri, and Djy are polynomials in zf,. For example:
m
Dju =Y C/Ma, (3.12)
i=0

The optimization method consists of finding the coefficients for these tensors that
best reproduce known positions, angles, and momenta through a y?-minimization
procedure. There are well established codes that have been traditionally used for this
task in Hall A. In principle, the optics tensor should be a property of the spectrometer
which, once determined, could be indefinitely used. In practice, the spectrometers
are complex systems with many moving components that are individually calibrated
and from time to time replaced and, consequently, different experiments have to, at

least, check the quality of the optics tensor at the time of the measurement.

The Y, T, and P coefficients are determined by taking data with the optics (or
multi-foil) target (see Fig. [3-4) and sieve-slit collimators (see Fig. |3-12)). The optics
target corresponds to 11 (0.25-mm-thick) carbon foils separated by 2.5 cm (thus
spanning a total length of 25 cm) with the central foil located at the center of the
target ladder (z = 0). The sieve-slit collimators are stainless steel slabs with a
pattern of 49 holes spaced differently in the horizontal and vertical directions. That,
combined with the different-sized holes, allow for the unambiguous determination of
the collimator orientation. The sieve-slit collimators are placed at the entrance of the

spectrometers. The known z-coordinates of the foils in the optics target, and x- and
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y-coordinates of the different holes in the sieve-slit collimator (in a given HRS) can
be written as a function of v, @14, and 0;,, and thus the Y, T', P coefficients can be

determined (for that HRS) from this measurement.
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Figure 3-12: Sieve-slit collimator pattern: (left) geometric and (right) reconstructed.

The D coefficients can be determined, for example, by measuring a kinematically-
overconstrained reaction such as elastic H(e, ¢’) in different momentum ranges and
determining the parameters that minimize the difference between the momentum
reconstructed from the measured ¢ and that reconstructed from the electron scattering
angle.

The starting point for our optics optimization corresponded to the tensor coeffi-
cients determined by the JLab GMp experiment (E12-07-108), which preceded the se-
ries of Tritium experiments and thoroughly calibrated the Hall-A spectrometers [118].
The Y, T, and P coefficients determined by the GMp experiment were re-optimized

via the standard method with optics target and sieve-slit collimator data.

High-order HRS optics check

We checked the HRS optics performance by verifying that quantities with physical
meaning are correctly reconstructed over the entire spectrometer acceptance. For
example, the missing energy for H(e, e'p) elastic scattering should be a delta function

centered at zero. The ‘narrowness’ of this quantity makes it particularly sensitive to
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the HRS optics. While E,,;ss did not vary with LHRS w4, ¢4y, and 9, or with any of
the RHRS variables in our analysis, it did vary with LHRS 6,, (see Fig. left).

Emiss [MEV]

L o L " | .
=30 20 -10 0O 10 20 30 =30 20 -10 0 10 20 30
LHRS 6, [mrad] LHRS 6, [mrad]

Figure 3-13: E,,;ss dependence as a function of LHRS 6,, for H(e, €’p) elastic scatter-
ing. F,,;ss should be a delta function centered at 0, and should have no dependence
on any kinematical variable. The left plot shows a linear ‘optical aberration” between
Eiss and 04,. The right plot shows the same histogram after correcting the LHRS
matrix element C’éj 190 We see that, after the correction, FE,, ;s is not centered around
0 yet (because the 0'"-order corrections from the next section still need to be applied).
Nevertheless, the optical aberration is not present anymore.

Since E,,ss is a function of §, not 6y, any dependence of E,,ss in 6y, can be
interpreted as a spurious dependence between ¢ and 6;,. Since the ‘optical aberration’
is linear, the problem should come from the matrix element that relates 0 and 6,
linearly. Since 6, o 6y, (i.e. the only non-zero linear coefficient in equation is

Ti00), we see from equations and that this element is C2'%. We fitted this

slope and extracted a correction equal to:

ACP™ = (7.36 4 0.08) x 1072 (3.13)

The right plot in Fig. m shows the corrected dependence between Fi,;ss and 0.
This was the only high-order ‘optical aberration’ found. See Appendix [A] Figs.
through [A-T0] for plots of several physical quantities as a function of different spec-
trometer variables after this correction is applied. Although some of these distribu-

tions are broader than F,;, all of them exhibit the expected ‘flat” behavior within
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approximately 1 MeV.

0""-order HRS optics check

Elastic H(e, ¢’p) has only two degrees of freedom. Consequently, once any pair of
variables is fixed, the entire kinematics of the interaction are determined. This makes
elastic H(e, ¢'p) a powerful tool to check optics calibrations. For example, we can

write the beam energy as a function of the electron and proton scattering angles as:

O
E. = m,( cot 5 cotb, — 1). (3.14)

Alternatively, we can write the scattered electron momentum as a function of the
beam energy and electron scattering angle as:

myEe

. d
my + Ee(1 — cosby) (3.15)

|ﬁ€/| ~ Eel =

We can combine these expressions to write, for example, 0,(E, pe), Op(per, 0er), or
0,(Ee,0.) (or any other pair of independent variables). The difference between any
of these distributions and 6, measured by the RHRS, should be a normal distribution
centered at zero. However, this was not the case (see Fig. left). The fact that
all three distributions are centered at the same value is an indication that only the
measured 0, is off. We fitted gaussians to these three distributions, and took their
weighed average as a correction factor. Subsequently, this offset was expressed in
terms of the corresponding RHRS optics variable and added to the optics tensor
tables that are used to process the data. This correction was introduced as the

following optics offset:

ACT = (—1.567 +0.008) x 1073, (3.16)

This corresponds to a 1.6 mrad offset in the spectrometer central angle. The corrected
plot is shown in Fig. right.

The same problem was seen when studying the proton momentum. The correction
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Figure 3-14: Difference between proton scattering angle measured by RHRS (reco),
and calculated from different pairs of variables (calc). The plot on the left shows
the distributions before any ‘Oth’ order correction. The plot on the right shows the
status after all the corrections described in this section. All the distributions have
been normalized to have the same height at their mean value.

introduced to the RHRS optics matrix was:

ACP™0 = (—~1.202 +0.007) x 1073, (3.17)

corresponding to a small offset in the spectrometer central momentum. A similar
problem in the missing momentum y-component was fixed with the following correc-

tion in the RHRS optics matrix:

ACT = (-2.940 + 0.009) x 1072, (3.18)

See Appendix[A]Figs.[A-T1|through [A-T7|for plots showing additional distributions be-
fore and after these ‘0" order corrections. After these corrections, the H(e, €'p) piss

resolution was better than 9 MeV /c.

Final optics checks from d(e,e’p) QE scattering

To check the validity of all the aforementioned optics corrections, we looked at their
effect on d(e, €’p) QE distributions measured in the low-p,,;ss kinematical setting.
Fig. shows the missing-energy distributions before and after the optics correc-

tions. There are two clear features in these plots. First, we can see the effect from
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correcting the LHRS C2' (linear) element as the resolution enhancement from the
blue to the red curves. Second, we can see the effect from correcting the RHRS 0"

order elements as the shift of the distributions towards their expected values.

800 Before optics corrections
——— After optics corrections
j2} 600 ---m--- Expectation (2.23 MeV)
c
)
2 4001
<
200—
E | i e |
—8.01 —-0.005 0 0.005 0.01 0.015 0.02
Emiss [GEV]

Figure 3-15: Missing energy in d(e, e’p) QE scattering before and after optics correc-
tions.

3.4 Luminosity check

In order to verify the absolute normalization of the measured distributions, we com-
pared elastic H(e, 'p) distributions to a simple yield-estimate calculation. The num-
ber of detected events per unit time can be written as:

AN

—_— = AQ 1
AL ZLoAQ, (3.19)

where o is the interaction cross section, . = I - T is the luminosity, and A€ is the
covered solid angle. Here, I refers to the beam current in units of electrons/second,

and T corresponds to the number of protons per unit cm?:

:p'l'NA'nppm

T
M )

(3.20)

where p = 2.832 mg/cm? is the target density, N4 is Avogadro’s number, M = 2.016

g/mol is the molar mass (grams per mol of Hy molecule), n,,,, = 2 is the number of
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protons per Hs molecule, and [ is the effective target length.

The elastic scattering of electrons off a hydrogen target is described by the unpo-

larized differential cross section known as the Rosenbluth cross section:

j—g - Z_gl Mott(]. j— 7') [G2E<Q2) * EG?‘AQ%]’ (3.:21)
T = Q/(4mj), (3.22)
et = 1+42(1+7)tan’(6e/2), (3.23)

where G and G,; are respectively the electric and magnetic proton Sachs form
factors. do/dQY| o is the differential Mott cross section corrected for proton recoil:
OéQEe/ 2 9@’

do
[ 3.24
0y ot 1B sin' 0,2 " 2 (3:24)

where « is the fine structure constant, F. is the beam energy, and F.. is the scattered-

electron energy. This expression is then integrated over ¢.:

dUMott /¢e’,f/ sin 96/ OCQEG/ 9 98’
- . = 51— = COS _d e s 325
sin 96’ d@e/ bor o) Sinb 4E§ Sin4 96’/2 2 (b ( )

where, since the spectrometers cover a constant solid angle df) = sin6.df. d¢., the

¢ limit depends on ... This implies:

2
dUMott o Ee’

.
- 2= e/ f — Pe'0)- 2
B, Esmtg, 3 g (e~ 9e) (3.26)

We chose ¢ to be well within the spectrometer acceptance edges (|¢e| < 30 mrad).
Finally, we multiply this result by (hic)? to get the correct units.

Radiative effects were included by multiplying by (1—1—5 (0, AE )) , where (0., AE)
is taken from the formalism developed by Mo and Tsai [119]. Only events between the
elastic peak B = myE,/(m,+ E.(1 —cosf.)) and E, — AE are included in both the
estimate and the data sample. In this study, we selected a constant AE =~ 65 MeV,
as shown on the left of Fig. [3-16|
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Figure 3-16: (Left) electron momentum as a function of electron scattering angle.
The diagonal black line marks the choice of lower limit for the selected window
AE =~ 65 MeV used in the calculation of radiative effects. (Right) comparison be-
tween measured and calculated yields as a function of electron scattering angle. The
calculation was carried out with the form factor model from [120] (blue) and also
using the dipole parametrization (red). The two calculations agree with the data
within 2%.

Finally, before comparing to the yield-estimate calculation, the measured data was
corrected for variations in the target density caused by local temperature fluctuations
(boiling), and dead time (the fraction of time in which the DAQ cannot record data).
The results are shown on the right of Fig. [3-16| The calculations were carried out
both with the proton form factors taken from [120] and also with the traditional
dipole parametrization: Gp(Q?) = 1/(1+ W)Q. The calculations agree with

the measurement within 2%.

3.5 Data analysis

3.5.1 Event selection

We histogrammed the total number of detected events in each run normalized to the
beam charge, and discarded a small number of runs for which this quantity was more
than 30 away from the mean. Only events with a single track reconstructed in each
spectrometer were kept. Finally, we only kept events for which the beam current
was within 1.5 pyA of the average value to exclude unwanted beam interruptions,

commonly referred to as beam trips. The event-selection cuts described below were
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applied to the resulting sample.

Acceptance and vertex cuts

As acceptance-edge effects are very difficult to model and quantify, we only consid-
ered events for which electrons and protons were detected within +4% of the central
spectrometer momentum (), and +27.5 mrad in in-plane (¢y,) and £55.0 mrad in
out-of-plane angle (6;,) relative to the center of the spectrometer acceptance. See

Table [3.2) for reference. The effect of these cuts is shown in Fig. [3-17]
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0 [%]
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Figure 3-17: HRS acceptance from a SIMC simulation and effect of acceptance cuts.
The plots correspond to ¢y, vs 6y, (left), § vs ¢y, (center), and 0 vs 6y, (right). The
red boxes represent the applied acceptance cuts.

The interaction vertex z-component, which is approximately related to y, as:

= Slyﬁ (3.27)
where 6, is the HRS central angle, was required to originate within the central £9 cm
of the 25-cm gas-target cell to exclude events originating from the target walls. By
measuring scattering from the empty cell described in section [3.1.3] we determined
that the target cell wall contribution to the measured (e, €'p) event yield was negligible
(< 1%).

Coincidence events were selected by requiring the LHRS and RHRS z-component
of the reconstructed vertices to be within £1.2 cm of each other, which corresponds

to +30 of the vertex reconstruction resolution.
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Fig. shows the z-component of the interaction vertex reconstructed with the
LHRS vs RHRS. The black points correspond to events before vertex cuts for the low-
Pmiss Kinematical setting for the *He and empty targets. The equivalent plots for the
high-pumiss kinematical setting are similar. Additionally, for both settings, the 3H plots
are similar to the 3He ones. The horizontal clusters of events at 412.5 cm, present in
both plots, correspond to the downstream and upstream caps of the aluminum target
cell respectively. For these events, an electron scatters of the aluminum cap and
goes into the LHRS acceptance, and the RHRS vertex is reconstructed to a random
position. The pronounced diagonal band, only present in the 3He plot, corresponds
to coincidence events in which the vertex is reconstructed by both spectrometers to
approximately the same position. Finally, the remaining events scattered throughout
both plots correspond to random coincidence events. Due to the low experimental
luminosity, the random coincidence event rate was negligible (< 1%). The width of
the diagonal band is determined by the 30 coincidence vertex cut, and its length is

defined by the +9 cm cut.
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Figure 3-18: z-component of the interaction vertex reconstructed with the LHRS vs
RHRS before and after vertex cuts in the low-p,,;ss kinematical setting in the case of
the 3He (left) and empty (right) targets. The red points correspond to events after
the vertex cuts described in the text.

Particle identification (PID) cuts

Electrons were identified by the ratio of their energy measured in the calorimeter to
their momenta. Other negative particles (such as pions) will only deposit a fraction

of their energy in the calorimeter and, as a result, the E.,/|p] ratio will be smaller
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than that for electrons. We identified electrons by requiring Eca/|pe| > 0.5. See left
plot in Fig. |3-19
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Figure 3-19: Particle-identification criteria. Left: electron PID. Electron candi-
dates are required to deposit more than 50% of their energy in the calorimeter (i.e.
Eca/|pe] > 0.5). Right: proton PID. Protons are selected based on their relative time
with respect to the corresponding electron.

We identified coincident protons in the RHRS by their arrival time with respect
to the electron in the LHRS. The long optical path from the target to the scintillator
detectors, which form the trigger, causes different-mass particles to create coincidence
events well separated in time, which can be used for PID. For example, the travel
time difference between 1.48 GeV /c protons and deuterons over a 25-m path gives a
difference in time between (e, €¢’p) and (e, €'d) events of ~ 50 ns. The right plot in
Fig. [3-19 shows the measured distribution for the difference in time between the elec-
tron and the RHRS event triggers. The two visible bumps correspond to (e, ¢’p) and
(e,€'d) events. Proton coincidence events were selected by placing a +30 cut around

the (e, ¢'p) peak, as shown by the red dashed lines.

Physics cuts

In addition to the cuts described above, we also required that 6,, < 37.5°, and (for
high-p,,iss kinematics) xp > 1.3. These cuts should minimize the effect of non-QE

reaction mechanisms (see section [2.2.2)).
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3.5.2 Data-SIMC comparison

After all these cuts were applied, the resulting measured and simulated distributions
were compared. Fig. [3-20] shows the number of *H(e, ¢'p) events (counts) as a func-
tion of missing energy (and @Q? in the insert) for the low-p,.;.s kinematical setting.
The equivalent *He(e, ¢'p) distributions and the distributions of other kinematical
variables can be found in Appendix [B] The simulation describes the shapes of the
measured distributions well enough to be used in the data analysis as described in

the following sections.
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Figure 3-20: Comparison between 3H(e, ¢/p) measured and simulated distributions for
the low-p,,iss kinematical setting. The simulated distributions are normalized to give
the same integral as the data. See Appendix [Blfor additional distributions. The black
markers correspond to the measured distribution, while the blue lines correspond to
the SIMC simulation with the CK-+C'C'1 model (normalized to give the same integral
as the data).

Effect of interaction between the two spectator nucleons (FSIy;)

The PWIA cross-section calculations can be carried out either including or excluding
the continuum interaction between the two unstruck nucleons in the A = 3 (e, €'p) re-
action (see diagram b) in Fig. [2-3). To assess the importance of this effect, we com-

pared the missing-energy distributions from simulations carried out with and without
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the inclusion of this diagram. The results are shown in Fig. [3-21] FSls3 is non-
negligible and is more important in the low-p,,;ss kinematical setting. Consequently,

we only used calculations that do not include FSls3 in the high-p,,;ss kinematical

setting.
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B — Cracow 40
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—— Sargsian-PW
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Figure 3-21: Comparison between 3He E,,;,, distributions from data and simulations
with (CK+CC1 and Cracow) and without (Cracow-PW and Sargsian-PW) FSIy;
for the low-p,,iss (left) and high-p,,;ss (right) kinematical settings. The FSly3 effect
is more important in the low-p,,;ss kinematical setting. The corresponding *H plot
leads to the same results.

In the remainder of this chapter, I will describe two separate but related analyses.
The first one corresponds to the direct extraction of the 3He/*H(e, ¢/p) cross-section
ratio [I01]. The second one corresponds to the extraction of the *He and 3H(e, €/p) ab-

solute cross sections [102].

3.6 SHe/°H (e,e'p) cross-section ratio

For each measured nucleus A we binned the data in bins of p,,;ss and calculated the

normalized (e, €'p) yield:

N(pmiss)

—_ 2
O 1) -t (3.28)

YA (pmiss) -

where N (pmiss) is the number of counts detected in each p,,;ss bin (integrated over
the experimental F,,;s acceptance), C' is the delivered beam charge, p is the target

areal density (see Table [3.1]), b is the density correction (see section [3.6.1]), and tjye
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is the fraction of the time in which the DAQ is able to record data.

