
 

Three pion spectrum in the I = 3 channel from lattice QCD
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Three-body states are critical to the dynamics of many hadronic resonances. We show that lattice QCD
calculations have reached a stage where these states can be accurately resolved. We perform a calculation
over a wide range of parameters and find all states below inelastic threshold agree with predictions from a
state-of-the-art phenomenological formalism. This also illustrates the reliability of the formalism used to
connect lattice QCD results to infinite volume physics. Our calculation is performed using three positively
charged pions, with different lattice geometries and quark masses.
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I. INTRODUCTION

It is important to understand hadron interactions in terms
of quark-gluon dynamics as they emerge from QCD.
Three-hadron systems present the next hurdle in this
quest, primarily for resonances with final state decays to
three particles. One such example is the Roper resonance
Nð1440Þ1=2þ which couples strongly to ππN. The analysis
of experimental data exposes the complex analytic struc-
ture of the resonance [1,2]. Lattice studies to date have
difficulty finding a finite volume state along the Roper mass
trajectory [3–6]. Note that none of the studies in the Roper
channel include three hadron interpolators, in contrast with
this work. Jefferson Lab, ELSA, MAMI and other facilities
have experimental programs dedicated to studying excited
baryons [7–9] making the need for three body analyses
critical. Another such example is the a1ð1260Þ resonance,
which decays to ρπ and σπ intermediate states before its
final state of three pions. Moreover, exotic mesons with
quantum numbers forbidden by quark models need to be
understood. With ongoing experiments, e.g., GlueX at
Jefferson Lab, searching for exotic states, there is a demand
for theoretical determinations of the QCD spectrum below
and in the region where such exotic states may lie.

Lattice QCD (LQCD) is used to determine hadron
properties and interactions as they arise from the quark-
gluon dynamics providing complementary information to
experimental data (for example, in LQCD we can freely
modify the quark masses and number of flavors). In this
approach hadron interactions are probed through the
spectrum of interacting (many) hadron states in finite
volume. The finite-volume spectrum has to be connected
to infinite-volume scattering information through the use of
quantization conditions [10,11]. This formalism has been
used extensively in the two-hadron sector in the last decade;
see for example Refs. [12,13–39], and Ref. [40] for a
review. Lattice calculations in the three-hadron sector have
focused on the lowest states [41–43] and only recently
pioneering calculations of the higher levels have been
reported [44,45]. In parallel, a significant theoretical effort
was dedicated to developing the formalism to connect the
three-body finite volume data to infinite-volume ampli-
tudes [46–80]; see Ref. [81] for a review.
Here we show that LQCD results for three-pion

energies agree very well with theoretical expectations,
over a wide set of parameters. Using multiple volumes
and quark masses we compute a large number of energy
levels in the elastic three-pion scattering region. We
compare them to predictions from chiral perturbation
theory inspired models, connected to finite volume
through relativistic three-body quantization conditions
(R3Q) preserving unitarity [16,46,48,53,57]. We find
excellent agreement indicating that both approaches have
reached maturity. This paves the way to attack more
challenging problems, such as coupled-channel extensions
needed for the realistic description of Roper, a1ð1260Þ,
exotics and other hadrons.
The results presented here are for three-pion states in

maximal isospin (I ¼ 3) in QCD with two mass-degenerate
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quark flavors, for two different quark masses, correspond-
ing to pion masses of 220 and 315 MeV. For each quark
mass the calculation is done using three different geom-
etries, one cubic and two different elongations in a single
spatial direction. We use elongations as a cost effective way
to map out the elastic scattering region. The outline of the
presentation is as follows. First we highlight some impor-
tant details of the lattice calculation. Then the R3Q
formalism is presented, including an extension required
to accommodate elongated boxes. Finally, the results for
the finite-volume spectrum, as determined from LQCD and
R3Q predictions, are presented.

