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The 3-dimensional distribution of quarks in momentum space
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We present the distribution of unpolarized quarks in a transversely polarized proton in three-
dimensional momentum space. Our results are entirely based on transverse-momentum-dependent
parton distributions (TMDs) extracted in a consistent way from experimental measurements.

The antipode of taking a picture of a black hole is tak-
ing a picture of the inside of a proton, unlocking its inter-
nal constituents, confined in the most common element
of the visible universe by the strong forces of Quantum
Chromodynamics (QCD). Using data from the scattering
of a hard virtual photon off a proton, we map the den-
sity of quarks in three dimensions, i.e., as a function of
their longitudinal momentum (along the photon’s direc-
tion) and their transverse momentum (orthogonal to the
photon). If the proton is unpolarized, the distribution
is cylindrically symmetric: we determine it using recent
results from our group [12]. If the proton is polarized in
the transverse plane, the distributions of up and down
quarks turn out to be distorted in opposite directions.
This distortion, known as Sivers effect [39], is related to
quark orbital angular momentum. We determine its de-
tails with the same formalism used for the unpolarized
distribution. In this way, we obtain a consistent pic-
ture of the full 3-dimensional momentum distribution of
quarks in a transversely polarized proton. Our study con-
stitutes a benchmark for future determinations of multi-
dimensional quark distributions, one of the main goals of
existing and planned experimental facilities [1, 7, 25].

We consider a frame where the proton has momentum
P with space component in the +z direction, is polar-
ized in the +y direction, and is probed by a spacelike
virtual photon with momentum q (with Q2 = −q2) in
the −z direction. We define the xy plane as transverse
and we denote it with the subscript T . We consider the
light-cone + direction (t+ z)/

√
2 and we define it as lon-

gitudinal. If Q2 is much larger than the proton’s mass
M2, the proton’s momentum is approximately longitudi-
nal (P+ is the dominant component).

Our goal is to reconstruct the distribution of unpolar-
ized quarks inside the nucleon as a function of three com-
ponents of their momentum. In the frame we are consid-
ering, the distribution of a quark with flavor a in a trans-
versely polarized nucleon N↑ can be written in terms of
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two Transverse Momentum Distributions (TMDs) as [10]

ρaN↑(x, kx, ky;Q2) = fa1 (x, k2T ;Q2)− f⊥a1T (x, k2T ;Q2)
kx
M
,

(1)

where fa1 is the unpolarized TMD and f⊥a1T is the Sivers
TMD [39], k is the momentum of the quark, kT its trans-
verse component, and x = k+/P+ is its longitudinal mo-
mentum fraction. Q2 plays the role of a resolution scale.

Recent extractions of f1 have been published in
Refs. [12, 13, 15, 38]. Several parametrizations of f⊥1T
have been released up to now [5, 6, 9, 18, 22, 26, 40?
, 41]. In this work, we start from a recent determina-
tion of f1 by our group [12] and we extract f⊥1T using
the same formalism. Thus, for the first time we consis-
tently reconstruct the full 3-dimensional quark density of
Eq. (1).

Both unpolarized and Sivers TMDs appear in the cross
section of polarized Semi-Inclusive Deep-Inelastic Scat-
tering (SIDIS), i.e., the process `(l) + N(P ) → `(l′) +
h(Ph) + X, where a lepton ` with momentum l scatters
off a nucleon target N with mass M and momentum P .
In the final state, the scattered lepton with momentum
l′ = l− q is detected, together with a hadron h with mo-
mentum Ph and transverse momentum PhT . We define
the usual SIDIS variables xBj = Q2

2P ·q , z = P ·Ph

P ·q . In this
study, we neglect power corrections of order M2/Q2 and
P 2
hT /Q

2, which allow us also to identify xBj = x.
The SIDIS cross section can be written in terms of

structure functions [11] that can be measured experimen-
tally. Factorization theorems make it possible to write
the structure functions at small transverse momentum
(P 2
hT � Q2) in terms of TMDs and to derive evolution

equations that predict how TMDs change as functions of
two scales µ2 and ζ [23]. These two scales are usually
chosen to be equal to the virtual photon mass Q2.

