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We propose the approach for a lattice investigation of light cone distribution amplitudes (LCDA) of
heavy-light mesons, such as the B meson, using the formalism of parton pseudodistributions. A basic
ingredient of the approach is the study of short-distance behavior of the B-meson Ioffe-time distribution
amplitude (ITDA), which is a generalization of the B-meson LCDA in coordinate space. We construct a
reduced ITDA for the B meson, and derive the matching relation between the reduced ITDA and the
LCDA. The reduced ITDA is ultraviolet finite, which guarantees that the continuum limit exists on the
lattice.
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I. INTRODUCTION

The B-meson physics plays a remarkable role in particle
physics, both in a detailed examination of the Standard
Model and in the search of new physics beyond the
Standard Model. One of the most important functions
describing the structure of the B-meson is its light cone
distribution amplitude (LCDA) [1]. It is an inherent part of
hard-collinear factorization theorems for many exclusive B
decay reactions [2–8], where the amplitude is factorized
into a convolution of the hard scattering kernel and the B-
meson LCDA. It is also an essential element in the light
cone sum-rule studies [9–15] of the B-meson decays.
The perturbative structure of the B-meson LCDAmay be

studied in a model-independent way, e.g., using the
renormalization group equation [16–19] and constraints
on the perturbative tail of the leading-twist LCDA ϕþ

B ðω; μÞ
[20,21]. On the other hand, the nonperturbative aspects of
B-meson LCDA has been mainly explored within models
based on QCD sum rules [22,23].
A first-principle approach to study the nonperturbative

aspects of the B-meson LCDA may be provided by lattice
gauge simulations. However, there was not much work in
this direction. The difficulties arise from the fact that, in the
heavy quark effective theory (HQET), the B-meson LCDA
is defined through the matrix element of a nonlocal operator

in which the heavy and light quarks are separated along the
light cone.
Thus it cannot be calculated directly on the Euclidean

lattice. Moreover, unlike in the case of the parton distri-
bution functions of the nucleon, it is impossible to access
B-meson LCDA by computing its moments, just because
the operator product expansion does not exist in this case
[22]. One might propose to calculate instead the inverse
moments of LCDA, which are more relevant to phenom-
enology. However, they are not related to matrix elements
of local operators.
The recent developments in the study of parton distri-

bution functions (PDFs) on the lattice (e.g., quasi-PDFs
[24–26], pseudo-PDFs [27–29], lattice cross sections
[30,31]) provide the possibility of studying light cone
parton distributions directly with lattice simulations. In
particular, there were attempts of accessing the leading
twist B-meson LCDA within the quasidistribution ampli-
tude (quasi-DA) approach, either in coordinate space [32]
or momentum space [33]. Although the matching relation
that links quasi-DA and LCDA has been investigated, it is
still not clear how one can approach the continuum limit
because of the existence of ultraviolet (UV) singularities.
In this paper, we propose to deal with the UV singularities

using thepseudo-PDFapproach [27]. Its essential idea is that,
if the operator is multiplicatively renormalizable, one can
choose a proper ratio that defines an UV finite reduced Ioffe-
timedistribution. To this end,wewill study the short-distance
behavior of the B-meson Ioffe-time distribution amplitude
(ITDA) and construct a reduced ITDA.
Using the results of the one-loop calculation, we will

show that the reduced ITDA can be factorized into the
position-space LCDA and a hard function. Furthermore, the
UV finiteness allows the reduced ITDA calculated on
the lattice to approach its continuum limit. This result is

*szhao@odu.edu
†radyush@jlab.org

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 054022 (2021)

2470-0010=2021=103(5)=054022(7) 054022-1 Published by the American Physical Society

https://orcid.org/0000-0002-2182-9710
https://orcid.org/0000-0002-9326-1300
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.054022&domain=pdf&date_stamp=2021-03-19
https://doi.org/10.1103/PhysRevD.103.054022
https://doi.org/10.1103/PhysRevD.103.054022
https://doi.org/10.1103/PhysRevD.103.054022
https://doi.org/10.1103/PhysRevD.103.054022
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


crucial for building a practical method of accessing B-
meson LCDA on the lattice.

