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Measurements of short-range correlations in exclusive 4He(e, e′pN) reactions are analyzed using
the Generalized Contact Formalism (GCF). We consider both instant-form and light-cone formu-
lations with both the AV18 and local N2LO(1.0) nucleon-nucleon (NN) potentials. We find that
kinematic distributions, such as the reconstructed pair opening angle, recoil neutron momentum
distribution, and pair center of mass motion, as well as the measured missing energy, missing mass
distributions, are all well reproduced by GCF calculations. The missing momentum dependence of
the measured 4He(e, e′pN) / 4He(e, e′p) cross-section ratios, sensitive to nature of the NN interac-
tion at short-distacnes, are also well reproduced by GCF calculations using either interaction and
formulation. This gives credence to the GCF scale-separated factorized description of the short-
distance many-body nuclear wave-function.

Short-range correlations (SRCs) are pairs of strongly
interacting nucleons at short distance in atomic nu-
clei [1, 2]. The formation of SRCs and their exact char-
acteristics have wide ranging implications, from the par-
tonic structure of bound nucleons [1, 3–7] to the universal
nature of the many-body nuclear wave-function at short-
distance [8–15].

The seminal studies of SRCs used high-energy elec-
tron scattering to measure the hard-breakup of SRC pairs
in A(e, e′pN) reactions [16–22]. Two key observables in
those studies are the A(e, e′pN) / A(e, e′p) and A(e, e′pp)
/ A(e, e′pn) cross-section ratios, which probe the isospin
structure of SRC pairs. The results of such studies estab-
lished the dominance of neutron-proton (np) SRC pairs in
the momentum range of 300 to 600 MeV/c [16, 17]. This
is understood to result from the large tensor component
of the NN interaction in this momentum range [23–25].

At higher momentum, and thereby shorter distance,
the NN interaction is expected to transition from a pre-
dominantly tensor interaction to a scalar repulsive core.
This transition should lead to an increase in the fraction
of proton-proton (pp) SRC pairs, that can be observed ex-
perimentally by an increase in the A(e, e′pp) / A(e, e′pn)
and A(e, e′pp) / A(e, e′p) cross-section ratios, and a de-
crease in the A(e, e′pn) / A(e, e′p) cross-section ratio.

Ref. [18] searched for such a transition in 4He us-
ing measurements of 4He(e, e′pN) and 4He(e, e′p) reac-
tions by small-acceptance spectrometers. The measured
4He(e, e′pp) / 4He(e, e′pn) ratio was generally consistent
with the expected increase in pp-SRC pairs with increas-
ing reconstructed initial momentum of the knock-out nu-
cleon. However, the extracted 4He(e, e′pp) / 4He(e, e′p)
ratio was consistent with no momementum-dependence.

Recently, the A(e, e′pp) / A(e, e′p) ratio was ex-
tracted in nuclei from 12C to 208Pb using data from
a large-acceptance spectrometer [26]. A clear increase
was observed as a function of the knock-out nucleon’s
initial momentum. The data are in excellent agree-
ment with calculations from the generalized contact for-
malism (GCF) [12–15], using both the AV18 [27] and
N2LO(1.0) [28] potentials.

The observed increase in the A(e, e′pp) / A(e, e′p) ratio
of Ref. [26] seems to be inconsistent with the constant ra-
tio reported by Ref. [18]. However, to properly quantify
the consistency of the two measurements, they need to
be analyzed within the same theoretical framework that
consistently accounts for the different kinematics and ex-
perimental acceptances of the two experiments.

Here we show that analyzing the two datasets with the
same theoretical framework yield consistent results that
support the increase of the fraction of pp SRC pairs as the
NN interaction changes from tensor to scalar dominance.
It also contributes to the confidence of the GCF scale-
separation assumption as a description of SRCs in nuclei.