The unpolarized TMD f1 enters the structure function
FUU,T . The Sivers TMD f⊥1T enters the structure func-
tion F sin(φh−φS)

UT,T , which occurs in the polarized part of the
cross section weighted by sin(φh−φS), where φh and φS
indicate the azimuthal orientations of PhT and the tar-
get polarization ST in the transverse plane, respectively.
Both structure functions can be defined as convolutions
of TMDs upon quark transverse momenta. Their Fourier
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transform can be written more conveniently as a product
of the Fourier transforms of TMDs, i.e., 1

F̃UU,T (x, z, b2T , Q
2) =∑

a

e2axf̃
a
1 (x, b2T ;Q2)D̃a→h

1 (z, b2T ;Q2) ,
(2)

F̃
sin(φh−φS)
UT,T (x, z, b2T , Q

2) =

−M
∑
a

e2axf̃
⊥(1)a
1T (x, b2T ;Q2)D̃a→h

1 (z, b2T ;Q2) ,
(3)

where we introduced the first derivative of the Sivers
function in Fourier space [17]:

f̃
⊥(1)a
1T (x, b2T ;Q2) = − 2

M2
∂b2T f̃

⊥a
1T (x, b2T ;Q2). (4)

The above equation, evaluated at bT = 0, gives the first
transverse moment of the Sivers function

f
⊥(1)a
1T (x;Q2) = f̃

⊥(1)a
1T (x, 0;Q2) , (5)

which is an x-dependent function and corresponds to the
so-called Qiu-Sterman function [16, 35].

Apart from the unpolarized TMD f1 and the Sivers
TMD f⊥1T , the above equations contain also the Fourier
transform of the unpolarized transverse-momentum-
dependent fragmentation function D1, another essential
ingredient for the extraction of the Sivers function.

In this work, we take the unpolarized functions f1 and
D1 from our own extraction of Ref. [12], which we de-
note as Pavia17. We extract the Sivers function using
the same approach, based on the work of Collins, Soper,
Sterman (CSS) [23, 24]. The analysis is done at the next-
to-leading-logarithmic (NLL) accuracy, as defined in de-
tail in [13].2 We avoid diverging perturbative contribu-
tions using the so-called b∗ prescription and introducing
a universal nonperturbative term in the TMD evolution,
common to the unpolarized and Sivers TMDs. At vari-
ance with the standard CSS approach, we also modify the
high-transverse-momentum behavior of TMDs through
the so-called bmin prescription.

We write the Sivers function at the initial scale (Q0 = 1
GeV) as a product of a suitably normalized kT -dependent
function and the first transverse moment, f⊥(1)1T . The
function reads

f⊥a1T (x, k2T ;Q2
0) = f

⊥(1)a
1T (x;Q2

0) f⊥1TNP(x, k2T ) . (6)

The nonperturbative term f⊥1TNP is given by

f⊥1TNP(x, k2T ) =
(1 + λS k

2
T ) e−k

2
T /M

2
1

Kπ (M2
1 + λSM4

1 )
f1NP(x, k2T ), (7)

1 More details are given in the supplemental material
2 At this accuracy, the hard functions and the matching coefficients
can be neglected.

where the f1NP is consistently taken from the Pavia17
extraction. The M1, λS are free parameters, and K is
the normalization factor. The first transverse moment is
parametrized as

f
⊥(1)a
1T (x;Q2

0) =
Na

Siv

Gamax

xαa(1− x)βa

× [1 +Aa T1(x) +Ba T2(x)] f1(x;Q2
0) ,

(8)

where Tn(x) are Chebyshev polynomials of order n, and
f1 are collinear parton densities consistently taken from
the same set used in the Pavia17 fit [28]. The flavor-
dependent factor Gamax is introduced to guarantee the
positivity bound of the Sivers function of Eq. (6) [8].
The free parameters NSiv (varying only between −1 and
1), α, β,A,B are different for up, down, and sea quarks.
The total number of free parameters is 17.

To compute the Sivers function at a generic scale Q2,
we apply TMD evolution at NLL. This is more conve-
niently written in bT space and leads to

f̃
⊥(1)a
1T (x, b2T ;Q2) = eS(µ

2
b ,Q

2) egK(bT ) ln(Q2/Q2
0)

× f⊥(1)a1T (x;µ2
b) f̃

⊥(1)a
1TNP (x, b2T ) ,

(9)

where µb is a scale proportional to 1/bT . With our pre-
scriptions, we always have Q0 ≤ µb ≤ Q. At the ini-
tial scale Q0, the exponentials reduce to unity and the
above equation indeed corresponds to the derivative of
the Fourier transform of Eq. (6). For the transverse mo-
ment f⊥(1)1T , we apply the same evolution as the collinear
PDF f1 using the HOPPET code [37]. This is an approx-
imation of the full evolution [31], but we checked that
modifying this part of the evolution does not lead to sig-
nificant changes. Much more relevant for TMD evolution
are the Sudakov form factor S and the function gK(bT ):
they are present also in the unpolarized TMD function f1
and are again taken from the Pavia17 fit. Without this
information, it would not be possible to reliably calculate
the Sivers function at the experimental scales.

