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Measurements of a permanent neutron electric dipole moment (EDM) potentially probe Beyond-
the-Standard Model (BSM) sources of CP-violation. At low energy the CP-violating BSM inter-
actions are parametrized by flavor-conserving CP-violating operators of dimension higher than 4.
QCD calculations of the nucleon matrix elements of these operators are required to fully reconstruct
the sources and magnitudes of the different CP-violating contributions to the nucleon EDM. In this
work we study the quark-chromo electric dipole moment (qCEDM) operator and the three-gluon
Weinberg operator. The non-perturbative determination, using lattice QCD, of the nucleon matrix
elements of these CP-violating operators is hampered by their short-distance behavior. Under renor-
malization these operators mix with lower dimensional operators, which induces power divergences
in the lattice spacing, as the continuum limit is approached. We study the short-distance behavior
of the qCEDM and the Weinberg operators using the gradient flow. We perform a short flow time
expansion and determine, in perturbation theory, the expansion coefficients of the linearly-divergent
terms stemming from the mixing with the pseudoscalar density and the topological charge, confirm-
ing the expectations of the operator product expansion. We introduce a new method to perform
calculations at non-zero flow-time for arbitrary values of the external momenta. This method allows
us to work in four dimensions for most of the calculations described in this paper, avoiding the com-
plications associated with defining γ5 in generic d dimensions. We show that leading contributions
in the external momenta can be reproduced by defining γ5 using the t Hooft-Veltman-Breitenlohner-
Maison scheme.

I. INTRODUCTION

The nucleon electric dipole moment (EDM) is a physical quantity that, once measured, will provide a unique
opportunity to detect and investigate beyond-the-standard model (BSM) sources of charge and parity (CP) violation.
In principle, there are multiple sources for a non-vanishing nucleon EDM, including the Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix, the quantum chromodyamics (QCD) θ term, higher-dimensional CP-violating operators,
or any combination of these. The current experimental limit for the neutron EDM [1, 2], |dn| ≤ 1.8× 10−26 e cm at
90% confidence level, leaves open the possibility of a dominant BSM source of CP-violation, which could be several
orders of magnitude larger than Standard Model sources (see Ref. [3] for a recent review).

In addition to the Standard Model contributions to the nucleon EDM from the CKM matrix [4] and from the θ
term [5], BSM theories that contain complex CP-violating couplings can induce a non-vanishing EDM at the one
loop level. At low energies the BSM degrees of freedom are heavy enough that one can parametrize their effects
through effective, higher-dimension CP-violating operators. In this paper we consider two such operators, the quark-
color EDM (qCEDM) operator and the CP-violating three-gluon operator, i.e. the Weinberg operator. To constrain
couplings in BSM theories at high energies, one needs to determine the QCD contribution to the EDM at low energy.
Broadly speaking, there are three approaches to determining the relevant matrix elements: QCD sum rules [6, 7];
chiral perturbation theory [8, 9]; and lattice QCD.

Lattice QCD provides the most systematic method to calculate individual contributions from different CP-violating
sources to the nucleon EDM in terms of the QCD fundamental degrees of freedom, quark and gluons. There is a long
history of attempts to determine the nucleon EDM from lattice QCD [10–18], and several technical difficulties have
been encountered.
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The first difficulty arises from the fact that in Euclidean space the θ term renders the QCD action complex, which
prevents the use of stochastic methods. The current experimental bound on the neutron EDM implies a very small
value for θ ∼ 10−10, justifying a perturbative expansion in θ. Correlators that include an insertion of the θ term,
once the topological charge has been properly renormalized, are theoretically well-defined. Despite the very poor
signal-to-noise ratio it is possible to determine the nucleon EDM induced by the θ term using signal-to-noise improved
ratios [5, 19].

The second difficulty arises from the renormalization of the relevant composite operators. In Ref. [20] we proposed
using the gradient flow [21–24] to renormalize the θ term and the BSM CP-violating operators. We are currently
pursuing this program and in Refs. [5, 13, 19, 25] we investigated and calculated the nucleon EDM from the θ term.

The properties of the gradient flow have led to a wide variety of applications in lattice gauge theories. These
applications include determining the fundamental parameters of QCD, such as the running coupling constant [26–33]
and the equation of state at finite temperature [34–39], extracted from a non-perturbative definition of the energy-
momentum tensor at finite lattice spacing [40–43]. The gradient flow has also provided an important tool for relative
scale-setting in lattice calculations [44, 45]. Many of these techniques have been applied in other theories [46–54].

Renormalization schemes based on the gradient flow include non-perturbative step-scaling approaches [55, 56],
removing power divergences in nonlocal operators relevant to hadron structure [57, 58], and defining regularization-
independent quark-bilinear currents [59, 60]. Perturbative calculations of the gradient flow have been carried out
to three loops for certain quantities using automated perturbation theory routines [43, 61, 62] and to two loops via
numerical stochastic perturbation theory [63, 64].

Analytic loop-order calculations with the gradient flow often introduce some difficulties related to dimensional
regularization. One method to avoid these complications employs an expansion in the external momentum p to some
desired order. This can induce extraneous, non-physical infrared poles at fairly low orders in the external momentum.
(In the calculation of the Wilson coefficient cCP below, for example, these appear as early as O(p2).) We have used a
novel combinatorial scheme to track the external momentum at all orders, which maintains finiteness at positive flow
time throughout all of the calculations in this paper with the exception of those related to the renormalization of the
flowed fermion propagator in App. C.

In this paper we focus on the renormalization of the higher dimensional CP-violating operators using the gradient
flow. First results appeared in [65–67] and in this paper we determine the leading contribution to the short flow-time
expansion (SFTE) coefficients of the CP-violating operators defined using the gradient flow. The renormalization and
mixing of these operators was first studied in the MS scheme in [68–70], the determined at two loops for the qCEDM
in [71], and at two and three loops for the Weinberg in [72]. After describing our perturbative strategy for determining
these coefficients, we focus on the leading linearly-divergent expansion coefficients and some logarithmic terms.

The paper is organized as follows. We first introduce the gradient flow and some technical details relevant for our
perturbative expansion in Sec. II. We calculate the expansion coefficients of the quark-chromo operator, parameterizing
the mixing with the pseudoscalar density and the topological charge density, in Sec. III, and the corresponding
coefficient of the Weinberg operator, induced by the mixing with the topological charge density, in Sec. IV. We
summarize our results and our conclusions in Sec. V.

In Appendix A we detail our notations and conventions including the d−dimensional Dirac gamma matrices. In
Appendix B we list Feynman rules for the flowed vertices and for the relevant operators. In Appendix C we use the
calculation of the quark propagator as an example to elucidate the computational techniques for finite flow time.

II. THE GRADIENT FLOW

In this section we give a brief introduction to the gradient flow, emphasizing the technical details needed for our
perturbative expansion. The gradient flow equations define the evolution of the bulk gauge and fermion fields, Bµ(x; t)
and χ(x; t) respectively, as a function of the flow time, t [22, 24]:

∂tBµ = DνGνµ + α0Dµ∂νBν , (1)

∂tχ = DµDµχ− α0∂νBνχ, (2)

∂tχ̄ = χ̄
←−
Dµ
←−
Dµ + α0χ̄∂νBν , (3)

where

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], (4)
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and the covariant derivatives are

DµGνσ = ∂µGνσ + [Bµ, Gνσ], (5)

Dµχ =
(
∂µ +Bµ

)
χ , χ

←−
Dµ = χ

(←−
∂ µ −Bµ

)
. (6)

The bulk fields are related via Dirichlet boundary conditions to the boundary fields, that is, the integration variables
of the functional integral defining the theory, through

Bµ(x; t = 0) = Aµ(x), (7)

χ(x; t = 0) = ψ(x), (8)

χ̄(x; t = 0) = ψ̄(x). (9)

The generalized gauge-fixing terms proportional to α0 remove some technical complications associated with pertur-
bation theory [22–24]. The solutions of the flow equations for α0 > 0 are related to the solutions at α0 = 0 by a
flow-time dependent gauge transformation. We work in Feynman gauge and take α0 = 1 throughout this work.

