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We define quark correlation functions that are not only calculable in lattice QCD, but also fac-
torizable into parton distribution functions with coefficients perturbatively calculable to all orders
in QCD with a proper regularization. We present for the first time the complete next-to-next-
to-leading-order calculation of valence-quark coefficient functions. We find that theoretical uncer-
tainties are improving with higher order coefficients. Our method of calculations can be readily
generalized to evaluate gluon correlation functions, and high order sea-quark matching coefficients,
putting the program to extract partonic structure of hadrons from lattice QCD calculations to be
comparable with that from experimental measurements.

I. INTRODUCTION

Parton distribution functions (PDFs) encode impor-
tant nonperturbative information of strong interactions,
and they are crucial for understanding all phenomena at
the Large Hadron Colliders (LHC) [1]. In terms of QCD
factorization [2], a typical hadronic cross section with a

large momentum transfer Q and collision energy
√
S at

the LHC can be factorized as

dσhh′(Q2, S) =
∑
i,j

fi/h(x, µ2)⊗ fj/h′(x′, µ2)

⊗ dσ̂ij(x, x′, µ2, Q2, S) +O(Λ2
QCD/Q

2) , (1)

where i, j = q, q̄, g represents parton flavor, fi/h(x, µ)
is the PDF as a probability distribution to find an ac-
tive parton of flavor i inside a colliding hadron h with
the parton carrying the hadron’s momentum fraction x,
probed at a factorization scale µ ∼ O(Q), dσ̂ij repre-
sents a short-distance partonic scattering, and ⊗ indi-
cates an integration over value of x or x′, accessible by
the scattering cross section. By measuring hadronic cross
sections, with perturbatively calculated partonic hard
parts dσ̂ij , PDFs have been extracted from the world
data at the state-of-the-art next-to-next-to-leading order
(NNLO) accuracy [1].

With the steep falling nature of PDFs as x → 1 and
the convolution in Eq. (1), the uncertainty of extracted
PDFs at large x is so significant that limits our confidence
to push the search for signals of new physics to larger in-
variant mass. With the nonperturbative nature of PDFs,
it is natural to ask if we can calculate PDFs directly in
LQCD. A short answer is no since the operators defin-
ing PDFs are time-dependent and LQCD is formulated
in Euclidean space-time. Recently, stimulated by quasi-
PDFs approach proposed by Ji [3], extraction of PDFs
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from lattice QCD calculation has drawn many new ideas,
including the pseudo-PDFs [4], current-current correla-
tors [5] and others approaches [6]. As proposed by two
of us in Refs. [5, 7], PDFs can be extracted from any
good LQCD observables, which was referred to as “Lat-
tice Cross Sections” (LCSs) in position space, that are
calculable in LQCD and factorizable into PDFs with per-
turbatively calculable matching coefficients,

σn/h(ω, ξ2) ≡ 〈h(p)|T{On(ξ)}|h(p)〉

=
∑
i

fi/h(x, µ)⊗Kn/i(xω, ξ
2, µ2) (2)

+O(ξ2Λ2
QCD) ,

where ξ with ξ2 6= 0 represents the size of nonlocal opera-
torOn(ξ) of type n, controlling the short-distance physics
of the factorization, and ω ≡ p · ξ (often referred as Ioffe
time). With perturbative matching coefficients Kn/i be-

tween σn/h(ω, ξ2) and fi/h(x, µ), PDFs can be extracted
by QCD global fits of data generated by LQCD calcula-
tion of σn/h(ω, ξ2) with various operator type n, just like
how PDFs have been extracted from the world data on
various high energy scattering cross sections [1, 5, 7].

PDFs are universal and should not depend on if they
were extracted from high energy scattering data using
Eq. (1) or from data on good LQCD observables (or
LCSs) using Eq. (2). The universality of PDFs does
require the same factorization scheme to be used for
calculating the short-distance hard parts, such as dσ̂ij
in Eq. (1) and Kn/i in Eq. (2). Since σn/h in Eq. (2)
does not have to be a physical cross section, the operator
On(ξ) defining σn/h might require additional ultraviolet
(UV) renormalization beyond using renormalized fields.
This additional UV renormalization has impacted per-
turbative calculation and stability of the matching coef-
ficients Kn/i for LQCD observables. Although extraction
of PDFs from LQCD calculations have made tremen-
dous progresses in recent years [8–44], the state-of-the-
art calculation of short-distance matching coefficients is
still limited to the next-to-leading order (NLO) in al-
most all existing approaches [28–31], which is partially
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limited by this additional renormalization and our abil-
ity to do perturbative calculation in coordinate space.
In this Letter, we derive for the first time the NNLO
valence-quark matching coefficients in dimensional regu-
larization, allowing us to extract PDFs from LQCD cal-
culations at the same rigor as those extracted from ex-
perimental data. Calculating the matching coefficients at
NNLO is not only necessary for being competitive with
the effort to extract PDFs from experimental data, but
also for addressing concerns that a possible mechanism
may break the factorization at NNLO [45].