We fix the free parameters of our functional form by
fitting experimental data for single transverse-spin asym-
metries [10]

A
sin(φh−φS)
UT (x, z,P 2

hT , Q
2) ≈

F
sin(φh−φS)
UT,T

FUU,T
. (10)

An accurate extraction requires the inclusion of asymme-
try measurements taken by different experimental collab-
orations, covering different ranges of kinematic variables,
using different type of targets and final-state hadrons.
In our fit we include measurements published by the
HERMES [3], COMPASS [2, 4] and JLab collaborations [34].
Usually, the asymmetries are presented as projections
of the same dataset in x, z, and PhT . To avoid fully
correlated measurements, we fit only the x projections,
since we are mainly interested in the x-dependence of
the Sivers function. We select data by applying the same
criteria used for the unpolarized TMD fit, i.e., Q2 > 1.4
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GeV2, 0.20 < z < 0.74 and PhT < min[0.2Q, 0.7Qz]+0.5
GeV. After these kinematic cuts, we have a total of 118
data points: 30 from HERMES, 82 from COMPASS (32 from
the 2009 analysis, and 50 from the 2017 analysis), and 6
from JLab.

Similarly to our previous Pavia17 extraction and to
other studies of parton densities [14, 27, 36], we perform
the fit using the bootstrap method. The method consists
in creating M different replicas of the original data by
randomly shifting them with a Gaussian noise with the
same variance as the experimental measurement. Each
replica represents the possible outcome of an independent
measurement. We then fit each replica separately and we
obtain a vector ofM results for each free parameter. The
number M is fixed by accurately reproducing the mean
and standard deviation of the original data points. In
our case, it turns outM = 200, which is also consistent
with our Pavia17 fit [12].

The maximal information about our results is given
by the full ensemble of 200 replicas, combined with the
corresponding unpolarized TMD replicas. To report our
results in a concise way, we adopt the following choice:
for any result (χ2 values, parameter values, resulting dis-
tribution functions) we quote intervals containing 68% of
the replicas, obtained by excluding the upper 16% and
lower 16% values. These intervals correspond to the 1σ
confidence level only if the observable’s values follow a
Gaussian distribution, which is not true in general. When
it is not possible to draw uncertainty bands, we report
the results obtained using replica 105, which we consider
one of the most representative replicas.

We obtain an excellent agreement between the ex-
perimental measurements and our theoretical predic-
tion, with an overall value of χ2/d.o.f.= 1.1 ± 0.1 (to-
tal χ2 = 110 ± 11). Our parametrization is able to de-
scribe very well the COMPASS 2009 data set (32 points
with χ2 = 30± 5), the COMPASS 2017 data set (50 points
with χ2 = 31± 5), and the JLab data set (6 points with
χ2 = 5 ± 2). The agreement with the HERMES data set
is worse (30 points with χ2 = 48 ± 7). We checked that
the largest contribution to the χ2 comes from the sub-
set of data with K− in the final state. Our predictions
well describe also the z and PhT distributions, even if
those projections of the data were not included in the fit.
(More information about the fit procedure, the best-fit
parameters and the agreement with data can be found in
the Supplemental Material.)

In Fig. 1, we show the first transverse moment xf⊥(1)1T
(Eq. (5), multiplied by x) as a function of x at Q2

0 = 2
GeV2 for the up (upper panel) and down quark (lower
panel). We compare our results (solid band) with other
parametrizations available in the literature [9, 18, 26]

(hatched bands, as indicated in the figure). In agree-
ment with previous studies, the distribution for the up
quark is negative, while for the down quark is positive
and both have a similar magnitude. The Sivers function
for sea quarks is very small but not compatible with zero.

In general, the result of a fit is biased whenever a spe-
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FIG. 1. The first transverse moment xf⊥(1)
1T of the Sivers

TMD as a function of x for the up (upper panel) and down
quark (lower panel). Solid band for the 68% uncertainty band
of this fit at Q2

0 = 2 GeV2. Hatched bands from other extrac-
tions at different Q2

0 as indicated in the figure.

cific fitting functional form is chosen at the initial scale.
In our case, we tried to reduce this bias by adopting a
flexible functional form, as it is evident particularly in
Eq. (8). Nevertheless, we stress that our extraction is
still affected by this bias and extrapolations outside the
range where data exist (0.01 . x . 0.3) should be taken
with due care. At variance with other studies, in the
denominator of the asymmetry in Eq. (10) we are us-
ing unpolarized TMDs that were extracted from data in
our previous Pavia17 fit, with their own uncertainties.
Therefore, our uncertainty bands in Fig. 1 represent the
most realistic estimate that we can currently make on the
statistical error of the Sivers function.

