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ABSTRACT

Precision Measurement of the Proton Magnetic Form Factor at High Q2

Hampton University(May 2019)

Thir Narayan Sharma Gautam, M.S., The University of Southern Mississippi;

Ph.D., Hampton University

Chair of Advisory Committee: Dr. M. Eric Christy

Elastic electromagnetic form factors characterize the distribution of electric charge and

magnetization current inside the nucleon and reflect the internal structure determined by

Quantum Chromodynamics. Existing data on the proton magnetic form factor at high

Q2 (the 4-momentum transfer squared) have large statistical and systematic uncertainties.

The GMp experiment E12-07-108 was one of the first set of experiments to run in Hall A

at Jefferson Lab after the 12 GeV upgrade with the goal of this experiment to precisely

measure the electron-proton elastic cross section for Q2 up to 17 GeV2 with an accuracy

of better than 2% - several times better than existing data in this Q2 range. This will

allow further tests of form factor scaling predicted by pQCD and, additionally, will be an

important benchmark for many other experiments where elastic electron-proton scattering is

used for normalization. Since, GMp data were taken at lower ε (virtual photon polarization)

than SLAC data, the measured cross sections recieve a smaller contribution from the electric

form factor. This dissertation analyzed the GMp experiment data for five different kinematic

settings determining the form factor with total uncertainties nearly two times smaller than

the existing data at these Q2. This dissertation also presents the results of all Fall 2016

and Spring 2016 GMp experiment data. The proton magnetic form factors were extracted

using both the Rosenbluth separation method and a parameterization of the form factor

ratio (µpG
p
E/G

p
M) obtained from a fit to the existing cross section data. At the end of this

thesis, the extracted GMp form factor data is compared to the existing data. The results for

µpG
p
E/G

p
M from Rosenbluth separations are found to be consistent with previous extractions,
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but with significantly reduced uncertainties, further highlighting the discrepancy with the

polarization transfer technique. This data set can provide significant additional constraints

on contributions from two-photon exchange.
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CHAPTER 1

INTRODUCTION

Since the development of modern physics, scientists have tried to discover the structure

of nucleons (protons and neutrons), which are the building blocks of atomic nuclei. The

∼2.8 times bigger proton magnetic moment than the nuclear magneton (expected from a

point particle) measured by Stern in 1933 provided the first clue that the proton was not a

point-like particle. Almost 20 years later the first measurement by Hofstadter gave hints on

the proton’s internal structure. Hofstadter [24] combined the Mott cross section (the cross

section for point like particle) with an internal charge density to describe the deviation from

a point-like particle experimentally. Thus, the nucleons, once thought to be the smallest

building blocks of matter, turned out to be composed of even smaller objects, which are

now known to be quarks and gluons. Understanding how the nucleon is built in terms

of these fundamental particles is one of the most important questions in modern nuclear

physics, which can be explained by a theory called quantum chromodynamics (QCD). This

is a theory of strong interactions, a fundamental force describing the interaction between

quarks and gluons.

The basic reasons why the electromagnetic interaction is an important tool for studying

the the picture of nucleon is: Quantum electrodynamics (QED) is a known interaction and

for the electro-magnetic coupling constant αem = 1/137, perturbation theory is valid. By

contrast, the strong coupling constant for QCD renormalization scale Λ

αs ∝
1

ln(Q
2

Λ2 )
(1.1)
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is small only at high energy in the asymptotic freedom. Since the interaction between electron

and target is very weak, this makes it easy for an electron to probe the entire target nucleon.

In this process, the interaction between the electron and the target can be described by the

exchange of a virtual photon which interacts with the charge density and the electromagnetic

currents of the target nucleon. In elastic electron-nucleon scattering via photon exchange,

the structure of the nucleon is characterized in terms of the electric and magnetic form

factors, which are sensitive to the distribution of charge and current. From the measurement

of the cross-section for electron scattering at different final electron energies and scattering

angles, one can describe the response of the nucleons to the electromagnetic probe.

In order to obtain a deeper understanding of the internal structure of the proton, the

data on the electromagnetic form factors play an important role. These data may be useful

to establish the details of the interaction of quark and gluons constituting the proton as well

as criteria to test the various theoretical models within QCD. Most early form factor data

were analyzed by the Rosenbluth separation method where the form factors are extracted

by looking at the cross section as a function of Q2 and ε. At large Q2 the contribution from

the electric form factor is small. So this technique has reduced the sensitivity to GE, and

the ratio of GE to GM changes only slightly and is close to unity.

The recent experiment at Jefferson Lab, utilizing the polarization transfer method reveals

most surprising that GE decreases more rapidly than GM at large Q2. In this method, the

ratio of GE to GM is expressed in the Born approximation in terms of the ratio of transverse

and longitudinal components of recoil polarization and strongly depends on Q2. These

two methods, Rosenbluth and polarization transfer, disagree significantly even in the region

where they both provide precise measurements.

It has been assumed that this contradiction can be removed by taking into account the

hard part of the contribution of two-photon exchange to the cross section in elastic electron-

proton scattering (this study is detailed in a later section). Recent theoretical studies of

two-photon exchange (TPE) suggested that TPE effects give rise to a significant angular
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Figure 1.1. Ratio of the proton form factors as a function of Q2 according to data obtained
by the Rosenbluth method in (red points) and by the polarization-transfer measurements
(blue points) in single photon exchange approximation. Plot is from Ref. [2].

dependent correction to the elastic cross section which can lead to a large correction to the

extracted ratio GE/GM in the Rosenbluth separation method [2].

The GMp experiment was proposed to perform a high precision measurement of the

elastic e − p cross section to extract the proton magnetic form-factor in the Q2 range from

1 to 17 GeV 2 with precision of better than 2%. Existing data on GM at high Q2 have large

uncertainties, and also have uncertainties related to TPE effects and the contribution from

GE, limiting the ability to extract information on the Q2 dependence. GMp was proposed

to significantly improve the statistical and systematic uncertainties on the cross section. As

the measurements of this experiment were taken at lower ε (virtual photon polarization) as

shown in Fig. 1.10, the contributions from Gp
E are significantly smaller than for the large Q2

SLAC data where Gp
E may be negative and large. In addition, the GMp data will provide

better constraints on the high Q2 behavior of the form factor allowing for higher precision

tests of models of the nucleon form factor. Finally, this experiment measured cross sections
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at kinematics where TPE corrections will be very similar to what is seen in other experiments

at JLab which will minimizes the assumptions on TPE effects.

1.1 Form Factors

In the electron-proton scattering process, the final state of the nucleon remains the same,

but with a finite recoil. Form factors are the physical observables used to describe the spatial

extent of the nucleon. For an extended object like the proton having a matter density ρ(r),

the form factor F (q) is

F (~q) =

∫
d3rei~q.~rρ(~r). (1.2)

This implies that for q = 0

F (0) = 1, (1.3)

which gives the total charge. The cross section for an extended object is modified by the

form factor as

dσ

dΩ (extended)
≈ dσ

dΩ (point−like)
|F (~q)|2. (1.4)

For electron-proton scattering, two form factors are required to describe their structure: the

Dirac form factor F1 to describe the distribution of the electric charge, and the Pauli form

factor F2 to describe recoil of the proton. They are distinguished according to their helicity

states, which is defined as the projection of spin of the electron along its direction of motion.

In the non-relativistic case, the Fourier transform of electric charge distribution of the proton

corresponds to the electric form factor (Gp
E), whereas if the target has extended magnetic

moment distribution, the Fourier transform of the magnetic distribution of the proton is

referred as magnetic factor (Gp
M).
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In the case of an extended charge distribution ρ(~r) = ρ0e
−r/a in Breit frame, the resulting

form factor is the dipole form factor GD(Q2 = (1 + a2Q2)−2 where a is the radius of the

proton. Experimental observations have shown that both electric and magnetic form factors

can be described to a good approximation by the dipole form factor. More generally, if the

charge and magnetic distributions are the same then the electric and magnetic form factors

in the non-relativistic limit are related by

Gp
E(Q2) = GD(Q2) (1.5)

=
Gp
M(Q2)

µp
.

And the term

Gp
E(Q2) =

Gp
M(Q2)

µp
(1.6)

is called form factor scaling.

1.2 Hadronic Currents

In the Breit frame (also known as infinite-momentum frame), elastically scattered elec-

trons transfer momentum ~qB as a result of which the proton undergoes a change from −~qB/2

to +~qB/2. Thus, the initial and final nucleon momenta are equal and opposite in this frame

resulting in a simplified expression for the hadronic current. Using the Gordon identity

ū(p′)γµu(p) = ū(p′)

[
p′µ + pµ

2Mp

+
iσµuqu
2Mp

]
u(p). (1.7)
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This allows the p+ p′ term to be exchanged for the one involving the term σµuqu. With this

the hadronic current in terms of the Dirac and Pauli form factors will take the form:

J µ = ū(p′)

[
(F1 + κF2)γµ − (p′ + p)µ

2Mp

κF2

]
u(p). (1.8)

Hence, the time and spatial components of the hadronic currents are given by

J 0 = ieū(p′)

[
(F1 + κF2)γ0 − EpB

Mp

κF2

]
u(p), (1.9)

~J = ie(F1 + κF2)ū(p′)~γu(p),

where, EpB is the photon energy in the Breit frame and ~γ = (γ1, γ2, γ3). As ū(p′) = u†(p′)γ0,

such that

J 0 = ie

[
(F1 + κF2)γ0u†(p′)u(p)− EpB

Mp

κF2u
†(p′)γ0u(p)

]
, (1.10)

where

u(p) =

(√
(p.σ)χ√
(p.σ̄)χ

)
(1.11)

represents the Dirac four-spinnors and

γ0 =

(
0 1

1 0

)
. (1.12)
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Using u(p) and γ0 in Eq. 1.10 yields

J 0 = ie(F1 + κF2)χ′†
(√

(p′.σ),
√

(p′.σ̄)

)(√
(p.σ)χ

√
(p.σ̄)χ

)

− ieEpB
Mp

κF2χ
†
(√

(p′.σ),
√

(p′.σ̄)

)(
0 1

1 0

)(√
(p.σ)χ√
(p.σ̄)χ

)
. (1.13)

Using the identities

Mp =
√
p′.σ.

√
p′.σ

=
√
p′.σ̄.

√
p′.σ̄

EpB =

√
p.σ.
√
p′.σ̄ +

√
p′.σ̄.
√
p.σ

2
, (1.14)

with

τ =
Q2

4M2
p

=
q2
B

4M2
p

=
E2
pB −M2

p

M2
p

. (1.15)

The time component will be,

J 0 = 2ieMpχ
′†χ(F1 − τκF2)

= 2ieMpχ
′†χGE, (1.16)

and the vector current ~J

~J = −eχ′†(~σ × ~qB)χ(F1 + κF2)

= −eχ′†(~σ × ~qB)χGM . (1.17)
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Using these results Sachs [25] form factors can be interpreted in the Breit frame. In this

frame GE and GM are expressed as:

GE,M(Q2) =

∫
ρ(~r)E,Me

i~q.~rd3r

=

∫
ρ(~r)E,Md

3r − q2

6

∫
ρ(~r)E,Mr

2d3r. (1.18)

In this expansion the first term gives the total electric charge or magnetic current and the

second term provides the corresponding root-mean-squared radius of the nucleon [26]. But,

this simplified interpretation is complicated by a Lorentz contraction of the nucleon in the

direction of motion which leads to non-spherical charge density distributions that complicate

the naive Fourier transform interpretation of these form factors.

1.3 Elastic Scattering

Electron scattering is an important tool for studying the structure of nucleons. This

scattering process is dominated by electromagnetic interaction where a single virtual photon

is exchanged. By measuring the cross-section for electron scattering at various final electron

energies and scattering angles, one can map out the response of the nucleon to the electro-

magnetic probe. Let us consider an elastic scattering between a charged electron and proton

through the exchange of one photon represented by a Feynman diagram shown in Fig. 1.2.

Here the incident and outgoing electrons have 4-momenta k = (E,~k) and k′ = (E,~k′), and

the initial and final proton 4-momenta are p and p’, respectively. The 4-momentum of the

exchanged virtual photon is

q = k − k′ = p− p′. (1.19)

The square of the four momentum transfer of photon is q2 = −4EE ′ sin2 θ/2, neglecting the

electron mass. In the Breit frame, where the energy transfer q0 = ν = 0 and q2 = −~q2 = Q2,

the elastic scattering condition in the lab frame gives,
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Figure 1.2. Feynman diagram for electron proton elastic scattering

p′2 = (p+ q)2 = M2

= M2 + 2p.q + q2

= M2 + 2Mν + q2. (1.20)

The S-matrix element for electron-photon vertex -ieγµ is

S = (2π)4δ4(k + p− p′ − k′)ū(k′)(−ieγµ)u(k)
−i
q2

< p′|ieJµ|p >

= −i(2π)4δ4(k + p− p′ − k′)M .

M is invariant amplitude

iMfi = (−ie)ū(k′)γµu(k)
−i
q2

(ie) < p′|Jµ|p > . (1.21)
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The elastic scattering cross section in terms of the invariant amplitude is

dσ =
(2π)4δ4(k + p− p′ − k′)

2k02p0|v2 − v1|
|Mfi|2

∏
f

d3pf
2Ef (2π)3

. (1.22)

Here, v1 is initial proton velocity, v2 is the electron velocity, and 2k02p0|v2 − v1| is invariant

when boosted along the z-direction. In the lab frame, k = E, p0 = M , and integration is

made over the proton momentum by writing the phase factor as 2πδ(p′2−M2)d4p′/(2π)4 to

get

dσ =
|M |22πδ((q + p)2 −M2)

2ME

d3~k′

2E ′(2π)3
. (1.23)

Integrating over E ′ = |~k′|, to obtains

dσ =
E ′|M |2

2(2π)2EM2(1 + 2E
M

sin2 θ/2)
dΩ. (1.24)

Even though the proton is massive, its recoil effects cannot be neglected. This factor is

relativistic in nature. In terms of electron kinematics this factor can be written as

E ′

E
=

1

1 + 2E
M

sin2 θ
2

. (1.25)

The invariant amplitude squared is given by

|M |2 =
e4

Q4
lµνWµν

=
e4

Q4
lµν < p|Jν |p′ >< p′|Jµ|p >, (1.26)

where lµν is the leptonic tensor such that

lµν = ū(k′)γµu(k)ū(k)νu(k′). (1.27)
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Average over the initial polarization and sumed over the final polarization states (for an

unpolarized electron) yields

lµν = 2(k
′µkν + k

′νkµ − gµνk′.k). (1.28)

The current density between the nucleon states defines two form factors as

< p′|Jµ(0)|p > = ū(p′)[F1(Q2)γµ + F2(Q2)
iσµνqν

2M
]u(p). (1.29)

The Sachs [25] electric and magnetic form factors are defined as

GM(Q2) = F1(Q2) + F2(Q2),

GE(Q2) = F1(Q2)− τF2(Q2), (1.30)

where,

τ =
Q2

4M2
. (1.31)

When Q2 = 0:

GM(0) = F1(0) + F2(0) = µp = 2.793µN ,

GE(0) = F1(0) = 1,

where, µN is the nuclear magneton. The hadronic tensor will be then

W µν = gµνq2G2
M + pµpν

G2
E + τG2

M

1 + τ
. (1.32)
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As both tensors are symmetric and conserved, qµlµν = qµWµν = 0, the elastic cross section

in the lab frame in single photon approximation is given by

dσ

dΩ
= σMott

[
G2
E + τG2

M

1 + τ
+ 2G2

M tan2 θ

2

]
, (1.33)

where σMott is the cross section for a structure-less Dirac particle which is expressed as

σMott =
α2 cos2 θ

2

4E2 sin4 θ
2

E ′

E
. (1.34)

In terms of GE and GM the ep elastic cross section can be rewritten as

dσ

dΩ
=
σMott

1 + τ

[
G2
E +

τ

ε
G2
M

]
. (1.35)

where ε−1 = 1 + 2(1 + τ) tan2 θ
2

is the virtual photon polarization.

1.4 Experimental Measurement of Form Factors

There are two methods of elastic form factor measurement:

• Rosenbluth separation : At small Q2 the magnetic form factor Gp
M of the proton is

suppressed and the cross section is dominated by the contribution of the electric form

factor Gp
E except as ε close to zero. But at large Q2 the electric form factor Gp

E is

suppressed and the cross section is dominated by the contribution of the magnetic

form factor Gp
M . The fact that the magnetic form factor dominates at large Q2, make

it difficult to extract Gp
E with high accuracy from the measured cross section at large

Q2. Similarly, highly accurate Gp
M at small Q2 is difficult to extract. Rewriting the

expression of cross section in terms of the reduced cross section

σR =
dσ

dΩ

(1 + τ)ε

τσMott

= G2
M +

ε

τ
G2
E. (1.36)
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By measuring the reduced cross section at several ε points for a fixed Q2, a linear fit

of σR to ε gives G2
M as the intercept and G2

E/τ as the slope. This is known as the

Rosenbluth separation method. Getting GM and GE at fixed Q2, the ratio of electric

to magnetic form factors of the proton µpGE

GM
can be calculated for that Q2 point.

• Recoil polarization technique: In the Rosenbluth separation method, GM dominates

the cross section at all ε values at large Q2. Therefore, the uncertainty in GE increases

with increasing Q2. The recoil polarization technique has been introduced recently to

get a more reliable measurement of GE. In this technique, a longitudinally polarized

electron beam is scattered by unpolarized protons resulting the recoil proton with

polarization in the scattering plane. The polarization transverse and parallel to the

momentum of the electron are given by

I0Pt = −2
√

(τ(1 + τ))GEGM tan
θ

2
,

I0Pl =
E + E ′

M

√
(τ(1 + τ))G2

M tan2 θ

2
, (1.37)

Where, I0 = G2
E + τ

ε
G2
M .

Figure 1.3. Schematic diagram for the recoil polarization.
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In this technique, the transverse and longitudinal polarization, Pt and Pl respectively, of

the scattered proton are measured by a Focal Plane Polarimeter (FPP). Re-scattering

the proton from a secondary target inside the FPP and measuring the azimuthal an-

gular distribution gives those components of polarization. By forming the ratio of the

transverse and longitudinal polarization, the ratio of GE to GM is given by

GE

GM

= −Pt
Pl

E + E ′

2M
tan

θ

2
. (1.38)

Unlike the Rosenbluth Separation method which measures the cross-section at different

kinematics, this technique gives the ratio GE/GM directly. By measuring GM using

the extracted cross-section, GE can be measured with smaller uncertainties.

1.5 Two-photon Exchange for Unpolarized Scattering

The first quantitative calculation of the effect of TPE on the ratio GE/GM was done by

Blunden [27]. Fig. 1.4 shows the contributions to elastic electron-proton scattering from one

photon and two-photon exchanges with particle momenta as indicated. The Born amplitude

for one photon exchange in the case of unpolarized scattering is given by

M0 = −ie
2

q2
u(p3)γµu(p1)u(p4)Γµ(q)u(p2), (1.39)
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Figure 1.4. Feynman diagrams for electron-proton elastic scattering: one-photon exchange
(Born approximation) and two-photon exchange scattering.

The differential scattering cross section in terms amplitude M0 is given by

dσ0

dΩ
=

(
α

4Mq2

)2

|M0|2, (1.40)

where, α = e2/4π is the fine structure constant. The elastic scattering cross section defined

in Eq. 1.40 including the radiative corrections to order α will become

dσ

dΩ
→ dσ

dΩ
(1 + δrc), (1.41)

where, δrc is calculated by using the one loop virtual corrections of order α and the inelastic

bremsstrahlung cross section for real photon emission. The one loop correction amplitudes

M1 can be expressed as the sum of a factorizable term (M0), and a non-factorizable term

M1:

M1 = f(Q2, ε)M0 + M1, (1.42)
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where, Mo is the born amplitude. The ratio of full cross section to the Born can be expressed

as

1 + δrc =
|M0 + M1|2

|M0|2
. (1.43)

Here, δ is given by

δrc = 2f(Q2, ε) +
2R{M †

0 M1}
|M0|2

, (1.44)

= δsoft + δhard, (1.45)

The soft terms in δsoft include the electron vertex correction, vacuum polarization and

the infrared divergent (IR) parts of the nucleon vertex and TPE corrections. The main

contributions to the function f(Q2, ε) from the electron vertex, vacuum polarization, and

proton vertex depend only on Q2, and hence have no effect for the Rosenbluth separation,

other than from an overall normalization. Therefore, only the IR-divergent TPE correction

in the factorizable term can contribute to the ε-dependence of the cross section. The non-

factorizable term which depend on the hadronic structure are contained in M1 came from

the TPE corrections and proton vertex. As the proton vertex correction has a weak ε

dependence, it will not affect much the Rosenbluth separation process. The cross section is

a simple kinematic factor times the Born cross section in soft photon approximation if one

of the two exchanged photons is taken to be on-shell. The corrections after the standard

O(α) radiative corrections that can introduce the weak ε dependence, the non-factorizable

term of the TPE contribution, is not taken into account in cross section extractions. The

TPE correction δ2γ is given by the interference of the total TPE and Born amplitudes:

δ2γ =
2R{M †

0 M2γ}
|M0|2

(1.46)

Where, the TPE amplitude M2γ includes all possible off-shell intermediate states.
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Figure 1.5. Feynman diagrams for electron-proton elastic scattering: two-photon exchange
scattering.