II. QUARK CORRELATION FUNCTIONS

We focus on the following gauge invariant quark cor-
relation operator

Oν,bq (ξ, µ2, δ) = ψq(ξ) γ
νΦ(f)({ξ, 0})ψq(0)

∣∣
µ2,δ

, (3)

which is made of renormalized fields with a path or-
dered gauge link in the fundamental representation,

Φ(f)(ξ, 0) = Pe−igs
∫ 1
0
ξ·A(f)(rξ) dr. Because the composite

quark correlation operator is UV divergent, a UV regu-
lator δ is needed, which may represent lattice spacing a
in lattice QCD calculations, or represent ε ≡ (4 − d)/2
in dimensional regularization (DR) of continuum calcu-
lations. µ is a dimensional scale accompanied by the UV
regulator. The UV divergence is multiplicatively renor-
malizable [18, 19], as

Oν,RS
q (ξ) = Oν,bq (ξ, µ2, δ)/ZRS(ξ2, µ2, δ) , (4)

where superscript RS indicates a renormalization scheme
and ZRS(ξ2, µ2, δ) is the multiplicative renormalization
constant. We will choose regularization-invariant renor-
malization conditions so that the renormalized Oν,RS

q are

independent of δ and µ2.
We define quark correlation functions (QCFs) as

hadronic matrix elements of Oν,RS
q (ξ)

F ν,RS
q/h (ω, ξ2) = 〈h(p)|Oν,RS

q (ξ)|h(p)〉 , (5)

which is independent of regularization scheme and scale,
like physical cross sections. With ξ0 = 0 and ξ2Λ2

QCD �
1, F ν,RS

q/h (ω, ξ2) are calculable in LQCD and factorizable

into PDFs [5, 7]. In this Letter, we focus on flavor non-
singlet case, factorization formula for which in continuum
theory is [5]

F ν,RS
qv/h

(ω, ξ2) =
1

RRS(ξ2, µ2)

∫ 1

0

dx

x
fqv/h(x, µ2) (6)

×Kν(xω, ξ2, µ2) +O(ξ2Λ2
QCD) ,

where RRS(ξ2, µ2) ≡ ZRS(ξ2, µ2, ε)/ZMS(ξ2, µ2, ε) is a
finite renormalization factor that transforms any “pre-
ferred” regularization-invariant RS scheme to the con-
ventional MS scheme, Kν are perturbative matching co-
efficients in MS scheme, and qv ≡ q − q̄ which means

fqv/h(x, µ2) ≡ fq/h(x, µ2)− fq̄/h(x, µ2) , (7)

F ν,RS
qv/h

(ω, ξ2) ≡ F ν,RS
q/h (ω, ξ2)− F ν,RS

q̄/h (ω, ξ2)

= F ν,RS
q/h (ω, ξ2)− F ν,RS

q/h (−ω, ξ2) . (8)

To extract the valence quark distribution fqv/h from

LQCD calculations of F ν,RS
qv/h

to the NNLO accuracy, we

have to perturbatively calculate RRS and Kν to the
power of α2

s.

III. RENORMALIZATION CONSTANT

The renormalization constant ZRS introduced in
Eq. (4) is determined by the short-distance property of
the quark correlation operator in Eq. (3) and should not
depend on the hadronic state used to define the QCFs
of this operator. Because of its multiplicative renormal-
izability, matrix element of Oν,bq in Eq. (3) inserted into
any state could be an allowable renormalization scheme,

ZRS(ξ2, µ2, δ) =
〈RS|n̂ · Obq(ξ, µ2, δ)|RS〉
〈RS|n̂ · Obq(ξ, µ2, δ)|RS〉(0)

, (9)

where n̂ is any vector keeping the denominator nonvan-
ishing and the superscript “(0)” indicates that the ma-
trix element is evaluated to the lowest order in pertur-
bation theory. Different choice of the state |RS〉 corre-
sponds to different renormalization scheme. For example,
an off-shell quark state with a specific momentum was
used in defining RI′ scheme [14] and RI/MOM scheme
[17, 28, 29]; a hadron state with zero momentum was
used in calculations of pseudo-PDFs [30] [Matrix element
in this case cannot be perturbatively calculated and one
should choose the denominator in Eq. (9) as 1]; and the
vacuum state was introduced in Ref. [46].