II. LATTICE METHODS

In infinite volume hadron interactions are encoded using
scattering amplitudes that are decomposed into distinct
partial-waves using rotational symmetry. LQCD can access
scattering information only indirectly via the discrete
spectrum of hadron states in finite volume. Analogous to
infinite-volume states having definite angular momentum,
finite-volume states are labeled by irreducible representa-
tions (irreps) of the reduced rotational symmetry groups.
Moreover, the reduced rotational symmetry mixes partial
waves, complicating the mapping between finite and
infinite volume.
To extract the finite volume spectrum of three pions we

use cubic lattices as well as lattices with an elongation in
one spatial direction. The momenta on a periodic lattice are
quantized in units of 2π=L, where L is the length of the
lattice. By increasing the length in a single direction we
lower the momenta and thus the energy of multihadron
states where the constituent hadrons have nonzero
momenta. For example, in our largest elongation (E3), in
the A1u irrep there are seven energy levels below the 5mπ

threshold whereas the cubic box has only two. The details
of the ensembles are found in Table I.
For cubic lattices the infinite-volume angular momentum

symmetry group SOð3Þ is reduced to Oh. The elongation
further reduces the symmetry group from Oh to D4h. For
boosted systems, where the total momentum vector P is
aligned along the elongation axis, the relevant symmetry

group is the little group that leaves such momentum vectors
invariant, C4v. While other boosts are possible, they will
not be considered in this study. The mapping between
angular momentum l and the irreps of these symmetry
groups is described in Ref. [82].
The finite-volume spectrum is determined by fitting the

large time behavior of temporal correlation functions
between hadronic operators. These operators are con-
structed to increase the overlap with the states of interest.
We use operators constructed from products of single pion
interpolators of the form

πþðΓðpÞ; tÞ ¼ d̄ðtÞΓðpÞuðtÞ; ð1Þ

where the u=d quark fields are vectors in position, spin, and
color space, and the momentum matrix ΓðpÞ ¼ eip·xγ5 is a
matrix in just position and spin space. Three-pion operators
are projected onto row λ of the irrep Γ of a group G using

Oπ1π2π3 ¼
X

g∈G
UΓ

λλðgÞ detðRðgÞÞ

× πþðRðgÞp1ÞπþðRðgÞp2ÞπþðRðgÞp3Þ; ð2Þ

where UΓ
λλðgÞ is the representation matrix of the group

element g in row λ of the irrep Γ, and RðgÞ is the rotation
corresponding to g. Explicit projection coefficients for the
operators used are listed in Tables V–IX of Appendix C.
Note that while a two pion state in maximal isospin is
restricted to even total parity, the same is not true of a three
pion state, and we will study irreps with both even and odd
total parity.
With a large basis of such interpolating operators, we

perform a variational analysis on a matrix of correlation
functions and extract the stationary state energies from a
generalized eigenvalue problem (GEVP) [83–85]. Due to
the high statistical precision with which we are able to
estimate the temporal correlation functions, we must take
extra care when fitting the GEVP eigenvalues. We account
for contamination from excited states, and time dependent
wraparound effects due to the finite temporal extent of the
lattice. To extract energy levels we perform three expo-
nential fits, discussed further in Appendix A.
The first step in computing correlation functions is to

perform the Wick contractions between creation and
annihilation operators. The resulting correlation function
requires the computation of expensive all-to-all quark
propagators. To compute them we use Laplacian-
Heaviside smearing [86]. This allows us to factorize the
correlation functions in terms of products of the form
ΓðpÞM̃−1ðt; tfÞ, where M̃−1 is a quark propagator. These
quark lines can be precomputed for reuse in multiple
elements of the correlation matrix. Further numerical
speedup is obtained by using common subexpression
elimination as in Ref. [44].

TABLE I. Details of the Nf ¼ 2 ensembles used in this study.
η is the elongation, a is the lattice spacing. Ncfg is the number of
Monte Carlo configurations for each ensemble.