We calculated the ratio of the 3He and *H normalized yields and then corrected it
for the radioactive decay of H (see section . We then corrected the yield ratios
for radiative, bin-migration, and FE,,;ss-acceptance effects (see sections , ,

and respectively).

3.6.1 Density (‘boiling’) corrections

The gas cells are filled with the gas densities specified in Table However, local
temperature fluctuations created by electron beam heating changes the gas density
in its path. The density changes depend on the beam current and this effect needs
to be taken into account when extracting yields and cross sections. The correction

factor is determined by extracting the normalized (e, e) yield:

N(I)

Y/ie,e)(_]) — —C’-t1~ =

(3.29)

where [ is the beam current, N(I) is the number of good electron events for a given
beam current, C'is the delivered beam charge, t;,. is the fraction of the time in which
the DAQ recorded data, and e is the detector efficiency (tracking, PID, trigger, ...). In
the absence of beam the density should correspond to its nominal value (Table [3.1)).
The yields are normalized such that YA(e’e/)(O pA) = 1. Additional information on the
determination of these corrections, including the event-selection criteria, check of the
methodology on a solid target, efficiency studies, and other details can be found in
[109]. The corrections used in this analysis for the different gas targets at I = 22.5 A
are shown in Table 3.6

Table 3.6: Density correction factors at I = 22.5 pA from [109].
Target | correction factor (b)

SH 0.901 = 0.003
2H (d) 0.908 & 0.003
H 0.884 & 0.004
3He 0.938 & 0.002
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3.6.2 3H-decay correction

Tritium decays radioactively via the process H— 3He + e~ + 7, + 18.6 keV. Con-

sequently, the *H density decreases with time according to:

nsy (t) = ndye /™, (3.30)

where nd; is the initial *H density in the target cell, and 733 = (4500 £ 8 days)/In(2)

is the 3H lifetime [I121]. This process increases the *He fraction in the target cell by:

Nspe(t) = iy, + 1l (1 — e/ ™m), (3.31)

where ndy, is the initial *He density in the target cell. Since the experiment took

place between t = 171 — 195 days after the 3H cell was filled, and taking ¢, =
N3/ (Mg, + ndy) = 0.059% from [107], we find that the *He fraction present in the
3H target at the time of our experiment was:

n3He<t)

= o e (2.80 + 0.18)%. (3.32)

Thus, the cross section measured with the tritium cell (o32**%) is a mixture of the

tritium (osy) and helium-3 (osy,) cross sections:

ofixed — (1 — €)osy + €0spe. (3.33)
Solving for osy we get:
omixed _ eoan
ooy = P~ e (3.34)
—€

The 3H decay correction is:

measured
Rcorr.yield _ (1 B 6)R3He/3H
SHe/3H 1 — 6],zmeasured ’
3He/3H

(3.35)

~ yield
where R%gf;‘ﬁed = o3y /051! and Rg‘;{g/zﬁ = 03p./0sy are the measured and decay-

corrected cross-section ratios respectively. Fig. shows the missing-momentum
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dependence of the corrected event yield ratio Rg‘;};zﬁld in each kinematical setting.

The 3He/?H ratio is about three at the smallest measured p,,;ss and decreases to

about 1.5 at ppss & 250 MeV /¢, with a possible rise after that.
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Figure 3-22: Missing-momentum dependence of the measured *H-decay-corrected
3He/*H normalized event-yield ratios for the low-p,iss (@) and high-p,,;ss (H) kine-
matical settings. The error bars include both statistical and point-to-point system-
atical uncertainties (see Appendix [C| Table . An additional overall normalization
uncertainty is not shown (see Table . The solid histogram shows the PWIA SIMC
simulation using equation and the spectral function of [69]. The bin widths are
the same for the histogram and the data.

3.6.3 Radiative corrections

We want to study the QE interaction between an electron and a proton embedded
in the nuclear medium through the exchange of a single virtual photon, resulting in
the emission of the struck nucleon. The diagram describing this process, presented in
Fig. , is the leading order term (first-order Born approximation) in a perturbative
expansion in powers of the fine structure constant .

Unavoidably, this is not the only process which contributes to the measured cross
section. In the presence of the nuclear Coulomb field, electrons lose energy by the

emission of real photons. This process is called “braking” or “Bremsstrahlung” radi-
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Figure 3-23: Leading-order diagram in the QE electron-proton interaction.

ation. If the incoming (initial-state) or outgoing (final-state) electron interacts with
the Coulomb field of a nucleus other than the one it is scattering off, and emits a
photon, and the process is called external Bremsstrahlung. If, instead, the electron
interacts with the Coulomb field of the nucleus it scatters from, then the process is
called internal Bremsstrahlung. The electron can also emit and re-absorb a virtual
photon, exchange two photons with the proton, etcetera. Some of these processes are

illustrated in Fig. [3-24

a) b) c)

Figure 3-24: Some examples of higher-order electron-proton scattering diagrams: a)
initial-state Bremsstrahlung radiation. b) final-state Bremsstrahlung radiation. c)
emission and re-absorption of a virtual photon. The radiated photons are represented
in red.

These emitted photons go undetected, and the processes are experimentally in-
distinguishable. The effect from the radiative processes is that, at the vertex, the
interaction does not take place at the exact energy predicted from the measurement
of the incoming and scattered electron momentum vectors. The proton can also ra-
diate, although the energy loss in this process is suppressed by m?/ m}%. In order to
extract the Born cross section from the measurement, the contributions from these
(and other) diagrams need to be unfolded, and their effect removed.

The radiative correction methodology was first developed by J. Schwinger [122]
and later expanded for inclusive (e,e’) experiments by Mo and Tsai [119]. SIMC
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implements radiative effects using the Mo and Tsai formalism generalized for coinci-
dence (e, €'p) cross sections. This formalism is described in detail in [123], [124]. The
energy distribution for multi-photon Bremsstrahlung is calculated to all orders using
the soft-photon approximation (£, < E., E., E,) with some corrections to remove
non-physical divergences introduced by this approximation. The angular distribu-
tion of these photons uses the “peaking approximation”, which assumes the emitted
Bremsstrahlung photons are emitted in the directions of the incoming and outgoing

electron, and the knocked-out proton.

Fig. shows the low-p,nss *He missing-energy spectrum simulated using SIMC
with and without radiative effects. The Born spectrum has a visible gap between the
2- and 3-body breakup channels. Radiative effects cause the radiative tail from the
2-body breakup to ‘leak’ into the 3-body breakup regime, filling this gap and making
it experimentally impossible to separate the 2- and 3-body breakup channels on an
event-by-event basis. In addition, the 2bbu radiative tail is larger than the 3bbu cross

section at large E,,;ss.
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Figure 3-25:  Simulated missing-energy spectrum for *He in the low-p,,;.s setting
with and without radiative effects. The blue and red distributions correspond to the
2- and 3-body breakup channels respectively. The dark-colored curves with diagonal
shading correspond to a Born (no radiation) simulation. The light-colored curves
with solid filling correspond to a simulation that includes radiative effects calculated
following the method described in this section.
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The data was corrected for radiation effects by dividing the measured yield ratio

by:

R var (Pmiss)
Crad(Pmiss) = o A28 (3.36)
Rgen.\/ar(pmiss)

where REY . (pmiss) and RE™. (pmiss) are the *He/3H ratios simulated using
SIMC with the CK+CC1 cross-section model, with and without radiative effects
respectively, calculated using generated variables. Fig. shows the radiative and

other correction factors.

3.6.4 Bin-migration corrections

In counting experiments like this one, ensembles of events sampled from an unknown
distribution are collected and sorted into bins. The resulting histogram is interpreted
as a reproduction of the distribution from which the events came. The variables
used to construct these histograms are measured using detectors that have a finite
resolution and other detector effects. This can cause events from one bin to be
incorrectly assigned to a different one. This bin migration can cause problems if the
distribution being measured (e.g. cross sections) is changing rapidly, leading to more

events migrating out of a bin than migrating in (or vice versa).

Unlike for data events, we know both the generated variables and the “measured”
variables for simulated events. The bin-migration correction was done by dividing

the measured yield ratio by:

Rggz.\/ar (pmiss) ,

CBM (pmiss)

where RE. . (Dmiss) and REW L (pmiss) are the 3He/3H ratios evaluated as a func-
tion of missing momentum calculated using the reconstructed and generated variables
respectively, and including radiative effects. These quantities were obtained using
SIMC with the CK4+CC1 cross-section model. The bin-migration effects are small
due to the excellent spectrometer resolution, see Fig.
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3.6.5 FE,,ss~acceptance corrections

The goal of this analysis is to extract the ratio of *He/*H momentum distributions
as a function of missing momentum. As stated before (see section [2.2), momentum
distributions are obtained by integrating spectral functions over all missing energies:

1(Pmiss) fo (Pmisss Emiss)dFmiss- The limited spectrometer momentum and an-
gular acceptances cause a limited E,,;ss acceptance. For a given p,,;ss bin, we can
only integrate the extracted spectral function over a limited E,,;,s range. Fig.
shows an example toy model to illustrate this idea. In it, I generated electron and
proton vectors within the 6-dimensional volume corresponding to the HRS acceptance
at the high-p,,;ss kinematical setting, and calculated p,.;ss and FE,,;ss. The finite E,,;qs

acceptance is clearly seen.

_ | \ \ |
027452 03 OI? 05 06

|” GeV/c]

Figure 3-26: Toy model to illustrate the spectrometer limited FE,,;ss acceptance.
Electron and proton vectors are generated in the high-p,,;ss kinematical setting within
the spectrometer 6-dimensional acceptance volume. These generated vectors are used
to calculate p,.ss and E,,;s, which we plot here. The red area corresponds to the
Pmiss-Emiss Phase-space available to the spectrometers in this specific kinematical
setting.

The E,,;ss-acceptance correction is achieved by dividing the measured yield ratio

by:

Born

RGen Var (pm185> (338)
n3He/3H(pmzss> ’

CEmAcc (pmiss ) —
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where:

fOOO SSHe (pmi337 Emiss>dEmiss
N3He/3H\Pmiss) = —poo > 3.39
el H< ) fo S3H(pmissa Emiss)dEmiss ( )

and:

RBorn fQEm_ S3He(pmi357 Emiss)dEmiss

en.Var\Pmiss) = = . 3.40
G ( ) fQE S3H<pmissaEmiss)dEmiss ( )

Here, Qg .. denotes, for a given p,,ss bin, the E,,;;s range accessible to the spec-
trometers. The integral from equation [3.39 is calculated by numerically integrating
the spectral function used by SIMC to calculate PWIA cross sections. The inte-
gral from equation is calculated by generating events using the same spectral
function (without the inclusion of radiative effects and using generated variables),
and putting these events through the SIMC spectrometer acceptance model. The

obtained corrections are compared to other corrections in Fig. [3-27]

3.6.6 Final corrections

The 3He(e, €'p) / 3H(e, €'p) cross-section ratio as a function of p,,;,s was extracted by

dividing the yield ratio corrected for tritium decay by the total correction:

O3He(e,e'p) 1 corr.yield
_ L peorryicd 3.41
O3H(e,ep) Chotal *He/*H ( )

where the total correction corresponds to the product of the individual corrections
described in the previous sections. Some factors from the individual corrections cancel

when multiplied together, and the total correction simplifies to:

RRad miss
Rec.Var (p ) (342)

n3He/3H(pmiss> '

C1total = C1BM X CRad X CEmAcc =

The total corrections are shown in Fig. [3-27], and tabulated in Appendix [C] Ta-
ble The individual correction terms, as well as the total correction, are less than

13.5%.
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Figure 3-27: Corrections applied to the measured normalized event yield ratio

Rigg/giﬁld(pmiss) to obtain the *He(e, €/p) / *H(e, €'p) cross-section ratio. The blue, red,

and green markers correspond to the radiative, bin-migration, and F,,;ss-acceptance
corrections respectively. The total correction, which is defined as the product of these
corrections, is shown in black. The dark- and light-gray bands correspond to the 10
and 20% levels respectively.

3.6.7 Systematic uncertainties

The point-to-point systematic uncertainties due to the event-selection cuts were deter-
mined by repeating the analysis 5000 times. Each time, each event-selection cut was
chosen randomly (uniformly) within reasonable limits. See Table 3.7 Each resulting
3He/*H-ratio value for each p,,;ss bin was histogrammed. The standard deviation of
the resulting distribution for each p,,;ss bin was taken to be the systematic uncer-
tainty from the event-selection cuts in that bin. These values range from 1% to 8%

and are typically much smaller than the statistical uncertainties.

We assume an additional point-to-point systematic uncertainty in each p,,;ss bin
equal to 20% of the total correction from section [3.6.6, Appendix |C| Table tabu-
lates the correction terms and the resulting cross-section ratios and uncertainties for

each pp,iss bin.

There is an additional overall normalization uncertainty of 1.8% coming mainly
from the target density uncertainty. Other normalization uncertainties are 1% or less,

as shown in Table [3.8
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Table 3.7: Sampling limits for systematic sensitivity study. The |v,|, J, 0y, and ¢,
limits were used for both LHRS and RHRS reconstructed variables. * was only used
in the high-p,,;ss kinematical setting.

‘ Units Lower limit Upper limit

lv,| | em 8 11
) % 3.5 4.5
0 | mrad 50 60
¢ty | mrad 25 30
Th 1.275 1.325
0. | deg 35 40
Table 3.8: Overall systematic uncertainties in the extraction of the

3He/3H(e, 'p) cross-section ratio. All uncertainties are summed in quadrature.

‘ Overall Uncertainty

Target Walls < 1%
Target Density 1.5%
Beam-Charge and Stability 1%

Tritium Decay 0.18%

Total ~ 1.8%

3.6.8 Final results

Fig. and Appendix [C| Table show the p,.;ss dependence of the extracted
3He/*H (e, ¢'p) cross-section ratio. In the simplest model, this ratio should be equal
to two, the relative number of protons in *He and 3H. However, at large pi,;ss the ratio
should be equal to one, the relative number of np-SRC pairs in He and 3H. These
SRC pairs will shift equal amounts of cross-section strength from low p,,;ss to high
Pmiss i both nuclei, increasing the 3He to 3H ratio at 10w pyss to more than two. The
measured ratio follows this simple model of a transition from independent nucleons
at the lowest p,.iss to np-SRC pairs at higher p,,;ss, decreasing from almost three at
low Piniss towards about 1.5 at piss = 250 MeV /c. At larger pyiss the measured ratio

is approximately flat, with a possible rise at the largest p,iss-

Since we chose kinematics in which reaction mechanisms were expected to be small,
the resulting cross-section ratios should be sensitive to the ratio of momentum distri-

butions. We therefore compare in Fig. the measured cross-section ratios with the

94



Spectral Function Momentum Distribution (VM C)

~ — — CDA & Kaptari A;/18+UX
N — — Benhar & Pandharipande =~ —— N'LO E1 (1.0 fm)
3=\ N’LO Et (1.0 fm)

N

O-3He(e,e'p)/ O-sH(e,e'p)(l_ﬁmissl)

I— NLO  ----- N‘LO
i N°LO  ----- CDBonn/TM
N°LO
L | L | L I : I ; I :
2

=
o

data / theory

=

100 200 . 300 200 500
Pl Mevic]

o

Figure 3-28: 3He/?H cross-section ratio as a function of p,;ss for the low-p,,iss (@) and
high-p,,;ss (W) kinematical settings compared with different momentum-distribution
ratios. The solid lines correspond to momentum distributions calculated using the
VMC technique [66, [73]. The long-dashed lines (——) correspond to spectral function
calculations integrated over their energy dependence [69, 125]. The dashed lines
(----) corresponds to momentum distributions calculated using the HH technique

[126], 127]. See text for details.
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ratio of single-nucleon momentum distributions. The momentum distribution calcu-
lations are obtained using either the variational Monte Carlo (VMC) technique with
local interactions [60, [73] or the Hyperspherical Harmonics (HH) method [126], 127]
with non-local interactions. While momentum distributions calculated with local
chiral-interactions depend strongly on the cutoff parameter, these effects mostly can-
cel in the ratio of the momentum distributions. In the case of the non-local chiral
potential models, the calculations show significant order dependence. Additionally,
the momentum-distribution ratio calculated by integrating the spectral functions from
Ciofi degli Atti and Kaptari [69] and Benhar [125] over missing energy are shown.
We found that all the momentum-distribution ratios shown agree with the mea-
surement for ppiss S 250 MeV/c. On the other hand, for p,,ss = 250 MeV /c there is
an unexpected 20 —50% discrepancy which had already been seen in Fig. [3-22] Some

of the possible explanations for this discrepancy are:

Breakdown of the factorized approach from equation

Additional FSI effects

Single-charge exchange (SCX)

Relativistic effects.

If all these effects are proven to be negligible, this disagreement could point to

issues with the underlying NN interaction at short distances.

Breakdown of the factorized approach

To test the factorization approximation of equation we compared the SIMC
factorized CK+C'C'1 model with the unfactorized calculation by the Cracow group
(see section . The level of agreement between the *He/3H ratios extracted with
either model was in the order of 5%. That is, a breakdown of the factorization

approximation is not enough to explain the high-p,,;ss discrepancy.
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Additional FSI effects

While the experiment kinematics were specifically selected to minimize effects such as
FSI, and these effects should further cancel in the ratio of cross sections, we studied
the size of residual FSI effects using the cross-section model of M. Sargsian (see
section[2.2.3). This model includes the effects of the PWIA diagram, and the diagram
corresponding to single-rescattering between the knocked-out proton and either of
the other two nucleons in the 3-body breakup channel calculated in the generalized
Eikonal approximation |79, B0]. For each p,.ss bin in the high-p,;s kinematical
setting, we calculated the *He and *H, PWIA and FSI cross sections integrated over

the experimental F,,;ss acceptance, and formed the double ratios:

RFSI/RPWIA _ O'FSI/O'PWIA‘?’He

: (3.43)
UFSI/UPWIA|3H

Fig.|3-29shows this quantity as a function of missing momentum for the high-p,,;ss
kinematical setting. The single-rescattering FSI effect is at most 5%, and therefore

cannot explain the high-p,,;ss discrepancy. We did not correct the data for this effect.