In the following, we define the renormalization con-
stant with the vacuum state and denote RS = vac. By
calculating the vacuum expectation value to NNLO, we
demonstrate that without an identified external momen-
tum, the renormalization constant Zvac is completely free
of IR and CO singularity and its UV divergence is regu-

larized by DR, from which we obtain ZMS(ξ2, µ2, ε) and
Rvac(ξ2, µ2) at NNLO level.

In Fig. 1(a,b,c), we show some representative Feynman
diagrams, up to NNLO, for the vacuum expectation value
of quark correlation operators needed for calculating the
renormalization constant defined in Eq. (9). The diagram
(a) in Fig. 1 determines the normalization of Zvac,

〈Ω|n̂ · Ob|Ω〉(0) = 2Nc µ
4−d π−d/2 Γ(d/2) |ξ|−dn̂ · ξ ,

(10)

where |ξ|2 ≡ −ξ2, and the result agrees with Ref. [46].
The Fig. 1(b) is a representative Feynman diagram

contributing to NLO Zvac,

Mb = g2
sNcCF µ

8−2d

∫ 1

0

dr

∫
ddl1 d

dl2
(2π)2d

eil1·ξ+irl2·ξ

× Tr[(/l1 + /l2) /ξ /l1 /̂n ]

(l21 + i0+)(l22 + i0+)((l1 + l2)2 + i0+)
,

(11)
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FIG. 1. Representative Feynman diagrams, up to NNLO, for
the vacuum expectation value of quark correlation operator
(top row), and for the non-singlet quark matrix elements of
the same operator (bottom row).

where we assume without loss of generality that z-
component ξz is only nonzero component of ξ, and n̂
satisfies n̂ · l ≡ lz for any vector l. We find that it is
convenient to carry out the integration in Eq. (11) by
Fourier transforming the ξz into qz in momentum space
as F [Mb] ≡

∫
dξze

−iξzqzMb to eliminate the exponential
factor by using

∫
dξze

−iξzqzξz

∫ 1

0

dr e−il1zξz−irl2zξz ,

=− 2i Im

(
1

(qz + l1z + l2z + i0+)(qz + l1z + i0+)

)
,

(12)

where 2πδ(x) = −2 Im( 1
x+i0+ ) is used. The Fourier

transformation also ensures that only imaginary part of
gauge-link-related propagators are involved, which led to
a similar effect of optical theorem. Our matrix element
is defined with gauge-link in coordinate space, which is
effectively equal to sum over diagrams with cut gauge-
link in momentum space. It is the summation of cuts
of gauge link that forces the appearance of imaginary
part of “forward scattering amplitude”. The obtained
loop integrals in momentum space can be reduced to lin-
ear combination of a small set of integrals, called master
integrals (MIs), by using integration-by-parts relations
(IBPs) [47, 48]. We use the package FIRE5 [49] to do this
reduction, which results in

F [Mb] = ig2
sNcCF µ

8−2d 2(d− 2)

d− 4

×
[
I1 −

2(2d− 5)(3d− 10)

(d− 3)(d− 4)
q−1
z I2

]
,

(13)

with two vacuum MIs defined as

I1 =

∫
ddl1 d

dl2
(2π)2d

1

(l21 + i0+)(l22 + i0+)

× 2 Im

(
1

(qz + l1z + i0+)(qz + l2z + i0+)

)
,

I2 =

∫
ddl1 d

dl2
(2π)2d

1

(l21 + i0+)(l22 + i0+)

× 2 Im

(
1

qz + l1z + l2z + i0+

)
.

(14)

To carry out these single-scale vacuum MIs, we use the
method presented in Ref. [50] by setting up and solving
dimensional recurrence relations and obtain

I1 =
π−d

8
sin(dπ)Γ(d/2− 1)2Γ(3− d)2 |qz|2d−9 q3

z ,

I2 =
π−d

8
sin(dπ)Γ(d/2− 1)2Γ(5− 2d) |qz|2d−9 q4

z .

(15)

We then Fourier transform inversely from qz dependence
into ξz dependence to derive the result of Mb in DR.
Other two-loop diagrams, including UV counter term di-
agrams, can be calculated similarly.

All three-loop diagrams like diagram (c) in Fig. 1 can
also be calculated similarly as the diagram (b) described
above. The only difference is that analytical expression
of vacuum MIs cannot be obtained by solving dimen-
sional recurrence relations directly. Instead, we calculate
the vacuum MIs to high accuracy by using dimensional
recurrence relations and then obtain exact results by us-
ing PSLQ algorithm [51] We check the correctness of our
exact results numerically with at least 103 digits.

