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We study tensor meson photoproduction outside of the resonance region, at beam energies of
few GeVs. We build a model based on Regge theory that includes the leading vector and axial
exchanges. We consider two determinations of the unknown helicity couplings, and fit to the recent
a2 photoproduction data from CLAS. Both choices give a similar description of the a2 cross section,
but result in different predictions for the parity asymmetries and the f2 photoproduction cross
section. We conclude that new measurements of f2 photoproduction in the forward region are
needed to pin down the correct production mechanism. We also extend our predictions to the
8.5 GeV beam energy, where current experiments are running.

I. INTRODUCTION

The lightest tensor meson multiplet is well established
experimentally and theoretically [1–3] and fits well into
the quark model. Given their relatively narrow width,
light tensors can be used as a benchmark when searching
for states which are less prominent in data, for example
the JPC = 1−+ exotic hybrid candidate [4, 5].

A comprehensive understanding of tensor meson pro-
duction dynamics is thus needed to pin down the prop-
erties of hybrid mesons.

In particular, in photoproduction both hybrids and
tensors can be produced through vector and axial ex-
changes. The a2(1320)0 photoproduction cross section
has been recently measured by the CLAS experiment in
the 4–5 GeV beam energy range [6]. The f2(1270) cross
section has not been extracted explicitly, but it can be in-
ferred from the partial wave analysis of γp→ π+π−p [7].
A pattern seems to emerge from various photoproduc-
tion reactions: when isovector mesons like the π0 or a02
are produced, the differential cross section exhibits a dip
at t ' −0.5 GeV2, which does not appear in photopro-
duction of isoscalars, like the η or f2.

In this paper, we describe tensor meson photoproduc-
tion in the 3–10 GeV beam energy range with a model
based on Regge pole exchanges. The model is compared
to CLAS data in Sec. II. In its simplest version, the ampli-
tude includes the leading vector exchanges only, and leads
to an exact zero at the so-called wrong-signature point.
The overall normalization is constrained from known ten-
sor meson decay widths. In Sec. III, we introduce axial
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exchanges as a possible mechanism to fill in the zero. The
strength of vector and axial exchanges is refitted to the
CLAS a2 data. We then compare the predictions of the
model with the f2 cross section data. Our predictions
are extended to a higher beam energy of Eγ = 8.5 GeV,
where GlueX and CLAS12 are currently operating [8, 9].
Polarization observables sensitive to the naturality of the
exchanges are predicted in Sec. IV. Summary and con-
clusions are presented in Sec. V, while several technical
details are left to the Appendices.

II. VECTOR EXCHANGES

We consider the process γp → Tp, where T =
a2(1320)0, f2(1270). At high energies, the amplitude in
the forward direction is dominated by the leading Regge
exchanges. As represented in Fig. 1, Regge pole ampli-
tudes factorize into a product of an upper and a lower
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FIG. 1. Factorization of the tensor meson T photoproduction
amplitude via the Regge exchange E = V,A.
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vertex [10, 11], that describe the beam and target inter-
actions, respectively. The amplitude can be written:

MλγλT ;λpλ′p
= −

∑
E

TEλγλT (t)RE(s, t)BEλpλ′p(t), (1)

where λi is the center-of-mass helicity of particle i, and
s, t the Mandelstam variables describing the total en-
ergy squared, and the momentum transferred squared
between the initial and final nucleon. The sum runs over
the Regge poles that contribute to tensor production. As
customary, reggeons are labelled by the lightest meson ly-
ing on the trajectory, and classified by this meson’s quan-
tum numbers, in particular parity P , signature τ = (−)J ,
and naturality η = P (−)J . The dominant natural ex-
changes are the vector ρ and ω, while the unnatural ones
are the axial b1 and h1. The beam asymmetry in π0 and
η photoproduction by GlueX [12] suggest that natural
exchanges dominate over unnatural ones as long as pion
exchange is forbidden [13–15]. For this reason, we now
focus on the leading vector exchanges only, V = ρ, ω.

The Regge propagator is given by [16]:

R(s, t) =
τ + e−iπα(t)

2
(−)`Γ [`− α(t)] (α′s)α(t). (2)

The factor Γ [`− α(t)] has poles for integers α(t) = J ≥ `,
representing the exchange of a particle of spin J in the
t-channel. The signature factor τ + e−iπα(t) cancels the
wrong-signature poles at J ≥ `, and provides additional
wrong-signature zeroes for J < `.

Duality arguments based on the nonexistence of flavor-
exotic resonances, at least in the light sector, require the
parameters in the propagator to be equal for vectors and
tensors (exchange degeneracy, EXD). For the trajectories
it holds since α(t) = 1 + α′(t−m2

V ) ' 2 + α′(t−m2
T ) '

α′t+ 0.5 with α′ = 0.9 GeV−2. The value of ` is the spin
of the lightest state that appears on all the degenerate
trajectories. Since there is no scalar meson on the leading
trajectories, ` = 1. For vector exchanges, τ = −1 and
the amplitude vanishes at J = 0, which corresponds to
t = −0.55 GeV2. The propagator is normalized such that,
at the vector pole:

R(s, t→ m2
V )→ α′s

1− α(t)
=

s

m2
V − t

. (3)

The bottom vertex depends on two helicity couplings:

BVλpλ′p(t) =

(
−t′

4m2
p

) 1
2 |λp−λ

′
p|

×
[
GV1 δλp,λ′p + 2λpG

V
2 δλp,−λ′p

]
. (4)

The half-angle factor (−t′) 1
2 |λ1−λ2| arises from conserva-

tion of angular momentum in the forward direction, with
t′ defined as:

t′ = t− tmin = −4qq′ sin2 θ

2
= t− m4

T

4s
+ (q − q′)2, (5a)

TABLE I. Helicity structures βλγλT (t) of the top vertex for
the interaction models considered. The other structures can
be obtained via the parity transformation in Eqs. (7) and (15).