We solve the flow equations (1) and (2) in d-dimensions by casting them into the integral forms

Bµ(x; t) =

∫
ddy

[
Kµν(x− y; t)Aν(y) +

∫ t

0

dsKµν(x− y; t− s)Rν(y; s)

]
, (10)

χ(x, t) =

∫
ddy

[
J(x− y; t)ψ(y) +

∫ t

0

ds J(x− y; t− s)∆′χ(y; s)

]
, (11)

χ(x, t) =

∫
ddy

[
ψ(y)J̄(x− y; t) +

∫ t

0

ds χ(y; s)
←−
∆ ′J̄(x− y; t− s)

]
. (12)

Here Kµν(x; t) and J(x; t) are the heat kernels

Kµν(x; t) =

∫
p

eipx

p2

{(
δµνp

2 − pµpν
)
e−tp

2

+ pµpνe−α0tp
2
}
, (13)

J(x; t) = J̄(x; t) =

∫
p

eipxe−tp
2

, (14)

(15)

and the interaction terms are

Rµ = 2[Bν , ∂νBµ]− [Bν , ∂µBν ] + (α0 − 1)[Bµ, ∂νBν ] + [Bν , [Bν , Bµ]], (16)

∆′ = (1− α0)∂νBν + 2Bν∂ν +BνBν , (17)
←−
∆ ′ = − (1− α0)∂νBν − 2

←−
∂ νBν +BνBν . (18)

We can solve the integral form of the flow equations, Eqs. (10) and (11), by iteration, generating a tree expansion of
the bulk fields in powers of the boundary fields. Bulk vertices are then connected by “flow lines”, which are flow-time
ordered and governed by the heat kernel. We give explicit expressions for the relevant Feynman rules in Appendix B.

In pure Yang-Mills theory, all correlation functions are finite at finite flow time, provided the boundary theory is
renormalized [23]. Fermions, however, require an additional wave-function renormalization at finite flow time, generally
denoted by Zχ [24]. The pole contribution to this additional fermionic wave-function renormalization first appeared

in [24] and was reproduced in [42], through a next-to-leading-order perturbative calculation of 〈χ̄(x; t)γµ
←→
Dµχ(x; t))〉,

and in [58], in the context of nonlocal Wilson-line operators. In Appendix C we calculate the finite contributions to
this extra wave-function renormalization that, to our knowledge, have not appeared in the literature. The calculation
in Appendix C also serves as a sample calculation with flowed fermions fields.

Once the fermions have been renormalized, composite operators composed of fields at finite flow time are therefore
finite and all scale dependence carried by these operators can be related to the flow time. In particular, any potential
power divergence in the cutoff of the theory is removed. At small flow times, a short flow-time expansion (SFTE)
can be used to relate these composite operators to linear combinations of local renormalized operators at vanishing
flow time. The SFTE is an operator product expansion in the neighborhood of vanishing flow time, with coefficients,
calculable in perturbation theory, that carry the flow time dependence [73]. The SFTE provides a perturbative
understanding of the way in which power divergences are removed and the form of the flow-time dependence for which
the power divergences are traded.
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On the lattice, correlation functions involving higher-dimension operators can be plagued by power-divergent mix-
ings with lower-dimension operators. In large volume calculations, the only accessible energy scale is the inverse
lattice spacing ∼ 1/a, so the regularization and renormalization of correlation functions may depend only on the
lattice spacing. Disentangling the dual roles of the lattice spacing, as cutoff and as energy renormalization scale, can
be arduous, particularly in the presence of power divergences, which must be removed non-perturbatively.

The gradient flow provides a workaround: the flow renders all operators finite, and, in the continuum limit, the
scale of all flowed correlators is parameterized by the flow time, µ2 ∝ 1/t. The SFTE then provides a method
to extract renormalized operators evaluated at t = 0 from finite operators calculated on the lattice at finite flow
time, t > 0. In other words, we calculate correlation functions of local operators at non-vanishing flow time and
relate them to physical correlation functions of boundary operators via a SFTE. The challenge associated with the
renormalization of the correlators at t = 0 is traded for the difficulty of determining the expansion coefficients in the
SFTE. One advantage of the SFTE, however, is that we can perform the analysis in the continuum, thus avoiding
spurious chiral-symmetry breaking effects. In addition, the SFTE connects operators at several values of the flow
time in a gauge-invariant way. This is a significant advantage compared to standard techniques, based for example
on RI-MOM schemes, where determining the coefficients of the power divergent terms requires a non-perturbative
gauge-fixing procedure [74–78]. An alternative gauge-invariant way to study power divergences is to use coordinate
space renormalization methods [18, 79–81], although this does not provide a continuous probe of the fields, in practice.

We consider our theory in continuum Euclidean 4-dimensional space-time. For some gauge-invariant and local
operator Oi(t) in an associative operator algebra with basis B, defined at flow time t, the SFTE is [73]

(Oi)R (t)
t→0
∼

∑
Oj∈B

cij(t) (Oj)R (0) , (19)

where the label R denotes a renormalized operator. Here, the Wilson, or expansion, coefficients cij(t) have absorbed all
flow time dependence, and the SFTE connects renormalized operators in the bulk and on the physical boundary. The
SFTE is valid only if all fields are renormalized and all operators appearing in the SFTE are evaluated in correlation
functions at non-zero physical distances to avoid spurious and additional contact terms.

If the renormalized operators at vanishing flow time do not share the symmetries of the flowed operator, their
expansion coefficients vanish. More specifically, the form of the SFTE and the operators contributing to the SFTE
are dictated by the symmetries of the regulated theory. Thus, if our regulator breaks certain symmetries, those
symmetries cannot be used to classify all the operators (Oj)R (0) contributing to the right-hand side of the SFTE in
Eq. (19). The leading contributions in the SFTE stem from the lowest dimension operators and the renormalization
group equation satisfied by the expansion coefficients dictates their asymptotic behavior at short flow time. In general,
OPE’s are linear and gauge-independent, so we are free to study the expansion in an arbitrary correlation function.
Hence we are able, with the appropriate choice of external probes, to study the SFTE termwise, order-by-order.
Moreover, the Wilson coefficients of the SFTE are universal, that is, the coefficients are insensitive to our choice of
external states. This universality ensures that, once the Wilson coefficients are determined using one particular choice
of external state, the resulting coefficients can be used with any other choice of external state.

III. QUARK-CHROMO ELECTRIC DIPOLE MOMENT

The effects of BSM physics at high energies can generate a set of effective, dimension-six, CP-violating operators at
the electroweak scale. The five-dimensional qCEDM operator, which induces the nEDM at low energies, arises from
the effects of electroweak symmetry breaking on the CP-violating Gluon-Higgs-Fermion operator [82]. We define the
bare qCEDM to be

OC = kCψσ̃µνGµνψ, (20)

where

σ̃µν =
1

2
{σµν , γ5} (21)

is a generalization of σµνγ5 that preserves Hermiticity in d dimensions [77]. All operators in this paper carry an arbi-
trary normalization factor, to simplify comparison to other results; in this case, kC is a complex number normalizing
OC .

The calculation of a renormalized qCEDM matrix element on the lattice is plagued by the presence of mixing with
the other CP-violating operators [77]. In particular the mixing with the lower-dimensional pseudoscalar density

P = kPψγ5ψ , (22)
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generates power divergences in the lattice spacing a. A second lower-dimensional operator that mixes with the qCEDM
is the topological charge density (TCD)

q = kqTr
[
GµνG̃µν

]
, G̃µν =

1

2
εµναβGαβ . (23)

The chirality of the TCD, opposite to the qCEDM, ensures the mixing is proportional to the quark mass. Our
perturbative results confirm our expectations for the form of the power divergence and the mass dependence of the
pseudoscalar density and the TCD, respectively. We remark that, if the lattice QCD calculation is performed with
chiral symmetry breaking terms in the lattice action, chirality no longer protects the mixing of the qCEDM and the
TCD and therefore a linearly divergent term in the inverse lattice spacing 1/a can arise. Although other operators of
the same dimension mix with the qCEDM, in this work we focus on the calculation of the SFTE coefficients of the
lower dimensional pseudoscalar density and TCD operators.

The SFTE for the qCEDM reads

(OC)R (t)
t→0
∼ cCP (t)PR(0) + cCq(t)qR(0) + · · · , (24)

where we have retained only the lowest-dimension operators in the expansion. For the remainder of this section
we will not include contributions from higher dimensional operators, such as the renormalized qCEDM itself. The
study of this logarithmic mixing will be considered in future work. In perturbation theory it is possible to extract
the lowest dimensional operator contributions by selecting appropriate external sources [83]. Working at O(g2), we
can extract the expansion coefficients of the pseudoscalar and TCD by selecting two-fermion and two-gluon sources,
respectively. With these choices of external states, and at O(g2) in perturbation theory, higher dimensional operators
do not contribute to the expansion coefficients.