By adding all diagrams and UV counter terms to-
gether, the remained divergences should be removed
by operator renormalization. With a MS subtraction

scheme, we obtain ZMS(ξ2, µ2, ε) and Rvac(ξ2, µ2) at
NNLO level, with analytical expressions given in Ap-
pendix.

IV. MATCHING COEFFICIENTS

By choosing the MS scheme for QCFs, we have a sim-
ilar factorization as Eq. (6), which has the following per-
turbative expansion if we replace the hadron h by a quark
state,

F
ν(n)
qv/q

(ω, ξ2, µ2) =

n∑
m=0

∫ 1

0

dx

x
f

(m)
qv/q

(x, µ2)

×Kν(n−m)(xω, ξ2, µ2) , (16)

with n,m = 0, 1, 2 indicating the power in αs. While par-

tonic f
(n)
qv with n = 0, 1, 2 in the MS factorization scheme

are known [52], we have to calculate partonic version of

QCFs in the MS scheme perturbatively, denoted as F
ν(n)
qv ,

to derive the NNLO matching coefficient Kν(n).
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Some representative Feynman diagrams for F
ν(n)
qv are

shown in Fig. 1 (a′, b′, c′). The diagram 1(a′) gives the
tree level result

F
ν(0)
qv/q

= −4 i pν cos(ω) . (17)

To calculate F νqv/q(ξ
2µ2, ω) at high orders, we again

use transformation as Eq. (12) to remove the exponential
by going to momentum space, and then reduce the loop
integrals to MIs by using IBPs. For example, at NLO we
have two MIs:

I
(1)
1 =

∫
ddl1

(2π)d
1

l21 + i0+
2 Im

(
1

qz + l1z + i0+

)
, (18)

I
(1)
2 =

∫
ddl1

(2π)d
1

l21 + i0+
2 Im

(
1

qz + l1z + pz + i0+

)
and at NNLO we have 21 MIs. The MIs generated from

n-loop diagrams for F
ν(n)
qv/q

are functions satisfied

I
(n)
j (y, pz; d) = |qz|dnqdnjz K

(n)
j (y; d) , (19)

where y ≡ pz/qz, dn ≡ −2nε − 1, and dn + dnj are the

dimensions of MI I
(n)
j . These MIs can be solved by the

differential equations [53]

∂yK
(n)
j (y; d) =

∑
k

Ajk(y; d)K
(n)
k (y; d) , (20)

with K
(n)
j (0; d) serving as boundary conditions. By ap-

plying IBPs again, the integrals in boundary conditions
can be decomposed into vacuum MIs at n-loop order,
which have been calculated in the renormalization pro-

cedure. Therefore, K
(n)
j can be expanded as a Taylor

series of y based on the differential equations in Eq. (20).
After carrying out MIs, we can Fourier transform

back to position space and the y dependence is changed
to dependence on ω. By adding contributions from
all diagrams and then multiplying it by UV renormal-
ization factor Z−1

MS
, we obtain perturbative results of

F
ν(n)
qv/q

(ω, ξ2, µ2) with n = 1, 2. We then obtain MS

matching coefficients Kν(n)(xω, ξ2, µ2) using Eq. (16).
As expected, all divergences are canceled and final re-
sults of Kν(n) are finite and given in the Appendix. Us-
ing Eq. (6), one can obtain NNLO matching coefficients
in other RS by calculating corresponding RRS.

V. NUMERICAL RESULTS

Based perturbative results calculated above, we
present numerical predictions for the valence coordinate-
space QCFs by using Eq. (6) with CT18NNLO PDFs as
input [54]. We set µ = 2c/|ξ| to minimize logarithms
encountered in perturbative calculation when c = 1, and
vary c from 1/2 to 2 to estimate theoretical uncertain-
ties due to ambiguity of scale choice. In Fig. 2, we show

i
4ω ξ · F

vac
qv/h

(ω, ξ2) as a function of ω with fixed 1/|ξ| = 2

GeV or as a function of 1/|ξ| with fixed ω = 10. In ei-
ther case it is evident that our numerical results have an
improved uncertainty when higher order matching coef-
ficients are used. Especially for small 1/|ξ|, which is the
dominant region of lattice data, the NNLO results can
reduce theoretical uncertainty by more than a factor of
3 comparing with NLO results.
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FIG. 2. Numerical predictions for valence quark coordinate-
space QCFs with LO, NLO and NNLO matching coefficients
and CT18NNLO PDFs.