1.3
1.2 a
< 1.1 | -
E I ! I I 1 |
s 1
5
<3
=09 -
0.8 |- _
0.7 | | |
0.2 0.3 0.4 0.5 0.6
Pmiss [GGV/C]

Figure 3-29: Effect of single-rescattering FSI in the 3He/H ratio as a function of
missing momentum for the high-p,,;ss kinematical setting.
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Remaining effects

Another possible explanation for the high-p,,;ss discrepancy could be single-charge
exchange (SCX) in which the struck proton from an (e, €'p) event rescatters at almost
180° from a neutron, and the latter is ejected from the nucleus (pn-SCX) or vice-versa,
the struck neutron from an (e, e'n) event rescatters at almost 180° from a proton, and
the latter is ejected from the nucleus (np-SCX). pn-SCX and np-SCX events will
respectively decrease and increase the overall number of (e, €'p) events. While these
two effects typically balance each other out to some extent, at high-p,ss and in
A = 3 nuclei this may not be the case. Due to np dominance, in *He the uncorrelated
nucleon will most likely be a proton, while in *H it will be a neutron. Thus, if in 3He
np-SCX is more likely than pn-SCX, then the net effect would be an increase in the
(e,e'p) cross section. Oppositely, if in 3H pn-SCX is more likely than np-SCX, then
the net effect would be a decrease in the (e, e’p) cross section. Additionally, if the
SCX process happens at < 180°, then events at small p,,;ss will be shifted to larger
Pmiss States, which will amplify the SCX effects at high-p,,;ss. This could increase the
3He/3H ratio and explain the high-p,,;.s discrepancy. At the time of this analysis,

A = 3 SCX calculations are not available.

Although single-rescattering FSI effects calculated in the generalized Eikonal ap-
proximation are small, more complete calculations including two- and three-body in-
teraction operators [128] are needed to fully assess the FSI contribution to the ratio.
Furthermore, fully relativistic calculations are needed to study longitudinal-transverse

interference effects [129] 130, 131, 132].

At this stage, more theoretical input is needed to determine whether the high-
Pmiss discrepancy is due to unconstrained reaction mechanisms or to issues with the
underlying NN interaction at short distances. In the experimental front, we can
determine whether this discrepancy is caused by *He(e, €'p) events, *H(e, €/p) events,

or both. In order to address this question, we extracted absolute cross sections.
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3.7 SHe, °H (e,e/p) absolute cross sections

For each measured nucleus we binned the data in bins of p,,;ss and E,,;ss and calcu-

lated the raw cross section as:

( E ) dﬁU(pmissa Emiss) N(pmi537 EmiSS)
O\ Pmisss Limiss = = ’
P Raw dEe/dQE/dEdep Raw C(% : b) : tlive : VB (pmissa Emiss)

(3.44)

where N (Pmiss, Emiss) 18 the number of counts measured in each (ppiss, Emiss) bin,
and Vi (Pmiss, Emiss) 18 a factor determined from SIMC simulations that accounts for
the spectrometer acceptance and detected phase-space volume of each p,,;ss and F, ;s
bin (see section [3.7.1]).

We then corrected the raw cross sections for radiative and bin-migration effects,
integrated over E,;ss, and then bin-centered (see section. Finally, the 3H events
were corrected for radioactive decay.

The E,,;ss integration was defined as:

0 (Pmiss) = Z T (Pmiss» Ezﬁiss)AErjﬁissa (3.45)

J

where AL’

miss

corresponds to the bin width. The E,,;,s integration limits for each
Pmiss bin correspond to the blue area shown in Fig. [3-30. The lower E,,;ss limit
corresponds to 8 MeV (i.e. above the 3He 2-body breakup peak) to only include the
3He 3-body breakup channel and allow for a more consistent comparison with *H (in
which only the 3-body breakup channel is present. See section . At low-priss,
we excluded bins with FE,,;ss > 50 MeV due to the size of the radiative corrections
(see section [3.7.2). We also excluded bins with zero measured events, and bins at
the edge of the spectrometer acceptance, where SIMC simulations are less reliable.
We eliminated unreliable bins by simulating events with a constant cross section,
analyzing the simulated events the same way as the data, and excluding bins for
which the cross section extracted from the reconstructed simulated events differed

from the input cross section by more than 5%.
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Figure 3-30: E,,;ss integration limits for each p,,;ss bin. The included bins are shown
in blue. Bins excluded are those with no measured events, large radiative corrections,
or bins that are near the spectrometer acceptance edges. See text for details.

3.7.1 Phase-space and acceptance correction factors

The acceptance-corrected phase-space factors are determined from simulation. We
generated Ny, events uniformly sampling in the ranges AE., AQ., AE,, and AQ,
(each defined in ranges larger than the spectrometer acceptance). Out of this total,
we determined the events generated in each (ppiss,Fmiss) bin, N (Pmiss, Emiss)- Then,

the phase-space factor is:

N(pmis& Emiss) «

q)(pmissa Emiss) = Nt .

(AE.AQuAE,AQ,). (3.46)

From the N (pimiss, Emiss) €vents generated in each (Pmiss, Emiss) bin, we determined
the number of events accepted in each bin, Nacc(Pmiss, Emiss). Then, the acceptance

factor is:

Nacc (pmissa Emiss)
N(pmissa Emiss)

ACC(pmi557 Emiss) = (347)

Since the factors N (pmiss, Emiss) cancel out in the ® x ACC product, this correction

factor:
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cb(pmissa Emiss) X ACC(pmisS7 Emiss) (348)

Nace miSS7Emi55
(PN ) (AE.AQuAE,AQ,)
tot

VB (pmiss ) Emiss)
(3.49)

was determined directly. See Table [3.9]

Table 3.9: Vg (acceptance-corrected phase-space) correction values in each
(Pmisss Prmiss) bin, in units of MeV2sr?.
Emiss[MeV]

Pmiss [MeV /(] 820 | 20-30 | 3040 | 40-50 | 50-60 60-70 70-80
36.7 - 73.3 1.039e-04 | 4.393e-05 - - - - -
73.3 - 91.7 2.942e¢-04 | 1.850e-04 | 1.174e-04 | 6.342¢-05 - - -
91.7 - 110.0 5.799e-04 | 4.295e-04 | 3.554e-04 | 2.584e-04 | 1.629e-04 | 8.032e-05 | 2.859¢-05
110.0 - 128.3 8.562e-04 | 7.015e-04 | 6.665e-04 | 5.735-04 | 4.579e-04 | 3.072e-04 | 1.753e-04
128.3 - 146.7 1.075e-03 | 9.243e-04 | 9.072e-04 | 8.908e-04 | 7.979¢-04 | 6.562e-04 | 4.834e-04
146.7 - 165.0 1.262e-03 | 1.075e-03 | 1.086e-03 | 1.092e-03 | 1.043e-03 | 9.231e-04 | 7.830e-04
165.0 - 183.3 1.415e-03 | 1.207e-03 | 1.236e-03 | 1.242e-03 | 1.206e-03 | 1.075e-03 | 9.520e-04
183.3 - 201.7 1.563e-03 | 1.329e-03 | 1.373e-03 | 1.378e-03 | 1.322e-03 | 1.192e-03 | 1.066e-03

201.7 - 220.0 1.636e-03 | 1.420e-03 | 1.465e-03 | 1.497e-03 | 1.439e-03 | 1.287e-03 | 1.151e-03
220.0 - 256.7 2.918e-03 | 2.577e-03 | 2.728e-03 | 2.829¢-03 | 2.839¢-03 | 2.670e-03 | 2.428e-03
256.7 - 293.3 8.967e-04 | 6.100e-04 | 4.480e-04 | 2.993e-04 | 1.530e-04 - -
293.3 - 330.0 1.977e-03 | 1.764e-03 | 1.718e-03 | 1.567e-03 | 1.321e-03 | 9.754e-04 | 5.406e-04
330.0 - 366.7 2.635e-03 | 2.481e-03 | 2.525e-03 | 2.516e-03 | 2.453e-03 | 2.355¢-03 | 2.111e-03
366.7 - 400.0 2.763e-03 | 2.518e-03 | 2.569e-03 | 2.585e-03 | 2.618e-03 | 2.633e-03 | 2.610e-03
400.0 - 500.0 - 4.878e-03 | 5.302e-03 | 5.734e-03 | 6.135e-03 | 6.568e-03 | 6.982¢-03
3.7.2 Radiative corrections
The radiative corrections were determined as:
Yty ar Pmiss: Ermiss)
ORad(pmissy Emiss) - Be;ﬂ.n ar - TPARD TR y (350)

GenVar(Pmisss Emiss)
where Y refers to the normalized yield. Since in this case, unlike in the ratio analy-
sis, only the *He 3-body breakup channel was included, the 2-body breakup channel
contribution was studied more carefully. SIMC simulations were run separately for
each channel (including radiative effects) and the simulated data was analyzed fol-
lowing the same event-selection criteria used for the experimental data. The resulting

normalized yield as a function of F,,;,s can be written as:
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n%%d(EmiSS) - A(}é]lfgi

(EmiSS) +B- }@)}Ifgj(Emzssn

(3.51)

We simultaneously fitted the 2bbu and 3bbu simulated spectra to the experimental

yield, and the coefficients A and B were determined. Fig. [3-31] shows the resulting

E,.iss distributions. We binned the 2bbu peak in a single bin from 0 —8 MeV to avoid

fitting issues coming from its resolution and position. The extracted coefficients A

and B are summarized in Table [3.10l
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Figure 3-31: Relative 2- and 3-body breakup contributions to the measured yield as
a function of E,,;s, for the low-p,,;ss (left) and high-p,,;ss (right) kinematical settings.
The black markers correspond to the normalized measured yield. The blue line cor-
responds to the total simulated yield scaled by A and B (see text for details). The
red and green lines correspond to the 2bbu and 3bbu contributions respectively. The
bottom panels show the ratio of the measured to the total simulated spectra.

Table 3.10: Two- and three-body breakup coefficients for the low- and high-p,,;ss
kinematical settings.

‘ low-pniss Kinematics ‘ high-p,,.iss kinematics

0.570 £ 0.010

A
B 1.263 = 0.039

102

0.780 £ 0.095
1.068 £ 0.147



The size of the radiative correction depends on the FE,,;s-integration range, as
shown in Fig. This is due to the fact that, at large FE,,;ss, the 3bbu cross section
decreases faster than the radiative tail from the 2bbu channel (see Fig. [3-31)). To
reduce the size of the radiative correction factors, we integrated over FE,,;ss up to 50
and 80 MeV in the low- and high-p,,;ss kinematical settings respectively. The size
of the final radiative correction is compared to other corrections in Fig. and
tabulated in Appendix [C] Tables [C.0] and [C.7]

2 2
3 —o—E .. [8-80MeV] 3
°°. He ——E,__[8-50 MeV] H
151 ] 15F  ——E . [8-40MeV]
ee ®
o ) ®e : o %o o
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(L etee2ets s § " u
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Figure 3-32: Radiative correction factors for the *He (left) and *H (right) absolute
cross sections integrated over F,,;ss. The different colors correspond to different ranges
in the F,,;ss integration.

3.7.3 Bin-migration corrections

The bin-migration corrections were determined as:

YRe%d ar (pmi357 Emiss)
OBM(pmissa Emiss) = Yg%ad“// (pmiss Emiss), (352)

where Y is the normalized yield. For ®He, the contribution from 2bbu and 3bbu is
included following the method described at the end of the previous section. The size
of the bin-migration correction is compared to other corrections in Fig. [3-35] The

values can be found in Appendix [C] Tables [C.6] and [C.7] The bin-migration effects

are small due to the excellent spectrometer resolution.
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3.7.4 Bin-centering corrections

We applied a bin-centering correction to translate the measured cross section to the
center of the p,,;ss bin to make comparison to future theoretical calculations easier.
The bin-centering correction was applied by dividing the cross section (corrected for

radiative and bin-migration effects, and integrated over missing energy) by:

Ointegrated (pmiSS) (3 53)
O point (pmiss)

CBo(Pmiss) =
Here, 0integrated(Pmiss) corresponds to the acceptance-integrated cross section in each
Pmiss bin extracted from a SIMC simulation with a given theory model, and integrated
over E,;ss (i.e. SIMC phase-space events are weighted with a cross-section model,
and the simulated data is analyzed following the same procedure used to extract the
cross section from the measured data). Gpeint(Pmiss) corresponds to the cross section
calculated using the same theory model in a single kinematical point within that p,,;ss
bin, also integrated over F,;s;. The kinematical point in which oy is evaluated
corresponds to the central values of p,,;ss and F,,;ss and the average values of xg and

(% in that bin, and the electron and proton out-of-plane angles ¢ = 0 and ¢, = 180°

respectively.

The bin-centering correction factors were determined using both the CK+CC1
and Cracow models. The total correction was defined as their average, and the
uncertainty as their difference (divided by v/12). In the ppis bins in which the
extracted fractional uncertainty was < 2%, we fixed it at 2%. The bin-centering
correction factors from either model, as well as the total bin-centering correction
factor and its uncertainty are shown in Figs. [3-33| and [3-34] for the low- and high-p;ss
kinematical settings respectively.

The integrated-cross-section values used to determine ojpiegrated(Pmiss) from dif-
ferent models are summarized in Appendix [C] Tables and for the low- and
high-p,iss kinematical settings respectively. The point-cross-section values (and kine-

matical points in which they are calculated) used to determine oppint(Pmiss) from dif-

ferent models are summarized in Appendix [C] Tables and [C.4] for the low- and
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Figure 3-33: Bin-centering correction factors for the low-p,,;ss kinematical setting
for *He (left) and *H (right). The red and blue lines correspond to bin-centering
correction factors determined with the Cracow and CK+CC'1 models respectively.
The total correction is shown as black markers and a gray band.
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Figure 3-34: Same as Fig. [3-33| for the high-p,;ss kinematical setting.
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high-p,.;ss kinematical settings respectively.
For completeness, we extracted the acceptance-integrated Sargsian-FSI cross sec-
tion (which was not used in the determination of bin-centering correction factors) in

the high-p,,;ss kinematical setting and checked that:

Sargsian—FSI< ) )
integrated miss

Sargsian—FSI ~ CBC (pmiss), (354)
point (pm'iss

further verifying that using this model for bin-centering corrections does not result
in significantly different correction factors.

Future models can be compared to the results from our measurement by calculat-
ing point cross sections in the kinematical points from Appendix [C| Tables and
and integrating these values over E,,;ss following equation [3.45]

3.7.5 3H-decay correction

The tritium absolute cross section was corrected for decay by dividing by:

mixed
o3 1—e€
Cpe =2 = . 3.55
bc O3y 1—¢€- Rmeasured ( )

3He/3H

We used the experimental cross-section ratio Rg’gg;ggd to calculate C'pe. Error prop-

agation was used to determined the uncertainty of Cpc as:

e(1—e¢)

_ . . Pmeasured\2
(1—e¢ RgHe/gH )

5Cpe = 5(3;7;1@5;%“1). (3.56)

) (Rg’;fgfyged) only includes statistical uncertainties to avoid double counting the sys-
tematic uncertainties. This correction is compared to other corrections in Fig. [3-35

The values can be found in Appendix [C| Table [C.7]

3.7.6 Final corrections

We obtained the absolute cross sections as follows. First, we corrected the raw ab-

solute cross section from equation for radiative and bin-migration effects, then
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integrated it over missing energy, and then corrected it for bin-centering. Finally, we
corrected the tritium cross section for decay. This process is qualitatively described

as:

U(pmissa Emiss) ‘Raw
CRad(pmissa Emiss) : CBM (pmissa

— O(pmiss) . (357)

1
_)
mzss / Eoniss CVBC’ (pmzss)

The corrections applied to the absolute cross sections are shown in Fig. |3-35( and

tabulated in Appendix [C] Tables [C.0] and [C.7]
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Figure 3-35: Size of corrections applied in the absolute analysis to obtain osp, (left)
and osy (right) respectively. The dark- and light-gray bands correspond to the 10
and 20% levels respectively.

3.7.7 Systematic uncertainties

The point-to-point systematic uncertainties due to the event-selection cuts were deter-
mined by repeating the analysis 100 times. As was done in the *He/?H ratio analysis,
for each iteration we chose each event-selection cut randomly (uniformly) within rea-
sonable limits, see Table [3.7 We used the standard deviation of the resulting cross
sections in each p,,;ss bin as the systematic uncertainty from the event-selection cuts
in that bin. These values range from 1% to 8% and are typically much smaller than
the statistical uncertainties.

The uncertainty coming from the radiative correction was conservatively assigned

to be 10% of the size of this correction for each p,,;ss bin (after integrating over
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Eniss) and applied bin-by-bin. The uncertainty from the bin-migration correction was
assigned exactly the same way. The bin-centering and decay correction uncertainties
were described in sections [3.7.4] and [3.7.5] respectively. See Appendix [C|] Tables [C.6|
and for more details.

Additionally, there is an overall normalization uncertainty of 2.7% coming mainly
from the target density uncertainty and HRS detection and trigger efficiencies. Other

normalization uncertainties are 1% or less, as shown in Table |3.11}

Table 3.11: Overall systematic uncertainties in the extraction of the *He(e, €/p) and
3H(e, €'p) absolute cross sections. All uncertainties are summed in quadrature.