The total IR divergent TPE contribution to the cross section in the target rest frame is

given by

δIR = −2α

π
ln

(
E1

E3

)
ln

(
Q2

λ2

)
. (1.47)

The IR divergent contribution to the cross section introduced by Mo and Tsai [MT] Ref. [28]

is given by

δIR(MT ) = −2α

π
[k(p1, p2)− k(p3, p2)], (1.48)

where, K(pi, pj) = pi.pj
∫ 1

0
dy ln(p2

y/λ
2)/p2

y and py = piy + pj(1 − y). In order to isolate

the effect of the additional TPE contribution on the data, Blunden et al. [27] consider the

following difference

∆ = δ2γ − δIR(MT ), (1.49)

where the IR divergence part is independent of λ cancel. The TPE corrections clearly play

an important role in resolving the most of the form factor discrepancy. In terms of three

complex form factors, F̃1, F̃2 and F̃3, the generalized amplitude for elastic scattering is
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written as

M = −ie
4

q2
u(p3)γµu(p1)u(p4)

(
F̃1γ

µ + F̃2
iσµνqν
2M

+ F̃3
γ.KP µ

M2

)
u(p2), (1.50)

here K = (p1 + p3)/2 and P = (p2 + p4)/2. The functions F̃i are the functions of Q2 and

ε. The functions ˜F1,2 approach to the Dirac and Pauli form factors in 1γ approximation,

whereas the new form factor F̃3 exists only at the 2γ level and beyond,

˜F1,2(Q2, ε)→ ˜F1,2(Q2), (1.51)

F̃3(Q2, ε)→ 0. (1.52)

In terms of Sachs form factors

G̃E = GE + δGE,

G̃M = GM + δGM . (1.53)

The reduced cross section up to order α2 can be written as,

σ̃r = G2
M +

ε

τ
G2
E + 2G2

MRe

(
δGM

GM

+ εY2γ

)
+

2ε

τ
G2
ERe

(
δGE

GE

+
GM

GE

Y2γ

)
, (1.54)

or as noted in [29] the reduce cross section can be written as,

σ̃r = G2
M + 2GMRe(δG̃M) +

ε

τ

[
G2
E +

4τ 2

M2
Re(F̃3)(GM +

1

τ
GE) + 2GERe(G̃M)

]
, (1.55)

where, the Y2γ and F̃3 are related as

Y2γ = ν
F̃3

GM

, (1.56)
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and

ν ≡ K.P

M2
,

=
√
τ(1 + τ)(1 + ε)/(1− ε). (1.57)

Fig. 1.6 shows the TPE corrected Rosenbluth separation data in red. This plot indicates that

after TPE correction to the Rosenbluth data, the discrepancy in GE to GM ratio between

this data and the polarization transfer data has been significantly reduced.

Figure 1.6. The ratio of proton electric and magnetic form factors measured using LT
separation (red points) and polarization transfer (PT)(blue points). The LT points corrected
for TPE are shown with filled square and filled circles.

1.6 Global Fit

As nucleon electromagnetic form factors are required for many calculations in nuclear

physics, a simple parametrization that accurately represents the data over a wide range of
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Q2 with reasonable behavior for both Q2 → 0 as well as Q2 → ∞ would be useful. To

get reasonable behavior at low Q2 the power series representation should involve only even

powers of Q. On the other hand, at high Q2 the dimensional scaling rules require GM ∝ Q−4

. But the most common parametrizations violate both of the conditions. The simplest

form of parametrization that fit to all cross section, polarization transfer, and beam-target

asymmetry measurement as explained in Ref. [2] takes the following form:

GE, GM/µp =

1 +
n∑
i=1

aiτ
i

1 +
n+2∑
i=1

biτ i
. (1.58)

Here, for n = 3, there are eight fit parameters for each form factor, along with a normalization

factor for each independent set of cross section measurements. The fit includes 529 cross

section and 54 polarization transfer points and gives a reduced χ2 of 0.77. The function in

Eq. 1.58 is chosen so that it gives reasonable behavior in both low as well as high Q2. The

parameters bi are constrained to be positive, to avoid fits where both the numerator and

denominator pass through zero at the same Q2, giving narrow divergence in the fit.

For elastic cross sections, a separate parametrization without direct reference to TPE

effects is provided in Ref. [2]. This will give a model-independent parameterization for the

cross section without TPE corrections. This will parameterize full elastic reduced cross

section including both Born and TPE corrections by:

σBorn+TPE
R = τF 2

m(Q2, ε) + εF 2
e (Q2, ε), (1.59)

where, Fm and Fe are effective magnetic and electric form factors respectively, which consists

of the effects of multiple photon exchange. In the Born approximation these two form factors
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are just the usual Sachs form factors:

Fm(Q2, ε)→ GM(Q2),

Fe(Q
2, ε)→ GE(Q2). (1.60)

The results of the fit for the cross section in Eq. 1.59 in terms of the effective form factors

Fm and Fe are presented in the table 1.1.

Table 1.1
Parameters for the fit to the TPE-uncorrected cross section, using the parameterization for
Fm and Fe.

Parameter Fm/µp Fe
a1 -2.151 -1.651
a2 4.261 1.287
a3 0.159 -0.185
b1 8.647 9.531
b2 0.001 0.591
b3 5.245 0.000
b4 82.817 0.000
b5 14.191 4.994

1.7 Models of Form Factors

1.7.1 Vector Meson Dominance

This is the earliest model of form factors introduced by Sakurai [30] to describe the

electron-proton interaction through the coupling with vector mesons. The Feynman diagram

for the VMD model is shown in Fig. 1.7. The VMD model differs from the other models by the

inclusion of the ρ, w and φ mesons along with higher excited states. This model successfully

describes the form factors, photo-production, as well as absorption cross-sections and vector

meson exchange for πN and NN scattering. This model is accurate for the low Q2 domain
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but it fails to predict the masses and number of mesons. The nucleon form factor in terms

of the meson-nucleon form factor in this model is expressed as

F (Q2) = Σi
CγVi

Q2 +M2
Vi

FVi(Q
2), (1.61)

Figure 1.7. A Feynman diagram for a scattering process featuring VMD in which the virtual
photon couples to the nucleon (shown as a black circle) through ρ or ω mesons.

where 1/(Q2 +M2
Vi

) is the meson propagator, MVi are the meson masses, FVi(Q
2) is the

meson-nucleon form factor and CγVi is the photon-meson coupling strength. This VMD

model was very successful in describing the early low Q2 form factor data. The early VMD

fit performed by Iachello et.al [31] in 1973, predicted a linear decrease of the proton GP
E/G

P
M

ratio. This was in agreement with the later results from the polarization transfer transfer

measurements in JLab Hall A. However, the Iachello et. al. fit disagrees with the asymptotic

behavior of the form factors at high Q2 as predicted by pQCD.

The first work to merge the low Q2 predictions of VMD with the high Q2 behavior

predicted by pQCD was done by Gari and Krümpelmann (GK) [32], using the extended
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version of VMD model where the photon-nucleon interaction has a purely photonic part in

addition to the meson poles. This model assumes a complete decoupling of the nucleon with

the OZI (Okubo-Zweig Iizuka) rule [33]. The isovector and isoscalar form factor in the GK

model determined by the ρ and ω mesons are given by

F V
1 (Q2) = F1(Q2)

[
gρ
fρ

m2
ρ

m2
ρ +Q2

+

(
1− gρ

fρ

)]
, (1.62)

F V
2 (Q2) = F2(Q2)

[
gρκρ
fρκV

m2
ρ

m2
ρ +Q2

+

(
1− gρκρ

fρκV

)]
, (1.63)

F S
1 (Q2) = F1(Q2)

[
gω
fω

m2
ω

m2
ω +Q2

+

(
1− gω

fω

)]
, (1.64)

F S
2 (Q2) = F2(Q2)

[
gωκω
fωκV

m2
ω

m2
ω +Q2

+

(
κS
κV
− gωκω
fωκV

)]
. (1.65)

The hadronic form factors parameterized by GK are given by

F1(Q2) =
Λ2

1

Λ2
1 + Q̃2

Λ2
2

Λ2
2 + Q̃2

, (1.66)

F2(Q2) =
Λ2

1

Λ2
1 + Q̃2

[
Λ2

2

Λ2
2 + Q̃2

]2

, (1.67)

where,

Q̃2 = Q2

log

(
Λ2
2+Q2

Λ2
QCD

)
log

(
Λ2
2

Λ2
QCD

) , (1.68)

an Λ1 is the meson scale cut off, Λ2 is the quark-gluon scale cut off and ΛQCD is the QCD

scale cut off.

In a later work to fit electromagnetic form factors to the data considering the asymptotic

behavior given by pQCD have been made by Lomon [34]. Lomon combines the GK model

with the model of Höhler and Pietarinen (HP) [35]. In this model, the width of the ρ meson

is accounted for by an analytic approximation to the dispersion integral for the ρ meson.
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Lomon also found that the inclusion of the ρ width through the dispersion relation and the

ρ′ pole gave better results than the GK model. In addition to this, the best fits to µpGE/GM

data of Bartel [3] and of Jones [17] using dispersion relations showed a slightly better χ2

than the GK model.

1.7.2 Perturbative QCD (pQCD)

The VMD model begins to break down for large Q2, and because of its superposition

of monopoles, it is not able to conform with the asymptotic behavior predicted by pQCD.

pQCD is an approach from which the specific Q2 dependence of the nucleon form factors can

be obtained based on a factorization theorem. This theorem allows scale separation between

the short and long distance motions of the quarks or gluons. The short distance motion

corresponds to perturbative physics. The helicity conserving form factor of the nucleon in

pQCD can be given by [36]

F1(Q2) ∝
∫

[dxi]

∫
[dyi]φ

†(xi, Q)TH(xi, yi, Q)φ(yi, Q), (1.69)

where

[dxi] = dx1dx2dx3δ(1− Σixi), (1.70)

xi is the momentum fraction of the ith valence quark, φ(xi, Q) is the probability amplitude for

the distribution of longitudinal distribution of the quarks in the initial state of the nucleon

(y corresponds to the final-state quarks) and TH is the hard scattering amplitude. The series

expansion of φ(xi, Q) is given by

φ(xi, Q) = x1x2x3

∞∑
n=0

anφn(xi)

(
ln
Q2

Λ2

)−γn
, (1.71)
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where an and γn are some constants. The proton dirac form factor F1 based on the Brodsky

and Lepage [36] picture takes the following form:

F1(Q2) =
32π2α2

s(Q
2)

9Q4

∑
n,m

bn,m

(
ln
Q2

Λ2

)−γn−γm
[1 +O(αs(Q

2),m/Q)]. (1.72)

As the helicity-flip associated with Pauli form factor F2 is suppressed at high Q2, the

leading term of the Eq. 1.72 can be replaced by GM :

GM(Q2) ∝ 1

Q4
. (1.73)

And the contribution of the Pauli form factor F2 to the electric form factor GE is suppressed

by a factor of Q2 i.e.

GE(Q2) ∝ 1

Q6
,

∼ GM

Q2
. (1.74)

This prediction is a natural consequence of hadron helicity conservation. The hadron

helicity conservation arises from the vector coupling nature of the quark-gluon interaction,

the quark helicity conservation at high energies, and the neglect of the non-zero quark

orbital angular momentum state in the nucleon. The scaling result predicts that the ratio:

GE/GM become constant at high Q2. This results were confirmed in a short-distance pQCD

analysis made by Brodsky and Lepage [36]. Fig. 1.8 shows the magnetic form factor of the

proton times Q4 plotted as a function of Q2. The asymptotic behaviour appears to start at

approximately 5 (GeV/C)2 with slow variations at high Q2.
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Figure 1.8. Plot of Q4Gp
M/µp showing the asymptotic behavior of the proton magnetic form

factor. The data are: Bartel et al. is from Ref. [3], Berger et al. is from Ref. [4], Andivahis
et al. is from Ref. [5], Kirk et al. Ref. [6], Sill et al. is from Ref. [7].

1.8 Existing Magnetic Form Factor Data

This section will present an overview of previous experimental data on the proton mag-

netic form factor. Fig. 1.9 shows the data for Gp
M obtained from the Rosenbluth separation

method, where GP
M is normalized to the dipole form factor. It is evident from the plot of

Gp
M /µPGD vs Q2 that most of the data for Gp

M are for Q2 < 8 GeV2. The best data

set above 8 GeV2 is the Sill measurement from SLAC [7] with cross section uncertainties

varying from 4% at Q2 = 5 GeV2, to 8% for Q2 ≈ 20 GeV2, without including an overall

normalization uncertainty of 3%. The Sill data extracted Gp
M assuming the scaling behavior

of the form factors i.e. Gp
E = Gp

E/µp and that Gp
E contribute 6% (2%) to the cross section at

Q2 = 5 GeV2 (20 GeV2 ). The recent polarization transfer measurements [19] show that Gp
E

is significantly smaller for the Q2 where the ratio Gp
E/G

p
M has been measured. This method
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Figure 1.9. Proton magnetic form factor world data normalized by the dipole form factor
from unpolarized measurements. The old data are from Refs. [3–7], Jlab 6 GeV data refers
to the Christy et al. Ref. [8] and JLab 12 GeV refers to the data this experiment collected.
Uncertainties shown do not include the effect of the normalization uncertainty, which is 3%
on the Sill et al.

also shows that the true contribution from Gp
E will be zero near Q2 ≈ 6–7 GeV2, where

Gp
E/G

p
M becomes negative and increases in magnitude with Q2. Also, Gp

E contribution has

found to be increase by 4% between Q2 = 5 and 15 GeV2. This showed a significantly mod-

ified Q2 dependence for Gp
M . Another problem in the analysis of all previous measurements

is that they all neglected the contribution of TPE. This effect yields a major correction to

the extracted value of Gp
M as discussed in earlier section.
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Figure 1.10. Kinematic coverage of GMp data (Red) compared to SLAC data [7] (black) in
ε vs Q2 plot.

Fig. 1.10 shows ε vs Q2 coverage for several ep elastic experiments at Q2 ≥ 0.5 GeV2.

This plot shows that the GMp data are at lower ε then SLAC data. This implies that

the measured cross sections will have a smaller contribution from the electric form factor

allowing a higher precision of extraction of the magnetic form factor.
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CHAPTER 2

EXPERIMENTAL SETUP

2.1 Overview

Experiment E12-07-108, was conducted in experimental Hall A at the Thomas Jefferson

National Accelerator Facility from Spring 2015 to Fall 2016. The purpose of this experiment

was to precisely measure the elastic electron-proton cross-section in a wide range of Q2 with

a total uncertainty better than 2%. The experiment utilized the continuous electron beam of

Continuous Electron Beam Accelerator Facility (CEBAF) and a 15 cm long liquid Hydrogen

target. The scattered electrons were detected in the High Resolution Spectrometers (HRS),

which are standard equipment in Hall A. The production data were acquired in three separate

run periods with beam energies of 2.2, 4.5, 6.4, 8.5 and 10.6 GeV and electron scattering

angles ranging from 17◦ to 55.9◦. A total of twenty one Q2 points were collected during

entire experimental run period, with the kinematic coverage is shown in Fig. 1.9. In this

chapter, the experimental setup for the experiment will be discussed and will include a brief

description of the continuous electron beam accelerator along with the beamline hardware,

target and spectrometers in experimental Hall A. This chapter will conclude with an overview

of the electronics and data acquisition systems.

2.2 Thomas Jefferson National Accelerator Facility

The CEBAF accelerator at Jefferson Lab provides continuous wave (cw) electron beam

with currents up to 80 µA [37] and energies ranging from 2.2 to 10.6 GeV during the running

of this experiment. The layout of the CEBAF accelerator is shown in Fig. 2.1. The source of

electrons at the injector is a 100 kV photocathode gun, with the electrons originating from

the photocathode gun then accelerated to 50 MeV and then injected into the north linac
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where it is accelerated up to 600 MeV. At the end of the north linac, 180◦ bending arcs with

a radius of 80 meters join the north linac to the identical and antiparallel superconducting

south linac forming a recirculating beamline. Each linac contains 25 cryomodules. The beam

through each arc is focused and steered using quadrupole and dipole magnets located inside

each arc.

Figure 2.1. Layout of the CEBAF accelerator facility.

At the end of the south linac are three underground experimental halls into which the

beam can be diverted and fed at different levels of energy simultaneously through the beam

switchyard. The energy of the beam depends on the total number of passes. There are five

different arcs for circulation on the east of the machine and four arcs on the west end.
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2.3 Hall A Overview

Experimental Hall A is the largest hall among the four Halls. The layout of Hall A

is shown in Fig. 2.2. The beam is steered into Hall A through the Hall A arc, which

is equipped with a variety of magnets to bend the beam into Hall and provide a beam

energy measurement. The Hall A beamline instrumentation as shown in Fig. 2.3 consist of

superharps, beam current monitors (BCMs), raster magnets and beam position monitors

(BPMs). After passing through the beamline, the beam reaches to the target, where the

nuclear interactions of interest take place. Hall A is built underground in a circular shape

with a diameter of 53 m and a height of 17 m [10]. The standard Hall A apparatus consists

of two high resolution spectrometers (HRSs): the left HRS (LHRS) and the right HRS

(RHRS). Both were utilized in this experiment. A detailed discussion of the beamline and

spectrometers will be given in later in this chapter.

2.4 Hall A Beamline Instrumentation

Fig. 2.3 shows the Hall A beamline. The beamline instruments used to determine the

properties of the beam, such as beam energy, beam charge, position and direction are shown

schematically.

2.4.1 The Hall A Arc and Beam Energy Measurement

The Hall A arc contains eight identical dipole magnets and two pairs of wire scanners

(super harps) located at the entrance and exit. The wire scanners are used to measure the

bend angle. During operation a ninth reference dipole is used, which is both identical and

powered in series with the other dipoles. When the dipole string is energized, a mapping

device measures the field integral of the ninth dipole, which can be used with the nominal

bend angle of the arc to determine the energy of the beam. This method of beam energy

measurement is called the arc energy method. The basic concept of the beam energy mea-
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Figure 2.2. Schematic view of experimental apparatus consisting two high resolution spec-
trometers (HRS) on either side of the beam line. The front view of the spectrometer is shown
in Fig. 2.11. The scattered electrons are detected in two HRS’s: LHRS and RHRS.

surement is as follows: when an electron moves in a circular trajectory with velocity ~v in

the region of field ~B, it experiences a force (Lorentz force) and will be deflected by a known

angle. The magnetic force on the electron is given by:

d~p

dt
=
e

c
~v × ~B (2.1)
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Figure 2.3. Layout of Hall A Beamline components.

So, if the magnetic field and the electron trajectory are known the electron energy can be

determined as:

E =
k

θ

∫
~B.~dl (2.2)

where, K = 0.299792 GeV rad T−1m−1/c and B is the field strength. Here, the beam energy

can be calculated by measuring its bend angle through a well determined magnetic field. The

arc energy method provides an absolute measurement to an accuracy of about 5 × 10−4 E

for the first pass beam for the GMp experiment. The beam energy for this experiment was

also monitored by the ”Tiefenbach” method, which uses Beam Position Monitors (BPMs)

to monitor the bend angle, and therefore, the energy fluctuations.
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Figure 2.4. Hall A arc schematic.

2.4.2 Beam Position Measurement

The position and direction of the beam at the target is determined using two Beam

Position Monitors (BPMs) located 7.524 m (BPMA) and 1.286 m (BPMB) upstream of the

target, providing non-destructive measurement [38, 39]. Each BPM consists of a cylindrical

cavity with a set of four wires (X+, X−, Y+ and Y−), aligned parallel to the beam direction.

The position measurement method is based on comparing the signals induced by the beam

passing between each pair of antennas. By using the recorded signals from two such pairs,

beam coordinates at the center of the BPM module can be reconstructed. By combining the

information from both modules, a relative position of the beam projected to the target can be
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determined to within 100 µm for currents above 1 µA. The effective offset corrected (pedestal

subtracted) relative beam position X ′ and Y ′ along the axis of the wires is calculated by a

difference over sum technique:

X ′ = k(
X+ −X−
X+ +X−

), Y ′ = k(
Y+ − Y−
Y+ + Y−

)

The BPMs are calibrated using a set of Harps located adjacent to the BPMs . This in-

BPMA BPMB

Beam direction

Superharp Superharp

-7.524 m -1.122 m-1.286 m-7.353 m

Wire Antennas

Positions in Hall A coordinate system

z

Figure 2.5. Schematic of beam position measurement.

vasive calibration procedure is called a ”bull’s eye scan”. The Harps provide an invasive

measurement of the beam position and consist of three wires oriented vertically at ±45◦. A

schematic of the Harps is shown in Fig. 2.6. They operate by moving differently-oriented

wires across a low current beam and reading out the induced wire signals. The Harps are

routinely surveyed with respect to Hall Coordinate system. In Fig. 2.6, XH and YH are the

hall coordinates whereas, X± and Y± are the BPM coordinates, which are rotated by 45◦

with respect to hall coordinate system.
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Figure 2.6. BPM coordinates system are shown by dotted lines (left) and a Harp (right)
consisting three thin wires. The BPM coordinate system is rotated by 45◦ with respect to
nominal hall coordinate system.

2.4.3 Beam Rastering

The electron beam delivered to Hall A is CW (continuous wave) and with an rms of

∼200 µm. The raster is a pair of horizontal (X) and vertical (Y) air-core dipoles located 23

m upstream of the target. Beam rastering was used during the experiments to reduce the

effects of LH2 boiling and possible damage to the target can. The rastering reduces local

heating of any component of the target or dump due to the high power density of energy

deposition in the target. However, effects of local reduction of the LH2 target density due to

the heat deposition of the beam into the LH2 are observed even with the use of the rastering

system. To account for this effect, a study of target boiling was performed during both

experiments. A correction factor to the effective target length was also applied to account

for contraction during cool-down.

If the raster is off, the beam position can be determined using the two BPMs. If the

raster is on, there is a phase lag between the real position and the position recorded by

BPM. So the raster current that is recorded for each event will need to be used. Fig. 2.7

shows the raster pattern used for this experiment. The BPMs are not fast enough to get

the positions event by event. The raster raw current is used to indirectly determine beam

position [40]. The calibration of raster is done by comparing the raster raw current with the

average beam position from the BPM. The Raster correction is necessary to get rid of any
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Figure 2.7. The density of the events vs beam position projected to the target from BPM.

deviation in beam position offset. If we do not account for raster correction, the variables at

the target will be incorrectly reconstructed. This will impact the reconstructed momentum of

the detected particles, as a deviation in the Hall vertical direction (∆xtg) creates a deviation

in the focal plane (∆xfp) thereby affecting ∆δ.