In this study, we performed for the first time a GCF
analysis of the 4He(e, e′pN) and 4He(e, e′p) measure-
ments done by small-acceptance spectrometers. We use
the GCF in both instant-form and light-cone formula-
tions, using both the AV18 and local N2LO(1.0) NN
potentials. We find that the measured missing energy
and missing mass distributions, as well as the missing
momentum dependence of the 4He(e, e′pN) / 4He(e, e′p)
cross-section ratios, are all well reproduced by GCF cal-
culations in both formulations using eitherNN potential.
Additional kinematic distributions, such as reconstructed
pair opening angle, recoil neutron momentum distribu-
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tion, and pair center of mass (c.m.) motion, are also well
reproduced by the GCF. This shows important consis-
tency between the measurements reported here and that
of Ref. [26] and gives credence to the GCF scale-separated
factorized description of the short-distance many-body
nuclear wave-function.

1. KINEMATICS FOR SRC BREAKUP
REACTIONS

The experimental data studied here were taken us-
ing a 4.454 GeV electron beam incident on a 4He gas
target in Hall A at Jefferson Laboratory. Two inde-
pendent small acceptance, high resolution spectrometers
(HRS) [29] were used to detect the scattered electron
and knockout proton. Triggered by the coincidence of
the two spectrometers, dedicated recoil proton and neu-
tron detectors were used to look for their emission due to
the SRC breakup reaction described below. See details
in Ref. [18].

This data analysis is performed within the high-
resolution description of large momentum-transfer quasi-
elastic (QE) nucleon-knockout reactions. We assume
that for high initial nucleon momentum the nucleus can
be modeled as an off-shell SRC pair with total (c.m.) mo-
mentum ~pcm, and an on-shell residual A−2 system. The
electron scatters from the nucleus by exchanging a single
virtual photon with 4-momentum (~q, ω) that is absorbed
by a single off-shell nucleon in the SRC pair with initial
4-momentum (~p1, E1). If that nucleon does not re-scatter
as it leaves the nucleus, it will emerge with momentum
~p ′1 = ~p1 +~q. The measured missing momentum is defined
as ~pmiss = ~p ′1 − ~q ≈ ~p1. The correlated recoil nucleon is
treated as an on-shell spectator with 4-momentum (~p2,
E2) = (~pCM − ~pmiss,

√
p2

2 +m2
N ), where mN is the nu-

cleon mass. The residual A − 2 system has momentum
−~pCM and excitation energy E∗.

The measurements analyzed here were performed at
Q2 = ~q 2 − ω2 ≈ 2 (GeV/c)2 and xB = Q2/2mNω > 1.1,
corresponding to anti-parallel kinematics. While the elec-
tron spectrometer was kept fixed at these central kine-
matics, the proton spectrometer moved between three
settings covering missing momentum ranges of [400–600],
[540–720], and [660–820] MeV/c. See Ref. [18] for de-
tails. In these kinematics, non-QE reaction mechanisms
are expected to be suppressed [1, 2, 30, 31]. Therefore,
the hard breakup of SRC pairs should provide a valid de-
scription of the measured reactions, up to the inclusion
of hard rescattering and single charge exchange (SCX).
These effects are discussed in a later section.

2. GCF A(e, e′NN) CROSS-SECTION

To compare the experimental data with GCF predic-
tions, cross-sections calculated in the GCF are used to
generate events that are processed analogously to the ex-
perimental data. Below we present two formulations of
the GCF cross-section, followed by a description of the
way they were implemented into an event generator and
compared to data.

2.1. Instant Form Formulation

The A(e, e′N) nucleon-knockout cross-section for the
high-Q2 QE SRC breakup reaction described above is
modeled here using a factorized plane wave impulse ap-
proximation (PWIA) [32, 33]:

d6σ

dΩk′dE′kdΩp′1dE
′
1

= p′1E
′
1σeNS

N
A (p1, E1), (1)

where (~k′, E′k) is the scattered electron four-momentum,
σeN is the off-shell electron-nucleon cross-section [32],
and SNA (p1, E1) is the nuclear spectral function for nu-
cleus A, which defines the probability for finding a nu-
cleon in the nucleus with momentum p1 and energy E1.