II. B-MESON IOFFE-TIME DISTRIBUTION
AMPLITUDE

Our starting object is a nonlocal heavy-light operator
Oμðz;0;vÞ≡q̄ðzÞSðz;0Þγμγ5hvð0Þ in HQET, where Sðz; 0Þ≡
P exp½igzν

R
1
0 dtA

νðtzÞ� is a Wilson line, and hv is the heavy
quark field inHQET,with v denoting its velocity, v2 ¼ 1 and
hv satisfying=vhv ¼ hv. The light quark is located at z, where
z is a spacelike vector. By Lorentz covariance, the meson-to-
vacuum matrix element can be parametrized as

h0jq̄ðzÞSðz; 0Þγμγ5hvð0ÞjB̄ðvÞi
¼ iFðμÞ½vμMB;vðν;−z2; μÞ þ zμMB;zðν;−z2; μÞ�; ð1Þ

whereMB;vðν; μÞ andMB;zðν; μÞ are two scalar functions and
ν≡ v · zwill be referred to as the “Ioffe time” of theBmeson
(note that in the QCD case the Ioffe time is the inner product
ofmomentump and z [34,35]).FðμÞ is the decay constant of
the B meson defined by the matrix element of the local
current

h0jq̄ð0Þγμγ5hvð0ÞjB̄ðvÞi ¼ ivμFðμÞ: ð2Þ

Unlike the QCD case, decay constant in HQET is scale
dependent.
When z2 → 0, the MB;v term gives the twist-2 distri-

bution while MB;z is a higher-twist contribution. Note
that the local limit has been included in the decay
constant, so z2 → 0 infers the light cone limit for the
distributions MB;v and MB;z. Because we are only
interested in the leading-twist distribution at present,
we rename MB;v as MB for short, and call MBðν;−z2; μÞ
the ITDA of the B meson.
If z is a lightlike vector, e.g., only the minus component

of z is nonzero, then ITDA will reduce to the light cone
ITDA Iþ

B ðν; μÞ, i.e., MBðν; 0; μÞ ¼ Iþ
B ðν; μÞ, which is

actually the LCDA in position space. The B-meson
LCDA that appears in the factorization theorems of
B-meson exclusive decay is defined by the Fourier trans-
form of Iþ

B ðν; μÞ [1]

ϕþ
B ðω; μÞ ¼

vþ

2π

Z
∞

−∞
dz−e−iωv

þz−Iþ
B ðvþz−; μÞ: ð3Þ

There are no light cone separations on the Euclidean
lattice, but as proposed in Refs. [24,36], one can study
equal-time separations z ¼ ð0; 0; 0; z3Þ. The same idea may
also be applied for the B-meson LCDA. In this case,
ν ¼ −v3z3 and z2 ¼ −z23. One can choose the Lorentz

index μ ¼ 0 in Eq. (1), so that the higher-twist part zμMB;z

disappears. In the quasi-PDF-based approaches [32,33] one
deals with the B-meson quasi-DA ϕ̃þ

B ðω; v3; μÞ that can be
expressed in terms of ITDA as

ϕ̃þ
B ðω; v3; μÞ ¼

jv3j
2π

Z
∞

−∞
dz3eiωv3z3MBð−v3z3; z23; μÞ: ð4Þ

A matching relation linking the quasi-DA and LCDA was
derived in Ref. [33].
However, integration over the parameter z3 present in

both arguments of the ITDA MBð−v3z3; z23; μÞ mixes two
distinct phenomena: the ν dependence that governs the ω
shape of the LCDA, and the z23 dependence that corre-
sponds to the probing scale for the LCDA. For this reason,
we propose to proceed along the lines of the pseudo-PDF
approach [27,29] in which these phenomena are clearly
separated.

III. HARD CORRECTION AT ONE LOOP

Formally, the LCDA in coordinate space Iþ
B ðν; μÞ can be

approached by taking z2 → 0 limit of ITDAMBðν;−z2; μÞ.
However, logarithmic dependence on z2 will be generated
when hard corrections of ITDA are included. As a result,
the z2 → 0 limit cannot be approached directly, and a
perturbative matching is needed.
Under quantum correction, the hard part will be gen-

erated by gluon exchanges. As indicated in Refs. [27,37],
the hard contribution can be determined at operator level
with coordinate representation. The Feynman diagrams are
presented by Fig. 1. A calculation has been performed in
Ref. [32], where the UVand IR singularities are regularized
by dimensional regularization (DR). To distinguish the UV
and IR singularities for ITDA, we will adopt Polyakov
regularization [38] for UV singularities, in which the gluon
propagator in coordinate representation is replaced by
−gμν=4π2z2 → −gμν=4π2ðz2 − a2Þ. Collinear singularities
are regularized by the mass of light quark m; the soft
singularity is regularized by DR. We will work in Feynman
gauge but the results are gauge invariant.