‘ Overall Uncertainty

Target Walls < 1%

Target Density 1.5%

Beam-Charge and Stability 1%
Tritium Decay 0.18%

HRS detection and trigger efficiencies 2%
Total ~ 2.7%

3.7.8 AV18 to CD-Bonn effective conversion

Since the Cracow-group and CK+4CC1 calculations used different N N-interaction
models (see Table , we decided to study calculations carried out using a single
NN potential. We therefore rescaled the cross section determined from the factor-
ized CK+CC'1 model. In the absence of 2-dimensional (piss,Fmiss) spectral-function
calculations with the CD-Bonn potential, we rescaled the E,,;s-integrated cross sec-
tion using the ratio of 1-dimensional momentum distributions calculated with the

AV18+UIX and CD-Bonn+TM potentials from [126]:

The effective conversion factor n“P—Bonn(

Prmiss) [NV (Dyiss) is shown in Fig.
[B6l This correction effectively shifts the CK+CC1 E,,;ss-integrated cross-section
from AV18 to the CD-Bonn potential. Consequently, the remaining differences can

be attributed to intrinsic details of the cross-section model.
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nCD—Bonn (

CD—Bonn __ Prmiss) AV18
OcK oo = nAVlB(me;s X OcKyCoCot- (3.58)

Table 3.12: NN potentials used in the different cross-section calculations.
‘ Cracow CK+CC1 Sargsian
CD-Bonn v v
AV18 v v

1.2

(CD-Bonn+TM) / (AV18+UIX)

| | |
045 01 02 03 04 05 06

k [GeV/c]

Figure 3-36: Ratio of the proton momentum distributions obtained using the CD-
Bonn+TM and AV18+UIX potentials for *He and 3H using the calculations from
[126].

3.7.9 Final results

The resulting *He and *H absolute cross sections as a function of p,ss (integrated
over F;ss) extracted from the measured events and corrected for radiative, bin-
migration, bin-centering, and decay (in the case of 3H) effects following the procedure
described in the previous section are summarized in Appendix [C] Tables [C.6] and [C.7]
respectively, and shown in Fig. |3-37]

Fig. |3-37| also shows different cross-section calculations. These are obtained by
calculating 70 differential cross-section values (38 and 32 in the low- and high-p,,;ss

kinematical settings respectively) in the kinematical points (Pmiss, Fmiss; T8, Q% ¢or =

0, ¢, = 180°) from Appendix |C| Tables and and subsequently summing over
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E,.iss. The Sargsian-FSI cross section, which does not include FSly3, is only shown
in the high-p,,;ss kinematical setting where effects of FSly3 are smaller (see section

3.5.2).
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Figure 3-37: Absolute cross section as a function of p,,;s, for *He (left) and *H (right).
The markers correspond to the experimental cross sections for the low-p,,;ss (@) and
high-p,,;ss () kinematical settings. The colored lines correspond to cross sections
calculated using the theory models described in section (all based on the CD-
Bonn NN potential).

Fig. |3-38] shows ratios of the experimental cross sections to the available PWIA
cross sections for *He and H. In the case of *H, the Cracow calculation agrees with
the data within 10-20% over the entire measured range, unlike for 3He, where they
agree only in the range 150 < p,iss < 350 MeV /c. Outside this range, they disagree
up to about a factor of ~ 1.6 in the highest p,,;ss bin. The CK+CC1 calculation is
on average 70% and 65% higher than the data for *He and 3H respectively.

Fig.[3-38(top) also shows the equivalent ratio from the most recent *He(e, ¢'p) mea-
surement, which was done at Q* = 1.5 (GeV/c?)? and zp = 1 [42], to the PWIA cal-
culation from [43]. As described in section [2.2.4] it was found that non-QE reaction
mechanisms dominated the cross section and, consequently, the measured cross sec-

tions differed from PWIA calculations by up to factors of ~ 2 and ~ 3 for p,,;.s < 250
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Figure 3-38: Ratio of the experimental cross section to different PWIA calculations for
3He (top) and 3H (bottom). Ratios to the Cracow (M) and CK+CC'1 (@) models are
shown in red and blue respectively. Also shows as open markers (O) on the top plot
are the corresponding ratios from [42], measured at lower Q? and xp = 1 kinematics,
to the PWIA calculation from [43|. The dark- and light-gray bands correspond to the
10 and 20% agreement intervals respectively.
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MeV /¢ and 400 < ppiss < 500 MeV /¢ respectively. The large contribution of non-QE
reaction mechanisms limited their ability to constrain the nucleon momentum distri-
bution. These effects are much smaller in our measurement, due to our kinematics
selection.

In order to estimate the effect of the struck-nucleon rescattering (FSI), we also
compared the measurement to the Sargsian-FSI calculation in the high-p,,;ss kine-

matical setting, see Fig. |3-39,

1.6

1.4 SHe
1.2

0.8 }

0-EXP / 0-Sargsian-FSI
=
|
S

O 4 I | | | |
025 0.3 0.35 0.4 0.45 0.5

P . [GeV/c]

Figure 3-39: Ratio of the experimental cross section to the Sargsian-FSI calculations,
which include rescattering of the struck nucleon but do not include FSl,3, for 3He
(A) and *H (V) in the high-p,,;ss kinematical setting. The dark- and light-gray bands
correspond to the 10 and 20% agreement intervals respectively.

The inclusion of FSI enhances the agreement with respect to the PWIA calcula-
tions. The ratio of data to FSI calculation increases with p,ss for He and decreases
for 3H. This result can be qualitatively explained in terms of SCX following the rea-
soning given at the end of section [3.6.8] This hypothesis is further supported by the
observation that the isoscalar A = 3 cross section (i.e. osp,+0sg) is well described by
the calculations to within the accuracy of our data over the entire p,,;ss range, since

SCX effects are expected to be suppressed in isoscalar systems where pn-SCX and
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np-SCX largely cancel (See Fig. . Thus, these results suggest that the most plau-
sible explanation for the high-p,,;ss discrepancy found in the 3He/3H-ratio analysis is
SCX. Nevertheless, additional calculations that quantify the effect of SCX are nec-
essary to confirm this hypothesis. The isoscalar agreement between the calculations

and the data validates current models of the A = 3 system up to initial momenta of

500 MeV/c.
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Figure 3-40: Ratio of the total A = 3 experimental cross section (*He-+3H) to different
calculations as a function of missing momentum. The dark- and light-gray bands
correspond to the 10 and 20% agreement intervals respectively.
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Chapter 4

(Generalized Contact Formalism
[Phys. Lett. B 780, 211 (2018), arXiv:1907.03658 (2019), Phys. Lett. B 785, 304
(2018)]

4.1 Introduction

As explained in chapter , the traditional nuclear-structure effective models (e.g.
the Independent-Particle Shell-Model) fail to describe the dynamic effects of Short-
Range Correlations in nuclei. Developing a complementary model to describe SRCs is
fundamental to obtain a full description of the nucleus. In this chapter, I will overview
an effective model that describes the high-momentum and short-distance components
of the nuclear wave function. This model is based on the (atomic) Contact Formalism,
which describes a system of two-component fermions interacting via a short-range
interaction and has been validated in the case of ultra-cold atomic gases (see, e.g.,
[133, 134] 135, 136]). The original GCF derivation comes from [I37]. My work
focused on testing the GCF against QMC distributions, extracting contacts with
proper systematic uncertainties [138|, studying their scale and scheme dependence
and short-distance/high-momentum equivalence [I39], and extending the GCF to
calculations of correlation functions [140]. The QMC distributions against which we

test the GCF were calculated by [11], [16, [66], [73] [T41] [142].
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4.2 Contact Formalism in atomic systems

In the (atomic) Contact Formalism, the many-body wave function for two-component
Fermi gases with short-range interactions (i.e. range of the interaction much smaller
than the relevant scales of the system such as its scattering length and typical inter-
particle distances) is expressed as a factorized product of an asymptotic pair wave
function (¢), and a function (A) which describes the interaction of the pair as a whole

with the residual system [143].

U —— (7)) ARy, {Fi botig)- (4.1)

rij—0

Here, 75 = (7;—7;)/2, and ﬁij = 7;+77; are the relative and center-of-mass coordinates
of the pair, and {7} }x; ; refers to the coordinates of all the particles from the residual
system. The pairing at short distance will happen predominantly between | = 0 (s-
wave) pairs, since the centrifugal forces make the wave function very small for higher
partial waves. In the zero-range model [144], the asymptotic pair wave function

becomes:

p(7ij) = 1/rij —1/a, (4.2)

where a is the scattering length. This can be used to determine the 1-body momentum
distribution of the system n(k). Given that n(k) ~ |¥|2 (where ¥ is the Fourier

transform of ¥) and [ d3r e‘i’;"?% = 25, we get:

n(k) = % (4.3)

where C' ~ (A|A) is a constant called the “contact” and defines the thermodynamical

properties of these gases [145)].
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4.3 Generalization to nuclear systems

Nuclear systems do not fulfill the conditions of the Contact Formalism. The range of
the short-distance interaction (r.sr ~ h/2m.c ~ 0.7 fm, where m, is the pion mass)
is less than, but not much less than the scattering lengths (a(*S;) = 5.42 fm) and
average nucleon-nucleon distances (d = (p/2)~/® ~ 2.3 fm). Additionally, unlike the
two-component atomic gases, nuclei are not precisely two-component systems, since
different types of pairs can be formed with different combinations of protons and
neutrons with different spin states.

However, nuclear systems do exhibit several similarities to two-component ultra-
cold atomic gases [146]. For example, nuclei and atomic gases can have the same
dimensionless interaction strength (kr - a)~'. Even if the similarities between the
two systems are accidental, these facts make the Contact Formalism a worthwhile
candidate theory to model and understand Short-Range Correlations in nuclei.

To take into account the fact that nuclei are not two-component Fermi systems,

the expression from equation can be written more generally as:
U —— > w7y A (Rig {7k ati ) (4.4)

where NN denotes the type of pair (pp, pn, or nn), and « refers to the spin of the
pair. This way, we take into account the contribution from different partial waves.
Previous applications of the Contact Formalism to nuclear systems have focused on
the dominant channel: the deuteron-like pairs (pn, ! = 0,2 and s = 1 coupled to j = 1)
[52, 146], 147]. The Contact Formalism was extended to also include the singlet pp,
pn, and nn s-wave channel (I = s = j = 0). Pairs such as pp or nn with s = 1 should
have a negligible contribution, since these configurations of short-distance pairs are
blocked by the Pauli principle.

The pair asymptotic wave function ¢4 5 (7;) is taken as the zero-energy numerical
solution of the Schrodinger equation for a pair of nucleons NN with spin « in three
dimensions. The obtained wave functions are insensitive to the exact value of the en-

ergy at small distances and high momenta. Since the Hamiltonian in the Schréodinger
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equation depends on the potential, different models for the NN potential yield dif-
ferent functional forms for the NN asymptotic wave function. Fig. shows the
resulting |¢%y|? calculated using the AV18 potential. Fig. 4-10| shows the resulting
| 0% v|? obtained from different models of the NN potential. For a given NN potential,
these asymptotic wave functions should be universal (meaning nucleus-independent),
because when NN pairs interact at very short distances, their interaction is very

localized, and therefore independent of the nucleus in which it occurs.
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Figure 4-1: NN asymptotic densities calculated using the AV18 NN potential. The
left and right panels show these distributions calculated in coordinate and momen-
tum space respectively. Note that the spin-0 functions are both qualitatively and
quantitatively similar.

4.3.1 Coordinate densities and momentum distributions

Just like in the atomic case, the wave function from the GCF can be used to write
down 1- and 2-body coordinate densities and momentum distributions [I37]. For

example, the 2-body coordinate density at short distances can be written as:

pron (B, 7) — Ry (B) lofion (7P, (4.5)

where R = ﬁij, 7 = 7;;, and the 45 indices have been dropped. NN denotes the
nucleon pair (pp, pn, or nn). Here, the contacts are diagonal matrices that correspond
to CSy = Nyn (A% 1A% y), where Nyy is the number of NN pairs. We have
assumed that the contacts are averaged over the nuclear magnetic projection. The

deuteron-channel contact C5 is the sum over the three diagonal deuteron contacts
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(m = £1,0). Similarly, one can write the 2-body momentum distribution as:

Fin(Q.0) —2 Cin(Q) [en (DI, (4.6)

where § = k; + Ej and 7= (k; — lgj) /2 are respectively the center-of-mass and relative

momentum of the pair, and ¢% (¢) is the Fourier transform of ¢% 5 (7).

Fig. shows the Oxygen-16 QMC 2-body coordinate densities p}\(;](\)f(R, r) for pn
and pp pairs calculated with the N2LO(1.0fm) and AV4’+UIX, potentials. These
distributions have been scaled to have the same value at r ~ 1 fm to emphasize the
short-distance factorization expected from the GCF. By integrating equation over
r up to 1 fm, the °0 contacts C%y(R) can be determined. The result is shown in
Fig.[4-3] The resulting contacts are compared to contacts obtained from uncorrelated
2-body coordinate densities determined by doing a convolution of the single-nucleon

density distribution with itself:

1 fm
PN un—cone (R) = / dQp difpy© (R + 7/2)p° (R — 7/2), (4.7)
0

and adding the effects of the Pauli principle in the case of pp pairs (see section .
That the contacts from QMC calculations agree very well with the contacts from
uncorrelated 2-body densities implies that these quantities are long-range Mean-Field
properties of nuclei. The observed agreement is insensitive to the integration limit

for r from zero to 1 fm.

Since pyy(R,7) and Fyy(Q, q¢) QMC calculations are computationally demanding
and thus not available for many nuclei and NN potentials, we further study the GCF
analyzing QMC coordinate densities and momentum distributions integrated over R
and @ respectively. In the GCF, only the contacts depend on these variables and,

consequently, the nuclear contact coefficients correspond to:

Oy = / 1R C%y(R). (48)
oy = / 1G C2x(Q), (4.9)
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Figure 4-2: QMC Oxygen-16 2-body coordinate densities pyS(Ro, ) for pn (top) and
pp (bottom) pairs calculated with the N?LO(1.0fm) (left) and AV4'+UIX, (right)
potentials. The different colors correspond to different values of Ry. All calculations
are scaled to have the same value at r ~ 1 fm to emphasize the short-distance
factorization.
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Figure 4-3: Oxygen-16 contacts C§y(R). The colored lines are obtained by inte-
grating QMC 2-body coordinate densities p% (R, 7 ) over r from 0 to 1 fm. The
solid and dotted (------- ) lines correspond to contacts determined from distributions
calculated with the AV4’+UIX, and N2LO(1.0fm) NN potentials respectively. The
red and blue lines correspond to the pn, s = 1 and pp, s = 0 contacts respectively.
The black dashed (— —) lines correspond to the equivalent quantity determined from
uncorrelated 2-body coordinate densities. See text for details.
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in coordinate and momentum space respectively. Accordingly, the integrated 2-body

coordinate density corresponds to:

P (7) m) C]%N'SO?VN(F)Fa (4.10)

and the 2-body momentum distribution corresponds to:

Fyn(q) q——;: CJ%N’@%N(@)F? (4.11)

For example, in the GCF the proton-proton 2-body momentum distribution is:

Fop(@) = C3°0l 3 (0) 12, (4.12)

since the only significant contribution at high-momentum is expected to be s = 0.
The neutron-neutron 2-body momentum distribution has the same expression after

replacing pp with nn. The total pn 2-body momentum distribution is:
Fon(@) = C30lopn (D) + O g (@), (4.13)

since it also has a spin-1 contribution. Since the 1-body momentum distribution
should be dominated by SRCs at high-momentum, it can be written as the sum of
all the relevant 2-body contributions. For example, the proton 1-body momentum

distribution is:

-

np(E) = 2Fpp(E> + Fpn(k)

_ s=0|, s=0/7.|2 s=0|, s=0/7.|2 s=1|, s=1/7.Y|2
- 2Cpp ’SDpp (k)‘ +Cpn ’@pn (k)‘ +Opn ’wpn (kﬂ ) (414)

where k is the single-nucleon momentum. The neutron 1-body momentum distribu-
tion is obtained by replacing all the p indices by n and vice versa. Thus, according
to the GCF, in the regions where SRCs dominate (namely short-distances and high-

momenta), the full nuclear densities can be described by a series of universal functions
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that carry the coordinate or momentum dependence, times a series of constants (i.e.

the contacts) which carry the nucleus dependence.

4.3.2 Normalization conventions

The relative normalization between the ¢4 5’s and the contacts can be shifted from
one another to give the same overall normalization in equations and [£.11] In this

work, we chose to normalize the asymptotic NN wave functions such that:

/oo | ()| = 1. (4.15)

kr

Therefore, integrating the total 1-body momentum distribution n(k) = np(l;) + ()

from kr to co we get:
/ n(k)dk = 2(C550 + O30+ O30+ o571, (4.16)
kr

Since: [;°n dk = A, where A is the number of nucleons, the contacts (divided by

A/2) represent the fraction of high-momentum nucleons in a given nucleus:

S n(k)dk— Co0 4 Ol + C570 + O
- . (4.17)

2 n( )dE AJ2

Thus, CSy/(A/2) gives the fraction of the momentum distribution corresponding
to high-momentum NN, « pairs. The normalization of ¢% () in coordinate space

comes naturally from taking the Fourier transforms of ©% (k) normalized according

to equation [£.15]

4.4 Benchmarking the GCF

As expressed in equations and [4.11}, once the asymptotic (nucleus-independent)
NN densities are calculated, only the contacts are needed to describe the many-body

nuclear densities for a given nucleus at short-distances or high-momenta. In this
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section, I will demonstrate the validity of this prediction, and then describe different
ways of extracting these contacts. We will use only the AV18 NN potential in this

section.