A. Mixing with the pseudoscalar density

We start by extracting the coefficient for the pseudoscalar density. Choosing a two-fermion external state, we define,
for any operator O, the connected correlation functions [84]

ΓψOψ̄(x, y; t) =
〈
ψ(x)O(t)ψ̄(y)

〉
. (25)

We may then distribute over Eq. (24), so that

ΓRψOC ψ̄(x, y; t) = cCP (t)ΓRψPψ̄(x, y; 0) + cCq(t)Γ
R
ψqψ̄(x, y; 0) + · · · (26)

where R once again denotes a renormalized quantity. Expanding both the correlation functions and the Wilson
coefficients in powers of the renormalized coupling g, we find

g2Γ
(1)R

ψOC ψ̄
(x, y; t) =

[
c
(0)
CP (t) + g2c

(1)
CP (t)

] [
Γ

(0)R

ψOP ψ̄
(x, y; 0) + g2Γ

(1)R

ψOP ψ̄
(x, y; 0)

]
+
[
c
(0)
Cq(t) + g2c

(1)
Cq(t)

] [
Γ

(0)R

ψOqψ̄
(x, y; 0) + g2Γ

(1)R

ψOqψ̄
(x, y; 0)

]
+O(g4) + · · · ,

(27)

where the first term in the expansion of the left hand side of Eq. (26) vanishes because the correlator ΓR
ψOC ψ̄

(x, y; t)

has no tree-level contributions, that is, the first term in the expansion of this correlator is the one-loop contribution
proportional to g2.

Equating terms order-by-order and neglecting higher dimensional operators we obtain, up to O(g4),

0 = c
(0)
CP (t)Γ

(0)

ψOP ψ̄
(x, y; 0) + c

(0)
Cq(t)Γ

(0)

ψOqψ̄
(x, y; 0) , (28a)

Γ
(1)

ψOC ψ̄
(x, y; t) = c

(0)
CP (t)Γ

(1)

ψOP ψ̄
(x, y; 0) + c

(1)
CP (t)Γ

(0)

ψOP ψ̄
(x, y; 0) + c

(0)
Cq(t)Γ

(1)

ψOqψ̄
(x, y; 0)

+ c
(1)
Cq(t)Γ

(0)

ψOqψ̄
(x, y; 0) .

(28b)

The TCD vanishes at tree-level with two external quarks, Γ
(0)

ψOqψ̄
(x, y; 0) = 0, and we obtain

c
(0)
CP (t)Γ

(0)

ψOP ψ̄
(x, y; 0) = 0 . (29)
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The tree-level of the pseudoscalar density with two external quarks does not vanish Γ
(0)

ψOP ψ̄
(x, y; 0) 6= 0, implying that

the expansion coefficient cCP (t) vanishes at leading order, c
(0)
CP (t) = 0. Applying this to Eq. (28b), we have

Γ
(1)

ψOC ψ̄
(x, y; t) = c

(1)
CP (t)Γ

(0)

ψOP ψ̄
(x, y; 0) + c

(0)
Cq(t)Γ

(1)R

ψOqψ̄
(x, y; 0) . (30)

To extract cCq(t) at leading order, we choose an external state with two gluons and define

ΓAOA(x, y; t)abαβ =
〈
Aaα(x)O(t)Abβ(y)

〉
, (31)

in analogy to Eq. (25). Applying the methods and results from above,

0 = c
(0)
Cq(t)Γ

(0)
AOqA(x, y; 0) , (32a)

Γ
(1)
AOCA(x, y; t) = c

(0)
Cq(t)Γ

(1)
AOqA(x, y; 0) + c

(1)
Cq(t)Γ

(0)
AOqA(x, y; 0) , (32b)

because the tree-level of the qCEDM with 2 external gluons vanishes, Γ
(0)
AOCA(x, y; t) = 0, and c

(0)
CP (t) = 0. The

tree-level contribution to the TCD does not vanish, Γ
(0)
AOqA(x, y; 0) 6= 0, from which we deduce that the leading order

of the expansion coefficient c
(0)
Cq(t) vanishes, c

(0)
Cq(t) = 0.

To summarize, at O(g2) we obtain

Γ
(1)

ψOC ψ̄
(x, y; t) = c

(1)
CP (t)Γ

(0)

ψOP ψ̄
(x, y; 0) , (33a)

Γ
(1)
AOCA(x, y; t) = c

(1)
Cq(t)Γ

(0)
AOqA(x, y; 0) . (33b)

We are now in a position to extract c
(1)
CP (t). There are three one-loop graphs that contribute to the left-hand-side

of Eq. (33a), which we show in Fig. 1), and the correlator on the right-hand side is simply the tree-level for the
pseudoscalar density.

(a) g2
0Γ

(1)a

ψOC ψ̄
(b) g2

0Γ
(1)b

ψOC ψ̄

(c) g2
0Γ

(1)c

ψOC ψ̄

FIG. 1: Leading order contributions to the mixing of the pseudoscalar density with the qCEDM

We calculate these graphs to all orders in the external momenta and flow time. The inclusion of the mass results in a
particularly cumbersome asymptotic analysis that lies outside the scope of this paper; a nonzero external momentum
is sufficient to regulate all infrared divergences. The Feynman rules and mathematical details can be found in
Appendix (A, B, and C). Additional mathematical details can be found in ref. [85]. We expand in powers of the
quark mass and flow time to obtain

Γ̃
(1)a

ψOC ψ̄
(p, p′; t) = 3i

kC
kP

C2(F )

(4π)2

{
1

t
+ p2

[
log
(
2p2t

)
+ γE −

11

4

]}
· γ5 +O(m, p2t), (34a)

Γ̃
(1)b

ψOC ψ̄
(p, p′; t) = 0, (34b)

Γ̃
(1)c

ψOC ψ̄
(p, p′; t) = 0. (34c)
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There are symmetric counterparts for diagrams (a) and (b), so the sum of these contributions is

Γ
(1)R

ψOC ψ̄
(x, y; t) =

∫
d4z

∫
p,p′

eip(x−z)

i/p+m

[
2Γ̃aψOC ψ̄(p, p′; t) + 2Γ̃bψOC ψ̄(p, p′; t) + Γ̃cψOC ψ̄(p, p′; t)

] eip′(y−z)
i /p′ +m

= 6ig2
0

kC
kP

C2(F )

(4π)2

∫
p,p′

[
1

t
+ p2

(
log
(
2p2t

)
+ γE −

11

4

)]∫
d4z

eip(x−z)

i/p+m
γ5
eip
′(y−z)

i /p′ +m

= 6ig2
0

kC
kP

C2(F )

(4π)2

{
1

t
+ p2

[
log
(
2p2t

)
+ γE −

11

4

]}
Γ

(0)R

ψOP ψ̄
(x, y; 0) ,

(35)

where we have omitted higher order corrections in flow time and quark mass. The final expression for the expansion
coefficient reads

cCP (t) = 6ig2 kC
kP

C2(F )

(4π)2

{
1

t
+ p2

[
log
(
2p2t

)
+ γE −

11

4

]}
+O(m, p2t, g4). (36)

We confirm the general expectation, based on symmetry and dimensional considerations, that the dominant contri-
bution to the SFTE of the qCEDM is the pseudoscalar density, which has a corresponding expansion coefficient that
diverges linearly in flow time.

B. Mixing with the topological charge density

(a) g2
0Γ

(1)a
AOCA

(b) g2
0Γ

(1)b
AOCA

(c) g2
0Γ

(1)c
AOCA

FIG. 2: Leading order contributions to the mixing of the TCD with the qCEDM.

To calculate the expansion coefficient cCq(t), following Eq. (33b), we need to calculate the one-loop contribution

Γ
(1)
AOCA(x, y; t), stemming from the three Feynman diagrams shown in Fig. 2. The graphs displayed in both 2b and 2c

vanish under the traces of the fermion loops, so we are again left to calculate a single Feynman graph. To calculate
the d-dimensional traces over fermion loops one could employ the ’t Hooft-Veltman-Breitenlohner-Maison (HVBM)
scheme [86–88]. Our conventions and details on the HVBM scheme can be found in Appendix A. This is, however,
only necessary when these calculations are performed by expanding near p2 = 0. Starting at O(p2), this removes an
essential IR regulator, the momentum, and introduces spurious divergences. The correlators listed below have been
calculated by applying a new method that includes all orders in momenta, so our results are IR safe. The flow further
removes all UV divergences, and the diagrams are finite in four dimensions.