2.4.4 Beam Current Measurement

The complete beam current monitoring system consisting two beam current monitors

(BCMs) and an Unser monitor is located 25 m upstream from the target, as illustrated in

Fig. 2.8. The BCMs are designed for stable, low noise, non invasive beam current measure-

ments. The Unser monitor is a parametric current transformer (PCT) which is simply a

toroidal transformer with the beam acting as a single turn. The Unser monitor is calibrated

by passing a precisely known current through an internal wire and provides an absolute ref-

erence. However, the Unser offset is noisy and the time average offset drifts in unpredictable

ways. By measuring a series of currents over a short period of time, the absolute current can
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be determined by the Unser monitor, then transferred to the BCM’s. A BCM consists of a

Figure 2.8. Schematic of HallA beam current measurement.

stainless steel cylindrical cavity, 15.48 cm in diameter and 15.24 cm in length [10], with axis

coinciding with the nominal beam position. Resonant frequencies of the cavities are tuned

to the frequency of the beam. Inside each cavity there are two loop antenna, one of which

provides an output signal proportional to the beam current. The RF output signal from the

cavity is down converted to a 1 MHz signal and fed to an RMS to DC converter board. After

this conversion two output signals are produced:
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• Signal 1 is sent to a high precision digital AC converter which produces a digital output

as the RMS value of the input signal averaged over a one second period. The conversion

of the voltage to current for each cavity has to be determined in a calibration procedure.

• Signal 2 is split into three signals, with each sent to amplifiers with relative gains of

×1, ×3, ×10. The ×1 signal are linear for beam currents from 10-200 µA. The ×3 gain

can be used for beam currents up to about 60 µA. The 10 amplified signal is used to

measure the currents upto about 30 µA. Each amplified signal is then sent to an RMS

to DC converter and the resulting DC voltage level is sent to a voltage to frequency

(V-to-F) converter, with the output from (V-to-F) is fed to a scaler. The number of

counts measured by the scaler is proportional to the integrated charge. The constant

of proportionality between the V to F frequency and current has to be determined

from calibration.

In addition, there are two new digital receivers: unew and dnew for which a DAQ output is

first converted to an analog signal and then fed to V-F. However, these receivers were not

used in the analysis because their gain changed from one period to another by an order of

magnitude.

2.5 Scattering Chamber

As shown in Fig. 2.9 the scattering chamber used in this experiment consists of three

main sections. The bottom section was fixed on the pivot of the hall and made of stainless

steel. This section also contains several viewports through which the targets could be visually

inspected and several ports for pulling vacuum. The middle section is an aluminum cylinder

located at the beam height of 15.2 cm with vertical cutouts on each of the beam sides

over the full angular range of 12.5◦ <θ <167.5◦. This section has beam entrance and exit

ports which are vacuum coupled to the electron beamline in order to prevent the beam

from interacting with materials other than the target. The scattered particles exit the
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Figure 2.9. Hall A target scattering chamber. Cryotarget loops on top and solid targets on
the bottom are visible [9].

chamber to the spectrometer through aluminum exit windows. The third section of the

chamber contained space for the cryogenic target plumbing and instrumentation related to

its coolant. All three sections of the chamber were maintained under vacuum. More details

on the description of the scattering chamber used in this experiment can be found in Ref. [41].

A schematic of the target lifter GUI showing the components on the target ladder used

in this experiment is shown in Fig. 2.10. The ladder contains subsystems for cooling, gas

handling, temperature and pressure monitoring and target control and motion. There are

three cryogenic target loops. The loop 1 target is a 4 cm long target holding helium gas.

We could not use this target as we did not have time to cool the helium gas. Loop 2 is a 15

cm cell containing liquid hydrogen (LH2), and Loop 3 is a 15 cm cell containing LH2. All



41

Figure 2.10. Target lifter GUI (Graphic User Interface) indicating positions of various tar-
gets.

three loops are cylindrical aluminum cells ending with a hemispherical tip. Fans are used to

circulate the liquid or the gas through each loop. The operating temperature and pressure

of LH2 target are regulated to 19 K and 25 psi with density 0.0732 g/ml. The sidewalls

of the aluminum cell are 0.175 mm thick with entrance window of 0.18 mm thick and exit

window of 0.132 mm thick. The two dummy target foils shown are made of aluminum having

lengths 4 cm and 15 cm are used to subtract background events. The dummy targets are

mounted on separate frames with foil located at z positions corresponding to the cryotarget

exit and entrance window. The optics target which consists of nine carbon foils cut from
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the same sheet of 99.5% pure carbon is used for event trajectory reconstruction calibration.

The ladder also contains other solids targets such as Be0, 12C and a carbon hole target. The

carbon hole target is used for beam position calibration whereas the solid carbon target is

used for acceptance studies.

2.6 High Resolution Spectrometer

The scattered electrons were detected in the high-resolution spectrometers (HRS); one

which is positioned along the right side of the beam line called right HRS (RHRS) and the

other positioned along the left side of the beamline called left HRS (LHRS). Both spec-

trometers were used to detect electrons in single arm mode during the run of the GMp

experiment. Each HRS contains three quadrupoles and a dipole in QQDQ configuration.

The first quadrupole Q1, focuses vertically, whereas, the second Q2, and third Q3, focus in

the horizontal plane. The dipole has a vertical bend of 45◦, which provides the momentum

resolution at 10−4 level. The dipole separates the charged particle with respect to their

First VDC plane

Figure 2.11. Magnet configuration of the Hall A HRS spectrometers showing the sizes and
locations of the dipole and the quadrupoles [10].

momenta. The relation between spectrometer central momentum and dipole field strength
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is given by

p0 =
3∑
i=1

B0γi (2.3)

Where, γ is the spectrometer constant and B0 is the dipole field. These constants were

determined for both HRSs over their full range [42]. The main characteristics of the Hall A

HRSs are summarized in the table 2.1 [10].

Table 2.1
The characteristics of the Hall A HRSs.

configuration QQDQ
Momentum range 0.3-4.0 GeV/c
Momentum acceptance ± 4.5%
Momentum resolution 1 × 10−4

Optical length 23.4 m
Bend angle 45◦

Horizontal angular acceptance ± 28 mrad
Vertical angular acceptance ± 60 mrad
Solid angle 6 msr
Horizontal angular resolution 0.6 mrad
Vertical angular resolution 2.0 mrad

2.7 HRS Detector Package

The detector packages for the two spectrometers were almost identical during the GMp

experiment. The configuration of each package is shown in Fig. 2.12. Each package has

two vertical drift chambers (VDCs) for particle tracking, one straw chamber to resolve the

uncertainty in tracking efficiency, and two planes of scintillators for triggering the detector

readout. Additionally, each package contained a CO2 gas threshold Cherenkov detector

and two arrays of lead glass blocks in a pre-shower and shower configuration for particle

identification.
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Figure 2.12. Schematic of HRS Detector stack.

2.8 Vertical Drift Chamber

The vertical drift chambers are used to determine the trajectory of the incident particle

at the detector package, which is then transported back to the target using the known optical

properties of the spectrometer to get the momentum and scattering angle at the vertex. The

configuration is shown in Fig. 2.13. The two VDCs are 33.5 cm apart from each other. Each

VDC has two wire planes and in each plane, wires are oriented at 45◦ or -45◦ with respect

to the scattered particle trajectory. The wires in each successive plane are orthogonal to

each other. The chambers are filled with a gas mixture of argon (62%) and ethane (38%)

by volume. Each plane has 368 parallel gold coated tungsten wire sandwiched between gold

coated Myler planes powered at the voltage of -4 kV. The tungsten wires are grounded.

When a charged particle crosses the VDC planes it ionizes the gas and the released electrons

drift along the electric field lines. Once the electron is near a wire, where the field becomes

strongest an avalanche of electrons is created inducing a signal. The signal then get amplified,
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Figure 2.13. Schematic diagram of the VDC wire planes showing a side view of the VDC
pair (right figure) and the orientation of the wires relative to the central ray (left figure).
Figure is taken from [11].

discriminated and then sent to a multihit time to digital converter (TDC), which is started

by the sense wire and stopped by the event trigger. On average, five wires have read-out

signals when a particle passes through each wire plane. The trajectory is extracted by using

timing information from the TDC to determine drift distances for each wire in a cluster. The

cross-over point that the track pass through the wire plane is then determined by a linear

fit of drift distances verses wire position.

2.9 Coordinate Systems

There are five coordinate systems in experimental Hall A. A detailed description of the

coordinate systems used in the reconstruction of trajectories is given below.
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2.9.1 Hall Coordinates

The origin of the Hall coordinate system is the center of the Hall, which is on the beamline.

The ẑ axis is along the beam direction; ŷ points vertically upwards and x̂ is towards the left

side of the beam direction in the horizontal plane as shown in Fig. 2.14.

x̂

ẑ
ŷ

Beam

Beam dump

Figure 2.14. Hall Coordinate system (top view).

2.9.2 Target Coordinates

The target coordinate system (TCS) moves with the spectrometer. The ẑtg axis is the

line perpendicular to the sieve slit of each spectrometer, pointing towards the central hole in

the sieve plane. The ŷtg is pointing to the left, whereas x̂tg pointed vertically down. Ideally,

the ẑtg axis should pass through the hall center if the spectrometer points directly to the hall

center and the sieve slit is perfectly centered. However, the origin of the TCS deviates from

the hall center and the deviation can be measured by surveying the miss-pointing. There are

two basic target variables: the in-plane angle (y′tar) and the out-of-plane angle (x′tar), which
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are used to calculate the full scattering angle in the TCS, via

θ = arccos(
cos θ0 − y′tarsinθ0√

1 + x′tar
2 + y′tar

2
), (2.4)

where θ0 is the angle between ẑtg of TCS and the ẑ of the hall coordinates and is called

central spectrometer angle.

Figure 2.15. Top view of the Target Coordinate system. L is the distance from the hall
center to the sieve plane, while D is miss-pointing.

2.9.3 Detector Coordinate System

The directions and positions of the trajectories at the focal plane are defined in the

detector coordinate system (DCS). The origin of the DCS is given by the intersection of

wire 184 of the VDC1 U1 plane and the perpendicular projection of wire 184 in the VDC1

V1 plane onto the VDC1 U1 plane. ˆzdet is perpendicular to the U1 plane and points up,

ˆydet is parallel to the short symmetry axis of the lower VDC and ˆxdet is parallel to the long
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symmetry axis of the lower VDC pointing downstream. The angles tanx′det and tan y′det are

Figure 2.16. Detector coordinate system (top and side views). The intersection point of the
wire 184 of the U1 plane and the perpendicular projection of wire 184 of the V1 plane onto
the U1 plane is shown in the top view.

defined as

tanx′det =
dxdet
dzdet

(2.5)

tan y′det =
dydet
dzdet

(2.6)

2.9.4 Transport Coordinate System

The transport coordinate system at the focal plane is generated by rotating the DCS

around the y axis by 45◦ clockwise so that the new ẑ direction is along the central ray. The

TCS of an event can be calculated from the DCS coordinates by:

xtra = xdet cos(ρ0)(1 + x′tra tan(ρ0) (2.7)

x′tra =
x′det + tan(ρ0)

1− x′det tan(ρ0)
(2.8)
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ytra = ydet + sin(ρ0)y′traxdet (2.9)

y′tra =
y′det

cos(ρ0)(1− x′det tan(ρ0))
(2.10)

where ρ0 = −45◦.

2.9.5 Focal Plane Coordinate System

The focal plane coordinate system (FCS) is obtained by rotating DCS clockwise around

ydet axis through an angle ρ, where ρ is the angle between the local central ray and zdet axis

of the DCS (x′tar = y′tar = 0) for the corresponding relative particle momentum). Because of

the focusing of the HRS magnet system, particles with the same scattering momentum will

be focused at the focal plane, which means the relative momentum to the central momentum

of the spectrometer is approximately a function of xtra. The main feature of the FCS is that

the dispersive angle will be small and thus making the expressions for optics reconstruction

converge faster. The FCS also includes corrections for the offsets due to misalignment in the

VDC. So, in the FCS, the coordinates and angles of the trajectory can be written as:

xfp = xtra (2.11)

x′fp =
x′det + tan(ρ)

1− x′det tan(ρ)
(2.12)

yfp = ytra −
∑
i

Cy
i000x

i
fp (2.13)

y′fp =
y′det −

∑
iC

p
i000x

i
fp

cos(ρ)(1− x′det tan(ρ))
(2.14)

Where, tan(ρ) =
∑

iC
t
i000x

i
fp. The coefficients Ct

i000,Cy
i000 and Cp

i000 also include corrections

for the systematic offsets due to misalignment of VDC packages.
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2.10 Straw Chamber

The straw chamber consist (SC) of a set of tubes with a thin wire running along the

central axis of the tube as shown in Fig. 2.17. It is filled with a gas mixture of 62% argon

and 38% of ethane by volume. The GMp experiment used two straw chambers, one in each

x

z

y

45°

HRS central ray direction

V

UStraw frame

Layers of straw tubes

Figure 2.17. Schematic diagram of three U planes of straw tubes. Here x is along dispersive
direction of HRS and z is along the HRS central ray. The V planes are located at the bottom
of the straw frame not shown on the graph.

HRS arm as a spare tracking plane to find the particle track parameters in the presence

of multiple clusters in the VDCs. The SC was installed between the VDCs and cherenkov

detector. Each straw consists of six planes, 3 U and 3 V planes. The U and V direction are

at + 45◦ and - 45◦ relative to the dispersive direction in the x − y plane. There are 176
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tubes in each U plane and 160 tubes in each V plane with configuration UUUVVV. During

the operation, the central anode wire is kept at a voltage of +1800 V whereas the tubes are

grounded. When the charged particle passes through SC tube it ionizes the gas mixture and

the produced ions and electrons travel to the anode wire and the tube cell respectively to

produce a signal at the wire.

2.11 Scintillator Planes

The GMp experiment utilized the s0 and s2m scintillator planes in each spectrometer in

Hall A. The s0 scintillator is located before the gas Cherenkov and the s2m is located after

the gas Cherenkov detector on each HRS. When a charged particle passes through a paddle

of the scintillator, it produces light that travels towards both ends of the paddle. The two

scintillator planes are about 1.6 meters apart. S0 is composed of one thin plastic sintillation

paddle while s2m has 16 paddles. Each paddle is viewed by two photomultipliers (PMTs),

one at each end. For s0, a coincidence between top and bottom PMTs was made whereas, for

s2m plane, the logical OR of the PMTs were formed individually for the right 16 PMTs and

the left 16 PMTs and then logical AND was formed between them. The main trigger for the

spectrometer is referred to as T1 which and was formed by logical AND of the s0 and s2m

logic pulses. This trigger is then sent to the trigger supervisor, which determines whether

the data acquisition system (DAQ) should record the particular event. By determining

the time of flight of the particle between the scintillator planes from the TDC signals, and

by knowing the distance between the two scintillator planes, the velocity of the particle v

or β = v
c

can be determined. The β of the particle is used for particle identification since

different charged particles of different masses and known momentum can be separated.
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Figure 2.18. Layout of the s0 scintillator plane.

2.12 Gas Cherenkov

The HRS gas Cherenkov detector provides particle identification by distinguishing be-

tween electrons and pions utilizing Cherenkov radiation. As shown in Fig. 2.20, it is a rectan-

gular tank filled with CO2 at atmospheric pressure and is installed between the scintillators

s0 and s2m on each arm. This detector measures the light emitted when a charged particle

travels through the material of refractive index n with velocity v greater than the speed

of light in the material. This radiation is known as Cherenkov radiation. The Cherenkov

radiation occurs when

v ≥ cm (2.15)
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Figure 2.19. Layout of the s2m scintillator plane.

Where, cm = c/n is the speed of light in material. The Hall A Cherenkov detector consists

of 10 mirrors that reflect the Cherenkov light, placed just before the detector exit window.

Each mirror has a spherical surface with a radius of curvature of 90 cm and reflect light to

PMTs placed at the side of the detector box. If v ≤ cm then the polarization of the medium

is symmetric about the path of the particle. In this case, the net dipole moment is zero, and

no radiation occurs. However, when v ≥ cm, the asymmetric polarization of the medium

leads to a non zero dipole moment, as a result of which Cherenkov radiation is emitted. The

threshold momentum for a particle can be obtained from:

Pth =
mcm√
n2 − 1

(2.16)

For CO2 gas, the refractive index n = 1.00041, and the threshold momentum for electrons

is 17 MeV/c, whereas, for pions, this is 4.8 GeV/c, which is greater than the HRS mo-

mentum range for this experiment. So, only electrons give a signal in Cherenkov detector.

In spite of the fact that pions can’t emit Cherenkov radiation, they may influence the ADC
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Figure 2.20. Layout of the CO2 Gas Cherenkov detector. Figure is taken from [12].

spectrum. This happens because pions ionize the atoms of the gaseous medium, producing

electrons that can trigger the detector. Such electrons are called δ-ray electrons. Fig. 2.21

shows distribution of number of photoelectrons in the gas Cherenkov. The events around 1

photoelectron peak represents the thermal electrons from the photocathode. The red line

indicates the boundary between the electron and pion region. The pion events are removed

with the addition of a lead glass calorimeter.

2.13 Lead Glass Calorimeter

In addition to the Cherenkov detector, the lead glass calorimeter was also used for reject-

ing events triggered by pions. The schematic diagram of calorimeter is shown in Fig. 2.22.

This is an electromagnetic calorimeter used to detect the energy deposited by charged particle
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Figure 2.21. Number of photoelectrons collected in the gas cherenkov detector. Red line
represents the cut to select good electrons for Fall 2016 LHRS runs.

through Bremsstrahlung and pair production. Bremsstrahlung is electromagnetic radiation

produced due to the acceleration of charged particles, for instance an electron in the field

of an atomic nucleus. These photons then convert to electron-positron pairs, which in turn

radiate photons by interacting with the atoms of the medium, thereby producing further

electron-positron pairs. This shower process continues until all the electron energy is de-

posited in the calorimeter. The radiation produced is then detected by the PMTs at the end

of the block. Electrons and positrons deposit all of their energy in the calorimeter, whereas

pions usually deposit a small amount of energy due to the ionization and direct Cherenkov

light.

The calorimeters in both HRS consist of two segmented layers as shown in Fig. 2.22.

The particles enter through the bottom layer. On the LHRS, they are called pion rejector

1 and 2 whereas, on the RHRS the first and second layer are called pre-shower and shower

respectively. The blocks in both layers in LHRS and the first layer in RHRS are oriented
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Figure 2.22. HAll A HRS calorimeter detector geometry. Particle enters through the bottom
of figure.

perpendicular to the particle tracks whereas, the blocks are parallel to the tracks in the

second layer of RHRS. In the left HRS each layer has 17 short blocks and 17 long blocks of

lead glass forming a 2 × 17 array of dimensions 14.5 cm × 14.5 cm × 30 cm as shown in

Fig. 2.22. In the RHRS the pre-shower has 2 × 24 = 48 blocks, 10 cm × 10 cm × 35 cm and

the shower has 5 × 16 blocks of the lead glass, 14.5 cm × 14.5 cm × 35 cm. There are three

peaks in the spectrum of the output of the lead glass calorimeter. As in Fig. 2.23 the larger

peak corresponds to the electron and the smaller peak at about 0.4 corresponds to the pion.

2.14 Data Acquisition and Trigger System

A block diagram of the Hall A DAQ (Data Acquisition) system is shown in Fig. 2.24. The

DAQ software is based on CODA (CEBAF Online Data Acquisition) [43] package developed

by the Jlab CODA group. Hardware components include, the Trigger Supervisor (TS)

module, Analog to digital converters (ADCs), Time to digital converters (TDCs) and scaler
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Pion

Electron

Figure 2.23. The total energy deposited in the calorimeter per unit momentum. The electron
peak is at 1 and pion peak is at about 0.4.

modules. The TDC, ADC and scaler modules are either Fastbus or VME-type. After

entering hits from the detectors, the crates are read out by read out controllers (ROC’s),

which are CODA routines running under the VxWorks operating system . The information

from the ROCs are then passed over to the event builder (EB) which is a routine that waits

for the connection requested from ROCs, collects their fragments, orders and merges these

into a single data structure in CODA format. The events are then passed to the ER (Event

recorder), Which is a CODA routine that writes an event to disk and are finally transferred

to the Mass Storage System. Triggers are the logic signals that assist the DAQ to start
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Figure 2.24. Schematics of Hall A DAQ system.

read out of the detectors information. The trigger design for the halla DAQ is shown in

Fig. 2.25. Signals from the four detectors: S0 scintillator, S2m scintillator, gas Cherenkov,

and calorimeter, are sent to the front-end electronics. Logical pulses from each of these

detectors is then sent to a trigger module based on VME programmable logic. This allows

various combination of detectors in the trigger. Here the input to the Majority Logic Unit

(MLU) [44] also includes Electronic Dead Time Monitor (EDTM) and clock. The outputs of

MLU can be adjusted to either form a coincidence between different inputs or simply copy

inputs. NIM outputs are then fed to the Trigger Supervisor (TS) via NIM ECL. The TS is

located in the electronic hut on the second floor. When a trigger is accepted by the TS, a
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Figure 2.25. Schematics for Hall A trigger system.

level one-accept (L1A) signal is generated. L1A and the retiming signal are sent to retiming

module where they form a coincidence. Then the coincidence signal is fed to the trigger

module (TM) where an ADC gate, and a TDC start/stop are generated. These are then

distributed to the front end of the electronics on the fast bus crate and VME crates where

ADC, TDC and scalers start to record data. The main trigger for each spectrometer of the

GMp experiment was formed by the logical AND of the s0 and s2m planes, which is called
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T1. T2 (T3) was formed by the coincident signal of the Gas Cherenkov signal and s0 (s2m)

to measure the trigger efficiency.
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CHAPTER 3

DATA ANALYSIS

3.1 Overview

In scattering experiments, the cross sections are determined from the number of counts

in bins in scattered momentum and angle divided by the number of incoming electrons and

the number of possible scattering center per unit area. Therefore, to determine the elastic

cross section the counts are integrated and corrected for any inefficiency. In addition, cuts

on PID detectors are implemented to ensure that only electrons are counted. The basic

procedure for extracting elastic cross sections from experimental data is flow charted in

Fig 3.1. For analysing data the Hall A a C++ software package [45] has been utilized to

convert the raw data in the form of ADC Channels, TDC channels, and scaler counts to

ROOT files [46] to store the detector information and the reconstructed physics variables.