In Fig. 2, we show the density distribution ρap↑ of unpo-
larized quarks in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower
panels) and at the scale Q2 = 4 GeV2. The proton is
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FIG. 2. The density distribution of unpolarized quarks in a proton transversely polarized along the +y direction and moving
towards the reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark.
Upper panels for results at x = 0.1, lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty
band of the distribution at ky = 0 (where the effect of the distortion due to the Sivers function is maximal) while left ancillary
plots at kx = 0 (where the distribution is the same as for an unpolarized proton). Results in the contour plots and the solid
lines in the projections correspond to replica 105. The bands in the projections contain 68% of the results obtained with 200
replicas of the fit.

moving towards the reader and is polarized along the +y
direction. Since the up Sivers function is negative, the
induced distortion is positive along the +x direction for
the up quark (left panels), and opposite for the down
quark (right panels).

At x = 0.1 the distortion due to the Sivers effect is
evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is opposite for
up and down quarks, reflecting the opposite sign of the
Sivers function. It is more pronounced for down quarks,
because the Sivers function is larger and at the same time
the unpolarized TMD is smaller. At lower values of x, the
distortion disappears. These plots suggest that a virtual
photon hitting a transversely polarized proton effectively
“sees” more up quarks to its right and more down quarks
to its left in momentum space. The peak positions are ap-
proximately (kx)max ≈ 0.1 GeV for up quarks and −0.15

GeV for down quarks. To have a feeling of the order of
magnitude of this distortion, we can estimate the expres-
sion eq/(kx)max ≈ 2 × 10−34C ×m ≈ 0.6 × 10−4 debye,
which is about 3 × 10−5 times the electric dipole of a
water molecule.

The existence of this distortion requires two ingredi-
ents. First of all, the wavefunction describing quarks
inside the proton must have a component with nonvan-
ishing angular momentum. Secondly, effects due to final
state interactions should be present [19], which in Feyn-
man gauge can be described as the exchange of Coulomb
gluons between the quark and the rest of the proton [30].
In simplified models [33], it is possible to separate these
two ingredients and obtain an estimate of the angular
momentum carried by each quark [21]. It turns out that
up quarks give almost 50% contribution to the proton’s
spin, while all other quarks and antiquarks give less than
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10% [9]. We will leave this model-dependent study to
a future publication. A model-independent estimate of
quark angular momentum requires the determination of
parton distributions that depend simultaneously on mo-
mentum and position [29, 32]. Nevertheless, the study of
TMDs, and of the Sivers function in particular, can pro-
vide important constraints on models of the nucleon [20]
and test lattice QCD computations [42].

In the near future, more data are expected from exper-
iments at Jefferson Laboratory and CERN. Pioneering
measurements in Drell-Yan processes have been already
reported, but they are not included in the present analy-
sis because of their relatively large uncertainties. In the
longer term, the recently approved Electron Ion Collider
project [1] will provide a large amount of data in differ-
ent kinematic regions compared to present experiments.

With this abundance of data, we will be able to reduce
the error bands, extend the range of validity of the ex-
tractions to lower and higher values of x, and obtain a
much more detailed knowledge of the 3-dimensional dis-
tribution of partons in momentum space.
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Appendix A: Supplemental material

1. Fourier transforms of structure functions

The structure functions of Eqs. (2) and (3) can be written more explicitly as [17]

FUU,T (x, z,P 2
hT , Q

2) =
1

2π

∫ ∞
0

dbT bTJ0(bT |PhT |/z)F̃UU,T (x, z, b2T , Q
2)

=
1

2π

∑
a

e2ax

∫ ∞
0

dbT bTJ0(bT |PhT |/z)f̃a1 (x, b2T ;Q2)D̃a→h
1 (z, b2T ;Q2) ,

(A1)

F
sin(φh−φS)
UT,T (x, z,P 2

hT , Q
2) =

1

2π

∫ ∞
0

dbT b
2
TJ1(bT |PhT |/z)F̃ sin(φh−φS)

UT,T (x, z, b2T , Q
2)

= −M
2π

∑
a

e2ax

∫ ∞
0

dbT b
2
TJ1(bT |PhT |/z)f̃⊥(1)a1T (x, bT ;Q2)D̃a→h

1 (z, b2T ;Q2) .
(A2)