β1,2 β1,1 β1,0 β1,−1 β1,−2

Minimal 0 1/2 −1/
√

6 0 0

TMD −1/2 −t
/

2m2
T t

/
2
√

6m2
T 0 0

M1 0 1/4 −1/
√

6 1/4 0

with q, q′ the incoming and outgoing 3-momentum,
q = (s − m2

p)
/

2
√
s, q′ = λ1/2(s,m2

p,m
2
T )
/

2
√
s, with

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ca).
Similarly, in the top vertex, we factorize the half-angle

factor and an overall normalization :

TVλγλT (t) = βγTV

(
−t′

m2
T

) 1
2 |λγ−λT |

βλγλT (t). (6)

Parity conservation implies:

β−λγλT (t) = (−)λγ−λT βλγ−λT (t). (7)

The five independent helicity structures β1,λT (t) could,
in principle, be extracted from the angular correlations
of the decay T → V γ. Unfortunately, these decay modes
have not been measured yet. We thus must introduce
a hypothesis to fix the relative size of the various struc-
tures, and fit the overall coupling to data. We consider
two models, a “minimal” one (see e.g. [17]), and a sec-
ond one that we refer to as Tensor Meson Dominance
(TMD) [18]. The helicity couplings βλγλT of the two
models are summarized in Table I, and the derivation is
described in Appendix A.

The overall normalization βγTV could be extracted from
the branching ratio of the radiative transitions between
tensors and vectors. In the absence of this, we resort to
Vector Meson Dominance (VMD), i.e. we assume that
the photon mixes with vector mesons through:

LVMD = −
√

4παAµ (mρfρρµ +mωfωωµ) , (8)

where fρ,ω are the meson decay constants, and are related
to the leptonic width Γ(V → e+e−) = 4πα2f2V /mV .

Since the systematic uncertainties related to the model
are much larger than the uncertainties of the parameters
the model depends upon, we do not perform the usual
error propagation, and just consider the qualitative be-
havior and the order of magnitude of these first estimates.

In the following, we extract the couplings for the
a2, and leave the determination of the f2 ones to Ap-
pendix D. We can use VMD to relate the radiative tran-
sition T → V γ to either the di-vector decay T → V V (′),
or the two-photon annihilation T → γγ. In the first
method, we determine the βγa2V coupling from Γ(a2 →
ωρ) ∼ Γ(a2 → ωππ) = 11.1 ± 3.4 MeV, assuming that
the ρ saturates the ππ pair [1]. The matrix element
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FIG. 2. Predictions for a2(1320) photoproduction differential cross section at Eγ = 4 (blue) and 5 GeV (red). In the top
panels we show the results for the minimal model, in the bottom ones the tensor meson dominance. The left plots feature the
wrong-signature zero at t = −0.55 GeV2. In the right plots, we modify the ρ helicity-flip bottom coupling Gρ2 → 1

α(t)
Gρ2 to fill

in the zero, as explained in the text. The overall coupling is determined from the ωππ width. Data points from CLAS [6].

∑
pol |M|2 is given in Eqs. (A6a) and (A7a), and must

be averaged over the ρ line shape:

Γ(a2 → ωρ) =
(βωρa2 )2

40πm4
a2

∫ (ma2−mω)
2

4m2
π

ds′

π

×
λ1/2

(
m2
a2 ,m

2
ω, s
′)

2ma2

∑
pol

|M|2Bρ(s′), (9)

with

Bρ(s
′) =

mρΓρ(s
′)

(m2
ρ − s′)2 +m2

ρΓ
2
ρ(s
′)
, (10a)

Γρ(s
′) = Γρ

mρ√
s′

(
s′ − 4m2

π

m2
ρ − 4m2

π

) 3
2

. (10b)

Finally, VMD leads to:

βγa2V =
√

4πα
fV
mV

βωρa2 . (11)

Using the second method, we consider Γ(a2 → γγ) =
1.00 ± 0.06 keV [1], and use Eqs. (A6b) and (A7b) to
extract the two-photon couplings βγγa2 . With VMD, we
obtain:

βγa2ω =
βγγa2√
4πα

(
fω
mω

+
1

3

fρ
mρ

)−1
, βγa2ρ =

1

3
βγa2ω , (12)

using the isospin relations derived in Appendix B. The
numerical values of the overall normalization obtained

with these two methods for the two models studied are
summarized in Table II.

The differential cross section obtained using the di-
vector decay width is compared to the CLAS data [6]
in Fig. 2. The model describes the dip in the −t ∈
[0.4, 0.6] GeV2 bin with an exact wrong-signature zero at
t = −0.55 GeV2. To improve the agreement with data,
we need to invoke a mechanism that partially fills in the
zero.