The BPMs were calibrated to give an accurate measurement of the angle of the incoming

beam to the target which will be discussed in next section. The well calibrated BCMs

were utilized to convert the scaler counts to beam charge. The detailed discussion of the

BCM calibration will be discussed in the section 3.3. The dead times associated with the

DAQ system were evaluated to recover the events lost during the data acquisition. The

calibrated HRS optics matrix taking the tracks reconstructed at the detector were used to

reconstruct the scattered electron’s momentum and scattering angle at the reaction vertex.

This relies on the optics of the spectrometer which will be discussed in the section 3.7. The

HRS detectors were calibrated and good electrons were identified by applying the cuts on

signals, and the efficiencies of the event selection were determined individually. Then the

background subtracted charge normalized yield corrected to the dead time and detector

efficiencies were extracted. For the luminosity, it is important to know the density and

the length of the target when it has a beam on it. A target boiling study was performed



62

to determine the effect of boiling on the density of cryotarget which will be discussed in

the section 3.4. In addition, a Monte Carlo simulation package was utilized to determine

the acceptance of the spectrometer which used transport matrices generated by COSY to

simulate the spectrometer optics. This package generates simulation events with the same

kinematic setting and weight by physics cross section provided by fit to the existing data,

including relevant physics processes, energy straggling, multiple scattering etc. The Monte

Carlo yield ratio method was used to extract cross sections. Beside this, the acceptance

correction method was utilized to check the results obtained from the ratio method.
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Figure 3.1. Flow chart describing cross section extraction.
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3.2 BPM Calibration

As noted in section 2.4.2, the BPMs are utilized to non-invasively monitor the average

position of the beam during data taking, after first being calibrated against the Harps.

The Harps are also used to measure the intrinsic width and beam position relative to the

beamline. This section will discuss the calibration of the BPMs against Harps. The top
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Figure 3.2. Top: Harp wires response versus stepper motor position in mm. The peaks in
the output of harp indicate points where the harp wires crossed the beam line. Bottom:
Scatter plots of the BPM position in y vs. x for runs in the bulls eye scan.
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panel in Fig 3.2 shows the result for a typical Harp-scan measurement performed during the

experiment. Each Harp consists of three thin wires that are moved across the beam path as

shown in right panel of Fig. 2.6 in section 2.4.2. The first into the beam is a vertical wire

labeled as ”x”. The next two wires are at ±45 degrees relative to the vertical and are labeled

as ”u” and ”v”. When the frame is moved into the beam using a steeper motor each wire

crosses the electron beam and secondary emitted electrons produce a signal that is detected

and amplified. This amplified signal together with the position encoder is sent to an ADC

which is then read out and stored in a datafile.

For calibration of the BPMs, a ”bull’s eye scan” is performed using the unrastered beam

by moving the beam to five different positions as shown in the bottom panel of Fig 3.2.

During the scan, the beam is first centered using the carbon hole target. As soon as the

beam becomes stable, a harp scan and CODA run were performed. The beam is then steered

to positions around the nominal center in the pattern indicated in the bottom panels of 2.4.2,

covering at least the area that the raster will cover. For each position the Harp and coda

runs are repeated. The Harp scans were analyzed using the latest survey results to get the

corrected beam position relative to the Hall Center. Finally, the calibration constants need

to be determined that give the position at the BPM which is closest to the harp using the

following equation:

X
Y


harp

=

c11 c12

c21 c22


X ′
Y ′


BPM

+

xoff
yoff .

 (3.1)

As this is an over determined system (having 5 harp positions), a least squares method

was used to calculate the constants, where, c11, c12, c21 and c22 which are the coefficients

related to the gains of two antennas pairs and xoff , yoff which are the position offsets of the

BPM center relative to the nominal beamline. These values are then inserted into the BPM

database to be used in the physics analysis. The upper panel plots in Fig. 3.3 show the fit

results of the BPM versus the Harp coordinates for the bull’s eye scan after calibrations.
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Figure 3.3. Top two plots are the fit results of LHRS BPM A positions vs corresponding Harp
positions after calibration, whereas the lower two plots are the residual vs BPM positions

The lower panel plots are the residuals between BPM and Harp coordinates as a function of

BPM positions. The uncertainty on the position was estimated to be 0.03 µm which yields

χ2 values close to unity.

The BPM only provides the average beam position value of the beam. The instantaneous

position of the rastered beam is determined from a combination of the BPM readout and the

raster current information, event by event. The magnet current of each raster is calibrated

to determine the position of the raster with respect to the center of the raster pattern.

The raster calibration procedure involves taking the ADC values of raster current and then

converting them into position of the beam due to the raster magnet. The detail of raster

calibration is presented in Ref. [47].
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3.3 Beam Charge Calibration

The BCM and Unser hardware were discussed earlier in section 2.4.4. The BCMs are

used to determine the beam current and charge during data taking. The Unser monitor is

used to calibrate the BCMs, since it has a very stable gain, but the offset drifts over the

timescales for individual data runs. Here, the results of the beam charge calibration will be

presented.

3.3.1 Unser Wire Calibration

The Hall A Unser monitor was calibrated with a precisely known current source. The

current read-back on the injected current was checked by three other different devices and

found to be consistent. At a set current of 30 µA, the Fluke meter showed 29.94 µA,

the Picoammeter showed 29.965 µA, and HP meter showed 29.968 µA. During the Unser

calibration, multiple currents were injected through the wire in steps from 0 to 100 µA with

the time at each current lasting one minute. Additionally, two such ramps were performed

as illustrated in the top panel of Fig. 3.4. The bottom panel of Fig. 3.4 shows the injected

current versus entry number and the top panel shows the corresponding Unser rate for those

entries.

Table 3.1
Unser wire calibration coefficient table from three different run periods.

Run
number

Gain
(µA/Hz)

Error
(µA/Hz)

12323 2753 6.1
21590 2754 6.1
22324 2753 6.1
10453 2759 5.5
22324 2753 6.1
23779 2504 4.5
23217 2506 4.7
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Figure 3.4. The bottom panel shows injected current vs entry number and the top panel
shows the corresponding Unser current for those entries during Unser calibration. The time
interval for each current-off and current-on period was 1 minute.

Each current-on period is alternated with a current-off period to determine the Unser offset

for each period. The average frequency for adjacent current-off periods were subtracted

from the average frequency for the current-on to correct for any offset drift. The left panel

in Fig. 3.5 shows the Unser frequency fitted against the injected current, with the uncertainty

estimated form the current noise as stated by the manufacturer of Unser monitor of 2/
√

time

(µA/
√
sec).

The right panel in Fig. 3.5 shows the residuals of the Unser current as determined from

I = (funser − f0)G, (3.2)



69

Unser rate (Hz)
0 10000 20000 30000 40000

A
)

µ
C

u
rr

en
t 

(

0

20

40

60

80

100

 / ndf 2χ   14.7 / 22

p0        0.09607±0.05841 − 

p1       06− 4.235e± 0.002507 

 / ndf 2χ   14.7 / 22

p0        0.09607±0.05841 − 

p1       06− 4.235e± 0.002507 

RHRS 22647

A)µCurrent (
0 50 100

A
)

µ
R

es
id

u
al

 (

1−

0.5−

0

0.5

1

First ramp
Second ramp

Figure 3.5. Left: The known injected current plotted as a function of offset subtracted Unser
frequency. Right: The residual of the Unser current and the injected current source plotted,
as a function of injected current.

and the set current from the precision current source. Here, G is the Unser gain, funser is

average frequency for the current on period and f0 is the corresponding average frequency

for the current off period. The residuals show no dependence on current, indicating that

the Unser is linear in the fitted region. The Unser calibrations were performed relatively

frequently when the beam was off in order to study any possible gain stability. Table 3.1

lists the gains of Unser determined from different calibration run periods. The calibrations

in Spring of 2016 show that the gain was stable at an average of (2756 ± 5.9) × 10−6 µA/Hz

whereas the calibrations during Fall of 2016 show that the gain was stable with an average of

(2505 ± 4.6) × 10−6 µA/Hz. The change in the gain between these periods was the removal

of a split of the Unser output going into the V-F for a parity experiment test.

3.3.2 BCM Calibration

As previously noted, the Unser has a very stable gain but has an offset that is both

noisy and can drift over time. Therefore, it is not used for an integrated beam charge
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determination. In contrast, the BCMs have very stable offsets but their gain can drift over

the time scale of weeks to months and need to be calibrated periodically against the Unser.
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Figure 3.6. Figure shows an example plot of BCM u1 rate versus event number during BCM
calibration. The time interval for each beam off and beam on period was 1 minute.

During a BCM calibration run the beam was turned on and off successively for alternating

one minute periods while raising the current for each beam-on period. The BCM frequency

versus event number is plotted in the Fig. 3.6. Receivers u1 and d1 are not expected to be

linear below 10 µA, and the receiver d3 is only linear up to 60 µA and d10 is expected to be

linear only up to 30 µA Therefore, the calibration fits were performed only over the current

range where the receivers are highly linear.

During the calibration run, the BCM and Unser frequencies are stored in a scaler file to be

used for the calibration. The Unser current is determined from Eq. 3.2 using the frequency

f determined from beam-on periods and the local f0 determined from the adjacent beam-off

periods. The plot in the upper left panel of Fig. 3.7 shows the fit to the current measured by

the Unser as a function of the BCM u1 frequency. The offset and gain obtained are then used

to convert scaler counts into electronic charge and the instantaneous beam current (Ibeam) is
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Figure 3.7. Top left panel shows the Unser current plotted against the BCM frequency. Top
right shows the residual of the BCM current as given by BCM current obtained from the
fit and the calculated Unser current plotted as a function BCM Current. Bottom left panel
shows the percentage residual plotted against Unser current. The bottom right panel shows
the residual versus time.

calculated by using the frequency of BCM in the working current range of each receiver as

IBCM = GBCM .fBCM + I0, (3.3)

where, OBCM is the BCM offset. The total charge can be calculated by integrating the
instantaneous beam current obtained from Eq. 3.3 as

∆Q =

∫
Ibeam(t)dt, (3.4)

The accumulated charge then
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=
∑
i

(GBCM × C +OBCM)×∆ti, (3.5)

where, C is the total count from the scaler output and ∆ti is the time separation between

the successive scaler readings determined from the clock for which the current is above the

threshold. The difference between the current determined from the BCM after calibration

and the current measured by the Unser is shown in the top right panel of Fig. 3.7. It is

seen that after calibration, the BCM u1 residuals are within 0.15% over the fitted current

range. Determination of any offset within the uncertainty 0.1% is obtained from the study

of target boiling of the solid target as discussed later in Section 3.4. Based on the stability

study of the charge measurement using different receivers (as an example shown in Fig. 3.8

for receivers u1 to d1), receiver u1 was chosen as a default for the analysis. The uncorrelated

uncertainty in the current measurement with this receiver was found to be 0.06 µA based on

the width of the distribution of the fit residuals, while calibration drift at 64 µ A was found

to be 0.05 µA.

3.3.2.1 Stability of Gain and Offsets

Comparing calibration results performed at different points of time shows that the gains

for the analog BCM receivers (u1, d1, d3 and d10) were stable within 1% whereas those for

d10 are stable within (1-2)% but the gain for new receivers changed twice: during a CHL

(Central Helium Liquefier) shutdown (increased by factor of about 1.5), and after an IOC

reboot, (decreased by factor of about 6 for Spring 2016 run period). In addition, the offset

for the digital receivers was negative for some periods. For this reason the digital receivers

were not used in this analysis. Fig. 3.9 shows the stability of gain and offsets for the analog

BCMs receivers for Spring and Fall 2016 run periods. Receivers u1 and d1 were found to

agree within 0.1% except for a few outliers. Tables 3.2 and 3.3 list the gains and offsets

determined for the different BCM’s calibrations performed in 2016.
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Figure 3.8. Charge accumulated by receiver u1 divided by charge accumulated by receiver
d1 plotted against run number. The blue points are the average currents as indicated by the
scale on the right.

3.3.2.2 Global BCM Calibration

The top plot in Fig. 3.10 shows the fit results for the u1 receiver when performing a

global calibration utilizing all three Fall 2016 calibration runs. The top panel shows the

Unser current fitted versus frequency of u1 receiver whereas, the middle plot shows the

current residual as a function of Unser current, and the bottom panel shows the percentage

residual as a function of Unser current for same period. The points from three different run

periods are seen to be consistent with the residuals within 0.1% above 20 µA, consistent

with the calibrations for this receiver. This again indicates that the gains and offsets from

the individual calibrations for u1 are consistent.
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Table 3.2
Gains (in ×10−6 µA/Hz) and offsets (in ×10−6 µA) for u1, d1 and d3 BCM receivers deter-
mined from different calibration runs.

Calib.
no.

LHRS
Run

Gain u1
(µA/Hz)

Offset u1
(µA)

Gain d1
(µA/Hz)

Offset d1
(µA)

Gain d3
(µA/Hz)

Offset d3
(µA)

1 12382 354.0± 3.7 0.8± 0.2 321.7±3.4 0.7± 0.2 82.7± 1.0 0.9± 0.2
2 12514 344.3± 3.5 0.6± 0.3 322.3±3.2 0.6± 0.2 93.9± 5.7 0.2± 0.1
3 12916 347.5± 2.7 1.1± 0.1 316.3±2.4 1.0± 0.1 92.9± 0.5 0.4± 0.1
4 13220 352.9± 2.1 0.7± 0.2 320.2±1.9 0.4± 0.2 93.4± 0.7 0.3± 0.1
5 13447 352.5± 0.9 0.5± 0.1 320.8±0.9 0.1± 0.1 92.8± 0.2 0.2± 0.1
6 13852 384.4± 0.8 1.1± 0.1 329.2±0.7 0.5± 0.1 95.5± 0.2 0.4± 0.1
7 14252 383.1± 3.4 1.3± 0.2 326.3±2.9 0.8± 0.2 97.7± 0.6 0.1± 0.1
8 14545 388.6± 2.2 0.8± 0.2 331.7±2.1 0.3± 0.2 96.8± 0.4 0.2± 0.1
9 Global 384.8± 1.7 1.1± 0.1 328.8±1.6 0.6± 0.1 97.1± 0.3 0.2± 0.1

Calib.
no.

RHRS
Run

Gain u1
(µA/Hz)

Offset u1
(µA)

Gain d1
(µA/Hz)

Offset d1
(µA)

Gain d3
(µA/Hz)

Offset d3
(µA)

1 21731 346.7±4.30 1.1± 0.2 315.7±3.9 0.8± 0.3 93.8± 0.9 0.3± 0.2
2 21807 345.0± 2.9 0.9± 0.2 315.1±2.6 0.6± 0.2 93.1± 0.7 0.3± 0.2
3 22097 342.2± 2.9 1.2± 0.1 312.6±2.6 0.8± 0.1 92.5± 0.6 0.4± 0.1
4 22298 350.2± 2.8 0.8± 0.2 318.9±2.3 0.4± 0.2 93.4± 0.6 0.3± 0.2
5 22476 348.7± 0.9 0.7± 0.1 319.1±0.9 0.2± 0.1 92.7± 0.2 0.2± 0.1
6 22790 383.2± 0.9 1.0± 0.1 328.0±0.8 0.5± 0.1 95.5± 0.2 0.4± 0.1
7 23071 381.0± 3.9 1.3± 0.2 324.7±3.2 0.9± 0.2 97.3± 0.6 0.2± 0.1
8 23280 388.5± 3.8 0.7± 0.3 332.7±3.3 0.2± 0.3 0.9± 0.6 0.1± 0.2
9 Global 382.4± 0.9 1.2± 0.1 327.0±0.7 0.6± 0.1 96.0± 0.2 0.4± 0.1
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Table 3.3
Gains (in ×10−6 µA/Hz) and offsets (in ×10−6 µA) for d10, unew and dnew BCM receivers
determined from different calibration runs. Calibrations 1-5 were taken in Spring 2016 and
6-8 were taken in Fall 2016

Calib.
no.

LHRS
Run

Gain d10
(µA/Hz)

Offset
d10 (µA)

Gain
unew
(µA/Hz)

Offset
unew
(µA)

Gain
dnew
(µA/Hz)

Offset
dnew
(µA)

1 12382 32.8± 0.4 0.1± 0.2 NA NA NA NA
2 12514 32.2± 0.3 0.1± 0.1 200.7±1.2 0.0± 0.1 172.9±1.3 0.1± 0.1
3 13220 32.1± 0.5 0.2± 0.2 294.3±1.4 0.3± 0.1 249.0±1.6 0.2± 0.1
4 13447 31.9± 0.7 0.1± 0.2 50.0± 0.3 0.1± 0.1 42.9± 0.3 0.0± 0.1
5 13852 32.9± 0.3 0.1± 0.2 254.6±0.5 0.2± 0.1 215.5±0.4 0.1± 0.1
6 14252 34.4± 0.3 −0.1±0.1 258.1±1.6 0.0± 0.1 223.6±1.4 −0.0±0.1
7 14545 33.1± 0.3 0.1± 0.1 254.9±1.0 0.0± 0.1 224.4±0.9 0.0± 0.1
8 10505 33.1± 0.3 0.1± 0. 254.9±1.0 0.0± 0.1 224.4±0.9 0.0± 0.1
9 Global 33.7± 0.2 0.0± 0.1 255.5±0.9 0.1± 0.1 224.2±0.7 −0.0±0.1

Calib.
no.

RHRS
Run

Gain
d10(µA/Hz)

Offset
d10 (µA)

Gain
unew
(µA/Hz)

Offset
unew
(µA)

Gain
dnew
(µA/Hz)

Offset
dnew
(µA)

1 21731 32.5± 0.5 0.2± 0.2 NA NA NA NA
2 21807 32.2± 0.4 0.2± 0.2 199.1±1.5 0.1± 0.2 171.9±1.3 0.1± 0.2
3 22097 3.3± 0.4 0.2± 0.2 199.1±1.3 0.3± 0.1 172.1±1.1 0.2± 0.1
4 22298 31.7± 0.6 0.3± 0.2 294.1±1.5 0.2± 0.1 248.8±1.2 0.1± 0.2
5 22476 31.4± 0.3 0.3± 0.1 50.0± 0.3 0.1± 0.1 42.9± 0.3 0.0± 0.1
6 22790 33.2± 0.3 0.2± 0.1 254.7±0.5 0.1± 0.1 215.4±0.4 0.1± 0.1
7 23071 34.2± 0.3 −0.0±0.1 256.9±1.7 0.1± 0.1 222.6±1.4 0.1± 0.1
8 23280 32.9± 0.5 0.1± 0.2 255.5±1.7 −0.1±0.2 224.7±1.5 0.1± 0.1
9 Global 33.4± 0.2 0.1± 0.1 254.6±0.4 0.1± 0.1 NA NA
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Figure 3.9. BCM Gains and offsets versus calibration run number showing the stability
during the experiment. Calibration number 1 through 5 are from Spring of 2016, while
calibration numbers 6 through 8 are from the Fall of 2016 and the calibration number 8 is
the global as noted on the upper left panel.
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3.4 Target Boiling Study

When an electron beam passes through the target it can deposit a significant amount of

energy (about 5 W per µA) in the form of heat, which can cause boiling of the cryogen and

create a local reduction in the target density. In order to study the effect of boiling on the

Liquid Hydrogen (LH2) target, runs were taken over a range of currents using the 15 cm

LH2 target (in Loop2 during Fall 2016 and in Loop3 during Spring 2016). Additionally, the

central carbon target was utilized to separate any possible rate systematic from boiling, since

this solid target should show no boiling. Additionally, any dependence of the normalized

yield on the beam current from this target is then utilized to determine any absolute current

offset from the BCM calibration. A range of 3-67 µA beam current and a 2×2 mm2 raster

was used for this study. The density reduction should increase with current, wheres it should

decrease with raster size. For the target boiling studies two types of analysis have been made:

• a scaler analysis in which the normalized scaler rate (scaler rate divided by current) is

fitted against beam current, with

Normalized scaler rate =
Trigger 1 rate

Beam Current
, (3.6)

• and a yield analysis in which the normalized yield for good electron events determined

by PID and single cluster cuts normalized to the effective beam charge, after correcting

for efficiencies and live time with

Normalized Yield =
No. of events × PS

Charge × efficiency × Live time
, (3.7)

The efficiency correction is the product of PID cut efficiency, tracking and trigger efficiencies.

i.e.

Efficiency (ε) = εtracking × εPID × εtrigger. (3.8)
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Computer dead time arises when the DAQ is unable to process every event from every trigger.

Both electronic as well as computer dead time can affect the normalized yield as discussed

later in the section 3.7.

Even though the scaler analysis is quicker and easier to analyse, this method does not

have any selection to get rid of possible events originating from the beamline due to beam

halo striking the beam pipe downstream of the target and producing scattered electrons

reaching to the detector but not going through the magnetic elements.

3.4.1 Selection of Good Events for Yield Analysis

In order to select good events the following cuts were used:

1. Beam trip cut: Only events collected during the periods for which beam current was

stable and not ramping, and with the total accumulated charge between the scaler

reads for those periods as shown in the Fig 3.11.

2. Particle identification cuts: These cuts were use to select electrons from the sample, and

includes a cut in number of photoelectrons in the Cherenkov and total energy deposited

in the calorimeter normalized to the particle momentum as shown in Fig. 3.12 which

will be discussed in the section 3.5.

3. Single cluster cuts: These cuts were applied to select good tracks in the VDC. This

requirement is that only a single cluster exists in each of the four VDC planes, for each

selected event. This cut eliminates bad tracks due to ambiguous clusters in the track

information as discussed later in Section 3.5.

3.4.2 Preliminary Results of Target Boiling Study

In this section the preliminary study of target boiling prior to the final detector calibration

will be presented to outline the procedure that was performed for this dissertation. The
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Figure 3.11. The rate for Trigger 1 versus entry number used to select entries when the
beam was on. The region between the vertical line of a particular color denote the region of
good entries when current was stable and not ramping.

results after the final detector calibration were performed by B. Schmookler based on this

procedure [13]. As shown in Fig. 3.13 the top panel shows the charge normalized yields

plotted as a function of current and on the bottom panel shows the normalized rates plotted

as a function of current for both LH2 (red) and Carbon (blue).