Label Nt × N2
x;y × Nz η a½fm� Ncfg amπ

E1 48 × 242 × 24 1.00 0.1210(2)(24) 300 0.1931(4)
E2 48 × 242 × 30 1.25 � � � � � � 0.1944(3)
E3 48 × 242 × 48 2.00 � � � � � � 0.1932(3)
E4 64 × 242 × 24 1.00 0.1215(3)(24) 400 0.1378(6)
E5 64 × 242 × 28 1.17 � � � � � � 0.1374(5)
E6 64 × 242 × 32 1.33 � � � � � � 0.1380(5)
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III. THREE-BODY FINITE
VOLUME UNITARITY

The minimal set of kinematic variables required to
describe relativistic elastic three-to-three scattering
spans an 8-dimensional space. A convenient paramet-
rization in terms of a one-particle spectator and two-
body subchannels, each represented by a tower of
partial waves, was derived in Ref. [87]. The discretized
version of this relativistic, unitary approach [57] is the
basis of the finite-volume analysis presented in this
section.
The details of this relativistic 3-body quantization

condition and its implementation for systems with arbi-
trary boosts and irreps can be found in Refs. [46,53,
57,88]. The condition for finding an interacting energy
eigenvalue E�

cm is

∞ ¼
X

hpi;hqi
cΓhpic

Γ
hqihvp2;p3

½BðE�
cmÞ

þ ELητ
−1
LηPðE�

cmÞ�−1p1;q1vq2;q3ipi∈hpiqj∈hqi
; ð3Þ

where cΓhpi are projection coefficients to an irrep Γ for the

set of pion three-momenta hpi (the values of these
coefficients are tabulated in Appendix C.) The object
in the square brackets is a matrix in the space of in/
outgoing spectator momenta. Angled brackets denote
symmetrization with respect to the three-set of in/out-
going three-momenta. B and τ describe the two-to-one
and two-pion (subchannel) interactions, respectively, and
½ELη�pq¼δpq2L3η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþp2
p

where η is the elongation,
see Table I. The two-pion interaction is parametrized by a
tower of functions τ in angular momentum l coupled to

FIG. 1. Finite-volume center-of-mass energies, in units of mπ , for three pions in maximal isospin at two different pion masses: E1;2;3
for 315 MeVand E4;5;6 for 220 MeV (separated by the gray column). For each pion mass there is one cubic box (E1;4) and two elongated
boxes (E2;3;5;6). The separate columns distinguish different irreps of the rotational symmetry group containing energies below the
inelastic threshold, 5mπ (solid black line). The parity of the irreps is specified by g (even) and u (odd). The data points are the LQCD
energy levels with error bars inside of the circles. The red (left) and blue (right) solid lines in each column are the predictions from R3Q
using GL or GW LECs, respectively. The dashed lines are the noninteracting energy levels. We plot them as a function of η to distinguish
the levels that depend on the elongation. Boosted frames with nonzero total momentum are denoted by the superscript ½001� indicating a
single unit of momentum in the elongation (z) direction.
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the asymptotic states via a function v that is free of right-
hand cuts. Due to the suppression of higher partial waves
(l > 0) seen in both phenomenological and lattice studies
[16,17,28,44] we neglect them. Additionally, since τ is
defined in the rest frame, it explicitly depends on the total
momentum of the three-body system P.
Besides external parameters L, η, and P, there are two

places where parameters determining the dynamics enter
the above quantization condition. First, the term B corre-
sponds to one-pion exchange and the genuine three-body
force C. Second, the two-pion interaction encoded in the
diagonal matrix τ is chosen to agree with the modified
inverse amplitude method [89,90]; see also Refs. [46,87,88]
for details on implementation. This method depends on
four low-energy constants flr1; lr2; lr3; lr4g for a fixed regu-
larization scale μ ¼ 770 MeV.
We use the quantization conditions for predictions of

the finite-volume energy eigenvalues. Following the pro-
cedure from previous studies [46,87,88], we fix C ¼ 0. We
do not fit the LECs here, but use the values determined
elsewhere. To assess the uncertainties in our predictions
we use two different LECs: f−6.032;þ5.455;þ0.816;
þ5.600g × 10−3 from Ref. [91] and fþ11.625;−0.695;
þ0.008;þ52.411g × 10−3 from a recent lattice-driven
determination in Ref. [15], denoted by GL and GW,
respectively. The GW set provides the most consistent
predictions, as it is determined from a fit to two-pion energy
spectra on the same set of ensembles of Table I. The
resulting predictions are collected in Appendix B and
shown in Fig. 1.