There is phenomenological evidence that the ρ nucleon
helicity-flip amplitude does not have the wrong-signature
zero [19, 20]. For example in η photoproduction, which
is dominated by ρ exchange, the cross section does not
dip [14]. Accordingly, we will modify the helicity-flip
bottom coupling Gρ2 → 1

α(t)G
ρ
2 to remove the wrong-

signature zero. The predicted curves are shown in the
right panels of Fig. 2.

Both models, in particular the minimal one, have
roughly the right order of magnitude. However, they fail
at giving a good description of data. Moreover, from Ta-

ble II we notice that the βγTV obtained using VMD from
different reactions are substantially different. In the next
section we will refit the overall normalization to data.

III. UNNATURAL EXCHANGES AND
COMPARISON WITH f2(1270) DATA

One can wonder whether other exchanges contribute
to filling in the zero. If the strength of the dip is due to
the nonflip ρ exchange only, the isospin relations (given
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FIG. 3. Fit to a2 photoproduction at Eγ = 4 and 5 GeV. The minimal model (left panel) and TMD model (right panel)
are fitted to the CLAS data [6]. The solid lines show the full models, which includes both vector and axial exchanges. The
strengths of vectors and axials is fitted to data. The contribution of axials is shown separately with dashed lines. The systematic
uncertainties of [6] are reported in the bands on top, and have not been considered in the fit.

in Appendix B) predict that the f2 cross section is nine
times larger than the a2 one at the wrong-signature point.
On the contrary, they are comparable, as one can see from
Fig. 4. This suggests the existence of other isoscalar ex-
changes that contribute to filling in the zero. Isoscalar
axial exchanges play a significant role in π0 and η photo-
production [14, 20]. We investigate here how much they
are relevant in tensor photoproduction.

The Regge propagator for axials is given by Eq. (2)
with ` = 0, since the lowest spin on the EXD trajectory
is the pion. The unnatural Regge trajectory is α(t) =
α′(t − m2

π), with α′ = 0.7 GeV−2. Charge conjugation
invariance restricts the bottom vertex to the helicity-flip
component only,

BAλpλ′p(t) = GA2

(
−t

4m2
p

) 1
2 |λp−λ

′
p|

δλp,−λ′p , (13)

with the coupling obtained from Ref. [16], GA2 = 25.24,
taking into account the normalization properly. The top
vertex reads

TAλγλT (t) = βγAT

(
−t
m2
T

) 1
2 |λγ−λT |

βλγ ,λT , (14)

with parity conservation implying

β−λγ ,λT = −(−)λγ−λT βλγ ,−λT . (15)

In the absence of information on the angular distribu-
tions of the T → Aγ decay, we restrict ourselves to the
M1 transition that dominates in the nonrelativistic quark
model. This fixes the relative size of the various helic-
ity structures (see details in Appendix A), reported in
Table I.

Transitions of tensors to axials have not been observed,
so we cannot proceed in the same way as we did for the

TABLE II. Parameters extracted from known decay widths.
The bottom vertex couplings are taken from [21].

βγa2ρ βγa2ω βγf2ρ βγf2ω

ΓV V ′
Minimal 0.235 0.791 0.700 0.233

TMD 1.143 3.8373 3.31822 1.10607

Γγγ
Minimal 0.110 0.331 0.316 0.105

TMD 0.238 0.715 0.684 0.228

Gρ1 Gρ2 Gω1 Gω2

Bottom vertex 1.63 13.01 8.13 1.8600

TABLE III. Fitted couplings defined in Eq. (16). The error
quoted is statistical and results from the fit.

βV βA

Minimal 0.251± 0.053 0.821± 0.023

TMD 1.060± 0.073 0.581± 0.053

natural case to predict the couplings. Moreover, from

Table II we notice that the βγTV obtained using VMD from
different reactions are substantially different. Therefore,
we now refit both vector and axial couplings to the a2
data. We notice that the amplitude of h1 and b1 are
identical, thus the fit is sensitive to the sum of couplings
βγa2b1

+ βγa2h1
only. We know that h1 and b1 contribute

equally to η photoproduction, and that the former is nine
times larger than the latter in π0 photoproduction [14,
20]. This agrees with the expectation from the isospin
relations discussed in Appendix B. We thus set:

βV = βγa2ω = 3βγa2ρ , βA = βγa2h1
, βγa2b1

= 0. (16)

We fit these two overall normalizations to data, using
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FIG. 4. Differential cross sections of a2 (top) and f2 (bottom panels), for different beam energies. The minimal model is
shown in the left panel, the TMD in the right ones. The strengths of vectors and axials are fitted to the a2 data only. The
results are shown in Table III. The error bands show the 1σ confidence interval which results from the statistical uncertainty of
the fit. The a2 data are taken from CLAS [6], the extraction of the f2 data from the partial wave analysis of π+π− by CLAS [7]
is described in Appendix C.

the sets of helicity structures given in Table I. The sys-
tematic uncertainties from [6] are not considered in the
fit. The results are shown in Fig. 3 and the fit parame-
ters are summarized in Table III. We quote the statistical
uncertainty on the fit parameters which propagates from
the statistical uncertainties of the data points. No sig-
nificant difference between the two models appears for
−t & 0.6 GeV2. In the forward region, the TMD model
vanishes quickly due to the presence of higher deriva-
tives, which turns into an additional factor of t in the
nonflip β1,1 helicity coupling. It is also worth noting
that, away from the very forward region, the cross sec-
tion is dominated by unnatural exchanges. This is not
the case for the TMD model, which captures the wrong-
signature dip at t = −0.55 GeV2 much better. More data
at −t . 0.6 GeV2 will help in discriminating between the
two models.