Following the methods outlined for the pseudoscalar density, we obtain

Γ̃
(1)a
AOCA(p, p′; t) = 2i

kC
kq

m

(4π)2

[
log(2p2t) + γE − 1

]
· (−2kq)δ

abεαβµνpµp
′
ν +O(m0, p

2t), (37a)

Γ̃
(1)b
AOCA(p, p′; t) = 0, (37b)

Γ̃
(1)c
AOCA(p, p′; t) = 0. (37c)

We therefore find

Γ
(1)
AOCA(x, y; t) =

∫
d4z

∫
p,p′

eip(x−z)

p2

[
2Γ̃

(1)a
AOCA(p, p′; t)

] eip′(y−z)
p′2

= 4i
kC
kq

m

(4π)2

[
log(2p2t) + γE − 1

]
Γ

(0)R
AOqA(x, y; 0) +O(m2, t),

(38)
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and

cCq(t) = 4ig2 kC
kq

m

(4π)2

[
log(2p2t) + γE − 1

]
+O(m2, t, g4) . (39)

We again confirm, following general chiral symmetry considerations, that the expansion coefficient for the TCD has a
logarithmic dependence on the flow time. Chiral symmetry enforces the presence of a quark mass factor multiplying
the TCD and this factor arises naturally in our calculation.

Then, at non-zero mass, the qCEDM behaves, to leading-order, as

ORC(t)
t→0
∼ 6ig2 kC

kP

C2(F )

(4π)2

{
1

t
+ p2

[
log
(
2p2t

)
+ γE −

11

4

]}
ORP (0)

+ 4ig2 kC
kq

m

(4π)2

[
log(2p2t) + γE − 1

]
ORq (0) + · · · ,

(40)

where the dots indicate contributions from renormalized higher-dimensional operators.

IV. WEINBERG OPERATOR

Among the higher dimensional CP-violating operators obtained by integrating out heavy quarks and Higgs bosons,
there is a dimension six gluonic operator, Weinberg’s three-gluon operator [68],

OW = kWTr
{

[Gµρ, Gνρ] G̃µν

}
(41)

The Weinberg operator could potentially generate a large contribution to the nucleon EDM because it is purely gluonic
and therefore not supressed by any small quark mass factor or by a small CKM phase.

To determine the SFTE of the Weinberg operator we need to isolate the lower dimensional CP-violating operators
with the same symmetry properties. In principle, the pseudoscalar density, multiplied by a mass factor, could
contribute to the SFTE of the Weinberg, but its leading contribution is O(g4), because the first non-vanishing
term of the correlator with the Weinberg operator and 2 external fermions arises at this order.

As with the qCEDM operator, we do not consider the contributions of operators with the same dimension as the
Weinberg operator. The operators that could potentially contribute to the SFTE of the Weinberg operator originate
from terms proportional to mOC and the Weinberg operator itself. By choosing external states of two quarks or
two gluons, we can ensure that the leading contributions appear only at higher order in the external scales, such as
momentum and flow-time, or at higher order in the coupling.

Expanding the Weinberg operator at short flow time, in a manner similar to the qCEDM, we obtain

ORW (t)
t→0
∼ cWq(t)qR(0) + · · · , (42)

where we have considered only operators contributing to the expansion coeffcient cWq(t). These considerations confirm
that the expansion coeffcient contribution from the qCEDM to the SFTE of the Weinberg operator starts at O(g2).

We choose two gauge bosons as the external state and expand in powers of the coupling, leading to

g2Γ
(1)R
AOWA(t) =

[
c
(0)
Wq(t) + g2c

(1)
Wq(t)

] [
Γ

(0)
AOqA(x, y; 0) + g2Γ

(1)R
AOqA(x, y; 0)

]
+O(g4).

(43)

Equating order-by-order in the coupling, we obtain

0 = c
(0)
Wq(t)Γ

(0)
AOqA(x, y; 0) , (44a)

Γ
(1)
AOWA(x, y; t) = c

(0)
Wq(t)Γ

(1)
AOqA(x, y; 0) + c

(1)
Wq(t)Γ

(0)
AOqA(x, y; 0) . (44b)

Thus the leading contribution to the expansion coefficient cWq vanishes, c
(0)
Wq = 0. The next order in the coupling

expansion reads

Γ
(1)
AOWA(x, y; t) = c

(1)
Wq(t)Γ

(0)
AOqA(x, y; 0) , (45)
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(a) g2
0ΓaAOWA (b) g2

0ΓbAOWA

(c) g2
0ΓcAOWA

FIG. 3: Leading order contributions to the mixing of the TCD with the Weinberg operator

which allows us to determine c
(1)
Wq(t) once we have determined the one-loop contribution Γ

(1)
AOWA(x, y; t). There are,

once again, three Feynman graphs that contribute, which we show in Fig. 3. There are a large number of equivalent
permutations of the fields of the Weinberg operator, so to simplify our calculations we employ a relation valid for any
alternating 2-tensor

AµτAντAρσεµνρσ =
1

16i
Tr [σαβσγδσεηγ5]AαβAγδAεη, (46)

which slightly generalizes the corresponding relation with Minkowski metric [69, 70]. This relation decouples the
indices of A, so that the permutations of any fields that may be contained in A become well-defined permutations on
the indices within the trace. It should be noted that this formula is available in d-dimensions, but upon evaluation we
reproduce exactly the four-dimensional trace in the HVBM scheme, so it may only contract nontrivially with other
four-dimensional structures. This leaves only those pieces of a dimensionally-regularized integral that take values in
the four-dimensional subalgebra.

In the calculation of the correlators involving the Weinberg operator, the flow automatically regulates the UV modes
of the the bulk gauge field, and the external momentum controls infrared divergences. Thus all integrals are finite
in four dimensions. Inserting the field tensor G in place of A, we find a simple expression for the Weinberg operator
conducive to perturbative calculations:

OW = kWTr
{

[Gµρ, Gνρ] G̃µν

}
=

1

64
ikW f

abcTr [σαβσγδσεη]GaαβG
b
γδG

c
εη. (47)

The Feynman rules for this operator are derived in Appendix B. The calculation of the Feynman diagrams in Fig. 3
leads to

Γ̃aAOWA(p, p′; t) = −9

4

kW
kq

C2(A)

(4π)2

{
1

t
+

2

3
p2

[
log(2p2t) + γE −

25

12

]}
· (−2kq)δ

abεαβµνpµp
′
ν +O

(
p2t
)
, (48a)

g2
0Γ̃bAOWA(p, p′; t) = − 9

16

kW
kq

C2(A)

(4π)2

{
1

t
− 5

18
p2

}
· (−2kq)δ

abεαβµνpµp
′
ν +O

(
p2t
)
, (48b)

g2
0Γ̃cAOWA(p, p′; t) = 0. (48c)

The second diagram has no logarithmic divergence in the flow time; a kernel line appears in place of the gauge boson
propagator, which generates two additional powers of the loop momentum. The third diagram vanishes, because two
of the legs on the Weinberg operator are contracted, and the Weinberg operator is antisymmetric with respect to its
fields. Summing these contributions and factoring out the tree-level structure for the TCD, we isolate the Weinberg
operator’s leading-order divergent behavior:

ORW (t)
t→0
∼ −45

8

kW
kq

C2(A)

(4π)2
g2

{
1

t
+

8

15
p2

[
log(2p2t) + γE −

35

16

]}
ORq (0) + · · · . (49)

Our calculation again confirms the expectation that the leading contribution to the SFTE of the Weinberg operator
stems from the lowest dimensional operator with the same symmetry properties; the TCD generates the linear
divergence of the Weinberg operator at short flow time.
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V. SUMMARY AND CONCLUSIONS

The nucleon electric dipole moment (EDM) provides a unique opportunity to probe of sources of charge and parity
(CP) violation in the Standard Model and beyond (BSM). BSM theories that contain complex CP-violating couplings
can induce a non-vanishing EDM, and at low energies one can parametrize the effects of the BSM degrees of freedom
through effective, higher-dimensional CP-violating operators.

We have calculated, at one loop in perturbation theory, selected Wilson coefficients of the short flow time expansion
(SFTE) for two CP-violating operators: the quark-chromo EDM (qCEDM) and the Weinberg operator. We have
studied the leading contributions generated by the pseudoscalar density and the topological charge density, and
confirmed the general expectation that the lowest-dimensional operators generate the dominant contributions at
short flow time.