3.4.3 Offset in Measured Current

To determined a possible current offset, the normalized rate from the carbon scaler anal-

ysis are fitted using the function expected of

F (I) =
ao

1 + ∆I/I
. (3.9)
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Figure 3.12. The number of photoelectrons in Cherenkov as a function of energy deposited
in the calorimeter normalized by momentum showing the selection cuts for good electrons.
Everything to the right of the vertical red line in Ecal/p and above the horizontal red line in
Cherenkov number of photoelectrons represents the good electron events.

The fit is shown in Fig. 3.14, where ∆I gives the current offset. From this analysis, the value

of the current offset was found to be 0.128 µA, and was subtracted from beam current and

the integrated charge. After this correction the normalized yields and normalized rates are

plotted as a function of corrected beam currents as shown in the Fig. 3.15. Clearly, after

applying the correction to the offset, the carbon shows no boiling within the uncertainty,

whereas hydrogen shows a boiling of (-2.7 ± 0.39)% per 100 µA from the scaler analysis.

The results of yield analysis after improvement to PID detectors calibrations are shown in

Fig. 3.18 performed by B. Schmookler [13]. In addition to this, beta cut were included to

remove cosmic events.
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recting for the offset in beam current.
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Figure 3.16. Charge normalized yield (top) and scaler rate normalized to current (bottom)
versus beam current and fit to absolute current offset using the fit as discussed in Eq. 3.9
for the carbon target from the final analysis of B. Schmookler [13].
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Figure 3.17. The final results of boiling study carbon target showing both yield (top) and
scaler (bottom) analysis [13] after correcting for the current offset.
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Figure 3.18. Final results of the boiling study on LH2 target showing both yield (top) and
scaler analysis (bottom) after correcting for the current offset from B. Schmookler [13].
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3.5 Vertical Drift Chamber Tracking Efficiency

The tracking information of a particle can be obtained from the vertical drift chambers. In

order to calculate tracking efficiency an unbiased sample of good electron events is selected.

The fraction of this sample which built a track gives the tracking efficiency as discussed

in this section. As the VDCs are very efficient, the inefficiency is mainly due to the mis-

reconstruction of particle track by the tracking algorithm. Events can have zero tracks, one

track, or multi-tracks. Usually, the number of zero tracks and multi-tracks are very small

compared to one track events as shown in Fig. 3.19. When two or more tracks are found to

be associated with the same events, multi-track events occur. These events are removed by
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Figure 3.19. Number of tracks reconstructed by the VDC for good electron events and the
green distribution represents one track events.

applying a single track cut, which results in an inefficiency for which the yield needs to be

corrected. Cuts for the sample selection are:

1. T1 trigger events.

2. Number of Cherenkov photo-electrons greater than 4.
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3. Normalized total calorimeter energy greater than 0.6.

4. The track beta between 0.4 and 2.0 as shown in Fig. 3.20.

Beta for every event is formed form the scintillator relative times and path length of the

scintillator based track. Finally, to get the one track or one cluster efficiency, the fraction

of a sample of good electrons with one track in the VDC or one cluster in all four VDC

planes is calculated. The table 3.4 shows a comparison of the extracted one track and one

Beta
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

1

10
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410

All Events

Events Passing PID Cuts

Beta from Scintillators

Figure 3.20. The particle beta distribution formed from the scintillator timing information
and path-length of the scintillator-based track. The events in the blue distribution shows all
trigger one events. The green events the remaining events after the application of the PID
cuts. The events between red lines represents good electron events, figure from Ref. [1].

cluster efficiencies for all GMp Fall 2016 kinematics. Here, the statistical uncertainty was

calculated assuming binomial distribution. An additional uncertainty of 0.2% is applied to

all extracted VDC efficiencies in order to account the fact that the fraction of one-track or

one-cluster events in the selected region may be different from the fraction of multi-track or
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Table 3.4
Comparison table of extracted VDC one-track and one-cluster efficiencies for all GMp Fall
2016 kinematics taken from [1]. One cluster efficiency was used for analysis.

Kinematic Spectrometer ε1−track ε1−cluster
k1-0.4 LHRS 0.9899 (9.6× 10−5) 0.9282 (2.6× 10−4)
k1-1 LHRS 0.9913 (9.6× 10−5) 0.9244 (2.9× 10−4)

k1-1.8 RHRS 0.9940 (9.7× 10−5) 0.9242 (3.5× 10−4)
k1-1.9 RHRS 0.9940 (1.3× 10−4) 0.9244 (4.8× 10−4)
k3-4 LHRS 0.9728 (6.5× 10−4) 0.8886 (1.37× 10−3)
k3-6 LHRS 0.9770 (4.9× 10−4) 0.9016 (1.06× 10−3)
k3-7 LHRS 0.9800 (5.1× 10−4) 0.8799 (1.27× 10−3)
k3-8 LHRS 0.9656 (8.3× 10−4) 0.8971 (1.27× 10−3)
k4-9 LHRS 0.9726 (4.1× 10−4) 0.8949 (1.27× 10−3)
k4-10 LHRS 0.9744 (4.0× 10−4) 0.9015 (1.27× 10−3)
k4-11 LHRS 0.9793 (6.0× 10−4) 0.9095 (1.27× 10−3)
k3-9 RHRS 0.9933 (7.4× 10−4) 0.9194 (1.27× 10−3)
k4-12 RHRS 0.9846 (7.6× 10−4) 0.9198 (1.27× 10−3)

multi-cluster events in the same region. More detail is presented in Ref. [1]. In the study of

position dependence performed by B. Schomookler [1] a non-VDC track was reconstructed

by using two scintillator s0 and s2, the calorimeter and the straw chamber. The vertical

position in s0 was determined by using the time difference of the top and bottom of the

scintillator and position in s2 in dispersive direction was determined by using the center of

the scintillator and in non-disperisve direction by using the time difference in two PMTs

and in calorimeter by using the energy weighted calorimeter block position. The results

of VDC one-track and one cluster efficiency studied as a function of X and Y position in

the focal plane transport coordinate system are shown in Fig.3.21. Clearly, the efficiency

shows a significant dependence on Y. However, for this experiment the events of interest are

localized within the region indicated by the red line in focal plane as shown in Fig. 3.22, a

single number for the VDC efficiency correction is used in analysis.
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Figure 3.21. Left: VDC single cluster efficiency in X bins in the focal plane transport
coordinate system using the non-VDC based track for an inelastic run on the LHRS. Right:
VDC single cluster efficiency in Y bins in the focal plane transport coordinate system. Figure
is reproduced from Ref. [1].
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Figure 3.22. Track y in the focal plane transport coordinate system projected to VDC 1
indicating that more than 99% of events are in the region between the two red lines.
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3.6 PID Efficiencies

In all experiments there are the trigger events generated from reactions other than the

reaction under study. These events are considered as the background. Subtraction of the

background events due to pion initiated triggers is done by using cuts on the gas Cherenkov

and calorimeter distributions. The Cherenkov is a threshold detector designed such that an

electron will emit Cherenkov radiation while pion will not, whereas the shower calorimeter

system provides additional electron rejection capability by detecting the energy deposited

by the particle.

Suppose one wants to calculate the efficiency of detector B, call it εB. The idea is to

follow the set of particles which have fired both detectors A and C and test if they also

fired detector B. Whenever a particle from this set fires detector B, the detector is said to

be efficient. In the case a particle fires both detectors A and C but does not fire B, then

detector B is said to be inefficient. Calling the set of particles which have fired A and C

set X and those from set X which also fired detector B set Y, the efficiency of B can be

mathematically expressed as:

εB =
NY

NX

, (3.10)

where NX and NY represent the number of particles in set X and set Y, respectively.

3.6.1 Selection of Events

Following cuts were applied to calculate the electron cut efficiency and pion rejection

efficiency:

1. Events in T1

2. Single cluster cut present in all four VDC planes

3. β 0.3 to 2.0 to remove cosmic events
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4. Loose ”sanity” cuts on the acceptance of

• -30<y′tar (mrad)<30

• -100<x′tar (mrad)<100

• -3.5%< (%)<5.5

• |ytar| (m)<0.1×sin(θ)

5. The reconstructed invariant mass (W) is between 0.86 GeV/c2 and 1.07 GeV/c2

3.6.2 Cherenkov Cut Efficiency

The discrimination of pions from electrons was performed by applying the cuts on the

calibrated quantities of Cherenkov and Calorimeter. The cuts can reject unwanted particle

such as pions. The majority of the pions that have a signal with more than two photo-

electrons are pions that produce delta electrons at the front window or in the gas of the

Cherenkov. These delta electrons emit Cherenkov light and the pion is misidentified as an

electron. The PID study aims to get the optimized cuts on Cherenkov and the calorimeter

which can hereby eliminate pions while keeping as many electrons as possible. In order to get

the electron cut efficiency of the Cherenkov, the electron events are selected in pion rejector

as shown in red box on the bottom left panel of Fig. 3.23 and then one counts those events

that also fired Cherenkov above some cut as shown in bottom right panel of the Fig. 3.23.

If the pion background in an experiment is large, evaluation of the percentage of remaining

pion mixed into the electron events is also important. In order to get the pion rejection

efficiency of the Cherenkov, the pion events are selected in pion rejector as shown in the

blue box on bottom left panel of Fig. 3.23, and then one counts those events that also fired

Cherenkov below some cut shown in bottom right panel of Fig. 3.23. The cuts used for these

study are VDC one cluster cuts and loose acceptance cuts. The electron cut efficiency is
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Figure 3.23. Top and bottom left panels shows the electron and pion sample selected in
calorimeter to study the gas Cherenkov efficiency, where the events inside the red lines are
the electrons and the events inside blue rectangle are the pions. The top left panel shows the
number of photo-electrons collected in the gas Cherenkov for the electron(red) selected in
top left panel. The last panel plot shows the Cherenkov cut efficiency for the electron (red)
of 99.91% and pion rejection percentage (blue) of 99.96% selected in top left plot (These
are the preliminary results for one of the low Q2 Spring 2016 RHRS kinematics presented to
outline the procedure. The final results for all Fall 2016 kinematics were performed by B.
Schmookler [1] based on this procedure).

given by

εe
−

cer =
N e−
cer

N e−
cal

(3.11)

Also, the pion rejection efficiency is defined as the fraction of pions removed by applying

PID cuts:

επ
−

cer =
Nπ−
cer

Nπ−
cal

(3.12)

Here, N e−

cal(N
π−

cal ) is the electron (pion) samples from calorimeter whereas N e−
cer is the number

of electrons left over after cutting on the Cherenkov and Nπ−
cer is the number of pions rejected.

In Fig. 3.23 the x-axis and y-axis are total energy deposited by the first layer (pre-shower)
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Figure 3.24. Electron and pion cherenkov cut efficiencies as a function of ADC sum.

and the second layer (shower) of the calorimeter showing the cuts used to select electron

samples(red) and pion samples(blue) shows the number of electrons left over after the cut

in Cherenkov, where red distribution are the electrons and blue distributions are pions.

Figure 3.24 shows cut efficiency as a function of Cherenkov ADC sum. The cut efficiency

of electrons is indicated by red distributions and that of pions are blue distributions. The

uncertainty in efficiency is calculated by assuming standard binomial distribution:

σ(ε) =

√
ε(1− ε)
Ncal

, (3.13)
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3.6.3 Calorimeter Efficiency

A calorimeter cut to reduce the number of pions that pass the Cherenkov cut was applied.

The PID can be improved by applying a cut on the first layer of calorimeter and a cut on
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Figure 3.25. Event samples selected in Cherenkov to determine calorimeter detection and
cut efficiencies

the total energy deposited in calorimeter per unit particle momentum. The Cherenkov and

anti-Cherenkov cuts were applied to determine electron(red) and pion(blue) as shown in

bottom left plot of Fig. 3.25 . Then the calorimeter cut efficiency is given by,

εe
−

cal =
N e−

cal

N e−
cer

(3.14)

Also, the pion rejection efficiency is defined as the fraction of pions removed by applying

PID cuts:

επ
−

cal =
Nπ−

cal

Nπ−
cer

(3.15)
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Figure 3.26. Grid showing electron cut efficiencies(red) and pion rejection efficiencies(blue)
on the total energy deposited in the calorimeter and the energy deposited in layer 1

Here, N e−
cer(N

π−
cer ) is the electron (pion) samples from Cherenkov whereas N e−

cal is the number

of electrons left over after cutting on the calorimeter and Nπ−
cer is the number of pions rejected.

The bottom right plot shows the electron(red) and pions (blue) events selected in Cherenkov

that also triggered calorimeter. And the cut efficiency obtained for this kinematics was about

98.9%.

In order to find the best cut to select good electron events in the calorimeter the effi-

ciencies are calculated in different bins in pre-shower vs Ecal/p, which is shown in Fig. 3.26.

For the kinematics chosen the best cuts which gives good electron cut efficiency and good

pion rejection efficiency are Eps/p > 0.1 and Ecal/p >0.7. To determine the total number of

good electrons, N t
e− , N t = N t

e− + N t
π was measured before PID cuts and N f = N f

e− + N f
π

after PID cut. Using the electron cut efficiency for the gas Cherenkov (calorimeter) by se-

lecting a sample of clean electrons in the calorimeter (gas Cherenkov), and then looking at

the response of the gas Cherenkov (calorimeter) for that sample one can calculate the total
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electron efficiency εe− and the total pion rejection efficiency (επ) as N f
e− = εe− × N t

e− and

N f
π = (1− επ)×N t

π. Since

N f = N f
e− +N f

π (3.16)

= N f
e− .(1 +

N f
π

N f
e−

) (3.17)

The total number of good electrons in terms of the final number of pion-to-electron ratio

( π
e−

)f can be written as

N t
e− =

N f
e−

εe−.(1 + ( π
e−

)f )
(3.18)

In order to correct the PID efficiency for each run, εe− and ( π
e−

)f were determined. The

Table 3.5
The table of PID cut efficiencies for all Fall 2016 GMp kinematics. Table is from Ref. [1].

Kinematic Spectrometer εe− επ
(
π
e−

)
i

(
π
e−

)
f

k1-0.4 LHRS 0.995 0.977 7.4× 10−4 1.7× 10−5

k1-1 LHRS 0.995 0.999 9.3× 10−4 5.7× 10−6

k1-1.8 RHRS 0.992 0.999 0.025 2.9× 10−6

k1-1.9 RHRS 0.991 0.999 0.020 2.8× 10−6

k3-4 LHRS 0.992 0.999 8.7× 10−3 2.8× 10−6

k3-6 LHRS 0.993 0.999 0.057 2.3× 10−5

k3-7 LHRS 0.993 0.999 0.25 4.0× 10−5

k3-8 LHRS 0.994 0.999 1.07 1.8× 10−4

k4-9 LHRS 0.991 0.999 0.20 7.6× 10−5

k4-10 LHRS 0.992 0.999 0.55 2.3× 10−4

k4-11 LHRS 0.992 0.999 2.91 6.6× 10−4

k3-9 RHRS 0.984 0.999 7.28 4.2× 10−4

k4-12 RHRS 0.984 0.999 10.42 8.4× 10−4

total electron efficiency is calculated from the individual Cherenkov and calorimeter electron

efficiencies as εe− = εcer,e− × εcal,e− . The total pion rejection efficiency is calculated from the
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individual Cherenkov and calorimeter pion rejection efficiencies as επ = 1− (1− εcer,π)× (1−

εcal,π). Table 3.5 shows the final total electron detection efficiencies, the total pion rejection

efficiencies, the initial pion-to-electron ratios, and the final pion-to-electron ratios for the

following set of PID cuts (for all Fall 2016 kinematics) :

Npe > 4,

(
E

P

)
Total

> 0.7,

(
E

P

)
Layer1

> 0.08 .

For each measured efficiency, a standard binomial statistical uncertainty was calculated. It

Table 3.6
The relative uncertainties on electron efficiency, pion rejection efficiency, and final pion-to-
electron ratio for all Fall 2016 GMp kinematics. An uncertainty of 5 × 10−4 (1 × 10−4) on
the electron (pion) efficiency due to the sample selection and also applied an uncertainty of
1 × 10−4 on both the electron and pion efficiency due to the E/p threshold. Table is from
Ref. [1]

Kinematic Spectrometer dεe/εe dεπ/επ d
(
π
e

)
f
/
(
π
e

)
f

k1-0.4 LHRS 5.2× 10−4 4.5× 10−2 3.6× 10−2

k1-1 LHRS 5.2× 10−4 3.2× 10−3 1.1× 10−2

k1-1.8 RHRS 5.3× 10−4 1.7× 10−3 8.2× 10−3

k1-1.9 RHRS 5.4× 10−4 1.2× 10−3 1.2× 10−2

k3-4 LHRS 9.3× 10−4 1.3× 10−2 6.3× 10−2

k3-6 LHRS 7.4× 10−4 5.2× 10−3 2.1× 10−2

k3-7 LHRS 7.6× 10−4 2.1× 10−3 1.1× 10−2

k3-8 LHRS 8.4× 10−4 1.2× 10−3 8.7× 10−3

k4-9 LHRS 8.8× 10−4 3.3× 10−3 1.3× 10−2

k4-10 LHRS 8.1× 10−4 2.2× 10−3 8.4× 10−3

k4-11 LHRS 1.1× 10−3 1.4× 10−3 8.8× 10−3

k3-9 RHRS 2.0× 10−3 7.8× 10−4 1.4× 10−2

k4-12 RHRS 1.5× 10−3 5.3× 10−4 9.9× 10−3

is clear from the table 3.5 that the final pion-to-electron ratios are very small which were

determined by the cut efficiencies and by the initial pion-to-electron ratio. The relative

uncertainty on the final pion-to-electron ratio is also shown in table 3.6 for each kinematic.
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3.7 Computer and Electronic Dead Time

During data taking some events get lost because the DAQ computer is busy processing

an event and not available to process new events. The computer live time is measured by

taking the ratio of the number of events recorded (NRec) from the main trigger to the number

of counts in the main trigger scaler (NTotal). i.e.

Computer Live time =
NRec

NTotal

(3.19)

To correct for this live time, the measured yield is divided by the computer live time. The

table 3.7 shows the computer live time for all GMp Fall 2016 kinematics, along with relative

uncertainties calculated assuming binomial errors.

Table 3.7
Computer live-times for all GMp Fall 2016 kinematics. The relative uncertainty were calcu-
lated assuming binomial errors. Table is taken from Ref. [1].

Kinematic Spectrometer Computer Live-Time
k1-0.4 LHRS 0.6935 (5.1× 10−4)
k1-1 LHRS 0.9454 (2.2× 10−4)

k1-1.8 RHRS 0.9171 (3.3× 10−4)
k1-1.9 RHRS 0.9207 (5.1× 10−4)
k3-4 LHRS 0.9654 (4.2× 10−4)
k3-6 LHRS 0.9774 (3.1× 10−4)
k3-7 LHRS 0.9794 (1.1× 10−4)
k3-8 LHRS 0.9843 (3.0× 10−4)
k4-9 LHRS 0.9742 (2.5× 10−4)
k4-10 LHRS 0.9728 (2.6× 10−4)
k4-11 LHRS 0.9790 (3.6× 10−4)
k3-9 RHRS 0.9684 (5.4× 10−4)
k4-12 RHRS 0.9547 (6.5× 10−4)

Electronic dead time arises when events are not recorded by the scaler counter. The fraction
of lost events per recorded event is given by

Number lost = Raw rate× τ (3.20)
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where τ is the electronic dead time. In order to correct for electronic dead time the

measured yield is multiplied by the following factor:

Correction factor = 1 + Raw rate× τ (3.21)

A correction factor was calculated by multiple coincidence units with different output widths.

The correction due to the electronic dead time is at most 2 x 10−4.

3.8 HRS Optics

The GMp experiment used four different spectrometer configurations due to the replace-

ment of the first quadruple (Q1) on both LHRS and RHRS. In Fall 2015 the quadrupole

from the short orbit spectrometer (SOS) in Hall C was installed in the RHRS to replace the

failing Q1. Later in 2016 the LHRS Q1 became non-functional, so it was replaced by the

SOS quad from RHRS and a new resistive quad was installed in RHRS. Reconstruction of

the invariant mass in electron-proton elastic scattering requires the precise determination of

position and angle of the electron at the vertex. The optical transport of the HRS describes

the transportation of charged particles from the target to the focal plane, while the optics

reconstruction describes the reconstruction of the momentum and vertex of the scattered

particle at the target. That is,

Wtar = [optics matrix]Wfp, (3.22)

where, Wtar are the target quantities and Wfp are the focal plane quantities. The reconstruc-

tion matrix elements are determined through an established optics calibration procedure.

Data taken with sieve slit and a multi-foil target were used for angle and position optimiza-

tion whereas, momentum calibration was performed by scanning the central momentum of

the spectrometer around the elastic peak. In order to describe the optical properties of the
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spectrometer, the Cartesian coordinate systems have been defined, which are discussed in

section 2.9.

3.8.1 Optics Optimization Procedure

The focal plane coordinates measured by the pair of VDCs are used to calculate target

coordinates. In this procedure xtg is fixed at zero during the optimization, such that the

target quantities are reduced to the four quantities: δ, x′tg, ytg and y′tg. This gives the rela-

tionship between focal plane and target coordinates in first order approximation:



δ

x′tar

ytar

y′tar


tg

=



< δ|x > < δ|x′tar > 0 0

< x′tar|x > < x′tar|x′tar > 0 0

0 0 < y|y > < y|y′tar >

0 0 < y′tar|y > < y′tar|y′tar >





x

x′

y′tar

y


fp

.