In the GCF, the two-body continuum region of the
spectral function is given by a sum of SRC pairs with
different spin-isospin configurations [11, 14, 34, 35]. In
the case of proton knockout, this amounts to:

Sp(p1, E1) = C1
pnS

1
pn(p1, E1)+C0

pnS
0
pn(p1, E1)

+2C0
ppS

0
pp(p1, E1),

(2)

where Cαab are the nuclear contacts, which denote the
probability of finding an NN -SRC pair with quantum
numbers α. Here α = 0 denotes a pair in a spin singlet,
isospin triplet state, while α = 1 denotes a pair in a spin
triplet, isospin singlet state. Sαab is the contribution of
each channel to the total spectral function and is given
by:

Sαab(p1, E1) =

1

4π

∫
d3~p2

(2π)3
|φ̃αab(~prel)|2nαab(~pCM)

× δ(E1 + E2 + EA−2 −mA),

(3)

where:

• ~pCM = ~p 1 + ~p 2 and ~prel = ~p 1−~p 2

2 are the c.m. and
relative momentum of the pair, respectively,

• |φ̃αab(~prel)|2 is the universal two-body function, defining
the distribution of the relative momentum of nucle-
ons within a pair, produced by solving the two-body
Schrödinger equation for a given NN potential,



3

• nαab(~pCM) = 1
(2πσCM)3/2

exp(− ~p 2
CM

2σ2
CM

) is the pair

c.m. momentum distribution, taken to be a three-
dimensional Gaussian with the same width (σCM) for
all channels,

• E2 =
√
~p 2

2 +m2
N is the energy of the specta-

tor/partner nucleon in the pair, assumed to be on-shell,

• EA−2 =
√
~p 2

CM + (mA−2 + E∗)2 is the energy of the
residual A− 2 system, with excitation energy E∗,

• mA is the mass of the target nucleus.

Combining Eqs. (1) and (3) we arrive at the following
cross-section equation:

d6σ

dΩk′dE′kdΩp′1dE
′
1

=
1

4π
p′1E

′
1σeN∫

d3~p2

(2π)3
δ(Wf −Wi)

×
∑
α

Cαab|φ̃αab(~prel)|2nαab(~pCM),

(4)

where Wi = Ek + mA and Wf = E′k + E′1 + E2 + EA−2

are the total energies in the initial and final states respec-
tively. Note that the pp-channel requires an additional
factor of 2 coming from the definition of the contact.

Eq. (4) contains an integral over all possible spectator
nucleon momentum with |~prel| > kcut-off, arising from the
definition of the spectral function in Eq. (3). For this
application of the A(e, e′pN) cross-section, we need to
preserve information on the spectator nucleon. By trans-
forming variables and integrating over the δ-function, the
A(e, e′pN) cross-section can be expressed as:

d8σ

dΩk′d3~pCMdpreldΩrel
=

σeN
32π4

p2
rel∣∣∣1− ~p ′

1·~k′
E′

1E
′
k

∣∣∣
∑
α

Cαab|φ̃αab(~prel)|2nαab(~pCM).
(5)

2.2. Light Cone Formulation

Due to the high momentum of nucleons in SRC pairs,
we also examine a relativistic version of the GCF based
on the light cone formulation of Ref. [36–38]. Four-
momentum vectors are expressed in light cone coordi-
nates in terms of plus- and minus-momentum p± ≡
p0 ± p3 as well as transverse momentum ~p⊥ ≡ (p1, p2),
where the 3-component axis is aligned along the direction
of the momentum transfer. It is also useful to define light-
cone momentum fractions α ≡ p−/m̄, where m̄ = mA/A.
The average light cone fraction for a nucleon in a nucleus
equals unity, and the total light cone fraction of a nucleus
equals A.

The light-cone formulation of the PWIA cross-section
(in the two-body continuum region) is given by:

d9σ

dE′kdΩk′
dα1

α1
d2~p1,⊥

dα2

α2
d2~p2,⊥

=

σeNδ(Wf −Wi)
ρ(α1, ~p1,⊥, α2, ~p2,⊥)

α1

(6)

where the two-nucleon density matrix
ρ(α1, ~p1,⊥, α2, ~p2,⊥) can be written in a factorized
form of:

ρ(α1, ~p1,⊥, α2, ~p2,⊥) =
α2

αCM
ρSRC(αrel, ~prel,⊥)ρCM(αCM, ~pCM,⊥).