For the qCEDM, the Wilson coefficient of the pseudoscalar density is proportional to the inverse of the flow time,
1/t, and we have calculated the corresponding coefficient. In addition, we have calculated the logarithmic contribution
to the qCEDM proportional to the topological charge density. Our calculation confirms the general expectation that
chiral symmetry forces the contribution of the topological charge density to be proportional to the quark mass.

For the Weinberg operator, the leading contribution, which is proportional to the inverse of the flow time, stems from
the topological charge density. We have determined both the coefficient of this 1/t term and additional logarithmic
terms.

Further, we have introduced a method of evaluation for flowed loop-integrals, which permits, in many applications,
the calculation of correlation functions in a natural four-dimensional setting. We fully avoid artificial divergences
related to the zero-momentum or zero-mass calculations, while latently allowing for the study of these correlation
functions at any or all positive values of momentum or mass. This also sidesteps the various problems that arise
in continuing the spacetime algebra to any arbitrary dimension. This is particularly useful for our considerations,
since the source of potential technical difficulties, γ5, is pervasive in CP-odd calculations yet well-defined only in four
dimensions.

Our calculation is intended to provide a new framework to study the ultraviolet behavior of CP-violating operators
contributing to the electric dipole moment. Ideally, the Wilson coefficients should be determined non-perturbatively
and work in this direction is in progress [89]. Alternative strategies to pursue the same goals have been recently
proposed based on coordinate space methods [18] and the RI-MOM scheme [77, 78]. The one-loop calculation of the
linearly divergent coefficients is also of practical importance for the non-perturbative determination of the Wilson
coefficient, by constraining the perturbative behavior at small values of the gauge coupling.

We consider this calculation a first step toward the non-perturbative renormalization of all CP-violating operators
contributing to the EDM. The next steps in our program are the non-perturbative determination of the linear di-
vergence in the Wilson coefficients and a perturbative analysis that includes higher dimensional operators and their
corresponding Wilson coefficients.
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Appendix A: Conventions

1. SU(N) Conventions

First, we define the set of generators for the gauge group, SU(N), to be traceless and skew-Hermitian, so that the
algebra is defined by[

ta, tb
]

= fabctc, (A1)

for the N2 − 1 generators ta ∈ su(N), and for structure constants fabc. For any representation ρ : SU(N)→ GL(C),
the trace over any two generators provides a natural Killing form for su(N), normalized by the Dynkin index,
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Tρ = − dim(ρ)
dim(su(N))C2(ρ), where C2(ρ)1dim(ρ) = −taρtaρ is the quadratic Casimir invariant. Thus, we have

Tr
{
taρt

b
ρ

}
= Tρδ

ab. (A2)

We now turn our attention to two particular representations, the fundamental (F ) and the adjoint (A) repre-
sentations, which have dimensions N and N2 − 1, respectively. In these cases, our Casimir elements are C2(F ) =
(N2 − 1)/(2N) and C2(A) = N , so the Dynkin indices become TF = −1/2 and TA = −N . Further, we can obtain an
explicit set of generators for the adjoint representation by defining

(taA)bc = −fabc. (A3)

Clearly this definition is traceless and skew-symmetric, and it is trivial to prove that fabc must be real. Moreover, the
Jacobi identity for fabc implicitly satisfies (A1), so that the N2 − 1 matrices defined above indeed generate SU(N).
This allows for quick computations of objects such as

facdf bcd = C2(A)δab. (A4)

2. Quantum Chromodynamics

We work in d dimensions with a Euclidean metric, taking the d→ 4 limit at the end. For all momentum integrals,
we adopt the shorthand notation∫

p

= µ4−d
∫
Rd

ddp

(2π)d
, (A5)

where µ is the energy scale introduced in dimensional regularization. We also define Fourier transforms so that the
factor of (2π)d appears only in the momentum space measure:

f̃(p) =

∫
Rd
ddxf(x)e−ipx, f(x) =

∫
Rd

ddp

(2π)d
f̃(p)eipx. (A6)

All calculations are performed on a QCD background, so that for any local operator O, correlation functions are given
by

〈O〉 = Z−1
0

∫
D
[
ψ̄, ψ,A, · · ·

]
Oe−

∫
ddxL[ψ̄,ψ,A,··· ](x), (A7)

with the gauge-fixed Lagrangian

L = ψ̄
(
/D +m

)
ψ +

1

4
GaµνG

a
µν +

1

2ξ

(
∂µA

a
µ

)
(∂νA

a
ν) + (∂µc

a)
(
δab∂µ − fabcAcµ

)
c̃b . (A8)

The generators of SU(N) were chosen to be skew-Hermitian, so the covariant derivative is simply

Dµ = ∂µ +Aµ , Aµ = Aaµt
a (A9)

when acting on objects in the fundamental representation, where the coupling has been absorbed in to the fields, Aaµ.
When acting on objects in the adjoint representation, it assumes the form

Dµ = ∂µ + [Aµ, ·] . (A10)

Then the field strength-tensor is

Gµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (A11)
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3. Higher-Dimensional Gamma Matrices

This paper deals primarily with CP-odd operators, so the parity-violating γ5 is ubiquitous. To maintain algebraic
consistency in generic d dimensions, we follow ’t Hooft, Veltman, Breitenlohner, and Maison [86–88] and split the
geometric algebra into two disjoint, orthogonal subalgebras, one containing the four-dimensional gamma matrices,
γ̃µ, and a second containing their (d − 4)-dimensional “evanescent” extensions, γ̂µ, where µ = 1, 2, . . . , d. The d-
dimensional algebra itself is a direct sum of the subalgebras, defined by the anticommutator

{γµ, γν} = 2δµν , (A12)

where the d-dimensional generalizations of the gamma matrices and metric tensor are given by

γµ = γ̃µ + γ̂µ (A13)

and

δµν = δ̃µν + δ̂µν . (A14)

By definition, inner products between the two subalgebras vanish:

γ̃µγ̂µ = 0, (A15)

and the metric tensors have a trace equal to the dimension of the subspace to which they belong:

δ̃µµ = 4, δ̂µµ = d− 4. (A16)

In the absence of γ5, this simply reduces to the natural d-dimensional generalization of the Dirac algebra. With γ5,
however, there are some complications. In four dimensions, γ5 is completely characterized by three properties:

{γ5, γµ} = 0, (A17a)

Tr[AB] = Tr[BA], (A17b)

Tr[γµγνγργσγ5] = 4εµνρσ, (A17c)

from which we find that, in d-dimensions,

(d− 2)(d− 4)Tr[γµγνγργσγ5] = 0. (A18)

Since this prohibits a smooth limit for d → 4, we conclude that one of the above properties must be sacrificed to
continue analytically to an arbitrary dimension. Our choice, introduced by ’t Hooft and Veltman and systematized
by Breitenlohner and Maison, relaxes the first condition (A17a), so that γ5 anticommutes with the four-dimensional
subspace and commutes with the (d− 4)-dimensional subspace. Thus

{γ5, γ̃µ} = [γ5, γ̂µ] = 0. (A19)

Furthermore, the trace in (A17c) is taken to be fundamental, and the Levi-Civita symbol εµνρσ is strictly four-
dimensional, containing no evanescent components. As such, it is best to algebraically reduce expressions containing
εµνρσ after the d → 4 limit is taken. As a form of dimensional regularization, this scheme is manifestly Lorentz
invariant, so that the reduction of tensor integrals is fairly straightforward. Moreover, the HVBM scheme maintains
algebraic consistency in our applications; we have at most one instance of γ5 in any correlation function. Finally, to
maintain Hermiticity in all dimensions, we generalize the “pseudo-tensor” σµνγ5 = i

2 [γµ, γν ]γ5 to [77, 78]

σ̃µν =
1

2
{σµν , γ5} . (A20)

Note that the tilde here does not signify a four-dimensional object as in the HVBM scheme; rather it is an unfortunate
artifact of the literature. This modified version is central to the calculation of any correlation functions including the
quark chromo-electric dipole moment operator.