We discuss now f2 photoproduction. Using the isospin
relations of Appendix B, we can predict the behavior of
the differential cross section. If we include the h1 ex-
change only, the ratio of the couplings is βγa2h1

/βγf2h1
= 3.

If instead we set βγf2b1
= βγf2h1

as suggested by η photopro-

duction [14], the ratio of the contribution from axials to

a2 and to f2 amplitudes would be (βγa2b1
+ βγa2h1

)/(βγf2b1
+

βγf2h1
) = 5. Since we are fitting the a2 data only, this

choice affects the predictions of the f2. Moreover, since
the f2 cross section is dominated by ρ exchange, choos-

ing either value of βγf2b1
makes little difference. In the

following, we show the results for βγa2b1
= βγf2b1

= 0.

Information about the f2 may be extracted from the
CLAS partial wave analysis of π+π− photoproduction [7].
Since data are available in bins of t and beam energy,
we get the f2 from the ππ D-wave with a simple fit
as described in Appendix C. A new analysis by CLAS,
dedicated to the f2 cross section extracted from π0π0

photoproduction, is currently ongoing and will be pub-
lished soon [22]. We notice two main features: data
look much flatter in t, and there is no evidence of the
wrong-signature dip. As seen in Fig. 4, the minimal and
TMD models differ significantly. We already noticed that
the TMD vanishes in the forward direction, in opposi-
tion to the minimal one. Moreover, the former peaks at
t ' −0.6 GeV2, while the latter at t ' −0.2 GeV2. These
differences persist at higher beam energies. The minimal
model fits well the f2 data, while the TMD overshoots
the data by a factor of 4. In Fig. 4 we also show the
predictions for cross sections and parity asymmetries at
the beam energy Eγ = 8.5 GeV, which will be measured
soon by GlueX and CLAS12.

IV. POLARIZATION OBSERVABLES

The GlueX experiment operates with a linearly polar-
ized beam at peaking energy Eγ = 8.5 GeV. The photon
polarization can also be extracted at the CLAS12 ex-
periment, by measuring the angular distribution of the
impinging electron. This information, correlated with
the angular distribution of the tensor meson decay prod-
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FIG. 5. Parity asymmetry Pσ in a2 and f2 photoproduction, for different beam energies. The minimal model is shown in the
left panel, the TMD in the right ones. The strengths of vectors and axials are fitted to the a2 differential cross section data
only. The results are shown in Table III. The error bands show the 1σ confidence interval which results from the statistical
uncertainty of the fit.

ucts, allows to extract the spin density matrix elements
(SDME). From the latter, we construct the parity asym-
metry Pσ, which measures the relative strength of vector
and axial exchanges: the asymmetry is close to 1 when
the natural exchanges dominate, and to −1 when the
unnatural exchanges dominate. The definitions of SDME
and Pσ are given in Appendix E. We present in Fig. 5 the
predicted behavior of Pσ for a2 and f2 photoproduction.

The predictions of a2 parity asymmetry in the minimal
and TMD models differ substantially. The dominance of
axial exchanges for −t & 0.4 GeV2 drives Pσ towards −1
in the minimal model, while in the TMD model the parity
asymmetry stays positive. For the f2, the importance
of axial exchanges grows as −t increases in the minimal
model, while the dominance of ρ exchange in the TMD
model for the f2 leads to a parity asymmetry close to 1.

V. CONCLUSIONS

In this paper we studied tensor meson photoproduc-
tion in the 3–10 GeV beam energy range, based on a
Regge model, with vector and axial exchanges. We con-
sidered two different schemes for the vector helicity cou-
plings. We first give an order-of-magnitude estimate of
the couplings in both models. We then fit the a2 data
recently published by CLAS [6]. We predicted the f2
cross section and compared to f2 data extracted from a
partial wave analysis of π+π− photoproduction, also by
CLAS [7]. While the two models give similar descrip-
tions of the a2 cross section, they differ in predicting the

parity asymmetries and the f2 cross section. The so-
called minimal model provides better overall agreement
with both a2 and f2 data, but at the price of missing the
dip in a2. Moreover, it predicts that the a2 cross section
is dominated by unnatural exchanges, which is at odds
with the phenomenology of single meson photoproduc-
tion. On the other hand, the TMD model appears better
grounded phenomenologically, but it overestimates the
f2 data. New data on both a2 and f2 photoproduction
cross sections and beam asymmetries, in particular in the
−t . 0.6 GeV2 region , will allow us to pin down the ex-
act strength of vector and axial contributions, and lead
to a better understanding of the tensor meson production
mechanisms. The code to reproduce these results can be
accessed at the JPAC website [23].
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Appendix A: Top vertex models

1. Photon-tensor-vector interaction

The parity-conserving interaction between a tensor
and two vectors involves 5 independent Lorentz struc-
tures. In the decay kinematics T (tµν , p1 + p2) →
V1(ε(1), p1) + V2(ε(2), p2), the most generic covariant am-
plitude takes the form [24]:

M =
βV1V2

T

mT
tµν
[
αε∗(1)µ ε∗(2)ν + β1(ε∗(1) · p2)ε∗(2)µ p1ν

+ β2(ε∗(2) · p1)ε∗(1)µ p2ν + γ(ε∗(1) · ε∗(2))p1µp2ν

+ δ(ε∗(1) · p2)(ε∗(2) · p1)p1µp2ν

]
, (A1)

which leads to the decay width:

Γ(T → V1V2) =

(
βV1V2

T

)2
40π

p

m4
T

∑
λ1λ2

|Mλ1λ2
|2, (A2)

with p = λ1/2(m2
T ,m

2
1,m

2
2)/2mT , Ei =

√
p2 +m2

i , and:

M11 =
α− 2p2γ√

6
, (A3a)

M10 =
p2mTβ2 + E2α

m2

√
2

, (A3b)

M01 =
p2mTβ1 + E1α

m1

√
2

, (A3c)

M00 =

√
2/3

m1m2

[
E1E2α+ p2mT (E2β1 + E1β2)

+ p2(E1E2 + p2)γ + p4m2
T δ
]
, (A3d)

M1−1 = α, (A3e)

M−λ1−λ2 =Mλ1λ2 . (A3f)

In order to extract the Regge couplings from Eq. (A1),
we write the amplitude of the process γ(λγ)γ(λ′γ) →
T (λT )T (λ′T ) with vector exchange in the t channel, at
leading order in s. By matching to the expected form
[Eq. (6)],

AλγλT ,λ′γλ′T =
(
βγTV

)2
βVλγ ,λT

(
−t
m2
T

) 1
2 |λγ−λT |

× s

m2
V − t

(
−t
m2
T

) 1
2 |λ
′
γ−λ

′
T |

βV−λ′γ ,−λ′T
, (A4)

we obtain the structures for the Regge couplings,

β1,2 = (2β2 − tδ)/4, (A5a)

β1,1 =
1

4m2
T

[
(2t+m2

T )β2 − tβ1 (A5b)

− t(t+m2
T )δ + 2α

]
, (A5c)

β1,0 =
−1

4
√

6m2
T

[
4α− 2(m2

T + t)β1 + 2(t+ 2m2
T )β2

− (t2 + 4tm2
T +m4

T )δ
]
, (A5d)

β1,−1 =
[
β2 − β1 − (t+m2

T )δ
]
/4, (A5e)

β1,−2 = m2
T δ/4, (A5f)

β−1,λT = (−)1−λT β1,−λT . (A5g)

So far, the equations are completely generic, since no
assumption has been made on the (α, β1, β2, γ, δ) scalar
functions. We also remark that the amplitude in Eq. (A1)
is not automatically gauge invariant when V1 is massless.
In the absence of information about the multipoles of
T → V γ, we consider two possible models, described
below.

2. The minimal model

The “minimal” model is inspired by effective field the-
ories (EFTs), and prescribes to neglect all the terms with
particle momenta, which correspond to higher derivative
interactions in the EFT Lagrangian [17]. We thus set
α = m2

T and β1 = β2 = γ = δ = 0. The resulting covari-
ant amplitude is not explicitly gauge invariant, so one
needs to restrict manually the sum in Eq. (A2) to the
transverse photon polarizations. The widths read

Γ(T → V1V2) =
p

8π

(
βV1V2

T

)2 [
1 +

1

3
p2
(

1

m2
2

+
1

m2
1

)

+
2

15

p4

m2
1m

2
2

]
, (A6a)

Γ(T → γγ) =
7mT (βγγT )

2

480π
, (A6b)

while the Regge structures are reported in Table I.

3. Tensor Meson Dominance

Tensor Meson Dominance (TMD) [18] assumes that a
tensor meson couples to a vector field with the stress-
energy tensor, L = TµνFµρF

ρ
ν . The coupling to two dis-

tinct vectors is easily achieved by considering two distinct
curvature tensors. The Lagrangian is manifestly gauge
invariant. This model corresponds to setting α = p1 · p2,
γ = −β1 = −β2 = 1, and δ = 0 in Eq. (A1). The widths
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read:

Γ(T → V1V2) =
p

8πm4
T

(
βV1V2

T

)2 [
m2

1m
2
2

+
p2

3
(m2

T +m2
1 +m2

2) +
4

15
p4

]
, (A7a)

Γ(T → γγ) =
mT

320π
(βγγT )

2
, (A7b)

while the Regge structures are reported in Table I.

4. Photon-tensor-axial interaction

The parity-conserving interaction between a tensor, an
axial and a vector involves 4 independent Lorentz struc-
tures:

M = −iβ
V T
A

mT
εµνρσtαµ (pV + pA)σ

[
α1 ε

∗V
α ε∗Aν pV ρ

+ β1 pV αε
∗A
ν pV ρ ε

∗V · pA + α2 ε
∗A
α ε∗Vν pV ρ

+ β2 pV αε
∗V
ν pV ρ ε

∗A · pV
]
. (A8)

However, since in the nonrelativistic quark model the
transition T (tµν , pγ+pA)→ γ(εγ , pγ)+A(εA, pA) is dom-
inated by the M1 multipole, we restrict ourselves to the
single amplitude with α1 = 1, α2 = β1 = β2 = 0. The
helicity amplitudes MλγλA in the tensor rest frame are

M11 =
p√
6
, M10 =

EAp√
2mA

, (A9a)

M1−1 = p, M−1,λA = −M1,−λA , (A9b)

times the overall coupling βγTA . We write the amplitude
of the process γ(λγ)γ(λ′γ)→ T (λT )T (λ′T ) with axial ex-
change in the t channel at leading order in s. By match-
ing to the expected form [Eq. (6)],

AλγλT ,λ′γλ′T = −
(
βγTA

)2
βAλγ ,λT

(
−t
m2
T

) 1
2 |λγ−λT | s

m2
A − t

×
(
−t
m2
T

) 1
2 |λ
′
γ−λ

′
T |

βA−λ′γ ,−λ′T
, (A10)

we get the structures in Table I.