IV. RESULTS

The three-pion (I ¼ 3) finite-volume spectra are shown
in Fig. 1, together with the noninteracting energy levels,
and the predicted energy levels from R3Q. In total we
extract 30 energy levels below 5mπ across the six ensem-
bles listed in Table I. Precise values for lattice and R3Q
levels are tabulated in Table III of Appendix B.
As the elongation η is increased, naturally the spectrum

becomes much denser. This is most striking when consid-
ering the A1u irrep for the heavier quark mass. At η ¼ 1
(i.e., the cubic volume E1) we find two energies below
threshold, in contrast to finding seven energies below the
inelastic threshold at our largest elongation, η ¼ 2 (E3). In a
similar vein, as we increase η we find energies appearing
below the inelastic threshold in irreps where, at smaller
elongations, no energy levels exist.
Comparing the lattice and predicted spectra in Fig. 1, we

find good agreement for both sets of LECs. Energies
belonging to different irreps are dominated by different
partial waves. For some levels one partial wave is dom-
inant; as an example consider the levels between 4.4mπ and
4.6mπ in the first two columns of Fig. 1. The lowest partial
wave contribution to the A1u level is from S-wave, while the
Eu level is dominated by D-wave contributions (no S-wave

mixing). We remind the reader that only S-wave contri-
butions are considered in the ππ interaction, while the
isobar-spectator interaction encoded in the B-term
(required by unitarity) contains higher partial waves. For
further details see the discussion in Ref. [46]. For other
levels, the mixing of partial waves is important. The R3Q
predictions reproduce this pattern in all irreps, even for the
elongated lattices, where angular momentum mixing is
more severe. Note that this mixing is not explicitly imposed
in R3Q, showing that the S-matrix principle of unitarity
combined with two-pion scattering data, post-dicts the
same splitting of finite-volume levels.
We compare the predictions generated by GL or GW

LECs by computing their corresponding correlated χ2=n
where n is the number of data points. A χ2=n ≈ 1 would
indicate that the LECs and three-body force used provide a
good description of the data without fitting. When using the
GWLECs [16], and including all lattice energies below 5mπ,
the reduced χ2=n is 2.68. Excluding correlations reduces this
value to 1.90. Using the GL LECs [91], the reduced χ2=n is
4.86 and 2.23, with and without correlations, respectively.
As expected, the GW LECs produce predictions in better
agreement with the lattice data. Examining the χ2=n with
GWLECs on the 315MeV (E1,E2,E3) and 220MeV (E4, E5,
E6) ensembles independently gives 2.93 and 1.86, respec-
tively. This is unsurprising as chiral perturbation theory is
more reliable at lower pion masses. Since the LECs were not
fitted to this data, and the contact term is set to zero, there is a
tension between predictions and lattice data. Preliminary
work in this area, in which we only vary the three-body
contact term, indicates that we will be able to constrain the
three body force.

V. CONCLUSION

We compute the three pion (I ¼ 3) finite volume
spectrum at two different quark masses using LQCD.
We make use of lattices elongated in a single spatial
direction, and boosts along the same axis, to capture
additional states below the inelastic threshold. In total 30
energy eigenvalues are extracted within the elastic scatter-
ing region, 23 of them at a pion mass of 315 MeV, the
remaining seven at 220 MeV.
The lattice results agree with predictions of the finite

volume spectrum from a state-of-the-art three body rela-
tivistic unitary finite-volume formalism, extended to
accommodate elongations. The physical input to the
formalism is a three-body contact term and the two-pion
interaction. We set the former to zero, and parametrize the
latter by the modified inverse amplitude method with two
sets of LECs, one from a fit to experimental data and
another one determined from lattice calculations of pion-
pion scattering on the same ensembles. Not surprisingly,
the LECs determined from lattice calculations provide the
better prediction. There is some tension between the lattice
data and prediction, which may be due to the three-body
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term being set to zero. Future work in fitting, allowing the
LECs to vary and the inclusion of pion mass correlations,
will reduce this tension.
Success here shows that both lattice and phenomeno-

logical efforts reached maturity and can be used to
constrain three-body physics in QCD, for example the
Roper and a1ð1260Þ resonances.
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APPENDIX A: TEMPORAL WRAPAROUND
EFFECTS