Appendix B: Feynman Rules

We adopt the standard Feynman rules for QCD in d Euclidean dimensions. Below we describe in more detail the
Feynman rules for gauge bosons and fermions at non-vanishing flow time. Some Feynman rules for flowed fields, and
similar details relevant to perturbative calculations, have appeared already in the literature [22–24, 40, 42, 43, 58–62].
To keep this paper self-contained and provide a future reference, we list all the Feynman rules for flowed fields that we
have used in these calculations, along with the relevant vertices arising from our operators. We note that all vertices
with n-interacting fields are defined with inward-directed momenta p1, . . . , pn and that, unless stated otherwise (see
Sec. B 2), there is an implicit factor of (2π)dδ(d)(p1 + · · ·+ pn) that ensures momentum conservation.
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1. Gradient Flow

The nonlinearity of the flow equations produces extra vertices, which must be included in perturbation theory.
For bosons, the vertices X(n,0) appear in the solutions of the flow equation, where n is the number of gluon fields
involved. These flow vertices must always be connected to a kernel line. Kernels, called so for their role as the integral
kernel of the solution to the flow equation, appropriately carry the information within a bulk field to its higher-order
corrections. Diagrammatically, a kernel line may initiated at any vertex at positive flow time, replacing a bulk field
leg, and terminating at a flow vertex. Thus for any interaction involving bulk fields with some functional form ∆(t),
we will have corrections starting at O(g0) attached with a kernel line. Let Γ(s) represent the associated flow vertex
and all relevant subsidiary interactions involving all attached bulk fields. Then, representing a bosonic kernel as a
double curly line, we define the Feynman rule:

=

∫ ∞
0

ds θ(t− s)Γν(s)K̃t−s(p)
ab
νµ∆µ(t), (B1)

where

K̃t(p)
ab
µν =

δab

p2

[
(δµνp

2 − pµpν)e−p
2t − pµpνe−α0p

2t
]

(B2)

is the bosonic kernel. Observe that it collapses to a simple Gaussian in the “generalized Feynman gauge,” α0 = 1. For
clarity, note also that the ordering of the structures Γ and ∆ above is only restricted by the ordering of the fermionic
fields contained within them. Turning our attention to the vertices, we have 1

2X
(2,0) at first order:

=
1

2
ifabc {(r − q)µδνρ + 2qρδµν − 2rνδρµ + (α0 − 1) (qνδρµ − rρδµν)} . (B3)

The fields radiating out of this and all other flow vertices are bulk fields at some positive flow time, which in Eq. B1
we denote as s, whereas the kernel is generated by a bulk field at a flow time that, in Eq. B1, we denote t. The
second-order vertex is 1

6X
(3,0):

=
1

6

{
fabef cde (δµσδρν − δµρδσν)

+fadef bce (δµρδσν − δµνδρσ)

+facefdbe (δµνδρσ − δµσδρν)
}
.

(B4)

The factors of 1/n! are placed within the vertex rules above so that the kernel line has the same Feynman rule regardless
of the flow vertex to which it is attached. There are no intrinsic higher-order vertices, but these vertices may be nested
to the desired order, ensuring that proper symmetry factors are included. For example, in the calculation a two-point
Green’s function at positive flow time and at one-loop order, we must account for all combinations up to O(g2

0). Both
vertices will contribute, along with the (at least) second-order structure:

2×
∫ t

0

ds K̃t−s(p)
aa′

µµ′
1

2
X(2,0)(p, q,−p− q)a

′bc
µ′νρB̃

b
ν(−q; s)

×
∫ s

0

du K̃s−u(p+ q)cc
′

ρρ′
1

2
X(2,0)(p+ q, k,−p− q − k)c

′de
ρ′στ B̃

d
σ(−k;u)B̃eτ (p+ q + k;u),

(B5)
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or, pictorially:

2×


 . (B6)

The second line in (B5) is simply the NLO contribution to either of the two fields attached to the vertexX(2,0)(p, q,−p−
q)abcµνρ. The initial factor of 2 accounts for the symmetry in choosing which of the B fields to expand. Since both fields
include the same nonlinear corrections, either may be expanded, so long as the result is summed over all of these
redundancies.

Fermions have similar rules. The fermionic kernels,

J(x− y; t) =

∫
p

eip(x−y)J̃t(p) , J̃t(p) = e−p
2t ,

J̄(x− y; t) =

∫
p

eip(x−y) ˜̄Jt(p) ,
˜̄Jt(p) = e−p

2t ,

(B7)

produce Feynman rules analogous to the bosonic kernel. Letting ∆ and Γ be defined as before, and representing the
fermionic kernel line by a double straight line, we have

=

∫ ∞
0

ds θ(t− s)∆(t)J̃t−s(p)Γ(s) , (B8a)

=

∫ ∞
0

ds θ(t− s)Γ(s) ˜̄Jt−s(p)∆(t) , (B8b)

where the first rule applies to the flow-time evolution of the χ field while the second rule to the χ field. The distinction
between J and J̄ is purely formal; J acts from the left on χ, while and J̄ acts from the right on χ. In the same manner
as the fermion propagator, the direction of the arrow indicates the flow of fermion number from χ to χ. Analogously
to what happens for the gauge bosons, the flow equations for the fermion fields (12,18) can be solved in an iterative
manner, generating higher-order vertices containing one fermion field and n gauge fields, Y (1,n). The term linear in
B in the fermion flow equation produces Y (1,1):

= ita {2qµ + (1− α0) rµ} , (B9)

while the analogous term in the adjoint fermion flow equation produces Ȳ (1,1):

= −ita {2qµ − (1− α0) rµ} , (B10)

where the first diagram refers to the perturbative expansion of the χ field and the second to the expansion of the χ
field. The vertex Y (1,2) is thoroughly simpler:

=
1

2
δµν

{
ta, tb

}
. (B11)
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Since this term is quadratic in B, there is no sign change with respect to the direction of fermion flow, and Ȳ (1,2) is
identical to Y (1,2)

=
1

2
δµν

{
ta, tb

}
. (B12)

2. Operators

In this section we list the Feynman rules for the CP-violating operators. The Feynman rules are flow-time inde-
pendent, but the fields connected to these vertices may be flowed. The Feynman rules arising specifically from the
perturbative expansion of the flowed fields are described in the previous subsection; only the tree-level fields enter our
operator Feynman rules.

There is some subtlety in the implementation of these operators in perturbative QCD. A näıve calculation of any
correlator with an odd number of CP-violating operators will always vanish. This should actually be expected; all
correlation functions are calculated within a QCD background, so there may be no expectation values that violate
CP. We circumvent this problem by temporarily ignoring momentum conservation; equivalently, we calculate all
such correlations functions pointwise in coordinate space, integrating the point of interaction for our CP-violating
operators over all spacetime only after we subtract off the desired quantities [69, 70, 90]. If momentum were to be
conserved throughout these calculations, all operators would project to zero momentum at the onset, and structures
like εαβµνpµp

′
ν would contract to zero identically, trivializing the entire calculation. This trick allows us to break

translational symmetry, giving the in and out states different total momenta and subsequently different transforma-
tions under the Lorentz group. After identifying the Wilson coefficients, we dynamically restore the conservation of
momentum by integrating over all spacetime. In so doing, we also restore the appropriate discrete symmetries. We
are simply keeping track of the various structures that vanish perturbatively.

a. Topological Charge Density

Oq =kqTr
{
GµνG̃µν

}
→− 1

4
kqεµνρσG

a
µνG

a
ρσ

(B13)

= −2kqδ
abεαβµνpµqν (B14)

= −2ikqf
abcεαβγµ(p+ q + r)µ (B15)

b. qCEDM

OC = kC ψ̄Gµν σ̃µνψ (B16)
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= −2ikct
aσµνγ5qν (B17)

= 2kcf
abctcσµνγ5 (B18)

c. Weinberg Operator

OW =kWTr
{

[Gµρ, Gνρ] G̃µν

}
→− 1

4
kW f

abcεµνρσG
a
µνG

b
µτG

c
ντ

d→4−−−→ 1

64
ikW f

abcTr {σµνσρσστχγ5}GaµνGbρσGcτχ

(B19)

=
3

4
kW f

abcTr {σαµσβνσγργ5} pµqνrρ (B20)

= −3

4
ikW

[
fabef cde (pµqνTr {σµασνβσγδγ5}+ rµsνTr {σµγσνδσαβγ5})

+facef bde (pµrνTr {σµασνγσβδγ5}+ qµsνTr {σµβσνδσαγγ5})
+fadef bce (pµsνTr {σµασνδσβγγ5}+ qµrνTr {σµβσνγσαδγ5})

]
(B21)

Appendix C: Sample calculation: One-Loop Fermion Propagator

In this appendix we discuss in some detail the one-loop calculation of the fermion propagator for flowed fermion
fields. Results for the one-loop calculation of the flowed fermion propagator have appeared in the literature [24, 42, 58]
with varying degree of detail. We use this calculation as an example to elucidate features of a one-loop calculation at
non-vanishing flow time and to collect all the relevant tools for a perturbative calculation with flowed fermion fields.
For a more complete discussion of flowed perturbative calculations, we refer to [85].
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The fermion propagator