4.4.1 Contacts from 2-body coordinate densities

I extracted the nuclear contacts by fitting the factorized 2-body coordinate density
from equation to the corresponding VMC 2-body coordinate density from |16, 60,
148] at short distances. Fig. shows the normalized VMC pn, pp, and nn 2-body
coordinate densities for 3 < A < 40. There are two regimes: 1) the nucleus-dependent
long-distance (r > 1 fm) region which is governed by single-particle behavior, and 2)
the nucleus-independent short-distance (r < 1 fm) region, which is dominated by

SRCs.
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= 0.8 16  _40cq = 0.8
< 0.6 oF o6
04 0.4
0.2 0.2
1 2 3 4 5 1 B
r [fm]
1.2
1
= 0.8~
o 0.6l
0.4
0.2
1 2 3 4 75

Figure 4-4: Short-distance universality of AV18 2-body coordinate densities. The
different colored lines correspond to VMC calculations for different nuclei carried out
using the AV18+UX potential. All these distributions are normalized to have the
same value at r ~ 1.0 fm. Also shown as black-solid lines are the NN asymptotic
densities |p% x| for the corresponding channel. The gray area shows the range in
which SRCs dominate the 2-body coordinate densities.
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Fig. also shows the NN asymptotic densities |¢%|* for the corresponding
channel. The short-distance behavior agrees with all nuclei, and the long-distance
behavior does not. This validates the GCF prescription for 2-body densities at short
distances (equation in the case of the AV18 NN potential. The scale factors used
to normalize the VMC densities (to have the same value at 1 fm) are the contacts.

We extracted the coordinate-space contacts (C50, Co0, C570, and C57') by doing
a simultaneous fit to py,(r), pun(r) (in the case of symmetric nuclei, p,,(r) = p,p(7)),
and ppn(r). Since pp,(r) has contributions from both C5° and C37*, and spin-isospin
projections have not been calculated, we assumed isospin symmetry (C;p:o = 070
= C’;’;O for the symmetric nuclei). This assumption is evaluated in the next section.
The fits to extract the contacts are carried out in the range 0.25 < r < 1.0 fm.

The contact uncertainties are extracted by varying the fit limits by 40.25 fm. The
extracted AV18 contacts are shown in Table under “r-space’”.

4.4.2 Contacts from 2-body momentum distributions

We follow an almost identical procedure to extract nuclear contacts in momentum
space. We extracted the nuclear contacts by fitting the factorized 2-body momen-
tum distributions from equation to the corresponding VMC 2-body momentum
distributions from [16, [66, [148] at high momenta. Fig. shows the ratios of pn,
pp, and nn 2-body momentum distributions for 3 < A < 40 to the NN asymptotic
densities |¢%y|? for the corresponding channel normalized so that they all have the
same value at ¢ ~ 4.5 fm ™.

The high-momentum behavior agrees for all nuclei, and the low-momentum be-
havior does not. This validates the GCF prescription for 2-body distributions at high
momenta (equation [4.11)). The scale factors used to normalize the VMC densities to
all agree at ¢ ~ 4.5 fm™! are the contacts.

We extracted the momentum-space contacts (C3=, Co0, C50 and C5t) by si-
multaneously fitting F,,,(¢), F,.n(q) (in the case of symmetric nuclei, F,,(q) = F,,(q)),
Fyn(q), and Fsr—19(q). In the case of the Fsr_10(q) distribution, we assume that, at

high-momentum, this function is only due to pn, s = 1 pairs. In this case, we do not
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Figure 4-5: High-momentum universality of AV18 2-body momentum distributions.
The different colored lines correspond to VMC calculations for different nuclei carried
out using the AV18+UX potential, divided by the NN asymptotic densities [p% x>
for the corresponding channel. All these distributions are normalized to have the same
value at ¢ ~ 4.5 fm ™" in order to visualize the high-momentum universality. The gray
area shows the range in which SRCs dominate the 2-body momentum distributions.
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assume isospin symmetry (Cp; 0= 0520 = Con 0 for the symmetric nuclei), and we
use the results to test it. The fits to extract the contacts are carried out in the range
4.0 < ¢ < 4.8 fm™'. The contact uncertainties are extracted by varying the fit limits
by £0.2 fm~'. The extracted AV18 contacts are shown in Table under “k-space”.

Delayed scaling in 2-body momentum distributions

The scales for SRCs in coordinate and momentum spaces are the nucleon radius (ry)
and the Fermi momentum (kg) respectively. That is, in coordinate space, SRCs
are predicted to dominate for r < ry. Similarly, in momentum space, SRCs are
predicted to dominate for ¢ > kp. The first statement was verified in section [4.4.1]
However, in section [£.4.2] we observed that the second statement was not satisfied.
The high-momentum scaling occurred for ¢ > 4.0 fm™' ~ 3kp. This effect can be
traced back to the definition of 2-body momentum distributions: the probability to
find two nucleons of a given type at some relative momentum (¢) and some center-of-
mass momentum (). Care should be taken to identify SRCs in 2-body momentum
distributions, since these distributions include any type of pair, whether they are
physically correlated at short distances or not. As an example, consider a pair of
nucleons, one of which has a momentum k; = 3kp (and therefore belongs to the
high-momentum correlated tail of the momentum distribution), and the other one
is at rest: ko = 0 (and therefore belongs to the Mean-Field part of the momentum
distribution). The relative momentum for these two uncorrelated nucleons is high
(g = |k1 — k3|/2 = 1.5kp). That is, this pair could be naively interpreted as a
short-range correlated pair. Nevertheless, their center-of-mass momentum is also high
(Q = |k1 + ks| = 3kp), and SRCs have low Q [50]. Therefore, the high-¢ condition is
necessary, but not sufficient. Additionally, we need to require either for the pair to
have low center-of-mass momentum, or alternatively for each individual nucleon to
have high individual momenta.

To study this idea beyond the simple example described in the previous paragraph,
we developed a toy model that describes the nuclear environment as a Correlated

Fermi Gas (CFG, not to be confused with the Generalized Contact Formalism, GCF).

127



The CFG model describes the nucleus as a Fermi gas at zero temperature with a short-
range interaction between the fermions. That is, the 1-body momentum distribution

corresponds to:
.

Cl, k< kp
nera(k) = Co/k",  kp <k <5 fm™ (4.18)
0, otherwise,

\

where C and C5 are normalization constants representing the strength of the Mean-
Field part of the momentum distribution and the high-momentum, SRC dominated
tail respectively. The Mean-Field part of the momentum distribution was defined

with an 80% strength:

kr
/ Encre(k)dk = 0.8, (4.19)
0
krp k3 (kr
o / Kdk = Ci—| =038, (4.20)
0 3 lo
3
Ci = 08-5. (4.21)
kF

Since all the nucleons in the tail are expected to be correlated with another nucleon,
we defined the strength of the tail to be 10%, and every time a nucleon was sampled
from this region of the distribution, another nucleon was created, completing the

remaining 20% strength with respect to the Mean Field:

5 fm~1!
/ knerg(k)dk = 0.1, (4.22)
kp
5 fm~—1 dk’ k,gfn 5 fm—1!
C = C =0.1 4.23
s = o , (123
Cy = 0.1 S (4.24)

X 53—n _ [3-n°
F

We used n = 4, following the arguments from [146], in which case: Cy = 0.1/ (é —
1). Many events were sampled from k*ncpg (k). Every time a nucleon with momentum
ki1 > kr was sampled, we also sampled three center-of-mass momenta values @) (one

for each cartesian coordinate) from three gaussian distributions with mean p = 0 and
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standard deviation o = 140 MeV/c, as measured by Cohen et al. [50]. Then, k; is
turned into a vector by sampling a unit vector from a uniform sphere. Accordingly,

we create another (correlated) nucleon with momentum:

ko =Q — k. (4.25)

The resulting 2-body momentum distribution is shown in Fig. as a function of
g and () and is built by looping over every possible pair of nucleons, and classifying

each pair according to the origin of the two nucleons:
e the two nucleons are from the Mean Field: MF-MF

e one nucleon is from the Mean Field, and the other one is from the high-

momentum tail: MF-SRC

e the two nucleons are from the high-momentum tail, but they are not correlated

with one another: SRC-SRC (not same pair)

e the two nucleons are from the high-momentum tail, and they belong to the same

SRC pair: SRC-SRC (same pair)

As expected, true short-range correlated pairs (bottom-right plot) dominate the 2-
body momentum distribution at low-() and high-¢q simultaneously, and uncorrelated
MF-MF pairs (bottom-left plot) dominate the 2-body momentum distribution for
q < kp. The delayed scaling seen in the previous section comes from the uncorrelated
MF-SRC pairs (top-right plot), which dominate the 2-body momentum distribution
up to higher values of ¢ as more center-of-mass motion is incorporated. Section
IV.A of [149] describes how SRCs dominate the 2-body momentum distribution for
q 2 1.040.5 x Q. This relation, which was studied using realistic 2-body momentum
distributions and is plotted in Fig. as a diagonal yellow line in the MF-SRC
(top-right) plot, agrees with the MF-SRC boundary from this simple model.

Thus there are two main ways to identify SRCs in 2-body momentum distributions

while minimizing the Mean-Field contribution. We can either 1) restrict the study
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Figure 4-6: Toy model 2-body momentum distribution as a function of center-of-mass
(Q) and relative (¢) momenta corresponding to nucleons that follow equation
with n = 4. The dashed magenta lines correspond to kr. The diagonal yellow line
shows, for a given (), the minimum ¢ value above which SRC dominate the 2-body
momentum distribution [149].

to low-@ and then SRCs will dominate for ¢ 2 kg, or 2) we can integrate over @,
and then SRCs will dominate for ¢ > kpr. These two approaches can be further
seen by comparing experimental data to ab-initio calculations. Fig. [4-7] shows the
“He SRC pp/pn ratio as a function of ¢ adapted from Fig. 1 in [I38]. The magenta
markers correspond to the SRC pair fraction extracted from electron-induced proton-
nucleon knockout *He(e, ¢’pN) measurements [56]. The kinematics of the experiment

are chosen to detect SRC pairs. The colored lines correspond to the ratio:

SRCpp — fOKmaz dQ)Fpp((j; Q) (426)
q.Q

SRCpn [ 4G F, (7, Q)

where different colors correspond to different values of K,,,, varying from 0 to co. As
long as the integral upper limit is small (K., < kr), calculated ratios agree with the
measured data. For integrations carried out up to K., > 2 fm ™!, the calculations

only agree with the measured data for ¢ > kp.

The 2-body momentum distributions used in section [£.4.2] to extract the nuclear

contacts in momentum space correspond to distributions integrated over center-of-
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Figure 4-7: “He SRC pp/pn fraction as a function of ¢ adapted from Fig. 1 in
[138]. The magenta markers correspond to the SRC pair fraction extracted from
“He(e, ¢'pN) measurements [56]. The colored lines correspond to AV18+UX VMC
2-body momentum distributions integrated over center-of-mass momentum in the
range 0 < Q < Kyuae (Where K4, is specified in the legend). The solid and dashed
black lines correspond to the prediction from the GCF calculated using the contacts
extracted in momentum and coordinate space respectively.
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mass momentum: F(q) = [;° dQF(7,@Q). This explains why the expected scaling
was delayed up to ¢ ~ 4.0 fm ™.

Fig. H also shows the GCF prediction using the “*He contacts from Table . In
the GCF, this observable is calculated as:

SRC,, Corlen, (@)

—_— = . 4.27
SRC,, ! = TP + O [ (@) (4.27)

The momentum- and coordinate-space contact results agree with each other and with
both the measurement and the low-QQ VMC calculations. The same agreement is seen

among GCF, VMC and data for *C [57].

4.4.3 Contact extraction from experimental data

We used the “He and '2C(e, ¢'pN) data [56, 7] to evaluate the GCF results. Con-
versely, we also used the pp/pn ratios from this data, together with as(A) scale factors,
to directly extract contact values. ag(A) is interpreted as the number of SRC pairs
in a given nucleus A relative to deuterium, see section [1.3] This parameter can be
related to the GCF through the expression:

o) [ bt — S O O G (.29

kr

where 1h4(k) is the total deuteron wave function normalized such that: I o (k) [2dk =
1. We simultaneously fitted equations [£.27] and [4.28] assuming isospin symmetry to
the available data. The results are presented in Table with the text “(exp)” next
to them.

4.4.4 AV18 results and discussion

We extracted the nuclear contacts following the three procedures described in the
previous sections: 1) extraction in coordinate space from VMC 2-body coordinate
densities, 2) extraction in momentum space from VMC 2-body momentum distribu-

tions, and 3) extraction in momentum space from experimental data. All three used
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the AV18 NN potential. The results are presented in Table as the percentage of
nucleons above kr in the different SRC channels.

These results show that some important features of SRCs are naturally obtained
in the GCF. First and foremost, np dominance is manifested in that the C’;:l con-
tacts are an order of magnitude greater than their spin-0 counterparts. Secondly,
the agreement between contacts extracted in momentum and coordinate spaces from
VMC calculations indicates a quantitative agreement between short-distance and
high-momentum scaling of SRC pairs in nuclei.

More experimental data is needed to constrain the experimental contacts to a
greater precision. Nevertheless, with the currently available data, we found that
these contacts approximately agree with the corresponding contacts extracted from
VMC 2-body densities.

A surprising result of the GCF concerns isospin symmetry in symmetric nuclei.
While we expected to see a combinatorial relation between different pairs (i.e. pp,

pn, nn), we observed that all the spin-0 contacts are the same within uncertainties.

4.4.5 Contact verification with 1-body momentum distribu-

tions

Up to this point, I described how we determined nuclear contacts from fits to 2-body
coordinate densities and momentum distributions. That is, the 1-body momentum
distribution from equation has not been used and, consequently, it can now be
used to verify the results. The left side of Fig. shows a comparison between the
VMC and the GCF proton 1-body momentum distributions for *He, both based on
the AV18 NN potential. The contributions from different contact channels are shown
as dashed lines. The right side of Fig. shows a similar comparison between VMC
and the GCF proton 1-body momentum distributions for several symmetric nuclei.
See Appendix [D| for plots equivalent to the left panel for the remaining nuclei.

It is worth reminding the reader that, since 2-body momentum distributions con-

tain information from non-SRC “pairs” (see section|4.4.2)), the contacts are determined
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Figure 4-8: Comparison between 1-body momentum distributions from VMC and
from the GCF. The left panel shows the comparison for “He and also the GCF pre-
diction for the contribution from different types of pairs. The sum of the dashed lines
equals the solid red line. The lower panel shows the ratio of the GCF over the VMC
1-body momentum distributions. The gray band shows the 10% level of agreement.
The width of the red band corresponds to the uncertainty from the contacts, and the
width of the black band of value 1 corresponds to the uncertainty from the VMC
calculation. The right panel shows the comparison for different symmetric nuclei.

134



from fits in the high-momentum range 4 — 5 fm~!. The GCF describes the VMC 1-
body momentum distributions remarkably well, within 10 — 20% over three orders of

magnitude.

4.4.6 SRCs and the ST = 11 channel

We find a negligible SRC contribution from the spin-isospin S7" = 11 channel. Despite
completely neglecting this channel we can reproduce the 1-body momentum distri-
bution to within 10 — 20%. However, previous work (e.g. Feldmeier et al. [I50], and
Alvioli et al. [I51]) found a significant ST = 11 contribution. A possible explanation
for this discrepancy is that of section [4.4.2 That is, these two studies do not limit
the pair center-of-mass momentum to be small, potentially leading to the inclusion

of non-correlated pairs into their SRC studies.

4.5 Testing scale-and-scheme independence with the

GCF

In the previous sections, I outlined how we developed and explored the validity of the
GCF in the context of the AV18 potential. As described in section and shown in
Fig. [4-9] ab initio many-body calculations carried out with different N N-interaction
models produce nuclear wave functions that differ significantly at short distances and
high momenta. This scale and scheme dependence raises important questions about
the model dependence of SRC measurement interpretations.

In order to address this issue, Chen et al. [I52] and Lynn et al. [142] analyzed
QMC calculations of 2-body coordinate densities calculated from different realistic
N N-interaction models (without separating the contributions from different spin-
isospin channels) and showed the first evidence for scale and scheme independence
of ratios of 2-body coordinate densities for different nuclei to the deuteron at short
distances.

Here, I present a comprehensive study of the scale and scheme (in)dependence
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Figure 4-9: 2-body coordinate densities (left two columns) and momentum distribu-
tions (right two columns) calculated using different NN potential models. The top
and bottom rows correspond to *He and O respectively.

of different SRC properties from analyzing both coordinate densities and momentum
distributions (projected into spin-isospin channels) calculated from different realistic
N N-interaction models using a common framework: the GCF. Specifically, I will focus
on the four interactions introduced and described in section[I.T} the phenomenological

AV18, AV4’ and the chiral N°LO(1.0fm), N*2LO(1.2fm), and NV2+3-Ta* interactions.

As described in section 4.3 the first step in the GCF corresponds to determin-
ing the universal NN asymptotic wave functions, corresponding to the zero-energy
numerical solution of the Schrédinger equation, which depends on a specific NN po-
tential. That is, ¢ are universal in the weak sense (they are nucleus but not model
independent). Consequently, a set of NN asymptotic wave functions needs to be
calculated for each NN potential being studied. In Fig. [4-10] we can see the scale
and scheme dependence of the NN asymptotic densities.