Since we extract the finite-volume spectrum by examin-
ing the large time behavior of temporal correlation func-
tions, care must be taken when deducing appropriate fit
forms. In particular, contributions due to the finite temporal
extent of the lattice become significant when considering
complicated multihadron interactions, coupled with the
high statistical precision available in this study. As lattice
QCD calculations are carried out in imaginary time with a
finite temporal extent, it is useful to examine three-pion
correlation functions in the following form:

CijðtÞ ¼
1

ZðTÞ
X

n;m

e−EnðT−tÞe−EmthnjO3π
i jmihmjO3π

j jni;

ðA1Þ

where O3π is some three-pion interpolating operator, as
described in the main text. For large temporal extent T,
contributions from jni ¼ j0i (i.e., the state of interest) will
dominate. Contributions from jni ≠ j0i will appear solely
due to the finite temporal extent and are often referred to as
“thermal states.”
The next most significant nonzero term appears when

jni ¼ jπi, with the leading contribution containing terms
proportional to e−EπðT−tÞe−E2π t, which is time dependent.
We must account for this time dependent “temporal
wraparound” explicitly by fitting the correlation functions
to three exponentials: one for the state of interest, one for
residual early time excited state contamination present in
the GEVP, and one to capture this leading wraparound
term. This methodology was employed by the HadSpec
Collaboration [28]. They propose modifying the correla-
tion matrix itself to account for thermal corrections and
then do a regular fit for the eigenvalues. In our testing for
a previous study [15] we found that we get the same
results when introducing thermal corrections as additional
fit parameters in the eigenvalue fit for an unmodified
correlation matrix. This allows different thermal correc-
tions for each energy level. Note that we use as fit
parameters both the decay rate and spectral weight
for the thermal correction. Our results are consistent
with the expected decay rates for thermal corrections. For
the example discussed below the lowest channel has
δE ≈ E2π − Eπ , and the spectral weights are indeed small
since it is proportional to e−EπT .
An example of this fitting using the ansatz

a1e−b1t þ a2e−b2t þ a3e−b3t, where fai; big are fit param-
eters, to describe the correlation functions is shown in
Fig. 2. The effective masses of the ground state, and first
excited state energy levels extracted in the A1u irrep for
ensemble E1 are shown with best-fit curves overlaid. The
resulting fit parameters can be found in Table II. Note that
the parameters are ordered such that i ¼ 1 represents the
excited state, i ¼ 2 the state of interest, and i ¼ 3 the
thermal state. We find that both single- and two-exponential
fit forms are insufficient to describe these correlation
functions.

FIG. 2. Effective masses of the ground (E1) and first excited
state (E2) correlation functions from solving the GEVP on
ensemble E1 in irrep A1u. The solid line represents the best fit
plotted in the fitting range that minimizes the χ2. The dashed line
is the extension of the best fit beyond the fitting range.

TABLE II. Fit parameters from the fits shown in Fig. 2 using a
functional form as described in the text. The ai are coefficients of
decaying exponentials with rates bi. The coefficient b2 is the
energy of the state of interest, b1 is the excited state contami-
nation, and b3 is δE appearing from “temporal wraparound”.

n a1 b1 a2 b2 a3 b3

1 0.151(4) 6.6(2) 0.810(4) 3.074(3) 0.00029(3) 0.822(3)
2 0.211(3) 8.4(1) 0.752(4) 4.579(9) 0.005(4) 2.6(3)

THREE PION SPECTRUM IN THE I ¼ 3 CHANNEL FROM … PHYS. REV. D 101, 114507 (2020)

114507-5



APPENDIX B: LATTICE ENERGY EIGENVALUES AND PREDICTED SPECTRUM

TABLE III. Energies extracted as discussed in the main text. Γ is the irrep, E=mπ is the energy eigenvalue in units
of the pion mass. The TRUF predictions are made using the low-energy constants from Refs. [92,46], denoted by
GL and GW, respectively. Jackknife samples for all lattice energies are provided with the arxiv submission.