The zero elements result from the mid plane symmetry of the spectrometer. The focal plane

coordinates and the target coordinates are linked by a set of tensors Djkl, Tjkl, Yjkl and Pjkl

according to [48]

δ =
∑
jkl

Djklx
′i
fpy

k
fpy
′l
fp (3.24)

x′tg =
∑
jkl

Tjklx
′i
fpy

k
fpy
′l
fp (3.25)

ytg =
∑
jkl

Yjklx
′i
fpy

k
fpy
′l
fp (3.26)

y′tg =
∑
jkl

Pjklx
′i
fpy

k
fpy
′l
fp, (3.27)
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where the subscripts denote the power of each focal plane variable and the transformation

tensors Djkl, Tjkl, Yjkl and Pjkl are polynomials in xfp. Where,

Pjkl =
m∑
i=0

Cix
i
fp (3.28)

The final transformation for y′tg for example is given by:

y′tg =
∑
jkl

m∑
i=1

Cix
i
fpx
′j
fpy

k
fpy
′l
fp (3.29)

To optimize the transport tensors we performed a χ2 minimization on the difference

between the reconstructed target variables and the expected values. To calibrate x′tar, y
′
tar

and ytar, a fixed energy electron beam with a point-like profile is incident on a multi-foil

target. The foils are aligned along the beam line so that HCS coordinates xbeam and ybeam

of the interaction position are determined by the BPMs. The vertical coordinate xtar is

determined by the beam position. ytar and zreact are the horizontal track position in the

TCS and the vertex position along the ideal beam direction, respectively. In addition to the

foil, a sieve slit collimator is placed before the entrance of the spectrometer.

Figure 3.27. Schematic of multi-foil carbon target and Sieve collimator [14] used for Fall
2106 optics optimization.
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Fig. 3.27 shows the multi-foil carbon target and sieve slit on the left HRS used in this

experiment for the 2016 run. The DIS electrons were used for vertex and angle calibration.

The sieve has holes that are arranged in a grid pattern with well-defined horizontal and

vertical coordinates at the sieve plane xsieve and ysieve in the TCS. The following are the

expressions for those sieve plane variables:

xsieve = xtar + Lx′tar (3.30)

ysieve = ytar + Ly′tar (3.31)

zreact = −(y +D)
cos(tan−1 y′tar)

sin(θ0 + tan−1 y′tar)
+ xbeam cot(θ0 + tan−1 y′tar), (3.32)

where,

x′tar =
xsieve +Dx + ybeam

L− zreact cos θ0 − xbeam sin θ0

, (3.33)

y′tar =
ysieve +Dy − xbeam cos θ0 + zreact sin θ0

L− zreact cos θ0 − xbeam sin θ0

(3.34)

Where, θ0 is the spectrometer central angle, L is the distance from the sieve slit to the TCS

origin and Dx and Dy are the vertical and horizontal deviations of the spectrometer central

ray from the HCS determined from survey, respectively. The optics matrix elements are

optimized by minimizing the following function:

χ2 =
Events∑
i=0

(X i
sieve −X0

sieve)
2, (3.35)

where, Xsieve is xsieve or ysieve and X0
sieve are corresponds to the surveyed location of the

sieve hole.

The momentum calibration is performed by scanning the central momentum of the spec-

trometer, p0, around the elastic peak, i.e. δ scans at p0 = pelastic, ±2% and ±4%. The true

momentum is calculated using the scattering angle after accounting for energy loss in the
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target material. The energy loss is calculated using the most probable energy loss described

by the highly-skewed Landau-Vavilov distribution, given the material and path length as

discussed later in the Section 3.12. The true momentum of the detected electron is then

determined from:

E ′ = P (M, θ) =
E

1 + E
M

(1− cos θ)
, (3.36)

where M is the target mass, E is the beam energy, and θ is the scattering angle. The deviation

of the particle momentum from the central momentum of the spectrometer(p0) is given by:

δ =
p− p0

p0

. (3.37)

The optimization is performed by minimizing the χ2 utilizing Minuit2 [49] based routine and

χ2 =
Events∑
i=0

(δcal − δ0)2, (3.38)

where, δ0 corresponds to the reference variable calculated from the elastic condition.

3.8.1.1 Target y Calibration

In the hall coordinate system, ytar is related to the foil positions along z-direction. To

optimize, ytar reconstructed foil positions were matched with the real foil positions. The

Spring 2016 run used five foils, whereas, the Fall 2016 run used nine foils to provide additional

ytar constraints. Fig. 3.28 represents the calibration results of ytar for the Spring 2016 run

period. The blue lines indicates the true positions. Clearly, Gaussian fitted mean value of

the reconstructed foil target position are close to the real target positions.
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Figure 3.28. Target y distribution after optimization. The blue vertical lines indicate the
true foil target positions and Delta is the difference between the data Gaussian fitting center
and real position.

3.8.1.2 Calibration of x′tar and y′tar

Figure 3.29 represents the sieve pattern for 1 GeV after x′tar and y′tar optimization. As

the GMp sieve is 1 inch thick, the offset for the hole center to the average center distribution

caused by the thickness of the sieve could not be neglected. The cross points are obtained

by projecting the track to a plane in the middle of the front and back surfaces of the

sieve. So the projected position should be centered at the nominal hole sieve position.

Clearly, the reconstructed positions are matched well with the crosses. The Figure 3.30

gives more quantitative information about the accuracy of optimization, where the position

distributions were projected to the horizontal and vertical direction. A Gaussian fit was

made for the events of each sieve hole in each direction and the mean value of the Gaussian

fit was compared to the corrected central position. The average of absolute discrepancy in

the horizontal direction is 0.39 mm and in the vertical direction is about 0.78 mm.
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Figure 3.29. Optimized reconstructed sieve pattern for five foils of multi-foil carbon target.
The crosses indicate the average of front and back hole centers.

Figure 3.30. The position distribution in the horizontal direction with the Gaussian fitting
of the one of the rows of sieve holes in the foil target.

3.8.1.3 Momentum Calibration

Figure 3.31 shows the optimization results for the left HRS Spring 2016 run period. The

vertical red lines indicate the expected δ positions. The discrepancy between the mean value
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δkin δkin δkin

δkin δkin

δset =
pθ0

− p0

p0

δkin = δrec −
pθ − pθ0

p0

Figure 3.31. The distribution of relative momentum for delta scan runs after optimization.
The red line indicates the expected δ and ∆ is the difference between reconstructed and
expected δ.

of the Gaussian fit to reconstructed delta and the set delta is:

δkin − δset = δrec −
pθ − p0

p0

, (3.39)
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where,

δset =
pθ0 − p0

p0

(3.40)

δkin = δrec −
pθ − pθ0
p0

. (3.41)

Here, p0 is the set momentum, pθ0 is the elastic peak at central angle and pθ is elastic peak

at an angle θ. The momentum resolution for this period was estimated to be 1.5 ×10−4.

3.8.2 Check of Optics Across Angular Acceptance

The study of the alignment of the invariant mass peak in two dimensional y′tar vs x′tar

bins with new optics as shown in Fig. 3.32. Clearly, our optics reconstructs W better than

0.4 MeV across the majority of the angular acceptance.

Figure 3.32. Reconstructed invariant mass shift at large x′tar for kinematics K1-1 with
optimized optics.
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3.9 Determination of Target and Spectrometer Offsets

It is very important to have accurate knowledge of the scattering angle in order to have

a precise measurement of the e-p elastic scattering cross sections. This requires an accurate

knowledge of the target and spectrometer offsets. The geometry used to express the y target

offset in terms of beam position and target z offset is shown in the figure 3.33. The relation

between the target z offset relative to the hall center and target y offset is given by

∆y → ∆y + soff = ∆x cos θ + ∆zsinθ. (3.42)

The target and beam position offsets are calculated by fitting the following equation:

Table 3.8
Target y, x beam position and spectrometer pointing informations for surveyed GMp Fall
2016 kinematics.

Kinematic HRS ytar(mm) xbeam(mm) soff (mm)
K1-1 LHRS -1.8348 ± 0.0053 0.5610 1.07
K3-6 LHRS -1.0650 ± 0.0012 0.4655 0.385
K3-7 LHRS -1.7468 ± 0.003 0.5173 0.658
K4-9 LHRS -1.0276 ± 0.0011 0.6040 0.385
K4-11 LHRS -1.9338 ± 0.0014 0.5892 1.07
K1-2 RHRS -1.81994 ± 0.0067 0.5224 3.314
K4-12 RHRS -1.8283 ± 0.002 0.5681 3.314

(∆y + soff −∆yMC)/ cos θ −∆xBPM = ∆xbeamline + ∆z tan θ, (3.43)

where soff is the spectrometer offset and ∆x is the beam position offset which is the com-

bination of beam position offset relative to the center of BPM and the beam offset relative
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Figure 3.33. The geometry of the target and beam positions.

to the beamline i.e.

∆x = ∆xBPM + ∆xbeamline. (3.44)
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Using equation 3.44 in equation 3.42 yields

Figure 3.34. Determination of target z and spectrometer offsets.

∆y + soff −∆yMC = (∆xBPM + ∆xbeamline) cos θ + ∆zsinθ, (3.45)

where ∆yMC is the offset in y obtained from Monte Carlo keeping beam, target and spec-

trometer in ideal position. It can be seen from equation 3.43 that if one plot the quantity

on left side vs tan θ and fit linearly using the information from the table 3.8 for surveyed

kinematics, the slope of the fit gives the ztar offset and the intercept gives the ∆xbeamline.

The fit results are shown in figure 3.34. Table 3.9 represents spectrometer pointing offsets

for the kinematics with no survey obtained by calculating the y distance of the point from

the fitted line yields the spectrometer pointing offsets for the kinematics with no survey.
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Table 3.9
Spectrometer pointing offsets for un-surveyed LHRS Fall 2016 kinematics.

Kinematic θ soff (mm)
K3-4 24.25 0.562
K3-8 44.5 1.41
K4-10 34.4 1.41

3.10 SIMC Simulation

SIMC [50] is a Standard Hall A and Hall C Monte Carlo simulation package that uses

COSY [51] to transport particle trajectories through magnetic elements to simulate the

elastic scattering process based on input variables such as beam, target, kinematic setting,

HRS, and the final state. There are three main components of SIMC: the event generator,

the spectrometer optical model and the checking of particle trajectories against a list of

apertures. The event generator randomly generates the position and energy of the incident

electron at the target taking into account the target length and beam rastering. This also

includes the cross-section weighting and radiative corrections. Besides this, it also randomly

generates the momenta and angles of the scattered electron with a flat distribution over

limits exceeding the actual experimental spectrometer acceptance. The scattered events

are then transported through the spectrometer after applying ionization energy loss and

multiple scattering effects in the target material, chamber, and cells. Multiple scattering is

applied in steps along the path from the target through the detector. This uses a small angle

scattering approximation where the scattering angle follows a Gaussian distribution whose

width in both dispersive and non dispersive directions given by

θ0 =
13.6 MeV

βcp

√
x/X0

(
1 + 0.038 ln

1

β2

x

X0

)
(3.46)
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In the end, only the scattered electrons are transported through the spectrometer. In order

to transport the electrons through the spectrometer, the spectrometer optics models in the

COSY Infinity program are used. COSY generates both the forward and backward matrices,

where the forward matrix is used to transport the particles from the spectrometer entrance

window to the focal plane and the backward matrix is used reconstruct them back the particle

to the target vertex. SIMC ensured that the particles have gone through each aperture by

checking the acceptance of each aperture using a set of aperture cuts. These apertures include

the front, middle and back aperture of each magnetic element in the QQDQ configuration.

The aperture of the vacuum after Q3, the aperture of the rectangular collimator, and the

aperture of each detector are added according to their actual size and positions. The events

which are accepted will have their focal-plane positions and angles determined by a tracking

detector which can be supplied with a position resolution.

In order to study the spectrometer acceptance and reconstruction, we use a uniform

generator, where the important generated target variables are: xtar, x
′
tar, y

′
tar, ytar and δ

,the focal plane variables in transport coordinate system are: xfp, yfp, x
′
tar and y′tar and the

reconstructed variables are: x′tar, y
′
tar, ytar and δ. The variable xtar is not reconstructed and

needs to be determined by other means.

3.11 Radiative Correction

In Born approximation, the electron-proton differential scattering cross section was de-

rived to lowest order in the electromagnetic coupling constant (α). This includes only the

amplitude due to the exchange of a single virtual photon between the incident electron and

the proton as shown in fig(a) of Fig. 3.37. However, the highest order processes in α also

affect the cross sections. So, to compare the measured cross section directly to the theoretical

prediction, it is very important to calculate the radiative processes from the data. Emission

of radiation can occur before or after scattering, which is indicated in the Fig. 3.36 by initial

or final state emission. The circle represents a zoomed in scattering vertex. Points A and
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Figure 3.35. Feynman diagrams for the elastic e-p scattering including the Born and lowest
order radiative correction graphs [15].

A’ represent points infinitesimally close to the scattering vertex before and after scattering.

Emission of real or virtual photons reduces the energy of the electron in the target medium.

This radiation can be emitted due to:

1. Internal corrections: The internal effects take place at the scattering vertex includes

internal bremsstrahlung, vacuum polarization, vertex processes, and two-photon ex-

change. In this process, real photons are emitted when a charged particle involved

in the reaction is accelerated by the field of the nucleus involved in the primary e-
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Figure 3.36. Schematic of radiative energy loss in elastic electron-proton scattering

p scattering. The emission of initial state radiation affects the Q2 whereas the final

state radiation reduces the total available energy after scattering, thereby changing the

acceptance of the scattered electron in the detectors.

2. External bremsstrahlung: In this process, the electron radiates while it interacts with

the Coulomb field of a nucleus other than the one involved in the e-p scattering. This

process can be caused by bremsstrahlung in material that the electron passes through

before and after the scattering.

Radiative processes depend on the target material, geometry and kinematics of the scat-

tering. They modify data cross section and the kinematics of the incident and final state

of the electron and proton. The emission of a real photon causes the particle’s momentum

to be different from the actual momentum at the scattering vertex whereas the emission

of additional particles such as TPE processes affects only the magnitude of the measured

cross section. These processes change the elastic cross section form δ function smeared by

detector resolution to an asymmetric peak with an extended elastic tail at lower energies.

This tail extends down to the values of scattered momentum where other processes such as
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Figure 3.37. Feynman diagrams for the elastic e-p scattering including lowest order radiative
correction graphs [15].

π production and ∆ resonance occur.

The radiative correction formalism was first calculated by Mo and Tsai [28] and improved

by Walker [52] and Ent [53]. The conversion of the measured cross section to the one-photon

exchange cross section is given by:

dσ

dΩ

measured

= (1 + δcorr)
dσ

dΩ

Born

(3.47)
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where

δcorr = δint + δ′int + δext

Here, δint and δext represent the internal and external radiative corrections, respectively,

whereas δ′int results from the improvements to the internal corrections by Walker [52]. The

higher order corrections are obtained by exponentiating δint:

dσ

dΩ

measured

= eδcorr
dσ

dΩ

Born

(3.48)

This approximation is mainly valid only for infrared divergent terms and the error caused

in the non-divergent terms is estimated to be less than 0.7%. The contribution from vac-

uum polarization and the electron vertex are calculated exactly whereas the contributions

from TPE are limited to the infrared divergent parts. Based on the modification made by

Walker [52] and Ent [53] to the work of Mo and Tsai [28], the internal radiative correction

can be written as

δint = −α
π

(
28

9
− 13

6
ln

(
Q2

m2
e

)
+ δint.brem

)
(3.49)

The internal bremsstrahlung contributions are calculated under the assumption by Tsai [54]

that ∆E(1 + 2E
Mp

) ≤ E ′. Here, E and E ′ are the incident and scattered electron energy

respectively. ∆E = Eelastic − Ecutoff is the E ′ cutoff of the elastic peak.

Walker [52] improved the precision to the original radiative correction by adding a term δ′int.

This involve correction for the ∆E(1+ 2E
Mp

) ≤ E ′ approximation made by Tsai to the internal

bremsstrahlung, addition of the qq̄ and µ+µ− contributions to the vacuum polarization or

loop diagrams which were not taken into account before as well as the correction for a sign

error in Tsai’s paper [54] for the Schwinger’s correction [55] to the noninfrared divergent

part of the soft photon emission cross section. The corrections that are applied to the cross

sections due to bremsstrahlung in the target material and the effects of ionization energy loss
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are called external corrections. In terms of the electron cross section the external corrections

δext are expressed as:

eδext = (

(
dσ(E)

dΩ

)−1[
LTcorr

∫ Eelastic

Eelastic−∆E′

d2σ(E ′, E)

dΩdE ′
dE ′
]

(3.50)

where LTcorr is the correction for the Landau tail as calculated from the Landau distribution

and the cross section of an electron of initial energy E and final energy E ′, where the electron

is emitting bremsstrahlung radiation with ti and tf radiation lengths of material before and

after the scattering is

d2σ(E,E ′)

dΩdE ′
=

(
R∆E ′

E

)biti( ∆E ′

Eelastic

)biti 1

(1 + biti)

1

(1 + bf tf )

×
[
dσ(E)

dΩ

bf tf
∆E ′

φ

(
∆E ′

Eelastic

)
+
dσ(E −R∆E ′)

dΩ

biti
∆E ′

R∆E ′

E

]
(3.51)

Here, the parameter R represents the recoil of the proton and is about

(
E
E′

)2

, the function

φ

(
∆E′

E

)
= φ

(
ω
E

)
gives the shape of the bremsstrahlung spectrum which is equal to one at

ω/E = 0 where ω is the lost energy of the electron after passing a thickness of t radiation

lengths and the parameter b ∼ 3/4.

The radiative correction in SIMC was implemented as described in Ref. [53, 55, 56]. As

SIMC simulates events in coincidence mode, both the electron and recoiling proton can be

responsible for the emission of photon. So, integration over all final states of scattered proton

must not be done in the inclusive scattering.

3.12 Ionization Loss

The mean energy loss obtained from the Bethe-Bloch formula may be fine for bulk de-

position but it is inadequate in describing the energy loss of single particles [57]. There are

large statistical fluctuations in the distribution of energy loss dE/dx due to a small number
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of collisions involving very energetic electrons. So for detectors of moderate thickness x, the

energy loss probability distribution f(∆; βγ, x) is sufficiently described by the highly-skewed

Landau-Vavilov distribution. The most probable energy loss is given by:

∆p = ξ

[
ln

2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]
(3.52)

Here, I is mean excitation energy in eV, δ(βγ) is the density effect correction to ionization

energy loss, ξ = (K/2) < Z/A > z2(x/β2) MeV for a detector of a thickness x in gcm−2

and j = 0.2. As the Landau distribution is an asymmetric distribution with a long tail

at the high energy side, its most probable value is different from its average value. The

most probable value is simply the value at which the distribution has a maximum given the

skewed distribution. In this experiment, for incident electrons the energy loss is subtracted

from the nominal beam energy whereas for scattered electrons the loss is added to the

measured electron momentum. More detail description of analysis of energy loss is presented

in Ref. [58].

3.13 HRS Optics with Saturated Q1

As noted in the Section 3.7, prior to the Fall 2016 run the first superconducting quadrupole

in the left HRS was replaced with a resistive magnet. The magnetic field of this new magnet

was found to saturate due to the iron core above a momentum of ≈ 3 GeV. Due to time

constraints the experiment took optics data only for the nominal tune. Additionally, the

magnet was set based on current assuming a linear dependence of the field integral (
∫

Bdl)

on the current (i.e. the field saturation was not corrected for). Therefore, when using the

nominal reconstruction matrix there was a mismatch between the reconstruction and the

forward tune. This is illustrated in Fig. 3.38 for the kinematic setting with the largest sat-

uration (K3-4) at 3.962 GeV/c. During data taking, the field probe indicated that the field

was saturated by about 7% at this kinematic setting which is simulated in the MC. Shown
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Figure 3.38. Data vs MC comparison plots of target quantities for kinematics K3-4 with
nominal tune. The red histograms represents MC, black distributions represents background
subtracted data and blue histogram represents the background.

in this plot is the nominal MC (with no Q1 saturation included) compared to the data. The

poor resolution in W for the data, and the significant discrepancies between data and MC,

is due to the inconsistency in the field ratios of the magnet in MC with respect to data. The

effect on the MC of having a forward field ratio changed and keeping reconstruction matrix

element the same is shown in top right plot of Fig. 3.39 where the MC now exhibits the

same poor W resolution as the data. In order to fix the data reconstruction in the absence

of optics data for each saturated tune, the following steps were implemented:

1. determine accurately what the field saturation factor was,
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2. develop a procedure to correct the data reconstruction matrix elements for this mis-

match.
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Figure 3.39. Data vs MC comparison plots for K3-4 kinematics with optimized forward
tunes in red. The black histogram represents background subtracted data, green histogram
represents MC for nominal tune and blue histogram represents background.

The fractional reduction of the field of the resistive SOS quad as a function of the readback

current is shown in the Fig. 3.40. This shows the reduction in the field integral relative to

the nominal tune due to the Q1 saturation above a set current of 550 A. The Table 3.10

shows the status of the Fall 2016 kinematics with field/momentum determined from the field

probe (hereafter referred to as the nominal tune) for both DVCS and GMp kinematics. The
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relative field per unit momentum for the saturated and linear case can be parametrized as:

(B
P

)
saturated

/
(B
P

)
linear

= 1− 0.27
[Ireadback

550 A
− 1
]2

(3.53)

Table 3.10
Status of the Q1 field for Fall 2016 kinematics where the relative fields are shown in the last
column.

Kinematics θ Set p0 (GeV/c) Read-back
Current (A)

Hall probe
B(T)

Relative
(B/p)

DVCS
362 20.99 3.187 664.704 1.09 0.98
363 18.68 3.99 833.88 1.29 0.93
601 25.56 3.59 749.60 1.20 0.96
603 29.00 3.15 657.83 1.08 0.98

GMp
Optics 17.51 1.08 225.25 0.375 1.000
K3-4 24.25 3.96 826.35 1.287 0.934
K3-6 30.91 3.22 672.41 1.104 0.984
K3-7 37.00 2.67 557.29 0.930 1.002
K3-8 44.50 2.15 447.38 0.748 1.003
K4-9 30.91 3.69 768.57 1.226 0.956
K4-10 34.40 3.26 679.72 1.113 0.982
K4-11 42.00 2.53 527.88 0.881 1.001

After some investigation it was found that the reduction in
∫

Bdl was due to having moved

the probe to the other side of the magnet to avoid conflicts due to the original mount being

on the beam side after moving the Q1 to the LRHS. To determine the true
∫

Bdl reduction,

the correlation between z-vertex and y′tar (which should not be correlated) were fitted and

compared to the expected value from MC for the kinematics with saturation. Dummy

aluminum target was used for this study. Kinematic K3-8 was an unsaturated configuration

below 550 A current and was used as a baseline for our analysis. Then the weighted average

of the downstream and upstream foil slopes after subtracting the baseline slope in both data
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Figure 3.40. Relative field per unit momentum versus read back current showing saturation
above the set current of 550 A.

and MC were calculated. The ratio of the weighted average slope between data and MC is

then multiplied with
∫

Bdl obtained from probe to determine the true
∫

Bdl. The Table 3.11

shows the actual
∫

Bdl reduction for Q1 determined for each of the saturated kinematics.