We begin checking the validity of the GCF by studying the short-distance and
high-momentum universality of 2-body coordinate densities and momentum distri-
butions respectively, calculated with different N N-interaction models as was done in
section [4.4] for the AV18 potential. The left column of Fig. [4-11] shows the 2-body
coordinate densities for all four interactions and different nuclei, normalized to have
the same value at ~ 1 fm. While the short-distance behavior is very different among

NN models, for each model all nuclei exhibit the same behavior. Furthermore, this
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Figure 4-10: Universal asymptotic densities |¢% y|? for spin-1 pn (top) and spin-0 pp
(bottom) pairs calculated in both coordinate (left) and momentum (right) space for
five different NN potentials. The spin-0 nn and pn functions are quantitatively very
similar to the spin-0 pp functions. Here, 77 = 7j; is the relative distance between the

nucleons in the pair, ¢= (l%; — /%)/ 2 is the relative momentum between the nucleons
in the pair, and the 77 indices have been dropped.

behavior is consistent with that of the universal asymptotic densities (shown in black).
This validates equation for the different interactions at short-distances. Since the
2-body momentum distributions decay exponentially, the right column of Fig. 4-11
shows the 2-body momentum distributions divided by the corresponding universal
asymptotic density, scaled to a value of one at high momenta (4.5fm™! in the case
of phenomenological potentials, and 3.5fm™! in the case of chiral interactions). As
expected from equation [1.11] we found that the high-momentum part of the result-
ing distributions is constant. For pp and nn pairs, the scaling is less pronounced
and starts at higher momenta than that for pn pairs, possibly due to three-nucleon
SRCs, but is still present. As discussed previously in section 4.4.2] the 2-body mo-
mentum distribution scaling onset is much higher than expected due to the presence

of uncorrelated pairs.

The toy model from section suggests that the scaling onset also depends

on the “hardness” of the interaction, with phenomenological potentials scaling at
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Figure 4-11: Short-distance (left column) and high-momentum (right column) uni-
versality of 2-body coordinate densities and momentum distributions respectively for
pn (top), pp (center), and nn (bottom) pairs for different NN + 3N interactions.
The N2LO(1.0fm) and (1.2 fm) distributions are only shown up to 4.4 and 3.8 fm~!
respectively, above which cutoff effects become very large.
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higher momenta. This is confirmed by the distributions from Fig. [4-11] For example,
in the case of pn pairs, we can see that the scaling starts at 3.4 — 4 fm~! for the
phenomenological, and at 2 — 2.3 fm~! for the chiral potentials.

Now that the GCF has been validated for the considered NN interactions, we can

proceed to study the scale and scheme (in)dependence of different SRC properties.

4.5.1 Scale and scheme independence of nuclear contacts and

position-momentum equivalence of SRCs

The GCF 2-body coordinate densities (equation and momentum distributions
(equation include the contribution from the 2-body universal functions (p% y,
which describe the short-distance and high-momentum pair interaction), and the
nuclear contacts (C§ ,, which encode the information related to the many-body dy-
namics that drive the formation and abundance of SRCs). As shown in Fig. [4-10]
the 2-body universal functions are largely scale and scheme dependent. To study the
scale and scheme dependence of nuclear contacts independently from the universal
functions, we examined ratios of 2-body coordinate densities and momentum distri-
butions at short distances and high momenta respectively, in nucleus A relative to
a reference nucleus Ag. We used the smallest symmetric reference nucleus for each
channel: d for pn, s = 1, and *He for the other channels. Thus, according to equation
4.10] and the universal functions cancel in the ratio and, consequently, this result

corresponds to the ratio of contacts for A to Ag:

PIN()a AT TP CRinla _ CRinla (4.29)
PN ()] 4 WC%NMO Cinlao’

and similarly in momentum space.

Fig. shows the ratios C5[4/Cintla and CRyy|a/Cfixlme for all available

nuclei and interactions. All contact ratios for a given nucleus are largely scale and
scheme independent within uncertainties. The fact that N N-interaction models with
very different short-distance structures, including the tensor-less AV4’, all lead to the

same nuclear contact ratios, implies that the SRC pair formation and abundances are
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a property of the Mean Field (long-range physics) part of the NN interaction, where
all these NN models agree. Our results are in agreement with those from Vanhalst
[55], who found that the SRC abundances are a Mean-Field property, with only SRC
properties such as the isospin structure and relative momentum distributions being

determined by the NN interaction structure at short distances.

QMC calculations with soft N N-interaction models are less computationally de-
manding than those with hard ones. We can use the scale and scheme independence
of nuclear contact ratios in order to estimate contacts of heavier nuclei without need-
ing their QMC calculations. For instance, let us imagine that, while both N2LO and
AV18 QMC calculations exist for a reference nucleus Ag, only those carried out with
the N2LO interaction exist for a heavier nucleus A. We can then estimate the AV18
contacts for A as:

C]%N|A

Cinla, avis = ( >| N2Lo X O nlao, avis. (4.30)

C]C\MIN‘AO

These findings also have implications for experimental studies. It has been claimed
in the literature that ay(A) (see sections [1.3) and is sensitive to the nuclear in-
teraction at short distances. This seemingly stands in contrast with the results of
Chen et al. [I52] and Lynn et al. [I42], who found that ratios of 2-body coordinate
densities (for all types of NN pairs) for nucleus A relative to deuterium are insen-
sitive to the NN interaction, and the numerical value for these ratios is consistent
with the experimental as(A) values for the studied nuclei. We strengthen these re-
sults by showing the scale and scheme independence of nuclear contact ratios in both
coordinate and momentum space, and also for pairs with different quantum numbers.
However, unlike in individual NN, o QMC distribution ratios,when all the possible
NN channels are included in an as(A) calculation, the scale-and-scheme-dependent
pair densities don’t cancel. A rigorous derivation connecting as(A) (defined experi-

mentally) to QMC calculations and nuclear contacts is underway [153].

Exclusive two-nucleon knockout A(e,e’ NN) measurements are sensitive to the

nuclear interaction models. Fig. shows pp-to-pn pair ratios from experiment and
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theory for “He as a function of relative momentum ¢. The experimental points are
the same shown in Fig. and correspond to (e, e’pp) and (e, €'pn) measurements
from Korover et al. [56]. Some NN interactions agree with the experimental ratios

better than others, with the tensor-less AV4’ interaction failing completely.

AV4'+UIX,

N?LO(1.0fm)

Korover et al.

N°LO(1.2fm)
| L |

0 1 2 3 4
q [fm

Figure 4-13: Ratios of *He pp-to-pn back-to-back (Q = 0) pairs from experiment [56]
and theory as a function of relative momentum ¢. The lines correspond to ratios of 2-
body momentum distributions F,,(¢, @ = 0)/F,,(q, Q = 0) calculated using different
NN potentials.

Finally, there have been claims that the scaling of SRC pairs with high relative
momentum is different from that of SRC pairs with small separation [154]. The agree-
ment found between nuclear contact ratios extracted in coordinate and momentum

spaces indicates that such claims are inconsistent with the QMC wave functions.

4.5.2 Absolute contacts

In the previous section, I described our findings from studying ratios of 2-body coor-
dinate densities and momentum distributions at short distances and high momenta
respectively. By taking such ratios, the scale-and-scheme-dependent asymptotic NN
densities cancel, allowing us to study the nuclear contact ratios. These ratios are scale
and scheme independent for all the considered nuclei and NN potentials. Having done

so, we then proceeded to extract the individual contacts.
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The contact extraction process in the case of the AV18 distributions was described
in section[4.4] Similarly, the contacts corresponding to the remaining N N+3N models

were determined by fitting the VMC 2-body coordinate densities and momentum

distributions to equations [4.10| and [4.11] respectively. Since not all the spin and

isospin projections are available, we make some approximations:

) C;p:o and C5-0 are extracted from fits to the total pp and nn densities respec-
tively, assuming that the dominant contribution comes from spin-0 (s-wave)

pairs.

o O and Cs7! are extracted from fits to the isospin T=1 and T=0 pn distribu-
tions respectively, assuming that the dominant contribution comes from spin-0

and spin-1 pn pairs.

Appendix [E| shows examples of these fits in the case of *He.

Fig. [4-14] shows the absolute contacts extracted in coordinate and momentum
space for all available nuclei and NN + 3N interactions. The top and bottom panels
show the pn spin-1 and pp spin-0 contacts respectively. These values are also presented
in Table . For symmetric nuclei, C3° = C5=°. For *He, C57° = 0. For °H,
C5>0 =0, and the value shown in this columns corresponds to C57°.

The pn spin-1 contacts are largely scale and scheme independent for all interactions
in all channels, except for those determined from AV4’ distributions. The abundance
of pn spin-1 SRC pairs are predicted to be much less in this case, since the AV4’
interaction does not have the tensor force responsible for pn dominance.

The pp spin-0 contact results are more complicated. The AV18 and AV4’ contacts
(both in coordinate and momentum space) and the N*LLO momentum-space contacts
agree overall with each other, but are higher than the NV2-+3-Ia* (both in coordi-
nate and momentum space) and the N2LO coordinate-space contacts. This behavior
is less well understood than the spin-1 case from the previous paragraph. To fur-
ther illustrate this, Fig. |4-15| shows ratios of - to k-space pn spin-1 (top) and pp
spin-0 (bottom) nuclear contacts for all the available nuclei and interactions. Again,

these results confirm that the short-distance and high-momentum scaling of 2-body

143



r k
25(— | = e AV18+UX 3 3 3 pn,s=1
— 1 = o AV4A'+UIX, 1 1 | |
20— | = e NLOL ofm) | | | | |
o = e NLO(1.2fm) : : + : :
ba 15 | NV2+3-la* 1 1 ) 1 1
@] - ‘ ‘ :
- W & g
5 —q,q:-; ﬁ?ﬁl ﬁfé , . , .i'
T 1 ‘ i i i o
15— P %
ge L1
O L : : g : ‘ +z 'I:II
| , | * X ' t *#
o5t et F
- R N LR R . .
d *H *He  “He  °Li 2c g  “ca

Figure 4-14: Absolute values of the pn spin-1 (top) and pp spin-0 contacts extracted
in coordinate (M) and momentum (@) space from QMC calculations using different
N N-interaction models. In the case of 3H, there are no pp pairs, and the contacts
shown for this nucleus in the bottom panel correspond to C>9. The contacts have
been divided by A/2 and multiplied by 100 to give the percent of nucleons above kg

in the different SRC channels.
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Figure 4-15: Ratios of coordinate- to momentum-space nuclear contacts for pn spin-1
(top) and pp spin-0 (bottom) pairs for different nuclei. In the case of 3H, there are
no pp pairs, and the contacts shown for this nucleus in the bottom panel correspond
The dark- and light-gray bands correspond to the 10% and 20% levels of

to C5=0.

agreement respectively.
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coordinate densities and momentum distributions are consistent with each other for
all available nuclei, channels, and N N-interaction models, except for the case of the
N2LO spin-0 channel. The fact that this coordinate-momentum scaling discrepancy
only happens in the case of N2LO and not with NV2+3-Ia*, while both are chiral in-
teractions with short-distance cutoffs, implies that the disagreement is not an inherent
characteristic of chiral interactions, but a feature of the N2LO potential, presumably

coming from its lower order in the chiral expansion and lack of intermediate deltas.

4.5.3 Systematic uncertainties

We included three main sources of contact and contact-ratio uncertainties:

1. Parameter sensitivity: as it was done in section [4.4] the systematic uncertainty
of the contacts and contact ratios extracted in this section are determined from
a sensitivity study. That is, we vary the fit range within reasonable limits and

take the resulting contact spread as the uncertainty. See Appendix [E]for details.

2. Calculational precision: all the QMC calculations for different nuclei and NN
potentials used in this chapter are available for VMC. Therefore, for consis-
tency, we extracted all the contacts and contact ratios using VMC 2-body co-
ordinate densities and momentum distributions. Additionally, N*LO(1.0fm),
N?LO(1.2fm), and AV4’ 2-body coordinate densities are now available for some
nuclei using DMC and EXT (see section [1.2] for details). Fig. shows ratios
of nuclear contacts extracted from VMC 2-body coordinate densities to nuclear
contacts extracted from DMC and EXT 2-body coordinate densities. Based on
these results, we added an uncertainty conservatively fixed at 10% to all the

contacts and contact ratios as a measure of the QMC calculational error.

3. 3N-interaction uncertainty: when calculations are available with different 3/V-
force models (N?LO potentials), we include the difference in the results as the

uncertainty.
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Figure 4-16: Ratios of contacts extracted from VMC 2-body coordinate densities to
contacts extracted from DMC and EXT 2-body coordinate densities for the available
nuclei and NN interactions (see section for details). The dark- and light-gray
bands correspond to the 10% and 20% levels of agreement respectively.

4.6 Applications of the GCF

Besides the connections to atomic physics described at the beginning of this chapter
(see Hen et al. [140]), the GCF ideas have found several additional applications. It
has been used in studies of photo-absorption cross sections [147], symmetry energy
of nucleonic matter and neutron stars [155], asymptotic behavior of the electron-
scattering Coulomb sum rule [I56], nuclear charge densities [157], and the EMC effect
[152].

Furthermore, the GCF has been used to calculate spectral functions in SRC-
dominated kinematics [I58]. As explained in chapter 2| spectral functions are exactly
calculable only for very light nuclei. For medium to heavy nuclei, spectral functions
are determined based on effective theories, which typically lack the effects of Short-
Range Correlations. Consequently, these GCF-based spectral functions allow one to
calculate cross sections for the knock-out of high-momentum SRC nucleons and for the
first time make rigorous quantitative comparisons to high-energy electron scattering

data. Of specific interest is the GCF prediction that the repulsive core of the NN
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interaction should become important for SRC pairs with relative momenta above ~
600 MeV/c. A recent analysis of CLAS data by my collaborators confirmed this
prediction [63]. By examining the ratio of A(e, e’pp) to A(e,e’p) data as a function

of Piss, we found:

e A transition from np-dominant region with few A(e, e’pp) events (300 < pyiss<
600 MeV /) to a plateau (pmiss> 600 MeV /c), indicating an isospin-independent

interaction.

e The A(e,e'pp)/A(e, €'p) ratio agrees with the GCF predictions for all NN in-

teractions used, except for the tensor-less AV4’ interaction, as expected.

Follow-up A(e, e'pn) studies are underway [64]. The GCF-based spectral functions
were also recently used to calculate J/1 photo-production cross sections [159].
Finally, the GCF allows us to extract nuclear correlation functions [I40]. The

procedure for doing so is described in the remainder of this chapter.

4.7 Nuclear correlation functions

The many-body probability density for a non-interacting system corresponds to the
product of the single-particle probability densities of its components. In the presence
of particle-particle correlations, there can be substantial deviations from this simple
picture, which can be encapsulated in correlation functions. Since the atomic nucleus
is a dense quantum-mechanical strongly-interacting many-body system, it cannot be
described as a collection of non-interacting particles, particularly at small distances
where SRCs dominate and, consequently, correlation functions are widely used in
nuclear physics. The importance of correlation functions in the description of nuclear
systems was introduced by R. Jastrow [34] and presented in section of this thesis.
One of the first nuclear correlation function parametrizations was determined by
Miller and Spencer [I60] and used for several decades in a variety of nuclear structure
calculations. Some examples of studies that use nuclear correlation functions include

calculations of: mneutrinoless double-beta decay [21, 22, 23, 24, 161, [162], nuclear
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parity violation [163] 164], nuclear transparency in quasi-elastic scattering [165, 166,
167, 168, [169, 170], and shadowing in deep inelastic scattering [I7I]. In spite of the
spin and isospin dependence of the NN interaction, which becomes very important
mainly at short distances, and the widespread use of nuclear correlation functions,
the study of the spin and isospin decomposition of correlation functions has received
less attention. The determination of nuclear correlation functions is most important
for medium and heavy nuclei. In this section, I will describe how we used the GCF

to extract the spin and isospin decomposition of nuclear correlation functions for *¢O

and ‘°Ca (the two heaviest nuclei studied so far using Cluster VMC (CVMC)).

4.7.1 Correlation function definition

As mentioned above, the correlation function describes the deviation of the density of
a many-body system from the simple picture in which all particles are uncorrelated.
As such, the standard procedure for defining the nuclear correlation function (F) for

a given nucleus (A) as a function of the separation between two nucleons (r) is:

p(]XVN(A7 T)
F3 A7 r (, UNCOIT. ) 4.31
NN( ) p]\;N (Aa 7“) ( )

where the numerator corresponds to a fully-correlated 2-body coordinate density, and
the denominator corresponds to a 2-body coordinate density calculated in the absence

of dynamical correlations.

4.7.2 Fully-correlated 2-body coordinate density

At short distances (r < 1 fm) the spin and isospin decomposed fully-correlated 2-
body density can be accurately described using the GCF (see equation . At
long distances (r 2 2 fm), nucleons should behave independently, and thus the fully-
correlated 2-body density can be approximated as the product of two (uncorrelated)

single-nucleon densities integrated over the center-of-mass position (é) of the pair:

PN (A7) = Sy / dR px(A, R+ 7/2)px(A, R —7/2). (4.32)
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Here, the single-nucleon densities are normalized to the proton or neutron number,

and Sy represents a symmetry factor:

/

1, for pn pairs

SNN =1 Z(Z —1)/22?, for pp pairs (Z = number of protons) (4.33)

N(N —1)/2N?, for nn pairs (N = number of neutrons).
\

At intermediate distances (1 < r < 2 fm) both behaviors are present. Thus, in our
model, we describe the full 2-body density by a combination of the short- and long-
distance behaviors, with the relative contribution determined by a blending function

(gvn(A, 7)), and a constant (k) such that:

Pn (A1) = g (A, ) pSSE (A7) + k(1 — grn (A, 1)) oo (A, 7). (4.34)

When solving for the blending function one gets:

o _ .0
gNN(A;T) _ pNN(Avr) ’%pNN(Avr)

PSSE(A, ) — rplon (A7)

While the most straightforward choice of x in equation [4.34] corresponds to 1, this

(4.35)

parameter is introduced to make sure the denominator in equation never equals

0 and therefore the blending function is never singular.