(7)

Here we define the relative and c.m. momentum frac-
tions:

αCM = α1 + α2,

~pCM,⊥ = ~p1,⊥ + ~p2,⊥,

αrel =
2α2

αCM
,

~prel,⊥ = ~p2,⊥ −
α2

αCM
~pCM,⊥

=
α1~p2,⊥ − α2~p1,⊥

αCM
.

(8)

We note that ~prel,⊥ is not simply the perpendicular
component of ~prel, but is adjusted for boost effects [39].

The density matrix for the pair relative motion is given
by [39]:

ρSRC(αrel, ~prel,⊥) =
∑
α

Cαab

√
m2
N + k2

2− αrel

|φ̃αab(k)|2

(2π)3
, (9)

where

k2 ≡
m2
N + ~p 2

rel,⊥

αrel(2− αrel)
−m2

N . (10)

The density matrix for the pair c.m. motion is modeled
by a three-dimensional Gaussian [21]:

ρCM(αCM, ~pCM) =

m̄αCM

(2πσCM)3/2
exp

{
−
m̄2(2− αCM)2 + ~p 2

CM,⊥

2σ2
CM

}
.

(11)

By transforming variables and integrating over the δ-
function, Eq. 6 can be expressed similarly to Eq. 5:

d8σ

dΩk′d3~pCMdpreldΩrel
=

σeN
4πα1

p2
rel∣∣∣1− ~p ′

1·~k′
E′

1E
′
k

∣∣∣ 1

E2
ρSRC(αrel, ~prel,⊥)

× αA−2

αCMEA−2
ρCM(αCM, ~pCM,⊥)

(12)
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FIG. 1: Measured and GCF-calculated event yield distribu-
tion of the cosine of the opening angle between ~precoil and
~pmiss for 4He(e, e′pn) events. Insert: same for the missing
mass distribution. See Sec. 4 for details.

3. GCF EVENT GENERATOR
IMPLEMENTATION

To compare with experimental data, the cross-section
expressions of Eq. 5 and 12 are used to produce a
weighted Monte Carlo event generator. We further model
radiative and reaction mechanism effects, and then prop-
agate the resulting pseudo-events through a model of the
experiment. The procedure is described in the following
subsections.

3.1. Event Generation and Kinematics

As we have specified our cross-sections to be differen-
tial in Ωk′ , pCM , prel, and Ωrel, we randomly sample our
generated kinematics in these variables according to the
probability distribution:

P (Ωk′ , ~pCM, prel,Ωrel)

=
1

∆Ωk′
× n(~pCM )× 1

4π
× 1

∆prel
, (13)

i.e., Ωk′ , prel, and Ωrel are sampled from independent
uniform distributions, restricted to regions allowed by
the spectrometer acceptance, and ~pCM is sampled from a
Gaussian distribution of width σCM. After selecting these
variable, Ek′ can be determined from energy conservation
(i.e. mA + ω = E′1 + E2 + EA−2). The recoil nucleon is
selected randomly to be either a proton or a neutron
with the corresponding form-factors used for the off-shell
electron-nucleon cross-section calculation.

3.2. Event Weighting

Each pseudo-event is assigned a weight, given by

w =
dσ(Ωk′ , ~pCM, prel,Ωrel)

P (Ωk′ , ~pCM, prel,Ωrel)
(14)

where dσ is the differential cross section for the event’s
kinematics, and P probability for sampling the event’s
kinematics. Using Eqs. 5 and 13, the instant-form PWIA
weight is

wIF =
σeN
8π3

∆Ωk′
p 2

rel∆prel∣∣∣1− ~p ′
1·~k′

E′
1E

′
k

∣∣∣
∑
α

Cαab|φ̃αab(~prel)|2. (15)

The light cone version (using Eqs. 12 and 13) is

wLC =
σeN
α1

∆Ωk′
p2

rel∆prel∣∣∣1− ~p ′
1·~k′

E′
1E

′
k

∣∣∣ 1

E2
ρSRC(αrel, ~prel,⊥)

× m̄αA−2

EA−2
exp

{
~p2

CM,|| − m̄
2(2− αCM)2

2σ2
CM

}
.