The Fourier transforms of the TMDs are defined as

f̃a1 (x, b2T ;Q2) =

∫
d2kT e

ibT ·kT fa1 (x, k2T ;Q2) = π

∫ ∞
0

d|kT |2J0(bT |kT |)fa1 (x, k2T ;Q2) (A3)

f̃
⊥(1)a
1T (x, b2T ;Q2) =

∫
d2kT e

ibT ·kT
|kT |2
2M2

fa1 (x, k2T ;Q2) =
π

M2

∫ ∞
0

d|kT |2
|kT |
bT

J1(bT |kT |)f⊥a1T (x, k2T ;Q2) . (A4)

Note that there is a factor 2π difference compared to the definition in the Pavia17 extraction [12], which has been
taken into account in the rest of the article.

2. Details about the fit

We denote the replicated measurements as ASiv
r , with the r index running from 1 toM. Once replicas are generated,

a minimization procedure is applied to each replica separately to search for the parameter values, {pr0}, that minimize
the error function

E2
r

(
{pr}

)
=
∑
i

(
ASiv
r −ASiv

th

(
{pr}

))2
i(

∆ASiv
stat

)2
i

+
(
∆ASiv

sys

)2
i

+
(
∆ASiv

th

)2
i

. (A5)

The terms in the denominator are the statistical and systematic experimental errors, assumed to be completely
uncorrelated, and the theoretical error due to the uncertainty in the unpolarized TMDs. For each replica separately,
we identify the minimum and the corresponding values of best-fit parameters. The initial parameter values are chosen
randomly within reasonable intervals. For each replica, the goodness of the fit is evaluated using the usual χ2 test,
which corresponds to the error function of Eq. (A5), but with the original experimental data instead of the replicated
ones.

In Tab. I we give the value of the parameters obtained from our fit. For each one, we quote the central 68% of the
200 replica values (by quoting the average ± the semi-difference of the upper and lower limits). Parameters of replica
105, used for the multidimensional plots, are also given.
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M1 λS αd αu αs

All replicas 0.97± 0.53 −0.47± 0.81 1.09± 0.96 0.22± 0.22 0.61± 0.54

Replica 105 0.87 −0.85 2.01 0.14 0.27

βd βu βs Ad Au As

All replicas 5.86± 4.13 2.00± 1.89 4.49± 4.45 −0.86± 21.70 −2.90± 4.26 3.08± 7.79

Replica 105 10.00 0.18 0.11 170.00 1.19 0.07

Bd Bu Bs Nd
Siv Nu

Siv Ns
Siv

All replicas 6.16± 12.30 2.24± 5.38 0.72± 3.50 1.99× 10−6 ± 1.00 −0.09± 0.52 0.04± 0.54

Replica 105 87.60 2.49 0.35 −1.00 1.00 0.31

TABLE I. Values of best fit parameters for Sivers distribution. Upper rows contain the central 68% confidence intervals obtained
by 200 replicas. Lower rows refers to the best fit parameters obtained from replica 105.
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FIG. 3. The first transverse moment of the Sivers function, xf⊥(1)
1T , as a function of x calculated for the up (a), down (b) and

sea (c) quark at the scale Q0 = 1 GeV. The plots show all the 200 replicas obtained from the fit. For each value of x, the
uncertainty bands contain the central 68% of the replicas.
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FIG. 4. HERMES Sivers asymmetries from SIDIS off a proton target (H) with production of π+, π0, π−, K+, K− in the final
state, presented as a function of x, z, PhT . Only the x-dependent projections have been included in the fit.
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FIG. 5. COMPASS 2009 Sivers asymmetries from SIDIS off a deuteron target (6LiD) with production of π+, π−, K+, K− in
the final state, presented as function of x, z, PhT . Only the x-dependent projections have been included in the fit.
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FIG. 6. COMPASS 2017 Sivers asymmetries from SIDIS off a proton target (NH3) with production of positive hadrons h+,
presented as function of x, z, PhT and divided in four different Q2 bins. Only the x-dependent projections have been included
in the fit.
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FIG. 7. COMPASS 2017 Sivers asymmetries from SIDIS off a proton target (NH3) with production of negative hadrons h−,
presented as function of x, z, PhT and divided in four different Q2 bins. Only the x-dependent projections have been included
in the fit.
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FIG. 8. JLab Sivers asymmetries from SIDIS off a deuteron target (6LiD) with production of positive and negative π in the
final state, presented as function of x. Only the x-dependent projections have been included in the fit.
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