Appendix B: Isospin relations

The transition of tensor to axial mesons is dominated
by the M1 multipole. In the quark model, this requires
a spin flip from S = 1 to S = 0 to conserve charge con-
jugation. In the tensor rest frame, the matrix elements
reads [25, 26]

M(T → γA) ∝
∑
i=1,2

〈
A, λA

∣∣µi ~σi · ~ε∗(λγ)
∣∣T, λT 〉 , (B1)

where the sum runs over the two quarks, µi is the quark
magnetic moment, σi the spin operator, and ε the emitted
photon polarization.

The transition of tensor to vector meson is instead
dominated by the E1 multipole, and does not involve
the quark spin,

M(T → γV ) ∝
∫

d3p1
(2π)3

d3p2
(2π)3

(2π)3δ3(~p1 + ~p2)

×
∑
i=1,2

〈
V, λV

∣∣ei ~ε∗(λγ) · ~pi
∣∣T, λT 〉 , (B2)

where ~p is the 3-momentum of the quark in the center-
of-mass frame.

We align the spin quantization axis along the direction
of the emitted photon. We consider a right-handed pho-
ton, and the tensor helicity +2. The wave functions are

|T 〉 =
1√
2

(|uū〉 ∓ |dd̄〉) |↑↑〉R1,1(r)Y 1
1 (θ, φ), (B3a)

|A〉 =
1

2
(|uū〉 ∓ |dd̄〉) (|↑↑〉 − |↓↓〉)R1,1(r)Y 1

1 (θ, φ),

(B3b)

|V 〉 =
1

2
(|uū〉 ∓ |dd̄〉) (|↑↑〉+ |↓↓〉)R1,0(r)Y 0

0 (θ, φ),

(B3c)

where Y m` (θ, φ) are the usual spherical harmonics, and
Rn,`(r) the (unspecified) radial functions. The upper
(lower) sign is for isovector (isoscalar) mesons. We are
implicitly assuming that the orbital wave function of ten-
sors and axials is the same. So are the isovector and
isoscalar wave functions. We are also assuming ideal mix-
ing for the mesons, namely that no strange component is
included in the wave functions.

The magnetic moment is proportional to the electric
charge µi = ei/2m where m is the constituent light quark
mass.

M(f2 → γb1) =M(a2 → γh1) ∝ (eu − ed)
1

2m
(B4a)

M(f2 → γh1) =M(a2 → γb1) ∝ (eu + ed)
1

2m
(B4b)

M(f2 → γρ) =M(a2 → γω) ∝ (eu − ed) I (B4c)

M(f2 → γω) =M(a2 → γρ) ∝ (eu + ed) I, (B4d)

with I =
∫
r2drR1,0(r) (−i∂r)R1,1(r). Since eu − ed =√

4πα, and eu + ed =
√

4πα/3, we get

βγa2ω = βγf2ρ = 3βγa2ρ = 3βγf2ω , (B5a)

βγf2b1
= βγa2h1

= 3βγa2b1
= 3βγf2h1

. (B5b)
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FIG. 6. Fit to the CLAS D-wave data on π+π− photoproduction, as discussed in the text. Data are averaged over the four
beam energy bins, Eγ = 3.0–3.8 GeV. Mass and width of f2 are fitted independently in each t bin (red curve), or constrained
to be the same (green curve). In dashed lines we show the separate contributions of f2 and of the linear background. The
strength of the f2 looks constant in t, while the strength and shape of background changes dramatically.

The two photons couplings become

βγγf2 =
√

4πα

(
βγf2ρ

fρ
mρ

+ βγf2ω

fω
mω

)
=
√

4παβγf2ρ

(
fρ
mρ

+
1

3

fω
mω

)
, (B6a)

βγγa2 =
√

4πα

(
βγa2ρ

fρ
mρ

+ βγa2ω

fω
mω

)
=
√

4παβγa2ω

(
1

3

fρ
mρ

+
fω
mω

)
, (B6b)

that are used in Eqs. (12) and (D4). For the decay con-
stants, following the arguments above one gets fρ = 3fω.
This relation is broken at the 10% level, suggesting some
contributions from annihilation diagrams neglected here.
If we apply this relation, and set mρ = mω, we get
βγγa2 = 3

5β
γγ
f2

, in agreement with the experimental values.