(a) (b) (c)

FIG. 1. One-loop hard contribution to nonlocal heavy-light
operator in HQET. The horizontal double line represents the
gauge link, while the vertical double line denotes the heavy quark
in HQET.

SHUAI ZHAO and ANATOLY V. RADYUSHKIN PHYS. REV. D 103, 054022 (2021)

054022-2



According to Eq. (1), to study the hard contribution of
MBðν;−z2; μÞ, one should consider the one-loop correction
to both the nonlocal operator and decay constant. We
consider the decay constant first. Note that the B-meson
decay constant in HQET is UV divergent and scale
dependent, which is different from the pion decay constant
case. Under Polyakov regularization, the one-loop hard
correction to decay constant is

FðaÞ ¼ FðaÞð0Þ
�
1 −

αsCF

2π

�
3

4
ln
a2m2e2γE

4
þ 21

8

��
; ð5Þ

where γE is the Euler-Mascheroni constant and FðaÞð0Þ
denotes the decay constant without the hard correction,
while FðaÞ is the decay constant in which the hard
correction is included.
Now we turn to the one-loop hard contribution of the

nonlocal operator. To begin with, we consider the heavy
quark and light quark self energies. Up to one loop, we have

δZh ¼ −
αsCF

2π

�
1

ϵIR
þ ln

a2e2γE

4
þ ln 4πμ2IRe

−γE

�
;

δZ2 ¼ −
αsCF

2π

�
−
1

2
ln
a2m2e2γE

4
þ 1

ϵIR

þ ln
4πμ2IRe

−γE

m2
þ 9

4

�
ð6Þ

for heavy and light quarks, respectively. Here d ¼ 4 − 2ϵIR
is the dimension of space-time in DR, and μIR denotes the
infrared (IR) scale associated with the soft singularity
1=ϵIR. The self-energy of the gauge link has already been
calculated in PDF case. The result reads [37,39]

ΓΣðz;aÞ¼
αsCF

2π

�
−
π

a

ffiffiffiffiffiffiffiffi
−z2

p
þ ln

−z2

a2
þ2

�
þOðz2Þ: ð7Þ

The heavy-quarkWilson line vertex is presented in Fig. 1
(a). In HQET, the heavy quark can be expressed as a Wilson
line along the v direction. At one-loop level, the exchange
of gluon between Wilson lines along v and n directions
contributes

Oμðz; 0; vÞ ¼ αsCF

2π
q̄ðzÞγμγ5hvð0Þ

×

�
ln a2

�
ln 2iv · z −

1

2
lnð−z2Þ

�

þ 1

4
ln2ð−z2Þ − ln22iv · z −

π2

6

�
þOðz2Þ:

ð8Þ

Note that the exchange of the gluon between the two
Wilson lines generates a cusp singularity [38], which is
represented by ln a2. Another interesting feature here is
that, because of the existence of cusp singularity, there is a
double logarithmic dependence on z2, which is very
different from the nucleon Ioffe-time distribution function
case.
The light-quark Wilson line vertex is presented in

Fig. 1(b). This contribution is the same as the vertex
contribution in the PDF operator (see, e.g., Ref. [37]).
Direct calculation gives

Oμðz;0;vÞ¼ αsCF

2π

�
1

2

�
ln
−z2

a2
−1

�
q̄ðzÞγμγ5hvð0Þ

−
Z

1

0

du

�
ln
−z2m2e2γE

4

ū
u
þ ūþð2−uÞ lnu2

u

�
þ

× q̄ðūzÞγμγ5hvð0Þ
�
þOðz2Þ; ð9Þ

where ū≡ 1 − u. The plus distribution ½fðuÞ�þ is defined
by

R
1
0 du½fðuÞ�þTðuÞ≡

R
1
0 dufðuÞ½TðuÞ − Tðu0Þ�, where

u0 is the pole of fðuÞ, and TðuÞ is a test function.
Figure 1(c) represents the contribution from interaction

between light and heavy quarks. To calculate this contri-
bution, we adopt the nonrelativistic approximation, where
the momentum of light quark is given by p ¼ mv. Under
this approximation, we have