(16)

3.3. Radiative Effects

Comparison with measured electron scattering data re-
quires accounting for radiative effects beyond the Born
approximation. We use a Monte Carlo approach simi-
lar to those proposed in Ref. [40], employing the peak-
ing approximation—energy radiated by bremsstrahlung
is only emitted in the incoming and outgoing electron
directions—as well using exponentiation to describe the
multi-photon radiated energy distribution. First, the en-
ergy radiated by the incoming electron and the energy
radiated by the outgoing electron are randomly sampled
according to the probability distribution:

P (Erad.) =
λ

Ek(′)

(
Erad.

Ek(′)

)λ−1

, (17)

λ =
α

π

[
log

(
4E2

k(′)

m2
e

)
− 1

]
, (18)

where Erad. is the total energy radiated by an electron
leg in the Feynman diagram, Ek(′) is the energy carried
by the electron leg prior to radiation, me is the electron
mass, and α is the fine-structure constant. The GCF
cross-section is calculated using the modified electron
kinematics, i.e., after initial state radiation but before
final state radiation. The event weights are multiplied
by a further radiative correction factor given by

wrad. = (1− δhard)×
(

Ek√
EkEk′

)λi

×

(
Ek + Efrad.√

EkEk′

)λf

,

(19)
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FIG. 2: Missing energy dependence of measured 4He(e, e′p) event yields [18] for three kinematical settings compared with GCF
calculations. Kinematical settings have increasing central missing momentum from left to right. See Sec. 4 for details.

with

δhard =
2α

π

[
−13

12
log

(
Q2

m2
e

)
+

8

3

]
. (20)

This approach to radiative corrections is equivalent to the
“pure peaking approximation” approach of Ref. [40], but
further neglecting non-peaked bremsstrahlung strength
and bremsstrahlung from any nucleon.

3.4. Reaction Mechanism Effects

Following Refs. [19, 22, 26], we account for the main
reaction effects relevant for the kinematics of the data
being analyzed here. Due to the anti-parallel nature of
the measured reaction, these include flux reduction due
to hard rescattering (Transparency) and isospin changes
in the final state due to (n, p) and (p, n) SCX reactions.

We account for these effects by constructing an approx-
imate ‘experimental equivalent’ cross-section expressions
from the GCF PWIA calculated cross-sections, e.g.:

σExpA(e,e′pN) =σGCFA(e,e′pN) · P
pN
A · TA+

σGCFA(e,e′nN) · P
[n]N
A · TA+

σGCFA(e,e′pN ′) · P
p[N ′]
A · TA,

(21)

Where TA and PA are respectively Transparency and
SCX probabilities, taken from reaction calculations [41],
which agree well with experimental data [42–44]. The
use of ‘[N ]’ in the SCX supscript marks the nucleon
in the pair that undergoes SCX into a different isospin
state. We assume that the transparency of nucleons fol-
lowing SCX is the same as for nucleons that did not
undergo SCX. We further note that the single nucleon
transparency is calculated to be only slightly larger than
that of a pair of nucleons. See Ref. [22, 45] for details.

All comparisons to data in this work are made using
the ‘experimental equivalent’ cross-sections defined here.

3.5. Model Systematic Uncertainties

The cross-section Eqs. 5, 12 and 21 require several in-
put parameters. While their values have been determined
by previous works, their uncertainty leads to an uncer-
tainty in the calculated cross-section. We estimate this
uncertainty by performing the calculation many times,
while simultaneously varying all of the input parameters
according to a prior probability distribution. For the re-
sults shown in this work, we indicate the median value
of the calculations as well as a band which contains 68%
of the sample parameter combinations.

The following parameters were varied according to a
Gaussian distribution unless otherwise indicated:

• σCM , the width of the SRC pair c.m. momentum dis-
tribution, which was assumed to equal 100±20 MeV/c,
as extracted from the original analysis [18],

• Cαab, the nuclear contacts, which were taken from
momentum-space VMC calculations in Ref. [15],

• PSCXA = 1.5 ± 1.5%, the SCX probability, which was
taken from the original analysis [18, 45], with negative
values excluded,

• TA = 0.7, the nuclear transparency, which was taken
from the original analysis [18, 45] with an assumed
±20% uncertainty,

• kcut-off, the momentum cut-off in the universal two-
body function above which SRCs begin to dominate,
which was varied from a uniform distribution between
200–300 MeV/c,

• E∗, the excitation energy of the residual A−2 nucleus,
which was varied uniformly between 0–10 MeV.