Appendix C: Extraction of f2 cross section

As we mentioned, CLAS published the partial wave
analysis of π+π− photoproduction for 3.0–3.8 GeV beam
energy range [7]. The t dependence of the f2 was not di-
rectly extracted. The plot in Fig. 24 of [7] indeed reports
the differential cross section integrating the ππ invariant
mass over the f2 peak region, mππ ∈ [1090, 1400] MeV.
This would be a good estimate for the f2 differential cross
section if the background underneath the peak were neg-
ligible. One can appreciate from Fig. 14 of [7] that this is
not the case. The published version of the paper does not

report the ππ invariant mass in bins of t. However, the
D-wave dataset can be downloaded from the HEPDATA
repository, in bins of t and beam energy [27]. We see that
the amount of background is even larger at small values
of t. We extract the f2 cross section by fitting the D-
wave data in the f2 region with a simple constant width
Breit-Wigner on top of a incoherent linear background,

dσ (γp→ (π+π−)D-wave p)

dt dmππ
= 2mππ

×

[
dσ (γp→ f2p)

dt

1

π

mf2Γf2B(f2 → π+π−)(
m2
f2
−m2

ππ

)2
+m2

f2
Γ2
f2

+ cm2
ππ + d

]
, (C1)

where B(f2 → π+π−) = 56.2+1.9
−0.6% [1]. We fit to the 1.09-

1.4 mππ range only, in order to have an easier description
of the background. Since the error quoted in HEPDATA
are systematic only, we ignore them in the fit, assuming
equal weights for each bin, and assign a 40% error to our
final results, consistently with what done in [7]. Data
are available in for also bins of beam energy, from 3.0
to 3.8 GeV, but the energy dependence of data is mild.
Therefore, we average data over the four bins, and quote
the results at the mean energy Eγ = 3.4 GeV. The fit is
shown in Fig. 7. The f2 mass and width is fitted inde-
pendently in the six t bins, obtaining results consistent
with each other, and with the PDG value. Alternatively,
we impose mass and width to be the the same in all t
bins. The final result is the same within errors, as seen
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in Fig. 7. We notice that the backgrounds depends on t
much more than the f2.

Appendix D: f2(1270) couplings

We determine the βγf2V couplings from the decay width

Γ(f2 → ρ0ρ0 + ρ+ρ−)

' Γ(f2 → 2π+2π− + π+π−2π0) = 19.6+4.0
−8.6 MeV,

(D1)

assuming that the pion system is saturated by ρ mesons.
The matrix element

∑
pol |M|2 given by Eqs. (A6a)

and (A7a) must be averaged over the two ρ line shapes:

Γ(f2 → ρ0ρ0 + ρ+ρ−) =
3

2

(
βρρf2

)2
40πm4

f2

∫ ∫
ds′

π

ds′′

π

∑
pol

|M|2

×
λ1/2

(
m2
f2
, s′, s′′

)
2mf2

Bρ(s
′)Bρ(s

′′) θ(λ
(
m2
f2 , s

′, s′′
)
),

(D2)

where Bρ(s) is given in Eq. (10), and the factor of 3/2
takes into account the sum over isospin and the identical
particle phase space. VMD allows us to get:

βγf2ρ =
√

4πα
fρ
mρ

βρρf2 . (D3)
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0.0
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µ
 (t

/dσd

p 2f → p γ
-waveDCLAS 

Independent fit
Combined fit

FIG. 7. Differential cross section of f2. A 40% systematic
error is shown. We compare with the CLAS data points from
Fig. 24 of [7] (blue). We remind that CLAS points were ob-
tained by integrating the mππ bins in the [1090, 1400] MeV
range, that roughly corresponds to [mf2 − Γf2 ,mf2 + 2

3
Γf2 ].

Some f2 signal is lost, and a substantial background is in-
cluded. Moreover, the branching ratio B(f2 → ππ) is not in-
cluded. The red and green points correspond to the different
extractions, namely if the f2 mass and width is fitted inde-
pendently or not in the different t bins. These two results
are consistent within error. Red and green points are slightly
shifted horizontally to ease the reading.

Alternatively, the βγf2ρ can be extracted from the two-
photon width, Γ(f2 → γγ) = 2.6 ± 0.5 keV [1] and
Eqs. (A6b) and (A7b), to extract the two-photon cou-

plings βγγf2 for the two models. We then obtain the βγf2V
couplings from:

βγf2ρ =
βγγf2√
4πα

(
fρ
mρ

+
1

3

fω
mω

)−1
, (D4)

derived in Appendix B within the quark model. The
coupling to ω can be obtained from either determination,
using:

βγf2ω =
1

3
βγf2ρ . (D5)

The numerical values under the different assumptions are
summarized in Table II.

Appendix E: Spin and polarization observables

Experimentally, observables related to tensor meson
photoproduction are extracted from their decay prod-
ucts. The simplest final state to detect is two pseu-
doscalars, i.e. ηπ for a2 and ππ for f2. The general
case of two pseudoscalar photoproduction with a linearly
polarized beam has been treated in detail in [28]. We
summarize here the relevant formulae when the tensor
meson is so narrow that the existence of other partial
waves can be neglected.

For a linearly polarized photon, the differential cross
section is:

I(Ω,Φ) =
dσ(γp→ T (→ PP ′) p)

dt dΩ dΦ

= κ
∑
λγλ

′
γ

λpλ
′
p

Aλγ ;λpλ′p(Ω)ργλγλ′γ
(Φ)A∗λ′γ ;λpλ′p(Ω), (E1)

where Φ is the azimuthal angle between the po-
larization plane (which contains the photon polar-
ization and momentum) and the production plane
(which contains the photon, tensor and recoiling pro-
ton momenta), while Ω = (θ, φ) are the decay an-
gles of the pseudoscalar P in the helicity frame.
The photon spin density matrix elements (SDME) are
ργλγλ′γ