In order to satisfy the condition that at short distances p% (A, 7) be fully de-
scribed by the GCF 2-body density (p§SF (A, 7)), the blending function at short dis-
tances should satisfy gyn(A,7) — 1. Similarly, in order to satisfy the condition that
at long distances p%n(A,7) be fully described by the uncorrelated 2-body density
(P (A, 7)), since pSSF(A,r) falls as 1/72 for r > 2 fm, the blending function at
long distances should satisfy gyn(A,7) — (k — 1)/k. We proposed the following

parametrization for the blending function:
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1, r <0.9 fm
gyn(AT) = (4.36)
L — 1 4 (09 fm=n)/a), r > 0.9 fm,

where the short- and long-distance behaviors are blended with a characteristic length-
scale a, which should depend on the isospin of the pairs and on the specific nucleus
being studied. This parameter (and thus the entire blending function) can be deter-
mined by fitting equation [£.34] to fully correlated 2-body coordinate densities calcu-
lated from CVMC [16]. We carried out an independent study for pp, nn, and pn pairs
in 0 and “°Ca and learned that the blending function is both isospin and nucleus

independent, and thus gyn(A,r) — g(r). We find that a depends smoothly on x,
and for k = 2 it is determined to be a = 1.518 + 0.001 fm.

We verified the validity of the density extracted using this model with that from
CVMC, as shown in Fig.
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Figure 4-17: Comparison between the 2-body coordinate density from the model from
equation (shown as bands for kK = 2 and @ = 1.518 £ 0.001 fm) and that from
CVMC (shown as markers) for 10 and 4°Ca.
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The dominant source of uncertainty comes from the contact coefficients. Our
model reproduces the fully correlated 2-body coordinate density in these two nuclei
for all types of pairs (since °0O and %°Ca are symmetric, the pp and nn behavior is
the same) to about 10%. This shows that the spin-isospin dependence of the 2-body
coordinate density is dominant at short distances (and thus originates from the GCF

densities) while the long-range behavior is universal for a given nucleus.

The single-nucleon density used to calculate the uncorrelated 2-body density from
equation is taken from CVMC. Nevertheless, these single-nucleon densities have
been well-constrained experimentally, and several parametrizations for different nuclei

can be found in the literature. See, for example, [172].

4.7.3 Uncorrelated 2-body coordinate density and the Pauli

exclusion principle

To build the correlation function, we must now proceed to determine the denominator
in equation [4.31] While this denominator corresponds to an uncorrelated 2-body
coordinate density, this quantity must be treated with more sophistication than the
one presented in equation .32} the correlative effects of the Pauli exclusion principle

must be included.

Typically, uncorrelated 2-body coordinate densities are determined from anti-

symmetrized wave functions in the form of a Slater determinant:

1
g () = 2 3 / Prid®ry6(7 — (7 — 7))ol (2:) 8} ()

a,f3,€0cc

X [pa(wi)dp(7;) = Pp(2i)dalz;)], (4.37)

where o and (8 are isospin labels and z; represents the pair quantum numbers: x =
(7, ms = £1/2,my = £1/2). In the case of pn pairs, this expression reduces to that
from equation [4.32 However, for the case of pp pairs, two spin-up protons cannot
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occupy the same orbital (Pauli principle). Thus one gets:

L1 L
p;;corr.(r) 25/(3137”1(3137“25(7“ o (Tl . 7"2))
o 1 o (4.38)
X P(TI)P(TQ) - §P(7"1, 7"2)p(7“2,7”1)
Z = exchn. [ =
=7 10w () =A™ () (4:39)

where p(7) is the single-nucleon proton density normalized to Z. The quantity
p(71,75) is the density-matrix defined such that its diagonal elements yield the proton
or neutron single-nucleon density. The second term of represents the influence
of the Pauli exclusion principle. The same happens for nn pairs. The expression in
this case is obtained by substituting N for Z and the single-nucleon neutron density

for the proton one.

We use a result based on nuclear matter (but using the local-density approximation
to the first term of the density-matrix expansion of [I73]) for p& () (the alternative

would be to use a nucleus-specific Slater determinant):

P () = 2(ZZ_ 1)/)}(7(;)(7,) X (M) , (4.40)

kFT‘

where kr = 200 MeV/c is a Fermi momentum averaged over the nuclear volume
and j; is a spherical Bessel function. We verified the accuracy of equation [£.40]
numerically, by comparing with the Slater determinant provided by the single-particle

wave functions of [174].

The effect of including or neglecting the term pg’;Ch' (") in equation when
calculating the pp correlation function can be seen in Fig. 4-18] The effect of the
Pauli principle is to strongly reduce the uncorrelated density at small distances, thus
enhancing the pp and nn correlation function. It is crucial to keep track of the Pauli

principle effects when comparing correlation functions from different authors.
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Figure 4-18:  Effect of including or neglecting the term p&™ () in equation m

when calculating the pp correlation function, shown for 4°Ca.

4.7.4 Correlation function results and discussion

We now have all the components necessary to extract the nuclear correlation function
from equation [4.31] The results from our model for 0 and “°Ca for all types of pairs
(since these two nuclei are symmetric, the pp and nn behavior is the same) are shown
as colored bands in Fig. [4-19] The equivalent results from CVMC are shown as points
of the same colors. The correlation functions are qualitatively similar for both nuclei
and different types of pairs, with some isospin dependence mainly at short distances
(r < 1.5 fm). These differences are caused by the fact that, at short distances, pp

(and nn) pairs are predominantly spin-0 while pn pairs are predominantly spin-1.

For comparison and reference, Fig. also shows several other calculations of
nuclear correlation functions. The correlation functions from CVMC and from our
model are close to that of Simkovic et al. [24] and to the °0 calculations of Alvioli et
al., but are higher than the correlation functions predicted by Benhar et al. and by
Miller and Spencer. The calculations by Alvioli et al. for *°Ca predict a significantly
higher correlation function for both pp/nn and pn. The calculation using the Unitary
Correlation Operator Method (UCOM) [176] in the T'= 0, S = 1 channel, shown as
a black dash-dotted line, is slightly lower than our predictions for pn pairs.
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Figure 4-19: Results from the isospin-decomposed O and “°Ca correlation functions
and comparison to several other calculations. The black dotted line ( ) corre-
sponds to the original model suggested by Miller and Spencer [160]. The colored thin
lines correspond to calculations by Alvioli et al. [I75]. The black dashed line (----)
corresponds to calculations by Benhar et al. [25]. The black solid line corresponds to
calculations by Simkovic et al. [24]. The black dash-dotted line (—-—) corresponds to
a calculation using the Unitary Correlation Operator Method (UCOM) [176] in the
T =0, .S =1 channel. See text for details.
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A study of Jastrow correlation functions [I77] shows that isospin symmetry is
broken at the level of two-body cluster truncation. This is one of the problems with
the Miller-Spencer parameterization. However, the Simkovic et al. model avoids
this problem because of the bump (at about » = 1 fm) in their correlation function.
Our agreement with the Simkovic et al. model shows that our work also avoids this
problem.

As shown in section [£.4.3] nuclear contacts can be extracted from experimental
data. This implies that one can potentially extract contacts, and subsequently 2-
body coordinate densities and nuclear correlation functions for heavier nuclei for

which QMC calculations are not available.

Correlation function parametrization

For ease of implementation, we provide the following parametrization for the corre-

lation function from our model:

3
F(r)=1-¢" x (fy + TZ@-W) : (4.41)
i=1

with parameter values given in Table [£.3] This function reproduces the correlation

functions of both 0O and “°Ca.

Table 4.3: Parameters describing F(r), using the functional form of equation [1.41]
Parameter | Units Value (pp/nn) Value (pn)

« fm—2 3.17 1.08
v — 0.995 0.985
51 fm—2 1.81 -0.432
5o fm—3 5.90 -3.30
53 fm—* -9.87 2.01
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Chapter 5

Summary and Conclusions

In chapter[3] I presented the first simultaneous measurement of the He and *H(e, ¢'p) re-
actions in kinematics where non-QE reaction mechanisms should be minimal, and
hence the cross sections should be sensitive to the proton momentum distributions.
These kinematics correspond to large Q?, xp > 1, and 6,, < 40°. Further sensitivity
to the momentum distributions is expected in the *He/?H cross-section ratio, since
any residual FSI effect should cancel in equal-mass nuclei (as confirmed by a general-
ized Eikonal approximation calculation of the struck-nucleon single rescattering). We
found that, while the *He/3H cross-section ratio well describes the ratio of momentum
distributions up to ppiss &~ 250 MeV /¢, they disagree by 20 — 50% at higher pyiss.
None of the currently available calculations can describe this result. Consequently,
to study whether the high-p,,;ss discrepancy came from additional non-QE reaction
mechanisms, or from deficiencies in the A = 3 wave functions, and also to test several
state-of-the-art A = 3 cross-section-calculation models, we then extracted the *He
and *H(e, ¢'p) absolute cross sections. We found the measured and PWIA-calculated
3H cross sections agreed to within 10 — 20%. On the other hand, the measured and
PWTIA-calculated 3He cross sections only agreed for 150 < piss < 350 MeV/c. In-
cluding FSI of the struck nucleon in the theory calculation improved the agreement
for both 3He and *H at high-p,,;,,. However, even after including FSI, we observed
that the 3He and 3H measured cross sections increase and decrease respectively rel-

ative to theory calculations at high-p,,;ss. This observation is consistent with the
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hypothesis that single-charge exchange (SCX) at high-p,,;ss can explain the remain-
ing differences between the measured cross sections and calculations. Nevertheless,
additional calculations that quantify the SCX effect are needed. Finally, we found
that the PWIA-calculations agreement with our measurement is significantly better
than with previous *He(e, ¢’p) measurements carried out at Q* = 1.5 (GeV/c?)?
and g = 1, where non-QFE reaction mechanisms dominated the cross section, and
the interpretation of the extracted results was consequently limited [42, [44]. The
isoscalar (*He+3H) cross section is well described by the available calculations, val-
idating current models of the A = 3 ground state up to missing momenta of 500

MeV /c.

In chapter[d] I introduced the atomic Contact Formalism, and subsequently overviewed
its generalization to nuclear systems. As a result of this study we learned that, even
though nuclei don’t strictly satisfy the scale-separation requirements of this formal-
ism, its application to study SRCs in nuclei yields results that are consistent both
with Quantum Monte Carlo (QMC) calculations at short distances and high momenta
(carried out using four different N N-interaction models), and with experimental SRC
data to about 10 —20%. The GCF describes the short-distance and high-momentum
behavior of nuclei as a linear combination of 2-body densities scaled by constants. The
2-body densities are taken to be the zero-energy solution of the Schrédinger equation
for a pair of nucleons with a set of quantum numbers and, for a given NN potential,
are universal. The scaling constants, referred to as “contacts”, carry the nucleus de-
pendence and describe the abundance of pairs of a given set of quantum numbers in
a given nucleus. The obtained equivalence between contacts independently extracted
in coordinate and momentum spaces indicates quantitative agreement between the
short-distance and high-momentum scaling in nuclei. The experimentally-verified np
dominance in SRCs is naturally obtained in the GCF. Analysis of the obtained con-
tact values reveals the spin-isospin content and also the non-combinatorial spin-isospin
symmetry of SRCs. Agreement between contacts extracted from QMC calculations
and experimental data opens up the possibility to, given new measurements, extract

contacts for heavy nuclei for which QMC calculations do not exist.
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The GCF was used to study QMC calculations carried out both in coordinate
and momentum space using four different N N-interaction models to identify scale
and scheme independent SRC properties. Even though the GCF 2-body asymptotic
densities are strongly scale and scheme dependent, nuclear contact ratios of nucleus
A to d or “He extracted both at short distances and at high momenta are largely
scale and scheme independent. This implies that SRC relative abundances (and
thus their formation mechanisms) are a Mean-Field (long-range) property. Beyond
contact ratios, absolute contacts are also largely scale and scheme independent, with
the exception of pn spin-1 contacts with the AV4’ interaction, and spin-0 contacts
with the NV2+3-Ia* interaction and in coordinate space with the N2LO interaction.
The former is expected (due to the AV4’ interaction being tensor-less), while the
latter is less well understood and will be the focus of future GCF studies. Other than
the spin-0 case in the N?LO interaction, all the remaining channels (including the
spin-1 case in the N?LO interaction) exhibit equivalence between the short-distance
and high-momentum SRC scaling. These results pose direct implications for future

experimental studies of SRC abundances and distributions in nuclei.

5.1 Outlook

The experimental and phenomenological studies presented in this thesis constitute
only a step in the much larger endeavor to learn about the short-distance / high-
momentum structure of the NN interaction through the study of SRCs and vice
versa. The effect of SCX on the 3He and *H(e, ¢'p) cross sections at large pis are
still to be studied. Furthermore, the studied models should be used to calculate the
cross sections using different models of the NN interaction in order to assess the
potential dependence. The result from the *He and 3H(e,e'p) cross-section mea-
surement constitutes, to date, the new benchmark for future few-body nuclear-theory
calculations. The GCF is currently one of the most commonly-used effective theories
to describe SRCs in nuclei. In addition to the applications described in this thesis,

the GCF is currently being implemented in a cross-section generator to study QE
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(e, €'p) scattering off SRC nucleons in the future Electron-Ion Collider. Lastly, QMC
calculations of 2-body densities as a function of relative and center-of-mass coordi-
nates (r, R) were recently carried out. Thus, in the future, nuclear contacts will be
extracted in more detail as a function of R, revealing information on how SRC pairs

distribute themselves throughout the nuclear volume.
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Appendix A

HRS optics study

A.1 High-order HRS optics checks

Study of Hall-A HRS optics by analyzing the relationship between physical variables

from elastic H(e, e¢'p) scattering (invariant mass, missing energy, and missing mo-

mentum components) and spectrometer optics variables (0, ¢y, Org, yty). The y-axis

variables have physical meaning and therefore must be independent of the HRS op-

tics. See section for more details. The following plots exhibit this independence

to within approximately 1 MeV.
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Figure A-1: Elastic H(e, €'p) invariant mass as a function of LHRS optics variables.
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Figure A-3: Elastic H(e, ¢’p) missing energy as a function of LHRS optics variables.
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A.2 (0"-order HRS optics check

Difference between variables measured by the High-Resolution Spectrometers (reco),
and calculated from different pairs of variables (calc). The plots on the left show the
distributions before any ‘Oth’ order correction. The plots on the right show the status
after all the corrections described in section [3.3.2] All the distributions in a given

plot have been normalized to have the same height at their mean value.
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Figure A-11: Counts vs. scattered electron momentum.
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Figure A-13: Counts vs. knocked-out proton momentum.
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Appendix B

SHe and “H(e, ¢/p) kinematical

distributions

Figs.[B-1] through show the measured and simulated yields for various kinematical
quantities for the *H, and *He targets. The simulated yields are scaled to match the
measured integrated yield for each target and kinematics using scale factors of 0.60
and 0.59 (0.58 and 0.84) for the low- and high-p,,;s *H (*He) kinematical settings
respectively. These scale factors imply that the measured and simulated *He / *H
yield ratios differ by 1% (=~ 0.60/0.58) and 30% (~ 0.59/0.84). We examined these
differences for a possible p,,;ss dependence and found that the data is consistent with a
flat pmiss dependence (see Fig. . Specifically for the high-p,,;ss kinematics, fitting
the double ratio to a constant and a linear function of p,,;.s gave reduced x? of 0.97
and 0.94 respectively with the resulting slope of the linear function being consistent
with zero within 1o of its fit uncertainty.

Figs. through show correlations between different measured kinematical
quantities and their comparisons to simulation.

The simulation appears to agree with the distributions of the data well enough to

use for computing the corrections described in section [3.5]
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Figure B-1: Number of counts vs. ppiss for low-p,ss (left) and high-p,,ss (right)
kinematical settings. The blue markers and lines correspond to *He measured and
simulated distributions respectively. The black markers and lines correspond to *H

miss

measured and simulated distributions respectively.
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Figure B-3: Same as Fig. , for 3He only, with separation of the SIMC yield to

contributions to 2bbu and 3bbu channels.
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Figure B-11: *He 0,, vS. ppiss measured (left column) and simulated (right column)
distributions. The top and bottom rows correspond to the low- and high-p,,;ss settings
respectively.
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Figure B-12: Same as Fig. only for *H.
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Appendix C

Additional Chapter [3] Tables

dbo
dE.dQedEpdQYy

Tables through correspond to the cross section values used to determine bin-

nb
MeV?2sr2 *

All the cross sections correspond to and are given in units of

centering corrections in the absolute-cross-section analysis. Table corresponds

to the final results from the cross-section-ratio analysis. Lastly, tables and

correspond to the final results from the absolute-cross-section analysis.
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Table C.1: Acceptance-integrated cross section values and corresponding kinematical
points for the low-p,,,;ss kinematical setting. The first and second columns correspond
to the piss [MeV/c| and E,,;ss [MeV] bin ranges respectively. The third and fourth
columns correspond to weighted-average rz and Q? [(GeV /c?)?] in that (Dmiss, Fmiss)
bin respectively. The remaining columns correspond to the integrated cross section
for 3He and *H calculated with the CK4+CC1 and Cracow models.