Oμðz;0;vÞ¼−
αsCF

2π

��
2

u
þ lnðiumv ·zeγEÞ

�
þ

−
�
1

ϵIR
−1þ ln

4πμ2IRe
−γE

m2
− lnðimv ·zeγEÞ

�
δðuÞ

�

× q̄ðūzÞγμγ5hvð0ÞþOðz2Þ: ð10Þ

The Lorentz structure of the type γμ=zγ5 has been neglected
because it yields a higher-twist contribution to the ITDA.
One may notice that the box diagram has no ln z2

dependence, so that it gives the same contribution to
the light cone ITDA. This means that the box diagram
does not contribute to the matching relation. This has
been confirmed by the calculation in momentum
space [33].
Adding all contributions together, the soft IR singular-

ities 1=ϵIR, as well as the logarithmic dependence on the
soft scale μIR, are canceled. According to Eqs. (1) and (5),
one can derive the one-loop hard contribution of the ITDA
MBðν;−z2; μÞ:
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MBðν;−z2; aÞ ¼ MBðνÞð0Þ þ
αsCF

2π

��
−
π

a

ffiffiffiffiffiffiffiffi
−z2

p
þ 3

2
ln
−z2

a2
þ 2

þ ln a2
�
ln 2iν −

1

2
lnð−z2Þ

�
−
π2

6
− ln22iνþ 1

4
ln2ð−z2Þ þ 1

2
ln
a2

4
− ln iν

�
MBðνÞð0Þ

−
Z

1

0

dw

�
w
w̄
ln
−z2m2e2γE

4
þ lnðiw̄mνeγEÞ þ 2

w̄
þ wþ ð2 − w̄Þ ln w̄2

w̄

�
þ
MBðwνÞð0Þ

�
þOðz2Þ: ð11Þ

IV. REDUCED IOFFE-TIME DISTRIBUTION
AMPLITUDE

The hard contributions above involve UV singularities
that are regularized by a. In lattice computations, the matrix
elements are calculated on discrete space-time. The UV
singularities correspond to the singularities in the con-
tinuum limit (i.e., the lattice spacing a → 0). Although the
ITDA can be computed on the lattice, however, the UV
divergences obstruct to approach the result in continuum
space-time from lattice data. Thus one should renormalize
the UV singularities for a practical lattice evaluation.
Based on the auxiliary field formalism [40], it has been

shown that the off light cone operator defining the B-meson
quasi-DA is multiplicatively renormalizable [33]. So, the
bare and renormalized operators are related by

½q̄ðzÞγμγ5hvð0Þ�R ¼ Zðz · v; z2;ΛÞq̄ðzÞγμγ5hvð0Þ; ð12Þ

where Z is a renormalization factor and Λ denotes a cutoff.
A similar equation can be written down for the decay
constant. The operator with a superscript “R” denotes the
renormalized operator while the operator without it denotes
a bare one. The multiplicative renormalizability verified in
Ref. [33] will be the foundation of establishing a practically
calculable quantity on the lattice.
Since the renormalization relation holds at operator level,

it is valid for any matrix element of the operator. For
example, one can replace B-meson state with the leading
Fock state of Bmeson. Similar to the definition of B-meson
ITDA, such matrix element can be parametrized as

h0jq̄ðzÞγμγ5hvð0ÞjbðvÞq̄ðωvÞi ¼ ivμfðμÞmBðων;−z2Þ;
ð13Þ

where fðμÞ and mBðων; z2Þ are the “decay constant” and
ITDA of the Fock state jbðvÞq̄ðωvÞi, respectively; ωv is the
momentum carried by the light quark. Note that the higher-
twist contribution that is proportional to zα has been
neglected. fðμÞ is defined through matrix element of local
operator

h0jq̄ð0Þγμγ5hvð0ÞjbðvÞq̄ðωvÞi ¼ ivμfðμÞ: ð14Þ

As discussed above, the UV divergence only depends on
the operator, i.e., the matrix elements of hadron state and
its Fock state should involve the same UV structure.
Furthermore, the HQET operator is multiplicatively renor-
malizable, so the ratios of hadron and Fock-state matrix
elements should be UV finite:

FRðμÞ
Fðμ; aÞ ¼

fRðμÞ
fðμ; aÞ ; ð15Þ

FRðμÞMR
Bðν;−z2Þ

Fðμ; aÞMBðν;−z2; aÞ
¼ fRðμÞmR

Bðων;−z2Þ
fðμ; aÞmBðων;−z2; aÞ

: ð16Þ

These relations indicate that for the ratio of meson and
Fock-state ITDAs, the continuum limit exists on the lattice,
therefore the ratio can be evaluated with lattice simulations.
For the sake of simplicity, we define a reduced ITDA
M̄ðν;−z2Þ by dividing Fock-state ITDA at ω ¼ 0:

M̄Bðν;−z2Þ ¼
MBðν;−z2; aÞ
mBðων;−z2; aÞ

				
ω¼0

: ð17Þ

Because Eq. (11) is a general relation which is valid for
ITDAs of both meson state and its leading Fock state
ITDAs, one can immediately get the one-loop correction to
the denominator of Eq. (17). The result reads

mBðων;−z2; aÞjω¼0

¼ mBðωνÞð0Þjω¼0

þ αsCF

2π

�
−
π

a

ffiffiffiffiffiffiffiffi
−z2

p
þ 3

2
ln
−z2

a2
þ 2

þ ln a2
�
ln 2iν −

1

2
lnð−z2Þ

�
−
π2

6
− ln22iν

þ 1

4
ln2ð−z2Þ þ 1

2
ln
a2

4
− ln iν

�
mBðωνÞð0Þ

				
ω¼0

þOðz2Þ: ð18Þ

Then, the one-loop correction of the reduced ITDA is
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M̄Bðν;−z2Þ ¼ M̄BðνÞð0Þ −
αsCF

2π

Z
1

0

dw

�
w
w̄
ln
−z2m2e2γE

4
þ lnðiw̄mνeγEÞ þ 2þ wþ ð2 − w̄Þ ln w̄2

w̄

�
þ
M̄BðwνÞð0Þ þOðz2Þ:

ð19Þ

It is easy to see that the linear and logarithm divergences that
are related to the link are canceled; the cusp singularity that
arises from the gluon exchange between heavy quark and
link is canceled as well. This indicates the UV finiteness of
the reduced ITDA. Thus it can be evaluated on the lattice,
and the continuum limit can be approached. Furthermore, it
was pointed out that the denominator of the reduced-ITDA is
not IR sensitive [27], thus the IR structure is not modified in
the ratio. This is also verified by the one-loop result (18).
In addition, the one-loop correction of the reduced ITDA

is a plus distribution. If we define a quasi-DA from the
reduced ITDA by taking Fourier transform with z3, this will
lead to a rapidly decreasing behavior of the corresponding
quasi-DA ϕ̃ðω; v3; μÞ at large ω.

On the lattice, the denominator in the reduced ITDAwill
be evaluated nonperturbatively. However, at short distan-
ces, it can be calculated in perturbation theory. Thus, this
ratio defines a nonperturbative renormalization scheme for
the B-meson ITDA.

V. MATCHING RELATION

The reduced ITDA and the MS LCDA can be linked by a
matching relation. Similar to the PDF case, one can use the
nonlocal light cone operator product expansion. To deter-
mine the hard function, we also need the one-loop
correction to the light cone ITDA, which can be extracted
from the one-loop correction to the light cone operator [41].
The result reads

Iþ
B ðν; μÞ ¼ Iþ

B ðν; μÞð0Þ
�
1 −

αsCF

2π

�
ln2ðiμνeγEÞ þ lnðiμνeγEÞ þ 5π2

24

��
þ αsCF

2π

Z
1

0

dw

�
w
w̄
ln

μ2

w̄2m2
−
2

w̄

− lnðiw̄eγEmνÞ
�
þ
Iþ
B ðwν; μÞð0Þ þOðα2sÞ: ð20Þ

One can find that the singularities regularized by ln m2 are the same for the reduced-ITDA and light cone ITDA. Then, a
matching formula for reduced ITDA and light cone ITDA can be written down:

M̄Bðν; z23Þ ¼ Iþ
B ðν; μÞ þ

αsCF

2π

��
ln2ðiμ̃νÞ þ lnðiμ̃νÞ þ 5π2

24

�
Iþ
B ðν; μÞ −

Z
1

0

du

�
u
ū

�
ln
z23μ̃

2

4
þ 1

�
þ 2

ln ū
ū

�
þ

�
Iþ
B ðuν; μÞ

þOðα2sÞ; ð21Þ

where μ̃≡ μeγE . We have chosen z ¼ ð0; 0; 0; z3Þ so that
the reduced ITDA can be computed on the lattice. This
relation allows one to convert the reduced ITDA calculated
on the lattice to the LCDA in coordinate representation.
The Fourier transformation of the latter enters the factori-
zation theorems of B-meson exclusive decay.
Finally, let us take a look at the evolution equations for

the ITDAs. Since the light cone ITDA does not depend on
z2, one can write down the z2-evolution equation for the
reduced ITDA:

d
d ln z23

M̄Bðν; z23Þ ¼ −
αsCF

2π

Z
1

0

du

�
u
ū

�
þ
M̄Bðuν; z23Þ: ð22Þ

On the other hand, the reduced ITDA does not depend on μ.
Thus, by taking the derivative with respect to ln μ on both
sides, one can get the renormalization group equation for
light cone ITDA:

μ
d
dμ

Iþ
B ðν; μÞ ¼ −

αsCF

π

��
lnðiμ̃νÞ þ 1

2

�
Iþ
B ðν; μÞ

−
Z

1

0

du

�
u
ū

�
þ
Iþ
B ðuν; μÞ

�
: ð23Þ

By including the anomalous dimension of the decay
constant, one will find that the above equation reproduces
the RGE for heavy-light light cone operator (see, e.g.,
Refs. [41,42]).

VI. IMPLEMENTATIONS ON THE LATTICE

In recent lattice calculations, the typical lattice spacing a
is around 0.1 fm. The Compton wavelength of the b quark
is much smaller than the lattice spacing, mb ≫ 1=a. Hence
HQET is a natural framework to study the B meson on the
lattice.
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The renormalization of full HQET is complicated, even
in continuum theory. In fact, the full HQET Lagrangian is
not renormalizable. However, since the operator we are
going to measure is taken in the mb → ∞ limit, we can
restrict ourselves to the static approximation of HQET. At
the lowest order of 1=mb expansion, there will be no higher
dimensional operators getting mixed in, and the renorm-
alization property is simple. The higher dimensional
operators in lattice theory can also been excluded under
static approximation, hence the continuum limit of the
reduced ITDA can be approached, without considering the
operator mixing.
Similar to the lattice calculation of hadron Ioffe-time

distribution functions [28], a possible way to get the ITDA
is to calculate MBð−v3z3; z23Þ for several values of v3, and
then to fit the data by a function of ν and z23. A proper
framework might be the leading-order moving HQET [43].
The meson and Fock state decay constants should also be
calculated on the lattice, or using the phenomenological
result. The Fock state ITDA at ω ¼ 0, i.e., mBð0 · ν; z23Þ is
necessary for the construction of reduced ITDA and should
be calculated on the lattice as well.
We note that, in practical lattice HQET, a result with

large noise-to-signal ratio might be expected. Still, a rough

evaluation of the B-meson LCDAwith lattice methods is of
great value because there is very little knowledge on the B-
meson LCDA, even from first principle calculations.

VII. SUMMARY

To access B-meson leading-twist light cone distribution
amplitude from lattice QCD computations, we have pro-
posed the approach based on the strategy of reduced Ioffe-
time distributions. The reduced Ioffe-time distribution
amplitude of a B meson is constructed by the ratio of
meson ITDA and the ITDA of the meson’s leading Fock
state, in which the light-quark momentum is zero.
According to the multiplicative renormalizability of the
off light cone operator, the ratio is UV finite; hence, one can
approach its continuum limit from the lattice data. A
matching relation that maps LCDA to the reduced ITDA
is also derived. These results provide a basis for a practical
computation of B-meson LCDA with lattice methods.
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