(Φ) = 1
2

[
1− Pγ

(
σ1 cos 2Φ + σ2 sin 2Φ

)]
λγλ′γ

, with

Pγ the beam polarization, and σ1,2 the Pauli matrices.
In the narrow width approximation, Aλγ ;λpλ′pA

∗
λ′γ ;λpλ

′
p
∝

δ
(
m2
PP ′ −m2

T

)
, and the dependence of A on s, t is un-

derstood. We include all numerical factors in:

κ =
1

2

1

16π

1

2π

1

(2mpEγ)2
×

{
1
2 for f2 → π0π0

1 otherwise
. (E2)

The amplitude is saturated by the D wave:

Aλγ ;λpλ′p =
∑
m

Mλγm;λpλ′p
Y m2 (Ω). (E3)
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With a linearly polarized beam, only two observables
are accessible when the decay angles are integrated over;
the differential cross section dσ/dt and the integrated
beam asymmetry Σ4π:

dσ

dt dΦ
=

1

2π

dσ

dt
(1 + PγΣ4π cos 2Φ) , (E4)

where:

dσ

dt
= πκ

∑
λγm

λpλ
′
p

∣∣∣Mλγm;λpλ′p

∣∣∣2 ≡ 2πκN, (E5a)

Σ4π = − 1

2N

∑
λγm

λpλ
′
p

M−λγm;λpλ′p
M∗λγm;λpλ′p

. (E5b)

The component proportional to sin 2Φ vanishes indeed
upon integration over Ω because of parity conservation.
The angular dependence allows one to extract the SDME,
defined as:

ρ0mm′ =
1

2N

∑
λγ ,λ

(′)
p

Mλγm;λpλ′p
M∗λγm′;λpλ′p , (E6a)

ρ1mm′ =
1

2N

∑
λγ ,λ

(′)
p

M−λγm;λpλ′p
M∗λγm′;λpλ′p , (E6b)

ρ2mm′ =
i

2N

∑
λγ ,λ

(′)
p

λγM−λγm;λpλ′p
M∗λγm′;λpλ′p . (E6c)

They satisfy [ραmm′ ]
∗ = ραm′m. Parity conservation im-

plies:

ρ0−m−m′ = (−1)m−m
′
ρ0mm′ , (E7a)

ρ1−m−m′ = (−1)m−m
′
ρ1mm′ , (E7b)

ρ2−m−m′ = −(−1)m−m
′
ρ2mm′ . (E7c)

The SDME are normalized such that:

ρ000 + 2ρ011 + 2ρ022 = 1, (E8a)

ρ100 + 2ρ111 + 2ρ122 = −Σ4π. (E8b)

We use the reflectivity basis [28]. The SDME can be
split into reflectivity components using

ρ
(±)
mm′ =

1

2

(
ρ0mm′ ∓ (−1)m

′
ρ1m−m′

)
. (E9)

The convention is such that the natural (unnatural) ex-

changes contribute only to ρ
(+)
mm′ (ρ

(−)
mm′) at the leading

order in the energy squared [28].
We decompose the intensity (E1) as:

I(Ω,Φ) =
5

4π

1

2π

dσ

dt

[
W 0(Ω)

−W 1(Ω)Pγ cos Φ−W 2(Ω)Pγ sin Φ
]
. (E10)

The SDME can be extracted from the angular depen-
dence of the intensities:

Wα(Ω) =
1

16
ρα00(1 + 3 cos 2θ)2 − 3

4
ρα1−1 sin2 2θ cos 2φ−

√
3

8
Re ρα10 sin 2θ(1 + 3 cos 2θ) cosφ

+
3

4
ρα11 sin2 2θ + 3 Re ρα2−1 cos θ sin3 θ cos 3φ+

3

4
ρα2−2 sin4 θ cos 4φ

+

√
3

8
Re ρα20(1 + 3 cos 2θ) sin2 θ cos 2φ− 3 Re ρα21 cos θ sin3 θ cosφ+

3

4
ρα22 sin4 θ,

valid for α = 0, 1. The intensity W 2 decomposes into:

W 2(Ω) =

√
3

8
Im ρ210 sin 2θ(1 + 3 cos 2θ) sinφ+

3

4i
ρ21−1 sin2 2θ sin 2φ

−
√

3

8
Im ρ220 sin2 θ(1 + 3 cos 2θ) sin 2φ+ 3 cos θ sin3 θ

[
Im ρ221 sinφ− Im ρ22−1 sin 3φ

]
− 3

4i
ρ22−2 sin4 θ sin 4φ. (E11)

We remind the reader that ρ0,1m±m is purely real, ρ2m−m
purely imaginary, and ρ200 = 0.

With a linearly polarized beam, the accessible reflec-

tivity components are ρ
(±)
m±m, and Re ρ

(±)
mm′ .

Opposite reflectivities do not interfere,

dσ/dt = dσ(+)/dt + dσ(−)/dt, with dσ(±)/dt =

2πκN
(
ρ
(±)
00 + 2ρ

(±)
11 + 2ρ

(±)
22

)
.
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The parity asymmetry:

Pσ =
dσ(+)

dt −
dσ(−)

dt
dσ(+)

dt + dσ(−)

dt

= 2ρ11−1 − 2ρ12−2 − ρ100, (E12)

measures the relative importance of the two reflectivity
components. When the two pseudoscalar mesons only
couple in a D-wave, Pσ corresponds to the beam asym-
metry along the y axis, Σy, as defined in Ref. [28]
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