VI. SUMMARY

We showed that properly renormalized quark correla-
tion functions in position space are good LQCD observ-
ables, if ξ2Λ2

QCD is sufficiently small, which are calcula-
ble in LQCD and factorizable to PDFs. We discussed
the ambiguity and scheme-dependence in defining the
multiplicative renormalization constant ZRS, and demon-
strated that ZRS defined with the vacuum state is advan-
tageous for carrying out the perturbative calculations of
the matching coefficients, especially, at high order in αs.
For the first time, we derived a complete NNLO valence-
quark coefficient functions for QCFs, and demonstrated
that the extraction of PDFs from LQCD calculations in
terms of QCD factorization approach are in fact at the
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same rigor as the program to extract PDFs from experi-
mental data.

Our definition of QCFs and method of calculations can
be easily generalized to evaluate gluon correlation func-
tions and sea-quark coefficient functions, which provide
a rigorous program to extract PDFs from lattice QCD
calculations. With multiple “good” LQCD observables,
including the current-current correlators (better UV be-
havior) [5], the quark correlation functions defined here,
and a generalization to gluon correlation function in po-
sition space, the QCD factorization of these observables
provide a complementary revenue for extracting PDFs or
other partonic structures of hadrons, as well as a tremen-
dous potential to extract partonic structure of hadrons
that could be difficult to do scattering experiments with.

ACKNOWLEDGMENTS

We thank L. Leskovec, R. Sufian and Y.-B. Yang for
useful discussions. This work of Z.-Y.L. and Y.-Q.M.
is supported by the National Natural Science Founda-
tion of China (Grants No. 11875071, No. 11975029),
and J.-W.Q. is supported by the U.S. Department of En-
ergy contract DE-AC05-06OR23177, under which Jeffer-
son Science Associates, LLC, manages and operates Jef-
ferson Lab.
Note added: When this work was being finalized,

some related preprints appeared [55–57]. In Ref. [55]

the authors obtained NNLO results for ZMS and Rvac,
which exactly agree with our results. In Refs. [56, 57]
the authors obtained matching coefficients for flavor non-
diagonal quark to quark channel that starts from two-
loop order.

APPENDIX: PERTURBATIVE RESULTS

Renormalization factor in MS subtraction scheme is obtained as

ZMS = 1 +
αsSε
πε

CF +

(
αsSε
πε

)2

CF

{[
CF
2
− 13CA

32
+
nfTF

8

]
+

[(
− 1

8
+
π2

12

)
CF +

( 25

48
− π2

48

)
CA −

nfTF
6

]
ε

}
,

(21)

where Sε ≡ (4π)ε/Γ(1− ε) is a conventional factor in the MS scheme.
The finite renormalization factor Rvac(ξ2, µ2) is obtained as

Rvac = 1 +
αs
π
CF

(
3

4
L+ 2 +

π2

3

)
+
(αs
π

)2

CF

{[
9

32
CF +

11

32
CA −

1

8
nfTF

]
L2

+

[( 43

32
+

5π2

12

)
CF +

( 75

32
+

19π2

72

)
CA −

( 7

8
+
π2

9

)
nfTF

]
L+

[( 153

128
+

13π2

12
− ζ(3)

2
+
π4

90

)
CF

+
( 6413

1152
− 5π2

432
− 13ζ(3)

2
− π4

90

)
CA −

( 589

288
− π2

27
− 2ζ(3)

)
nfTF

]}
,

(22)

where L ≡ ln(−ξ2µ2/4) + 2γE .

We express Kν(xω, ξ2, µ2) ≡ xpν A(xω, ξ2, µ2) + xω ξν

−ξ2 B(xω, ξ2, µ2), which can be further decomposed as

iA(ω, ξ2, µ2) = 4 cos(ω) +
αs
π

1∑
i=0

LifCFA
(1)
i1 +

(αs
π

)2 2∑
i=0

LifCF

[
CFA

(2)
i1 + CAA

(2)
i2 + nfTFA

(2)
i3

]
, (23)

iB(ω, ξ2, µ2) =
αs
π
CFB

(1)
01 +

(αs
π

)2 1∑
i=0

LifCF

[
CFB

(2)
i1 + CAB

(2)
i2 + nfTFB

(2)
i3

]
. (24)

As argued in Ref. [5], A(ω, ξ2, µ2) and B(ω, ξ2, µ2) are analytical functions of ω everywhere except infinity. Therefore,
expansion of A(ω, ξ2, µ2) or B(ω, ξ2, µ2) as Taylor series of ω has infinitely large convergent radius. The first 100-
order expansions of iA(ω, ξ2, µ2) and iB(ω, ξ2, µ2) are available to download from an ancillary file in the arXiv version,
which are far from sufficient for practical use.
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