The systematic uncertainty bands presented in Figs. 1–
4 account for correlated effects through simultaneous
variation all model parameters. The impact of each in-
dividual model parameter can be found in online supple-
mentary materials tables I–IV, though these estimates
necessarily neglect correlated effects.
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FIG. 3: Recoil neutron momentum distribution for measured 4He(e, e′pn) event yields [18] for three kinematical settings
compared with GCF calculations. Kinematical settings have increasing central missing momentum from left to right. See
Sec. 4 for details.

3.6. Event Selection and Comparison with Data

Pseudo-events from the event generator were analyzed
in an identical fashion to the events measured in the ex-
perimennt. We applied a model for the spectrometer
acceptances to reject any pseudo-events that would not
have been triggered during the experiment. We then ap-
plied the same event selection criteria as in the experi-
mental analysis:

• Scattered electron and leading proton were in the fidu-
cial region of the HRSs: In-plane angle ±30 mrad, out-
of-plane angle ±60 mrad, and momentum acceptance
±4.5 %,

• Recoil nucleon was in the fiducial region of Big-
Bite/HAND: In-plane angle ±14◦, out-of-plane angle
±4◦, and momentum within 300− 900 MeV/c,

• A linear cut on energy transfer ω and the y-scaling vari-
able, ω < Ay + B, with A = −1.32,−1.28,−1.25 and
B = 0.90, 0.88, 0.86 in the three kinematical settings,
respectively,

• Cut on the missing energy, Emiss = mN − mA +√
(ω +mA − Elead)2 − ~p2

miss > 30 MeV,

• Cut on the missing mass, mmiss =√
(ω + 2mN − Elead)2 − ~p2

miss < 1 GeV/c2, for
events with a detected recoil nucleon, only in the
pmiss ≈ 750 MeV/c kinematic setting, as detailed in
Ref. [45],

As detector inefficiencies were corrected for in the original
analysis, we did not apply any efficiency corrections to
the calculation.

Kinematical distributions shown in Ref. [18, 45] are
reported as ‘event yield’ distributions, not as cross-
sections. Our treatment of the event generator pseudo-
data allows us to make comparisons on equal footing,
up to the limit of an overall normalization factor for
each kinematical setting. We have chosen to normal-
ize the calculation to the yield of measured 4He(e, e′p)

events for each kinematical setting. This choice au-
tomatically determines the normalization of calculated
4He(e, e′pN) yields. For the lowest ~pmiss kinemat-
ics, we excluded low missing-energy two-body breakup
from this normalization procedure, since this is out-
side the purview of GCF. We note that the normaliza-
tion factors cancel in the 4He(e, e′pN)/4He(e, e′p) and
4He(e, e′pp)/4He(e, e′pn) ratios. The normalization con-
stants for AV18 and N2LO calculations differ by factors
of 1.06, 0.78, and 0.52 for the pmiss ≈ 500, 625, and
750 MeV/c settings, respectively. This means that if
Ref. [18, 45] were to report absolute cross-sections one
of the models, most likely N2LO, would not manage to
describe its decrease with missing-momentum.

4. RESULTS

As instant form and light cone results are very simi-
lar, here we only show results for the former while the
latter are shown in the online supplementary materials.
Future measurements, beyond the scope of the data an-
alyzed here, can have an enhanced sensitivity to rela-
tivistic effects by exploring a wide-range of kinematical
correlations that can highlight differences between the
two approaches.

Fig. 1 shows the measured and GCF-calculated event
yield distribution of the cosine of the opening angle of
the pair, i.e., the angle between ~precoil and ~pmiss, for
4He(e, e′pn) events (pmiss ≈ 625 and 750 MeV/c kine-
matic settings combined). The insert shows the missing
mass distribution for the same events. The missing mass
distribution for 4He(e, e′pp) events is shown in online sup-
plementary materials Fig. 5.