Table 3.11
Determination of true

∫
Bdl reduction from dummy target z-vertex study.

Kinematic Q1
read-
back
current
(A)

Factor
used in
MC

∫
Bdl re-

duction
field probe
(%)

(Data/MC)slope True∫
Bdl

reduc-
tion(%)

Factor to be
used in MC
(true)

K3-4 826.35 0.934 6.60 1.037± 0.09 6.843 0.932± 0.008
K3-6 672.49 0.984 1.60 1.034± 0.01 1.654 0.984± 0.009
K4-9 768.59 0.956 4.40 1.005± 0.01 4.096 0.956± 0.009
K4-10 679.72 0.982 1.80 1.108± 0.01 1.994 0.980± 0.008

where true
∫

Bdl reduction is the product of
∫

Bdl in MC ∗ (Data/MC)slope. The Table 3.12

shows the true slope ratio between data and MC after using true
∫

Bdl in MC.
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∫

Bdl reduction.

Table 3.12
Data to MC slope ratio after using true

∫
Bdl in MC

Kinematic (Data/MC)slope

K3-4 0.99
K3-6 0.99
K3-4 1.00
K3-4 0.99

After determining the true Q1 field, the main challenge was to determine the optics for

the Q1 saturated data as the experiment only took quality optics with the nominal tune.

The MC uniform generator was utilized to get the correction factor due to saturation. The
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correction matrices were determined as follows:

X ′sattar (xfp, x
′
fp, yfp, y

′
fp) = X ′Nominaltar (xfp, x

′
fp, yfp, y

′
fp) + ∆X ′tar(xfp, x

′
fp, yfp, y

′
fp). (3.54)

where ∆X ′tar is calculated by using MC as a difference of mis-tuned and nominal reconstruc-
tion matrix elements from optics model. For example for X ′tar matrix:

X ′Nominaltar = A0000 + A1000xfp + A0100x
′
fp

2 + A1100xfpx
′
fp,

X ′Saturatedtar = B0000 +B1000xfp +B0100x
′
fp

2 +B1100xfpx
′
fp. (3.55)

So, the correction factor will be

∆X ′tar(xfp, x
′
fp, yfp, y

′
fp) = B0000 − A0000 + (B1000 − A1000)xfp + (B1100 − A1100)xfpx

′
fp + ....

(3.56)

where the correction factors are determined to order by order in target variable expansion

and must use the same order as in data for consistent expansion. But Hall A Analyzer

uses the different format from COSY and rotated coordinates at detectors. It was easier to

simply use the COSY Based Monte Carlo to generate optics pseudo-data for Sieve slit and

e − p elastic delta scans. Then one can simply use the existing data optimization code to

determine the reconstruction matrices in the same format as the Analyzer. Uniform MC sieve

slit events were generated using the model of the Spring 2016 sieve slit for both nominal as

well as saturated MC events for target y and angle calibration. On the other hand, simulated

elastic events were used for momentum calibration, and then fitted both MC in the same

way as data. The plot on the left side of the Fig. 3.42 shows the W distribution before and

after correction to saturation and left shows the ytar distribution for the same case. Clearly,

the resolution of both ytar and W distributions improved significantly.

Fig. 3.43 shows data vs MC comparison of target quantities with
∫

Bdl ∼0.9315 Tm

considered as a baseline tune estimated form z-vertex vs y′tar correlation. Comparing the

comparison plots with the nominal tune, there is a significant improvement across all re-

constructed target quantities. Looking at the W distribution there is still some discrepancy
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Figure 3.42. Reconstructed W and z-vertex resolution comparisons for nominal and satura-
tion corrected optics.

on the lower side of the peak but the data resolution became much better. The y′tar MC

width was not good at nominal optics but it also got improved significantly with corrected
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Figure 3.43. Data vs MC comparison for estimated Q1
∫

Bdl tune of 0.9315 Tm (baseline
tune).

optics. Also there is a significant improvement in the other two target variables x′tar and

ytar. The data to MC integral ratio has been improved by almost 2%. In order to improve

the W resolution, field was re-tuned in MC by changing the baseline field by about 0.75%.

The new data vs MC comparisons of target variables is shown in Fig. 3.44, which shows a

significantly improved resolution in W and y′tar distributions for all saturated kinematics.

Table 3.13 shows the yield comparisons for nominal, baseline and final tune, whereas Ta-

ble 3.14 shows data to MC integral ratio comparisons for each of those three cases. The

change in acceptance by less than 3% is due to the change in forward tune and the cut

dependence of data yield.
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Table 3.13
Integral comparisons for nominal, baseline and final tune.

kinematic YD

(Nomi-
nal)

YM

(Nomi-
nal)

YD

(Base-
line)

YM

(Base-
line)

YD (Fine
tune)

YM (Fine
tune)

K3-4 0.936 0.961 0.921 0.924 0.919 0.918
K4-9 0.014 0.014 0.013 0.013 0.013 0.013
K3-6 0.134 0.139 0.134 0.134 0.133 0.134
K4-10 0.006 0.006 0.006 0.006 0.006 0.006

Table 3.14
Data to MC slope ratio after using true

∫
Bdl in MC.

kinematic p0 θ Base line field
from z vs y′tar

study

Fine tune
(∼0.75%
change
from base-
line)

YD/YM

(nomi-
nal)

YD/YM

(base-
line)

YD/YM

(Fine
tune)

K3-4 3.962 24.2 0.9315±0.0005 0.927 0.974 0.996 1.002
K4-9 3.685 30.9 0.9558±0.0004 0.948 0.990 1.001 0.999
K3-6 3.224 30.9 0.9835±0.0006 0.976 0.996 0.999 0.997
K4-10 3.259 34.4 0.9801±0.0002 0.972 0.996 0.988 0.984

3.14 MC Uncertainties in Spectrometer Modeling for LHRS Fall

2016

As determined by the MC the spectrometer acceptance is primarily determined by four

of the 20 apertures for a delta cut of ±3.5%. The uncertainty on the real positions of the

apertures is estimated to be around the mm level. Therefore, to study the corresponding

uncertainty on the acceptance, each of these were moved by 1 mm up and down in the

simulation using the uniform generator. To study the uncertainty in the solid angle due to

the magnetic field integrals, the field of each quad was also changed in COSY. Table 3.15

shows the uncertainty due to the dominant aperture positions.
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Table 3.15
Study of MC uncertainties for kinematics K3-7.

Aperture shift (in cm) Solid angle (Ω) (msr) ∆Ω/Ω0(%)
No shift (k3-7) 5.989 0.00

6(xs 0.1) 5.992 0.05
6(xs + 0.1) 5.998 0.15
6(ys - 0.1) 5.993 0.08
6(ys + 0.1) 5.998 0.15
13(xs - 0.1) 5.991 0.03
13(xs + 0.1) 5.978 0.18
13(ys - 0.1) 6.001 0.19
13(ys + 0.1) 5.985 0.06
15(xs - 0.1) 5.993 0.07
15(xs + 0.1) 5.99 0.02
15(ys - 0.1) 6.001 0.19
15(ys + 0.1) 5.995 0.10
17(xs - 0.1) 5.994 0.09
17(xs + 0.1) 5.997 0.13
17(ys - 0.1) 6.021 0.53
17(ys + 0.1) 6.002 0.32

Absolute uncertainties are converted into percentage, and the average over up and down shifts

was determined, and finally added in quadrature to get the total uncertainty of ∼ 0.52%.

Table 3.16 shows the uncertainties in the solid angle due to the change in quad field. The

total uncertainty is about 0.45% for the estimated
∫

Bdl uncertainty of 0.25%.

3.15 Acceptance Studies: Separating Optics from Acceptance

The effect of acceptance cuts across the position of the sieve slits where the optics are

well constrained has been studied. Software cuts at the sieve slit position were utilized

to determine the variation in extracted cross section. These cuts were placed through the
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Table 3.16
Study of MC uncertainties by shifting the dominant apertures up and down by 1 mm.

Quad Solid angle(Ω) ∆Ω/Ω0(%)(Bdl of 1%) ∆Ω/Ω0(%)(Bdl of 0.25%)
Default(k3-7) 5.989 0. 0
Q1 field *1.01 5.987 0.02 0.005
Q1 field *0.99 6.040 1.00 0.25
Q2 field *1.01 6.123 2.24 0.5
Q2 field *0.99 5.929 1.00 0.25
Q3 field *1.01 5.981 0.13 0.03
Q3 field *0.99 6.043 0.90 0.22
Q2 field *1.005 6.070 1.36 0.34
Q2 field *0.995 5.990 0.03 0.008

center of sieve slit hole positions, where optics is best constrained as illustrated in Fig. 3.45.

Table 3.17 shows the ratio of cross sections with and without the cut for four different
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Figure 3.45. Software cuts on sieve collimater used to study spectrometer acceptance.

software cuts. The largest variation can be seen for the tightest cut. So, on average a
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variation in cross section of about 0.5% is assigned for the cuts that are least sensitive to

optics.

Table 3.17
Ratio of cross sections with and without software cuts on the sieve collimater.

cut dσ/dσnocut
No cut 1.00

0 0.987
1 0.972
2 1.002
3 1.010
4 0.999
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CHAPTER 4

EXTRACTION OF THE ELASTIC CROSS SECTION

The differential scattering cross section describes the probability of an incoming electron

with energy E to interact with the target and to scatter at an angle θ with an scattered

energy E’ into the solid angle ∆Ω. The measured inclusive electron-proton cross section is

given by

dσ

dΩ
=

RC

L × ε× LT

∫
dE ′

Ne−(E′,θ) −NBG(E ′, θ)

A(E ′, θ)
. (4.1)

Where

• Ne− is the number of scattered electrons detected in each E’ and θ beans,

• NBG represents the corresponding events from background processes,

• L is the integrated luminosity,

• ε is the efficiencies product of the trigger, particle identification and tracking,

• LT is the computer live time,

• RC is the radiative correction (section 3.11),

• A(E ′, θ) fractional acceptance of the spectrometer,

• and θ is the scattering angle.

The integrated luminosity can be calculated from

L =
nenp
a

=
Q

e
ρl
Z

A
NA, (4.2)
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where, ne and np are the number of electron beam and number of protons respectively, a is

the target area, l is the length of the target, A is atomic mass of the target and NA is the

Avogadro’s number. Two methods were used to extract differential scattering cross section

to take into account the acceptance:

• The Monte Carlo ratio method

• The acceptance correction method

The main method was the first method and the second, complementary method was utilized

to check the cross section extracted from the first method as this method is sensitive to

different systematic uncertainties than the first method. The second method will be discussed

in section 4.0.1.4.

4.0.1 The Monte Carlo Ratio Method

The relationship between the model cross section and simulated yield can be written

similar to equation 4.1 for the data as

(
dσ

dΩ
)mod =

RCMC

LMC

∫
dE ′

NMC
e−

AMC(E ′, θ)
. (4.3)

For the same normalized luminosity the ratio of equations 4.1 and 4.3 yields

(
dσ

dΩ
)data/(

dσ

dΩ
)mod =

RCdata

RCMC

∫
dE ′(Ndata

e− −NBG)∫
dENMC

e−
.
AMC(E ′, θ)

Adata(E ′, θ)
. (4.4)

Assuming that the acceptance and radiative contributions are correctly modeled, the data

cross section can be determined from

(
dσ

dΩ
)data = (

dσ

dΩ
)mod.

Y data

YMC

. (4.5)
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(
dσ

dΩ
)MC =

σMott

1 + τ

[
G2
E +

τ

ε
G2
M

]
(4.6)

where, τ = Q2/2M2. The input model cross section to the simulation is discussed in sec-

tion 1.6, and is taken from a fit to the existing cross section data in single photon approxi-

mation. So, the data cross section, using parametrized model form factors is given by

(
dσ

dΩ
)data = (

Y data

YMC

).
σMott

1 + τ

[
G2
E +

τ

ε
G2
M

]
. (4.7)

4.0.1.1 Selection of Good Electron Events

In this section, the data selection cuts applied to both data and simulated events to select

elastically scattered electrons is discussed. The cuts applied to the data sample include

Table 4.1
Cuts applied to select good electron events.

Acceptance cuts

-40 < y’tar < 40 (mrad)
-80 < x’tar < 80 (mrad)

-3.5 % < δ < 3.5%
0.86< W <1.05 (GeV/c2)

PID Cuts

No. of photo-electrons> 4
Ecal/p>0.6

Single cluster cuts
Trigger 1 events

PID, single cluster, and acceptance cuts and those applied to which are given in Table 4.1

whereas those for simulated events are the corresponding acceptance cuts.
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4.0.1.2 Subtraction of Background Events from Target Cell Endcaps

The target cell containing liquid hydrogen has aluminum windows which can be a source

of background. During data taking on the LH2 target, some of the incoming electrons

scattered from the aluminum windows of the target cell are also detected in the spectrometer.

These background events have to be subtracted from the yield measured in order to estimate

the yield for scattering from the LH2 target only. In order to determine the amount of this

background, data on the aluminum dummy target were taken in the same kinematics as the

LH2 data. After measuring the dummy yield, the corrected LH2 yield can be determined

from:
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RMS    0.02187

)2W (GeV/c
0.85 0.9 0.95 1 1.05

T
E

)
×

L
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1−10

1

f_wd
Entries  80
Mean   0.9496
RMS    0.02187

Data - dummy
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MC

Figure 4.1. Normalized yield w distribution for LH2 target. The red solid line is the MC
normalized yield, black points are the background subtracted data, and the blue solid line
is the events from Aluminum windows of the LH2 target.

Ycorrected = YLH2 − Ydummy.
Twall
Tdummy

∗ Cbp (4.8)

where, the Y are the yields for LH2 and dummy targets, Twall and Tdummy are the target

wall and dummy thickness, respectively. The factor Cbr represents the ratio of radiative
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correction due to the difference in target thicknesses found to be 1.022 for all kinematics

from the L. Ou study [59]. For Fall 2016 run, the ratio of wall to dummy thickness is given

by:

Twall
Tdummy

=
Tentrance + Texit

Tdummy
(4.9)

=
(0.0175 + 0.011)× 0.2815

0.48

= 0.169

The uncertainty in cross section due to the aluminum background is mainly coming from

the thickness of the cell tip of ±10% and that of cell entrance of ±5%. As the quasi-elastic

electrons account for about 3% of all events, contribution to the uncertainty in the final yield

from background for all kinematics is about 0.2% from the study of L. Ou [59]. Since the

quasi-elastic cross section model does not work for the kinematics K5-16 due to the very

large Q2, 1% uncertainty is assigned for this kinematics.

4.0.1.3 Cross Section Extraction

Fig. 4.2 shows the data vs MC comparison of five target variables: invariant mass of

proton (W ), relative momentum (δ), in-plane angle (y′tar), out of plane angle (x′tar) and

target y (ytar) for the validation kinematics K1-1 where the cross section is known well. The

first panel shows kinematic information, extracted cross section, and cuts applied. In order

to obtain the differential scattering cross section in this method, all of the target variables

between the data and MC should match well. Looking at the shapes of δ, y′tar and ytar it is

clear that the MC model is not perfectly matching with reality. In addition, the extracted

cross section is found to disagree with the model cross section, and the data integral is found

to be about 4.4% higher than the MC integral. All magnets and apertures that are sensitive

to the change have been checked. Finally, it was concluded that the quadrupole Q2 was off by
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Kinematics: K1-1
2 = 1.366GeV , Q2 = 1.577 GeV
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Figure 4.2. Data yield vs MC yield comparison of kinematics K1-1. The red line shows the
MC normalized yield, black points are the background subtracted data, and the blue line
shows the events from aluminum windows of the LH2 target.

about 0.9%. This adjustment improved the shape of the target distribution for the validation

kinematics. In addition to this, the extracted cross section became closer to the well-known

cross-section for this kinematics as shown in figure 4.3. This adjustment made less impact

on the high Q2 kinematics. Fig. 4.4 shows the data vs MC comparison for kinematics with

Q2 = 4.5 GeV2. This is the kinematics with Q1 saturation with a tuned Q1 field. Also, the

Q2 field was increased by 0.9% for this kinematics but found very little impact. Fig. 4.5 and

4.6 shows the data vs MC comparison for kinematics with Q2 = 8 GeV2 and Q2 = 11 GeV2

respectively. The spectrometer pointing offsets are included in all kinematics. In addition

to this, a shift of about -0.3 mm in the target ladder was included in the analysis.
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Kinematics: K1-1
2 = 1.366GeV , Q2 = 1.577 GeV
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Figure 4.3. Data yield vs MC yield comparison of the validation kinematics K1-1 after
increasing field of Q2 by 0.9%. The red line shows the MC normalized yield, black points are
the background subtracted data, and the blue line shows the events from aluminum windows
of the LH2 target.

4.0.1.4 Systematic Uncertainties

The total systematic uncertainty in the cross section is taken as the sum in quadrature

of all systematic uncertainties on the quantities that contribute to the cross section. There

are two types of systematic uncertainties:

• Point-to-point uncertainties: This type of uncertainties changes between each run or

each kinematic. These types of uncertainties are caused by changes in experimental

conditions during data taking, and therefore their effect is uncorrelated between dif-

ferent data points. These include uncertainties arising from a change in the detector
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Kinematics: K3-4
2 = 3.962GeV , Q2 = 4.543 GeV

0
, p° = 24.2 θE = 6.427 GeV, 

 0.006947± = 1.002079 MC/Ydata Y
barn/srµ 5.366343e-07 ±Cross section = 7.740278e-05 

   

Cuts:
PID, One cluster cut

<0.035δ-0.035<
(rad)<0.040, 0.86<W(GeV)<1.05 

tar
-0.04<y'

(cm)|<4
tar

(rad)<0.080, |ytar-0.080<x'
)2W (GeV/c

0.85 0.9 0.95 1 1.05

T
E

)
×

L
T

×
N

/(
Q

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08 Data - dummy
Dummy
MC

= 4.9 MeV DataW∆

δ
0.04− 0.02− 0 0.02 0.04

T
E

)
×

L
T

×
N

/(
Q

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

 (rad)
tar

y'
0.04− 0.02− 0 0.02 0.04

T
E

)
×

L
T

×
N

/(
Q

0

0.005

0.01

0.015

0.02

0.025

 (rad)tarx'
0.05− 0 0.05

T
E

)
×

L
T

×
N

/(
Q

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

x= 2.0 mrad∆

 (m)
tar

y
0.05− 0 0.05

T
E

)
×

L
T

×
N

/(
Q

0

0.005

0.01

0.015

0.02

0.025

Figure 4.4. Data yield vs MC yield of kinematics K3-4 after increasing the field of Q2
by 0.9%. The red line shows the MC normalized yield, black points are the background
subtracted data, and the blue line shows the events from aluminum windows of the LH2
target.

efficiencies and data acquisition systems, and changes from one spectrometer setting

to another.

• Normalization uncertainties: This type of uncertainties affect all kinematics similarly.

An example of these uncertainty can be a systematic shift in the offset in the beam

current measurement device, the acceptance, the target thickness measurement, etc.

These uncertainties are presented in the Tab. 4.2. The kinematics taken in parallel with the

DVCS experiment were with low beam current and their uncertainties in the beam current

are larger than the GMp data taken in a dedicated run period. The uncertainties on the

radiative correction is mainly due to the choice of cutoff in W spectra. The typical point-to-
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Kinematics: K3-8
2 = 2.145GeV , Q2 = 7.992 GeV
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Figure 4.5. Data yield vs MC yield comparison of kinematics K3-8 after increasing field of
Q2 by 0.9%. The red line shows the MC normalized yield, black points are the background
subtracted data, and the blue line shows the events from aluminum windows of the LH2
target.

point uncertainty for the W cutoff ranging from 1 GeV/c2 to 1.06 GeV/c2 is about 0.8%. In

addition to this the normalization between the largest and smallest values of the W cutoff

was found to be about 1.0%. The difference is mainly coming from the shapes of the radiative

tail in the data and simulation as well as the result of unoptimized resolution matching of

the drift chamber and the optics matrices [8]. The model dependence of the cross section

was observed by calculating cross section using different models which is about 0.1% overall.

The rest of the uncertainties are discussed in respective chapters. The summary of the GMp

Fall 2016 LHRS kinematics, extracted elastic cross sections, point-to-point and statistical

uncertainties are presented in Tab. 4.4.
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Table 4.2
Summary of point-to-point and normalization uncertainties of the Fall 2016 LHRS GMp
experiment.

Source dσ/σ (%) (pt-pt) dσ/σ (%) (Norm.)
Beam charge (∆I = 0.06 µA) 0.6(at 10 µA) - 0.1(at 65 µA) 0.1

Scattering angle (∆θ = 0.2 mrad) 0.1 - 0.4 0.1 - 0.4
Beam energy (∆E = 5× 10−4) 0.3 0.3

Boiling <0.35 (at 10 µA) - 0(at 60 µA) 0.35 (at 60 µ A)
Optics 0.3 0.3

Track Reco 0.2 0.2
PID 0.1 0.1

Trigger 0.2 0.1
Target Length 0.1

Spectrometer acceptance 0.7 0.8
Radiative correction 0.8 1.0

Background subtraction 0.2 0.2
Cross section model 0.1

Total 1.2 - 1.3% 1.4- 1.6%

Table 4.3
Summary of the GMp Fall 2016 LHRS kinematics, extracted elastic cross sections, point-to-
point and statistical uncertainties.