S(x, y; t, s) = 〈χ(y; s)χ̄(x; t)〉 =

∫
p

eip(x−y)S̃(p; t, s) , (C1)

can be expanded in powers of the bare coupling

S̃(p; t, s) =

∞∑
k=0

g2k
0 S̃k(p; t, s) , (C2)

with a tree-level expression

S̃0(p; t, s) =
e−p

2(t+s)

i/p+m0
. (C3)

The one-loop corrections can be calculated evaluating the Feynman diagrams depicted in Eqs. (C5a-C5h). There are
eight nontrivial contributions to the flowed fermion propagator, of which only five are topologically distinct [24]. The
diagrams involving flow kernels present some new features compared to standard perturbative calculations in QCD.
While the standard one-loop diagram in Eq. (C5a) has the usual structure with tree-level propagators on the external
lines, the flowed diagrams cannot truncated as easily, because they occur with one or two external kernel lines. For
this reason we write the decomposition of the fermion propagator as follows

S̃(2)(p; t, s) = S̃(0)(p; t, 0)Σ
(2)
1 (p)S̃(0)(p; 0, s) +

4∑
i=2

[
Γ

(2)
i,a (p; t)S̃(0)(p; 0, s) + S̃(0)(p; t, 0)Γ

(2)
i,b (p; s)

]
+ Γ

(2)
5 (p; t, s) .

(C4)

The functions Γ
(2)
i,a (p; t) and Γ

(2)
i,b (p; s) correspond to the first-order expansions of the external fields χ(x; t) and χ(y; s),

respectively, though they are otherwise all but formally identical. The contribution Γ5 includes the first-order ex-
pansion of both external fields. We list the individual contributions from each Feynman diagram in Eqs. (C5a-C5h)
together with their evaluation, ignoring external propagators for brevity:

Σ
(2)
1 (p) = (C5a)

= −g2
0

C2(F )

(4π)2

{[
1

ε
+ log

(
4πµ2

p2

)
− γE + 1

]
i/p+ 4

[
1

ε
+ log

(
4πµ2

p2

)
− γE +

3

2

]
m0 +R

(
m2

0

p2

)}
+O(ε),

Γ
(2)
2,a(p; t) = = g2

0

C2(F )

(4π)2

[
1

ε
+ log

(
8πµ2t

)
+ 1

]
+O(ε, t), (C5b)

Γ
(2)
2,b(p; s) = = g2

0

C2(F )

(4π)2

[
1

ε
+ log

(
8πµ2s

)
+ 1

]
+O(ε, s), (C5c)

Γ
(2)
3,a(p; t) = = 0 +O(t), (C5d)

Γ
(2)
3,b(p; s) = = 0 +O(s), (C5e)

Γ
(2)
4,a(p; t) = = −2g2

0

C2(F )

(4π)2

[
1

ε
+ log

(
8πµ2t

)
+

1

2

]
+O(ε, t), (C5f)

Γ
(2)
4,b(p; s) = = −2g2

0

C2(F )

(4π)2

[
1

ε
+ log

(
8πµ2s

)
+

1

2

]
+O(ε, s), (C5g)

Γ
(2)
5 (p; t, s) = = 0 +O(s, t), (C5h)
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where R(m2
0/p

2) is a remainder that vanishes for m2
0 � p2. The calculation of the first diagram Σ

(2)
1 (p) is identical to

the standard QCD quark self-energy with tree-level external quark propagators carrying the flow-time dependence.
We regulate the divergent integral with dimensional regularization with d = 4− 2ε and ε > 0.

The next contribution, proportional to Γ
(2)
2,a(p, t), contains a flow kernel and vertex. Following the Feynman rules

we outline in Appendix B it is straightforward to write

Γ
(2)
2,a(p; t) = −2ig2

0C2(F )

∫ t

0

du e−p
2(t−u)

∫
q

e−q
2u

q2 +m2
0

e−(p+q)2u

(p+ q)2
(iq2 +m0/q). (C6)

In standard perturbation theory, the integrand would next be recast with Feynman parameterization, shifted, decom-
posed into scalar integrals, and brought to a spherically-symmetric form for integration in d dimensions. Specifically,
the integrand must be isotropic, so that the (d− 1)-dimensional surface may be integrated separately from the radial
portion. This luxury is not afforded to us, however, as in this case, the gluon propagator introduces an exponential
factor, e−(2p·q)t, which is only linear in the momentum q. No Feynman parameterization and corresponding shift in
the integration variable will fix this; the exponential is neither even nor odd. Our solution is to reparameterize the
propagator à la Schwinger and to study the MacLaurin series of the cross-term:

e−(p+q)2u

(p+ q)2
=

∫ ∞
0

dz e−(p+q)2(u+z) =

∫ ∞
0

dz e−(p2+q2)(u+z)
∞∑
n=0

(−2(u+ z))n

n!
pµ1
· · · pµnqµ1

· · · qµn , (C7)

where the sum over all µn is implied. The symmetry of this structure is now manifest; that is, terms of even n are
even, and terms of odd n are odd. We now let m0 → 0, so that

Γ
(2)
2,a(p; t) = 2g2

0C2(F )

∞∑
n=0

4n

(2n)!
pI2n

∫ t

0

du

∫ ∞
0

dz e−p
2(t+z)(u+ z)2n

∫
q

e−q
2(2u+z)qI2n +O(m0) . (C8)

Indeed, in the complete calculation of the flowed diagrams of Eqs. (C5b-C5h), the mass only contributes at O(t).
This allows for a concise demonstration of the techniques used in this article. In general the kernel diagrams do not
contribute to all orders in the same way as the standard QCD diagrams (C5a). The full renormalization requires a
coalescence of four semi-independent resummations. For this reason we only consider the leading Og2

0) corrections and
how they affect the wave function renormalization of the flowed fields. The above integral employs the multi-index
In = (µ1, µ2, . . . , µn). Note that the multi-index above is a 2n-tuple, because we neglect the mass and therefore the
only term remaining outside of the gluon propagator, iq2, is even, and we may drop all odd n through the reindexation
n → 2n. We have also rearranged the order of integration. In order to justify this, we invoke Tonelli: if the four
integrals (including the sum, an integral with respect to the counting measure) in (C8) converge in some order, then
we are free to choose any order, since the full integrand is strictly non-negative, and all domains of integration are
clearly measure spaces with σ-finite measures. With this in mind, we freely reorder the integrals, and impose a
posteriori restrictions on the integrals as we discover them. The momentum integral may now be calculated. Due
to Lorentz invariance, the only available structure with the total indicial symmetry of the qI2n is the appropriately
normalized sum over all (2n − 1)!! products of n metric tensors, where the indices are distributed according to all
possible pairings. For example, for n = 2, we find∫

q

f(q2)qI2n =

∫
q

f(q2)qI4 =
δµ1µ2δµ3µ4 + δµ1µ3δµ2µ4 + δµ1µ4δµ2µ3

d(d+ 2)

∫
q

f(q2)(q2)2, (C9)

for some smooth function f . In general, we have∫
q

f(q2)qI2n =

∫
q

f(q2)qI4 =
1

(d)n,2
S

(2n)
I2n

∫
q

f(q2)(q2)n, (C10)

where (d)n,2 = 2nΓ(d/2+n)
Γ(d/2) is a Pochhammer k-symbol, and the tensor

S
(2n)
I2n

=

(2n−1)!!∑
i=1

n∏
j=1

δµσi(2j−1)µσi(2j)
(C11)

is the generalization of the structure in (C9). Each σi is a permutation of the set [2n] ⊂ N corresponding to one
of the (2n − 1)!! partitions without ordering of [2n] into n two-element subsets. For clarity, inspect the indices in
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(C9); each term splits the set {1, 2, 3, 4} into two unordered pairs, but the pairings are never the same. Indeed, any
permutation of the indices simply permutes the summands. Thus the commutativity under addition of the terms

in S
(2n)
I2n

reproduces exact symmetry of the product of vectors qI2n . Further, we integrate over the (d − 1)-sphere to
isolate the radial integral:

Γ
(2)
2,a(p; t) =4g2

0

C2(F )

(4π)2

(4πµ2)2−d/2

Γ(d/2)

∞∑
n=0

4n

(d)n,2(2n)!
pI2nS

(2n)
I2n

∫ t

0

du

∫ ∞
0

dz e−p
2(t+z)(u+ z)2n

×
∫ ∞

0

qd−1dq e−q
2(2u+z)(q2)n +O(m0).