Fig. 2 and 3 respectively show the measured event yield
missing energy distribution for 4He(e, e′p) events and
recoil neutron momentum distribution for 4He(e, e′pn)
events for each measured kinematical setting. As can be
seen, all measured event yield distributions are overall
well described by the GCF calculations, within uncer-
tainties. As expected, for the lowest ~pmiss kinematics
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FIG. 4: Left: Cross section ratios 4He(e, e′pN) / 4He(e, e′p) for Ref. [18] and GCF calculations. Ratios were taken for 3
kinematical settings centered around 3 bins in missing momentum. Includes ratios with recoil neutron (top) and recoil proton
(bottom). Right: Event yield super-ratio 4He(e, e′pp) / 4He(e, e′pn) and GCF calculations across kinematical settings.

the calculated missing energy distribution do not show
a two-body breakup peak as the data. In addition the
missing-energy distribution for the mid ~pmiss kinematics
is slightly shifted as compared with the data.

Fig. 4 shows the measured 4He(e, e′pp) / 4He(e, e′pn)
(right) and 4He(e, e′pN) / 4He(e, e′p) (left) ratios as
a function of missing momentum compared with GCF
calculations. Unlike the measured event yields, the
4He(e, e′pN) / 4He(e, e′p) ratios were corrected for the re-
coil nucleon acceptance. The original correction was done
using a simple phenomenological, data-driven, model.
Using the GCF we independently calculated this correc-
tion factor to find that it is in excellent agreement with
that used in the original analysis (see online supplemen-
tary materials Fig. 6). The data are consistent with GCF
predictions within uncertainties for both 4He(e, e′pp) and
4He(e, e′pn) reaction, and especially for their ratio.

The agreement of the GCF calculation with the seem-
ingly constant experimental measurement of 4He(e, e′pp)
/ 4He(e, e′p) is encouraging. It shows that there is no
contradiction between the spectrometer data analyzed
here and the large-acceptance detector measurements of
Ref. [26]. Rather, it highlights the need for proper the-
oretical framework to properly account for phase-space
and acceptance effects in the different measurements be-
fore relating the measured observables to ground state
properties of nuclei.

The improved agreement of the 4He(e, e′pp) /
4He(e, e′pn) ratio data further supports previous claims
that ratios of two-nucleon knockout reactions are good
observables. Such ratios not only benefit from the cancel-
lation of many experimental uncertainties, but also from
the cancellation of amplitude-level FSI. The latter have
previously been found to have significant effects in QE
scattering in light nuclei [15].

We further observe that both the AV18 and N2LO NN
interaction models are capable of explaining the data up
to very high values of missing momentum, giving cre-
dence to their use in calculations of high-density nuclear

systems.
Last, the GCF calculation additionally allows explor-

ing the underlying pair relative momentum distribution
probed in each kinematical setting. These distributions
are shown in online supplementary materials Fig. 7 and
8. They are similar for the AV18 and N2LO NN inter-
action models and for light-front and instant form GCF
formulations. In all cases the pair relative momentum
distribution is smaller than the probed |~pmiss|, due to the
pair c.m. motion. At the lowest |~pmiss| value the probed
relative momentum distribution for the 4He(e, e′p) reac-
tion is slightly shifted to lower values as compared with
that of the 4He(e, e′pN) reactions.

5. SUMMARY

We performed a re-analysis of SRC studies using the
4He(e, e′p) and 4He(e, e′pN) reactions. The data are
taken at high-Q2, xB > 1, high-~pmiss kinematics that
are dominated by the hard breakup of nucleons in SRC
pairs. GCF calculations of the measured reactions were
done using a dedicated event generator with both instant
form and light-cone formulations, while accounting for
the measurement experimental setup, event selection cri-
teria, and Transparency and SCX reaction effects.

Overall good agreement is observed between the data
and GCF, especially for 4He(e, e′pp) / 4He(e, e′pn) and
4He(e, e′pp) / 4He(e, e′p) ratios. These observations give
further credence for the GCF modeling of the corre-
lated part of the nuclear ground state and the valid-
ity of the NN interaction models examined here in de-
scribing two-body interactions at high-momentum and
short-distances. Future studies of three-nucleon correla-
tions will allow extending this study of NN interactions
to short-distance NNN interactions that are of high-
interest for complete and accurate modeling of the nu-
clear symmetry energy at high-densities and the cooling
rate of neutron stars [31, 46–49].
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