Kinematic E0

(GeV)
Q2

(GeV2)
Ave. cur-
rent (µA)

dσ/dΩ
(µb/sr)

dσ/σ
(Pt-pt)
(%)

dσ/σ
(Stat.)
(%)

dσ/σ
(Norm.)
(%)

Pt-pt
+ Stat.
(%)

k1-1 2.222 1.577 56.831 1.449E-03 1.2 0.1 1.4 1.2
K3-4 6.427 4.543 64.071 7.740E-05 1.3 0.7 1.6 1.5
K3-6 6.427 5.947 66.521 1.108E-05 1.3 0.6 1.5 1.4
K3-7 6.427 6.992 64.605 2.898E-06 1.2 0.7 1.5 1.4
K3-8 6.427 7.992 65.067 8.192E-05 1.3 0.7 1.4 1.5
K4-9 8.518 9.002 67.155 1.285E-06 1.3 0.7 1.5 1.5
K4-10 8.518 9.807 66.345 5.871E-07 1.3 0.7 1.5 1.5
K4-11 8.518 11.18 65.434 1.543E-07 1.2 1.0 1.4 1.6
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Kinematics: K4-11
2 = 2.531GeV , Q2 = 11.187 GeV
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Figure 4.6. Data yield vs MC yield comparison of kinematics K4-11 after increasing field of
Q2 by 0.9%. The red line shows the MC normalized yield, black points are the background
subtracted data, and the blue line shows the events from aluminum windows of the LH2
target.
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Table 4.4
Summary of the GMp Fall 2016 RHRS kinematics, extracted elastic cross sections, point-to-
point and statistical uncertainties (uncertainties are not final).

Kinematic E0

(GeV)
Q2

(GeV2)
dσ/dΩ
(µb/sr)

dσ/σ
(Pt-pt)
(%)

dσ/σ
(Stat.)
(%)

dσ/σ
(Norm.)
(%)

Pt-pt
+ Stat.
(%)

k1-2 2.222 1.858 5.299E-04 1.8 0.2 2.6 1.8
K3-9 6.427 9.053 2.054E-07 1.9 1.0 2.1 2.1
K4-13 8.518 12.568 3.552E-08 2.1 2.3 2.5 3.1
K5-15 10.587 15.755 1.358E-08 2.2 1.8 2.5 2.3
K4-12 8.518 12.069 6.135E-08 1.8 1.2 2.2 2.2

4.0.2 Cross Section Extraction by Acceptance Correction Method

The goal of this analysis is to extract the electron-proton differential cross section at fixed

central angle. For this, data were binned in two dimensional E ′ and θ bins. In this analysis,

binning in E ′ and θ are converted to a binning in δ and ∆θ (= θ−θ0) respectively, which are

more suitable for application of the acceptance correction. For δ, the binning chosen was 30

bins over the range of ±6%, whereas for the ∆θ binning chosen was 90 bins over the range

of ±6 mrad.

The cross-section expressed in equation 4.1 does not only include single photon exchange but

contains the higher order QED effects such as two-photon exchange, emission of bremsstrahlung

photon before and after the scattering and virtual particle loops. The large radiative tail

in the reconstructed invariant mass distribution is due to the emission of bremsstrahlung

photons. In order to compare to the OPEA cross section, it requires that the tail be in-

tegrated into some cutoff in E ′, with a correction factor that includes higher order effects.

The integration was cut off at Wmax ≤ 1.05 GeV/c2 to avoid the threshold for single pho-

ton production. The final extracted cross section corrected for detector efficiencies, effective

solid angle, effective charge and counts from background events is then determined from the
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following equation,

dσ(θ)

dΩ
=
RC(Wmax)

L × ε

∫ Wmax

dE ′
N(E ′, θ)−NBG(E ′, θ)

∆Ω(E ′, θ)
, (4.10)

where NBG is the number of background events, L is the integrated luminosity, ε is the

product of the detector efficiencies and ∆Ω is the effective solid angle.

Figure 4.7. Left: Liquid hydrogen charge-normalized yield binned on 2-D grid in δ and θ
bins Right: Dummy charge-normalized yield binned on 2-D grid in δ and θ bins.

4.0.2.1 Procedure

For the elastic scattering cross section calculation, the radiative correction should be

applied for every θ bin after summing over the δ bins. So, the procedure to calculate the

cross-section is:

• For each two dimensional bin, calculate the efficiency corrected and dummy subtracted

yield after applying the cuts.

• Calculate the effective solid angle for each two-dimensional bin and divide the corrected

yield by effective solid angle.

• Sum over the δ bins to get bins just in θ.

• For each θ bin, run the standalone radiative correction code and calculate a correction

factor.
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• Calculate the bin-centering correction for each θ bin to put the cross-section at the

spectrometer central angle.

• Take the average of the cross-section extracted for each individual θ bin.

4.0.2.2 Acceptance Correction

The acceptance of the spectrometer represents the probability that a scattering event

coming from a point will be detected. This is one of the dominant sources of uncertainties

in determining the cross section. For HRS the acceptance is normally defined by various

apertures in the magnet system and the beam pipe. The HRS acceptance is a function of

electron momentum, the in-plane angle, the out of plane angle and the target y. The in-plane

and out of plane angles can be related to the full scattering angle by the following formula:

θ = cos−1(
cosθ0 − y′tarsinθ0√
x′2tar + y′2tar + 1

). (4.11)

As the inclusive cross section is independent of azimuthal angle, the acceptance is only a

function of two variables δ and θ i.e. A(δ, θ). In order to calculate A(δ, θ), MC events were

generated uniformly with the range of ±80 mrad in x′tar, ±50 mrad in y′tar and ±6% in δ

using a model of the spectrometer and take the ratio of the number of events accepted to

the number of events generated in the phase space. i.e.

A(δ, θ) =
Nacc(δG, θG)

NG(δG, θG)
, (4.12)

where Nacc(δG, θG) is the number accepted and NG(δG, θG) is the number of events generated

in each (δG, θG) bin. The subscripts gen denote the kinematics as generated. When using

the uniform generator, if the resolution is stable across the acceptance, one can use either

the generated events that are accepted or the reconstructed events that are accepted. But

if the cross section is changing with θ, the net number of events that migrate into a bin
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Figure 4.8. Left: Generated δ vs generated ∆θ. Right: reconstructed δ vs reconstructed ∆θ
in δ-∆θ space.

depends on the relative cross section of the neighboring bin. So, in this case, reconstructed

events that are accepted were used to take into account the bin migration. i.e.

Figure 4.9. Left: HRS acceptance in δ-∆θ space. Right: HRS effective solid angle plotted
in δ-∆θ space.

A(δ, θ) =
NR(δR, θR)

NG(δG, θG)
, (4.13)
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where the subscripts R denote the kinematics as reconstructed. The acceptance here depends

on the solid angle ∆Ωgen(θ) into which events are generated. Hence , the effective solid angle

coverage for each 2-D bin is given by

∆Ωeff (δ, θ) = A(δ, θ)∆Ωgen(θ) (4.14)

=
NG(θ)×∆x′tar ×∆y′tar

N total
gen

,

where NG(θ) is the number of generated events in each θ bin and N total
gen represents the total

number of events generated. Here, ∆Ωeff (δ, θ) is independent of the size of ∆Ωgen(θ). The

Figure 4.10. Left: Acceptance corrected charge normalized yield δ-∆θ space. Right: Accep-
tance corrected charge normalized yield in ∆θ.

∆Ωeff distribution determined from HRS model for kinematics K3-7 is shown in Fig 4.9.

The solid angle of the HRS is about 6 msr. This is slightly reduced for an extended target.

The next step is to divide the efficiency corrected yield defined in the Fig. 4.7 by the effective

solid angle. The first 2-D histogram of δ vs θ in Fig. 4.10 represents the acceptance corrected

charge normalized yield in δ-∆θ space. Then a summation over δ bins has been made to get

bins just in θ as shown in the right plots of Fig. 4.10.

4.0.2.3 Bin-Centering Correction and Averaging

If the cross section linearly depends on the scattering angle, the extracted cross section

in each bin can simply be averaged. But in this case the cross section varies non-linearly
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across the angular acceptance because of the cross section. So to get an average of the cross

sections in each θ, the θ dependence of the cross section must be corrected. The process of

removing of the θ dependence of cross section by reproducing it at the central angle of the

spectrometer is called θ-bin centering. To do this the following correction has been applied:

[dσ(θ)

dΩ

]
BC,i

=
dσ(θi)

dΩ

σmod(θ)

σmod(θi)
(4.15)

where θi is the angle for ith bin and σmod is the value of a cross section model. This correction
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Figure 4.11. Extracted cross section for each ∆θ.

should apply after subtracting all background and all other corrections having θ dependence

including radiative corrections. Finally, the bin centered cross section can be averaged over

the θi to give the measured cross section at the spectrometer central angle as shown in

Fig. 4.12. In Fig. 4.11 the green points represent the uncorrected cross sections, the red

points are the cross sections after applying acceptance correction, and the blue points are the

cross sections after applying both acceptance and bin centering cross section. The statistical

uncertainties for both LH2 data, background subtracted events, and acceptance correction
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Figure 4.12. Extracted cross section in each ∆θ.

uncertainties due to statistical errors on the Monte Carlo are included. Table 4.5 shows the

comparison of cross section extracted from the ratio and acceptance correction methods. For

six out of eight points, the average cross section agree better than 0.5%.

Table 4.5
Tabular comparison of extracted cross section from MC ratio and acceptance correction
methods.

Kinematic θ0 p0 (dσ/dΩ)Ratio (dσ/dΩ)Acc.cor. % diff.
(degrees) (GeV) (µb/sr) (µb/sr) (%)

k1-1 42.0 1.366 1.449E-03 1.463E-3 -0.95
K3-4 24.2 3.962 7.740E-05 7.668E-05 0.93
K3-6 30.9 3.224 1.108E-05 1.093E-05 1.30
K3-7 37.0 2.672 2.898E-06 2.900E-06 -0.10
K3-8 44.5 2.145 8.192E-05 8.265E-05 -0.88
K4-9 30.9 3.685 1.285E-06 1.282E-06 0.23
K4-10 34.4 3.259 5.871E-07 5.862E-07 0.15
K4-11 42.0 2.531 1.543E-07 1.579E-07 -2.4
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CHAPTER 5

RESULTS

The elastic cross sections measured by the GMp experiment are shown in Fig. 5.1. This

shows the measured cross section divided by the cross section calculated assuming dipole

form factors for both GE and GM i.e.

(
dσ

dΩ

)
dipole,1γ

=

(
dσ

dΩ

)
mott

G2
D(Q2)(ε+ τµ2

p)

ε(1 + τ)
. (5.1)

These data were taken at smaller ε than the SLAC data of Sill. In this dissertation the

final results for five of the kinematic points from the Fall 2016 run of GMp are presented.

As well as, the preliminary results for two data points taken with the RHRS. Final analysis

of the RHRS data will be forthcoming once the optics optimization has been completed.

Additionally, the data points at Q2 = 1.8, 9.0, 12.5, 15.7, 5.9, 6.9 and 9.0 GeV2 from Fall

2016 originally analyzed by L. Ou [58], have been included, but have been updated to include

the following corrections:

1. increased Q2 quad in the simulation field based upon the study of Ref. [60], which has

a small impact on the acceptance on the order of few tenths of a percent,

2. final determination of the target z position offset from hall center was studied in Sec-

tion 4.0.1.3 and implemented in MC which has a small effect on the acceptance,

3. the absolute current offset of 0.13 µA found in Section 3.4.

The data points at Q2 = 1.66, 1.51, 1.10 and 0.66 GeV2 are from the Spring 2015 run period

and were analyzed by Y. Wang [61]. The low Q2 data collected provide a benchmark for the

measurements, as the cross section is known well at low Q2.

It is clear from Fig. 5.1 that the GMp data at Q2>6 GeV2 provide a significant improve-

ment in precision. For instance, at Q2 of 9.8 GeV2 the elastic cross section measured by this
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Figure 5.1. The results of extracted e−p cross sections divided by the cross section calculated
in the OPEA assuming a dipole form for bothGE andGM as a function ofQ2. The inner error
bar in GMp data are statistical and outer error bars are combined point-to-point systematic
and statistical uncertainties.

experiment has a statistical uncertainty of 0.7% and a point-to-point systematic uncertainty

of 1.3%, whereas the measurement of Sill at Q2 = 9.6 GeV2 has a statistical uncertainty

of 2.4% and a point-to-point uncertainty of 3.6%, with GMp experiment reducing the total

uncertainty at this Q2 almost a factor of 3. In addition, the normalization uncertainty on

the GMp data has been estimated to be 1.8%, while that on the Sill data was estimated to

be 3%.

5.0.3 Model Dependent Extraction of GM

Once the elastic cross section has been determined the magnetic form factor can be

extracted. GM versus Q2 from a model dependent extraction is shown in Fig. 5.2. This

method utilized a parametrization of the GE to GM ratio determined from a fit in the OPEA

to the existing cross section data [2] and determined GM from the cross section measured at
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each kinematic from

G2
M =

σR

1 + ε
τ

G2
E

G2
M

. (5.2)

The results of the form factor measurement for Fall 2016 kinematics are given in Table 5.1.

The uncorrelated uncertainties reflect the point-to-point systematic and the statistical uncer-

tainties added in quadrature, while the correlated uncertainty shown as the green histogram

at the bottom are calculated assuming a 20% uncertainty on the GE/GM value used to ex-

tract GMp from the cross section data. As given in Section 1.5, in the TPE hypothesis the

reduced cross section can be written as

σ̃r = G2
M + 2GMRe(δG̃M) +

ε

τ

[
G2
E +

4τ 2

M2
Re(F̃3)(GM +

1

τ
GE) + 2GERe(G̃M)

]
, (5.3)

If the TPE hypothesis is correct, then the intercept extracted from the Rosenbluth sepa-

rations is actually (GM)2 + 2 × GM × Re(δGM). Additionally, the GMp data set provides

significant additional constraints to extract the F3 form factor and the complex contributions

to GE (δGE) and GM (δGM).

5.0.4 Rosenbluth Separation

The model independent GM can be extracted by using a Rosenbluth separation. This

method has following advantages:

1. it provides a check of the consistency of the ε dependence of data sets,

2. it provides a model independent extraction of the form factor within the OPEA,

3. it also illustrates the impact of the GMp data on our knowledge of form factor at large

Q2.
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Table 5.1
Summary of magnetic from factors relative to the dipole form factor extracted utilizing the
GE to GM ratio using a parametrization from the fits to the existing data.

Q2 (GeV2) Gp
M/(µGD) Correlated un.

1.57 1.0631±6.378e-03 0.0146
4.54 1.0225±7.668e-03 0.0080
5.94 1.002±7.013e-03 0.0051
6.99 9.805e-01±6.864e-03 0.0031
7.99 9.528e-01± 7.146e-03 0.0017
9.00 9.432e-01±7.074e-03 0.0016
9.81 9.259e-01±6.944e-03 0.0016
11.3 8.978e-01±7.190e-03 0.0005
1.86 1.051e+00±9.992e-03 0.0110
9.05 9.228e-01±1.015e-02 0.0008
12.5 8.502e-01±1.360e-02 0.0002
15.7 8.309e-01±1.121e-02 3.02e-05
12.1 8.667e-01±9.534e-03 0.0002

The results from this analysis will be compared with the results obtained from the model

dependent analysis. Examining Fig 1.10 it can be seen that there are several previous

measurements at Q2 close to 1.5, 5.0, 5.8, 7.0 and 9.1 GeV2. As few of those were taken

at exactly the same Q2, a correction factor was applied to move all data to a common Q2,

utilizing the model as

σR(Q2
c , ε) = σR(Q2)× σMod

R (Q2
c , ε)

σMod
R (Q2, ε)

. (5.4)

Here, σMod is the value obtained from the fit to previous cross section data as discussed in

Section 1.6 and Q2 (Q2
c) represent the measured (central) Q2.

In order to perform Rosenbluth separations at a particular Q2, each separation must

contain three different ε points. The plots of reduced cross section normalized by G2
D versus

ε at the five different Q2 mentioned above along with the best fit straight line are shown in

Figures 5.3 through 5.7. The uncertainty on each point represents the statistical and point-
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Figure 5.2. The results of model dependent extraction of GMp as a function of Q2. The
uncorrelated uncertainties reflect the point-to-point systematic and the statistical uncertain-
ties added in quadrature, while the correlated uncertainty shown as the green histogram at
the bottom are calculated assuming a 20% uncertainty on the GE/GM value used to extract
GMp from the cross section data.

to-point systematic uncertainties added in quadrature. Currently no relative normalizations

between the data sets have been applied. Table 5.2 lists the electric and magnetic form

factors relative to the dipole form factor along with their uncertainties extracted from the

Rosenbluth separation.

Table 5.2
Summary of the Rosenbluth method form factors relative to the dipole form factor.

Q2

(GeV2)
Gp
M/(µpGD) Gp

E/(GD) µpG
p
E/Gp

M

1.702 1.049 ± 0.007 0.983 ± 0.045 0.936 ± 0.038
5.001 1.017 ± 0.008 0.946 ± 0.135 0.932 ± 0.081
5.831 0.994 ± 0.010 1.053 ± 0.187 1.059 ± 0.123
7.073 0.966 ± 0.014 1.120 ± 0.294 1.159 ± 0.207
9.128 0.914 ± 0.019 1.301 ± 0.453 1.424 ± 0.389
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Figure 5.4. Reduced cross section normalized by G2
D versus ε at Q2 =5.0 GeV2.
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Figure 5.5. Reduced cross section normalized by G2
D versus ε at Q2 =5.8 GeV2.
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Figure 5.6. Reduced cross section normalized by G2
D versus ε at Q2 =7.0 GeV2.
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Figure 5.7. Reduced cross section normalized by G2
D versus ε at Q2 =9.1 GeV2.

At Q2 of 7 GeV2 (Fig. 5.6) GMp contributes one out of four points with a factor of two

smaller uncertainty than the other data, significantly reducing the uncertainty. At Q2 of

9.1 GeV2, there are two GMp points out of four of which one of the data points has an

uncertainty four times smaller than the existing data sets. The difference in uncertainties

between the two GMp points at this Q2 is because the ε = 0.332 point was taken with

the RHRS and is awaiting final optimization of the spectrometer optics, which will further

reduce the uncertainties on the extracted form factors. Inclusion of the GMp data along

with that of Sill and Andibhais results in a larger GE/GM ratio with significantly reduced

uncertainty, further increasing the tension with the polarization transfer results.

The results for the ratio Gp
E/Gp

M from the Rosenbluth separations including the GMp

data along with those from previous experiments are shown in Fig. 5.8, where it can be seen

that this experiment improved the precision by the factor of two or more further highlighting

the discrepancy between Rosenbluth separations and the polarization transfer results. For
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Figure 5.8. Extracted µGp
E/Gp

M values from the Rosenbluth separation method (solid sym-
bols) and from the JLab measurements of recoil polarization (open symbols) plotted versus
Q2 including the Super-Rosenbluth data [16]. The polarization transfer data includes GEp
(1) [17, 18], GEp (2) [19, 20] and GEp (3) [21] data. The GMp-Global at Q2 of 5 GeV2

has been offset by 0.1 GeV2 for clarity. The fits in the figure are from Gayou [22] and
Arrington [23].

instance at Q2 of 9.1 GeV2 the GMp-Global uncertainty is about 0.388 whereas the Andivahis

data at Q2 of 8.8 GeV2 has uncertainty 0.757. The reduction in uncertainty at 9.1 GeV2 is

mostly coming from GMp data, whereas at other Q2 the reduction is due to the combination

of uncertainties from other data. Note that at 9 GeV2, the error bar went significantly down

as GMp added two points with significantly better uncertainty overall than existing data.

Going from a two point separation to a four point separation with reduced uncertainty on

the new data significantly reduces the uncertainty on the form factors at that Q2.

Fig. 5.9 shows the comparison of GMp extracted by using the model dependent method

and GMp-Global data extracted by using the Rosenbluth separation method. This plot

shows that the GMp extracted data using both methods are in good agreement.
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The Fig. 5.10 shows Q4Gp
M/µp as a function of Q2. The plot shows the proton magnetic

form factor approximately satisfies the pQCD scaling prediction up to the highest Q2 of the

GMp data, but have slow variations at high Q2.
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CHAPTER 6

CONCLUSION

The GMp experiment was one of the first two experiments to run in Jefferson Lab experi-

mental Hall A after the 12 GeV energy upgrade. This experiment performed a high precision

measurement of the proton ep elastic scattering cross section to determine the magnetic form

factor over a wide range of Q2 from below 1 GeV2 to 16.5 GeV2. This dissertation utilized

all GMp kinematics from Fall 2016 and presented the results for the form factors extracted

from two methods. In the Rosenbluth separation method, the extracted cross sections ob-

tained from this experiment and previous measurements were combined to extract the both

magnetic form factor (GM), and electric form factor (GE) at different Q2 up to Q2 = 9 GeV2.

The second, model dependent method utilized the ratio µGE/GM from a fit to the existing

world data to extract GM from each cross section measurements with both GM results are

in good agreement and with significantly reduced uncertainties to existing data. The results

from the Spring 2016 kinematics are still being finalized.

The measurement of nucleon form factors has provided significant insight into the sub-

structure of the nucleon. The existing form factor data at low Q2 cannot be treated by

pQCD. On the other hand in the high Q2 regime pQCD is believed to give the correct

asymptotic Q2 dependence. For the moderate range of Q2 of 1-20 GeV2, neither pQCD nor

a meson description are able to fully describe the data. This range of Q2 is very important

as the virtual photon becomes more sensitive to the internal quark structure of the nucleon.

Also, the electric and magnetic form factors exhibit scaling when extracted using the Rosen-

bluth method. This sort of behavior was not observed in the polarization transfer technique,

which is believed to be an indication that two-photon exchange plays a vital role in the

Rosenbluth results. The results of this analysis showed that there is still an inconsistency

between Rosenbluth and polarization transfer measurement at Q2 around 9 GeV2. This data
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can provide additional constraints on contributions from two-photon exchange. This will be

the focus of future studies including a global fit with the new precision GMp data.
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