(C12)

The radial part is a simple gamma function, and the momenta pI2n saturate S
(2n)
I2n

, so that after some simplification,
we have

Γ
(2)
2,a(p; t) = 2g2

0

C2(F )

(4π)2

(
4πµ2

p2

)2−d/2 ∞∑
n=0

τ

n!

∫ 1

0

dα

∫ ∞
0

dζ e−(τ+ζ) (ατ + ζ)2n

(2ατ + ζ)d/2+n
+O(m0). (C13)

where τ = p2t and ζ = p2z. For n ≥ 1, every term is at least O(τ), since the numerator then dominates near d = 4.
Retaining only the n = 0 term,

Γ
(2)
2,a(p; t) = 2g2

0

C2(F )

(4π)2

(
4πµ2

p2

)2−d/2

τ

∫ 1

0

dα

∫ ∞
0

dζ e−(τ+ζ)(2ατ + ζ)−d/2 +O(m0, τ)

= g2
0

C2(F )

(4π)2

(
4πµ2

p2

)ε
e−τγ(ε, 2τ)

1− ε
+O(m0, τ)

= g2
0

C2(F )

(4π)2

[
1

ε
+ log(8πµ2t) + 1

]
+O(m0, t, ε)

(C14)

as in (C5b). The error of O(m0) is added here as a formality; it is absorbed into the O(t) term in the complete
calculation. The other graphs are calculated by similar means, and we arrive at the one-loop self-energy for flowed
fermions:

S̃(2)(p; t, s) =

∫
p

eip(x−y)

i/p

{
1− g2

0

C2(F )

(4π)2

[
3

ε
+ log

[
(8πµ2)2st

]
+ log

(
4πµ2

p2

)
− γE + 1

]}
+O(m0, s, t, g

4
0) .

(C15)

To renormalize the propagator, following ref. [24], we define the renormalized flowed fermion fields as

χR(x, t) = Z1/2
χ χ(x, t) , χR(x, t) = χ(x, t)Z1/2

χ , (C16)

so that the renormalized propagator reads

SR(x, t; y, s) = ZχS(x, t; y, s) . (C17)

If we impose the family of conditions

SR
∣∣
p2=µ2=1/(8π

√
st)

= S(0), (C18)

we obtain

Zχ ·
{

1− g2
0

C2(F )

(4π)2

[
3

ε
+ log

[
(8πµ2)2st

]
+ log

(
4πµ2

p2

)
− γE + 1

]} ∣∣∣∣∣
s=t,p2=µ2=1/(8π

√
st)

= 1 +O(g4
0). (C19)

Expanding Zχ in powers of the bare coupling

Zχ = 1 +

∞∑
k=1

g2k
0 Z(k)

χ , (C20)
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we find

Zχ = 1 + g2
0

C2(F )

(4π)2

{
3

ε
+ log(4π)− γE + 1

}
+O(g4

0). (C21)

We note that if we choose the MS scheme we obtain the same result already obtained in Ref. [24], and that pole
contribution matches the results of [42, 58]. The finite terms, which depend on the choice of renormalization condition,
have not, to our knowledge, appeared in the literature.

[1] C. Abel et al. (nEDM), Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124,
081803 (2020), arXiv:2001.11966 [hep-ex].

[2] J. M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D92,
092003 (2015), arXiv:1509.04411 [hep-ex].

[3] T. Chupp, P. Fierlinger, M. Ramsey-Musolf, and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and
particles, Rev. Mod. Phys. 91, 015001 (2019), arXiv:1710.02504 [physics.atom-ph].

[4] C.-Y. Seng, Reexamination of The Standard Model Nucleon Electric Dipole Moment, Phys. Rev. C91, 025502 (2015),
arXiv:1411.1476 [hep-ph].

[5] J. Dragos, T. Luu, A. Shindler, J. de Vries, and A. Yousif, Confirming the Existence of the strong CP Problem in Lattice
QCD with the Gradient Flow (2019), arXiv:1902.03254 [hep-lat].

[6] D. A. Demir, M. Pospelov, and A. Ritz, Hadronic EDMs, the Weinberg operator, and light gluinos, Phys. Rev. D 67,
015007 (2003), arXiv:hep-ph/0208257.

[7] U. Haisch and A. Hala, Sum rules for CP-violating operators of Weinberg type, JHEP 11, 154, arXiv:1909.08955 [hep-ph].
[8] J. de Vries, R. G. E. Timmermans, E. Mereghetti, and U. van Kolck, The Nucleon Electric Dipole Form Factor From

Dimension-Six Time-Reversal Violation, Phys. Lett. B695, 268 (2011), arXiv:1006.2304 [hep-ph].
[9] E. Mereghetti, J. de Vries, W. Hockings, C. Maekawa, and U. van Kolck, The Electric Dipole Form Factor of the Nucleon

in Chiral Perturbation Theory to Sub-leading Order, Phys.Lett. B696, 97 (2011), arXiv:1010.4078 [hep-ph].
[10] E. Shintani, S. Aoki, N. Ishizuka, K. Kanaya, Y. Kikukawa, Y. Kuramashi, M. Okawa, Y. Tanigchi, A. Ukawa, and

T. Yoshie, Neutron electric dipole moment from lattice QCD, Phys. Rev. D72, 014504 (2005), arXiv:hep-lat/0505022
[hep-lat].

[11] F. Berruto, T. Blum, K. Orginos, and A. Soni, Calculation of the neutron electric dipole moment with two dynamical
flavors of domain wall fermions, Phys. Rev. D73, 054509 (2006), arXiv:hep-lat/0512004 [hep-lat].

[12] F. K. Guo, R. Horsley, U.-G. Meißner, Y. Nakamura, H. Perlt, P. E. L. Rakow, G. Schierholz, A. Schiller, and J. M.
Zanotti, The electric dipole moment of the neutron from 2+1 flavor lattice QCD, Phys. Rev. Lett. 115, 062001 (2015),
arXiv:1502.02295 [hep-lat].

[13] A. Shindler, T. Luu, and J. de Vries, Nucleon electric dipole moment with the gradient flow: The θ-term contribution,
Phys. Rev. D92, 094518 (2015), arXiv:1507.02343 [hep-lat].

[14] C. Alexandrou, A. Athenodorou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, G. Koutsou, K. Ottnad, and
M. Petschlies, Neutron electric dipole moment using Nf = 2 + 1 + 1 twisted mass fermions, Phys. Rev. D93, 074503
(2016), arXiv:1510.05823 [hep-lat].

[15] E. Shintani, T. Blum, T. Izubuchi, and A. Soni, Neutron and proton electric dipole moments from Nf = 2 + 1 domain-wall
fermion lattice QCD, Phys. Rev. D93, 094503 (2016), arXiv:1512.00566 [hep-lat].

[16] M. Abramczyk, S. Aoki, T. Blum, T. Izubuchi, H. Ohki, and S. Syritsyn, Lattice calculation of electric dipole moments
and form factors of the nucleon, Phys. Rev. D96, 014501 (2017), arXiv:1701.07792 [hep-lat].

[17] B. Yoon, T. Bhattacharya, and R. Gupta, Neutron Electric Dipole Moment on the Lattice, EPJ Web Conf. 175, 01014
(2018), arXiv:1712.08557 [hep-lat].

[18] T. Izubuchi, H. Ohki, and S. Syritsyn, Computing Nucleon Electric Dipole Moment from lattice QCD, in 37th International
Symposium on Lattice Field Theory (2020) arXiv:2004.10449 [hep-lat].

[19] J. Dragos, T. Luu, A. Shindler, J. de Vries, and A. Yousif, Improvements to Nucleon Matrix Elements within a θ Vacuum
from Lattice QCD (2018) arXiv:1809.03487 [hep-lat].

[20] A. Shindler, J. de Vries, and T. Luu, Beyond-the-Standard-Model matrix elements with the gradient flow, Proceedings,
32nd International Symposium on Lattice Field Theory (Lattice 2014): Brookhaven, NY, USA, June 23-28, 2014, PoS
LATTICE2014, 251 (2014), arXiv:1409.2735 [hep-lat].

[21] R. Narayanan and H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators, JHEP 0603, 064,
arXiv:hep-th/0601210 [hep-th].
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