SHe
0CK+CC1 ‘ 0 Cracow

Pmiss

Emiss

rp

Q2

0CK+CC1

3H

‘ O Cracow

36.7 - 73.3

8-20
20 - 30

1.08
1.06

1.74
1.72

8.329e-02
2.370e-03

3.224e-02
1.976e-03

1.674e-01
3.302e-03

7.167e-02
2.673e-03

73.3 - 91.7

8-20
20 - 30
30 - 40
40 - 50

1.12
1.09
1.07
1.04

1.77
1.75
1.74
1.72

4.632e-02
1.665¢-03
3.253e-04
8.014e-05

1.981e-02
1.375e-03
3.035¢e-04
8.280e-05

8.612e-02
2.587e-03
4.962¢-04
1.318e-04

4.119e-02
2.100e-03
4.529e-04
1.357e-04

91.7 - 110.0

8-20
20 -30
30 -40
40 - 50

1.15
1.12
1.10
1.07

1.80
1.79
1.77
1.75

2.572e-02
1.360e-03
2.751e-04
8.430e-05

1.206e-02
1.099e-03
2.462e-04
8.259¢-05

4.711e-02
2.084e-03
3.650e-04
8.832e-05

2.386e-02
1.662e-03
3.236e-04
8.644¢-05

110.0 - 128.3

8-20
20 - 30
30 - 40
40 - 50

1.18
1.15
1.13
1.10

1.84
1.82
1.80
1.79

1.482e-02
1.061e-03
2.130e-04
7.212e-05

7.661e-03
8.468e-04
1.842e-04
6.699¢e-05

2.560e-02
1.617e-03
3.031e-04
8.331e-05

1.377e-02
1.274e-03
2.605e-04
7.751e-05

128.3 - 146.7

8-20
20 - 30
30 - 40
40 - 50

1.21
1.18
1.16
1.13

1.88
1.86
1.85
1.83

8.438e-03
7.810e-04
1.919e-04
6.414e-05

4.678e-03
6.154e-04
1.612e-04
5.692e-05

1.423e-02
1.136e-03
2.608e-04
7.241e-05

8.167e-03
8.837e-04
2.166e-04
6.395e-05

146.7 - 165.0

8-20
20 - 30
30 - 40
40 - 50

1.24
1.21
1.19
1.16

1.93
1.91
1.90
1.88

4.704e-03
6.010e-04
1.602e-04
5.500e-05

2.781e-03
4.794e-04
1.310e-04
4.694e-05

7.489¢-03
8.393e-04
2.095e-04
6.931e-05

4.556e-03
6.485e-04
1.687e-04
5.804e-05

165.0 - 183.3

8-20
20 - 30
30 - 40
40 - 50

1.27
1.24
1.22
1.19

1.98
1.96
1.95
1.93

2.589e-03
4.471e-04
1.336e-04
4.845e-05

1.622e-03
3.502e-04
1.074e-04
3.998e-05

4.012e-03
5.961e-04
1.674e-04
5.581e-05

2.564e-03
4.615e-04
1.320e-04
4.455e-05

183.3 - 201.7

8-20
20 - 30
30 - 40
40 - 50

1.30
1.27
1.24
1.22

2.03
2.01
2.00
1.98

1.418e-03
3.126e-04
1.072e-04
4.074e-05

9.436e-04
2.466e-04
8.507e-05
3.272e-05

2.088e-03
4.167e-04
1.311e-04
5.046e-05

1.414e-03
3.243e-04
1.018e-04
3.893e-05

201.7 - 220.0

8- 20
20 - 30
30 - 40
40 - 50

1.33
1.30
1.27
1.25

2.08
2.06
2.05
2.03

7.642e-04
2.209e-04
8.217e-05
3.505e-05

5.418e-04
1.765e-04
6.484e-05
2.759e-05

1.095e-03
2.811e-04
1.021e-04
4.258e-05

7.808e-04
2.212¢-04
7.861e-05
3.211e-05

220.0 - 256.7

8-20
20 - 30
30 -40
40 -50

1.36
1.34
1.31
1.29

2.13
2.12
2.11
2.10

3.271e-04
1.268e-04
5.801e-05
2.640e-05
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2.489e-04
1.039e-04
4.548e-05
2.037e-05

4.442¢-04
1.582e-04
7.159e-05
3.248e-05

3.379e-04
1.269e-04
5.456e-05
2.397e-05
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Table C.3: Point cross section values and corresponding kinematical points for the
low-piss kinematical setting. The first and second columns correspond to the p,uiss
[MeV /c] and E,,;ss [MeV] values respectively, evaluated at the bin center. The third
and fourth columns correspond to weighted-average xp and Q? [(GeV/c?)?] in that
(Pmiss,Emiss) bin respectively. The out-of-plane angles for the electron and proton are
always fixed at ¢ = 0° and ¢, = 180°. The remaining columns correspond to the
point cross section for *He and 3H calculated with the CK+CC'1 and Cracow models.

5 SHe SH
Pmiss | Emiss | @5 | @ | CK+CCl | OCracow | OCK+CC1 | OCracow
65.0 14 1.08 | 1.74 | 3.277e-02 | 1.797e-02 | 5.270e-02 | 3.547e-02
25 1.06 | 1.72 | 1.642e-03 | 1.307e-03 | 2.503e-03 | 2.229e-03
14 1.12 | 1.77 | 2.375e-02 | 1.333e-02 | 3.731e-02 | 2.539e-02
895 25 1.09 | 1.75 | 1.439e-03 | 1.116e-03 | 2.128e-03 | 1.863e-03
35 1.07 | 1.74 | 2.695e-04 | 2.350e-04 | 3.714e-04 | 3.475e-04
45 1.04 | 1.72 | 7.805e-05 | 7.643e-05 | 8.745e-05 | 9.245e-05
14 1.15 | 1.80 | 1.672e-02 | 9.678e-03 | 2.560e-02 | 1.768e-02
100.8 25 1.12 | 1.79 | 1.216e-03 | 9.191e-04 | 1.734e-03 | 1.481e-03
35 1.10 | 1.77 | 2.520e-04 | 2.091e-04 | 3.385¢-04 | 3.061e-04
45 1.07 | 1.75 | 7.584e-05 | 7.007e-05 | 8.649e-05 | 8.575e-05
14 1.18 | 1.84 | 1.100e-02 | 6.616e-03 | 1.637e-02 | 1.156e-02
119.2 25 1.15 | 1.82 | 1.027e-03 | 7.620e-04 | 1.409e-03 | 1.174e-03
35 1.13 | 1.80 | 2.321e-04 | 1.855e-04 | 3.029e-04 | 2.637e-04
45 1.10 | 1.79 | 7.120e-05 | 6.214e-05 | 8.191e-05 | 7.691e-05
14 1.21 | 1.88 | 7.074e-03 | 4.416e-03 | 1.026e-02 | 7.373e-03
1375 25 1.18 | 1.86 | 8.358e-04 | 6.117e-04 | 1.107e-03 | 9.011e-04
35 1.16 | 1.85 | 2.015e-04 | 1.562e-04 | 2.559¢e-04 | 2.143e-04
45 1.13 | 1.83 | 6.611e-05 | 5.513e-05 | 7.637e-05 | 6.799e-05
14 1.24 | 1.93 | 4.301e-03 | 2.805e-03 | 6.075e-03 | 4.475e-03
155.8 25 1.21 | 1.91 | 6.519e-04 | 4.738e-04 | 8.362¢-04 | 6.702¢-04
35 1.19 | 1.90 | 1.729e-04 | 1.308e-04 | 2.140e-04 | 1.735e-04
45 1.16 | 1.88 | 5.936e-05 | 4.761e-05 | 6.860e-05 | 5.774e-05
14 1.27 | 1.98 | 2.542e-03 | 1.742¢-03 | 3.498e-03 | 2.657¢-03
174.9 25 1.24 | 1.96 | 4.965e-04 | 3.615e-04 | 6.198e-04 | 4.932¢-04
35 1.22 | 1.95 | 1.459e-04 | 1.086e-04 | 1.770e-04 | 1.400e-04
45 1.19 | 1.93 | 5.274e-05 | 4.095e-05 | 6.099e-05 | 4.885e-05
14 1.30 | 2.03 | 1.461e-03 | 1.058e-03 | 1.958e-03 | 1.548e-03
102.5 25 1.27 | 2.01 | 3.687e-04 | 2.712e-04 | 4.505e-04 | 3.580e-04
35 1.24 | 2.00 | 1.230e-04 | 9.065e-05 | 1.470e-04 | 1.144e-04
45 1.22 | 1.98 | 4.632e-05 | 3.504e-05 | 5.369e-05 | 4.150e-05
14 1.33 | 2.08 | 8.181e-04 | 6.305¢-04 | 1.067e-03 | 8.853e-04
92108 25 1.30 | 2.06 | 2.658e-04 | 1.994e-04 | 3.195e-04 | 2.555e-04
35 1.27 | 2.05 | 1.004e-04 | 7.377e-05 | 1.188e-04 | 9.164e-05
45 1.25 | 2.03 | 4.019e-05 | 2.983e-05 | 4.677e-05 | 3.533e-05
14 1.36 | 2.13 | 3.686e-04 | 2.999¢-04 | 4.630e-04 | 3.965e-04
938 3 25 1.34 | 2.12 | 1.604e-04 | 1.240e-04 | 1.900e-04 | 1.529¢-04
35 1.31 | 2.11 | 7.422e-05 | 5.450e-05 | 8.740e-05 | 6.652e-05
45 1.29 | 2.10 | 3.236e-05 | 2.362e-05 | 3.806e-05 | 2.812e-05
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Table C.5: Values from Figs. [3-22] and [3-28] The first and second columns correspond to the p;,;ss range and mean values
respectively. The third column corresponds to the ratio of measured *He(e, ¢'p) to *H(e, ¢'p) normalized event yields mmmw\.mma
with the corresponding statistical and systematic uncertainties.

The fourth column corresponds to the ratio of extracted
3He to *H cross sections O3He(e,e'p)/ O3H(e,ep) With the corresponding statistical and systematic uncertainties. The fifth column

corresponds to the simulated ratio of *He(e, €'p) to *H(e, ¢'p) normalized event yields RZ;2¢. The sixth column corresponds to

the total correction that R4 needs to be divided by to get O3 He(e.e'p) | O3H(e.e'p) -

3He/3H

Drmiss TANEE | Pmiss Mean mmﬂ%wm& O3He(e,e'p)/ T3H(e.e'p) Red o

. . . total
[MeV /(] [MeV /] (Fig. g (Fig. g (Fig. _g

36.67 - 73.33 62.65 2.88 £0.12 £ 0.04 | 2.55 £0.11 +0.12 2.79 1.13
73.33 - 91.67 83.01 2.51 £0.09 &£ 0.02 | 2.54 £0.09 £0.04 2.17 0.99
91.67 - 110.00 100.73 1.97 + 0.06 £ 0.01 2.07 £0.06 £0.03 1.92 0.95
110.00 - 128.33 118.82 1.92 £ 0.06 + 0.02 2.06 £0.07 £0.04 1.76 0.93
128.33 - 146.67 137.02 1.82 £ 0.07 £ 0.01 1.95 £0.07 £0.04 1.66 0.93
146.67 - 165.00 155.16 1.77 £ 0.08 + 0.03 1.90 £0.08 +0.04 1.59 0.93
165.00 - 183.33 173.40 1.62 £ 0.09 £ 0.03 1.69 £0.10 £0.04 1.57 0.96
183.33 - 201.67 191.76 1.60 &= 0.11 £ 0.02 1.67 £0.11 £0.03 1.51 0.96
201.67 - 220.00 210.01 1.44 +£ 0.13 + 0.04 1.52 +£0.14 +0.04 1.44 0.95
220.00 - 256.67 234.88 1.38 &+ 0.13 + 0.07 1.46 +0.14 +0.09 1.36 0.95
256.67 - 293.33 277.29 1.87 &£ 0.22 + 0.06 1.70 £0.20 £0.09 1.43 1.10
293.33 - 330.00 310.67 1.55 £ 0.17 £ 0.04 1.55 +£0.17 £0.05 1.18 1.00
330.00 - 366.67 346.59 1.61 £0.21 £ 0.04 | 1.66 +£0.21 £0.05 1.07 0.97
366.67 - 421.67 392.81 1.81 £ 0.24 £+ 0.06 1.87 £0.25 £0.07 1.03 0.97
421.67 - 550.00 454.62 2.16 £ 040 £ 0.12 | 2.33 £0.43 £0.14 1.04 0.93
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Table C.7: Same as Table [C.6]for H

. The 3H decay correction and corresponding point-to-point uncertainty are also included.

DPrmiss o =+ Stat. Unc. Bin Radiative Bin Cut 3H Total
[MeV /c] ﬁ%_ Centering Correction | Migration | Sens. [%] decay Uncertainty
65.0 (4.376 £+ 0.170)e-01 | 2.54 + 0.325 | 0.69 £+ 0.031 | 1.00 £+ 0.01 2.79 0.99 £ 0.001 6.306e-02
82.5 (3.075 + 0.089)e-01 | 1.92 4+ 0.190 | 0.81 + 0.019 | 1.00 £+ 0.01 2.02 0.99 £ 0.001 3.332e-02
100.8 (2.256 £+ 0.057)e-01 | 1.56 + 0.135 | 0.83 £ 0.017 | 1.01 £ 0.01 1.39 0.99 £ 0.001 2.115e-02
119.2 (1.566 + 0.041)e-01 | 1.35 4+ 0.100 | 0.82 + 0.018 | 1.01 £+ 0.01 2.07 0.99 + 0.001 1.330e-02
137.5 (9.383 £+ 0.294)e-02 | 1.22 + 0.074 | 0.82 £ 0.018 | 1.01 £ 0.01 1.84 0.99 £+ 0.001 6.992¢-03
155.8 (5.690 £+ 0.217)e-02 | 1.11 + 0.054 | 0.83 &+ 0.017 | 1.00 £ 0.01 2.48 0.99 £ 0.001 4.049e-03
174.2 (3.289 £+ 0.162)e-02 | 1.04 £+ 0.045 | 0.81 £+ 0.019 | 1.01 £ 0.01 2.46 0.99 £ 0.002 | 2.447e-03
192.5 (2.302 £+ 0.133)e-02 | 0.97 + 0.035 | 0.78 & 0.022 | 1.00 £ 0.01 2.82 0.99 £ 0.002 1.833e-03
210.8 (1.365 £+ 0.102)e-02 | 0.93 £+ 0.031 | 0.76 £+ 0.024 | 1.00 £+ 0.01 3.07 0.99 £ 0.002 1.276e-03
238.3 (6.263 £ 0.510)e-03 | 0.88 + 0.020 | 0.76 £+ 0.024 | 1.03 £ 0.01 2.62 1.00 £ 0.003 | 5.919e-04
275.0 (4.812 £+ 0.410)e-03 | 0.96 + 0.022 | 0.78 £+ 0.022 | 1.01 £ 0.01 3.58 1.00 £+ 0.004 4.810e-04
311.7 (2.145 £+ 0.163)e-03 | 0.96 £+ 0.019 | 0.82 £+ 0.018 | 1.01 £ 0.01 2.19 1.00 £ 0.004 1.823e-04
348.3 (8.714 £ 0.848)e-04 | 0.95 + 0.019 | 0.78 &+ 0.022 | 1.01 £ 0.01 2.65 1.01 £ 0.006 9.344e-05
383.3 (4.430 + 0.616)e-04 | 0.92 £ 0.018. | 0.71 + 0.029 | 1.02 £+ 0.01 3.94 1.02 £ 0.009 | 6.733e-05
450.0 (1.455 £+ 0.221)e-04 | 1.03 £+ 0.021 | 0.71 £+ 0.029 | 1.01 £+ 0.01 6.62 1.02 £ 0.010 2.504e-05
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Appendix D

(zeneralized Contact Formalism

1-body momentum distributions

Comparison between the 1-body momentum distributions from VMC (black solid
lines) and the corresponding GCF distributions (red solid lines) determined from
contacts extracted in momentum- and coordinate-spaces. The contributions from
different contact channels are shown as dashed lines (the sum of the dashed lines
equals the solid red line). The lower panel in each figure shows the ratio of the GCF
over the VMC 1-body momentum distributions. The gray band shows the 10% level
of agreement. The width of the red band corresponds to the uncertainty from the
contacts, and the width of the black band of value 1 corresponds to the uncertainty

from the VMC calculation.
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Figure D-1: Comparison between the *He 1-body momentum distributions from
VMC and the corresponding GCF distributions determined from contacts extracted
in momentum- (left) and coordinate- (right) spaces.
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186



n(k) [fm’]

Residual

n(k) [fm°]

Residual

10°
107

[
o

R L IR AL IR I BLLLL B B |/||

101
1072
1073
10

1.2

0.8

10°g

10°
10

107t
1072
107
107

1.2

0.8

®Be, k-space ®Be, r-space

Full VMC Calculation
Full Contact Calculation
C30 contribution

T
%

- - = C:.? contribution N
contribution

B

___sz

5=

LR B |
Ll

Ty

/
T,

T

L T et o el
-
\

K [fm]

Figure D-3: Same as Fig. in the case of ®Be.
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Figure D-6: Comparison between 1-body momentum distributions from VMC and the
corresponding GCF distributions determined from contacts extracted in coordinate-
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Appendix E

Generalized Contact Formalism *He

Fit Examples

“He fits in coordinate- (left) and momentum-space (right) for different NN + 3N
potentials. The fit ranges are shown as vertical gray bands. The darker vertical gray
bands represent the ranges within which the fit limits are changed to extract the
systematic uncertainty for the contacts. This systematic uncertainty is included in
the blue bands The VMC distribution error is added as an uncertainty band to the
horizontal red line which has a value of 1. The horizontal dashed lines correspond to

a +£20% deviation.
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Figure E-1: %He fits in coordinate- (left) and momentum-space (right) for the
AV4'+UIX, potential.
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