Ensemble Γ E=mπ TRUF[GL] TRUF[GW]

E1 A1u 3.074(3) 3.067 3.080
4.579(9) 4.584 4.568

Eu 4.469(8) 4.455 4.457

E2 A1u 3.060(5) 3.059 3.059
4.041(8) 4.045 4.052
4.476(7) 4.486 4.486

B1u 4.412(8) 4.420 4.420

E3 A1u 3.023(5) 3.034 3.034
3.479(5) 3.489 3.494
4.158(5) 4.150 4.152
4.407(6) 4.408 4.412
4.441(6) 4.460 4.458
4.738(6) 4.755 4.740
4.833(6) 4.845 4.844

A2g 4.159(6) 4.152 4.152
4.797(6) 4.808 4.794

B1u 4.402(5) 4.406 4.408
4.662(5) 4.662 4.663
4.795(7) 4.781 4.781

B2u 4.729(6) 4.725 4.725
Eg 4.761(6) 4.764 4.764
Eu 4.661(5) 4.659 4.659

4.733(7) 4.735 4.740

E4 A1u 3.145(10) 3.127 3.133

E½001�
4

A2 3.959(45) 3.908 3.908

E5 A1u 3.106(9) 3.110 3.114

E½001�
5

A2 3.772(12) 3.745 3.750

E6 A1u 3.098(8) 3.093 3.097
4.676(14) 4.654 4.651

E½001�
6

A2 3.620(8) 3.616 3.622
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APPENDIX C: LIST OF OPERATORS USED

Here we collect all of the operators that were used to extract the finite volume spectrum. The operators were constructed
as described in the main text using Eq. (2) in the main text. Note that the overall normalization of the individual operators is
arbitrary.

TABLE V. Same as Table IV but for ensemble E2 with total momentum P ¼ 0.

Γ n
½0 0 0�½0 0 0�

½0 0 0�
½0 0 − 1�½0 0 0�

½0 0 1�
½−1 0 0�½0 0 0�

½1 0 0�
½0 − 1 0�½0 0 0�

½0 1 0�
½−1 0 − 1�
½0 0 0�½1 0 1�

½−1 0 1�½0 0 0�
½1 0 − 1�

½0 − 1 − 1�
½0 0 0�½0 1 1�

½0 − 1 1�½0 0 0�
½0 1 − 1�

A1u 1 1
2 1
3 1 1
4 1 1 1 1

B1u 1 1 −1
2 1 1 −1 −1

TABLE VI. Same as Table IV but for ensemble E3 with total momentum P ¼ 0. Part 1.

Γ n

½0 0 0�
½0 0 0�
½0 0 0�

½0 0 − 1�
½0 0 0�
½0 0 1�

½0 0 − 2�
½0 0 1�
½0 0 1�

½0 0 − 1�
½0 0 − 1�
½0 0 2�

½−1 0 0�
½0 0 0�
½1 0 0�

½0 − 1 0�
½0 0 0�
½0 1 0�

½0 0 − 2�
½0 0 0�
½0 0 2�

½−1 0 − 1�
½0 0 0�
½1 0 1�

½−1 0 1�
½0 0 0�

½1 0 − 1�

½0 − 1 − 1�
½0 0 0�
½0 1 1�

½0 − 1 1�
½0 0 0�

½0 1 − 1�

½0 0 − 3�
½0 0 1�
½0 0 2�

½0 0 − 2�
½0 0 − 1�
½0 0 3�

A1u 1 1
2 1
3 1 1
4 1 1
5 1
6 1 1 1 1
8 1 1

A2g 1 1 −1
3 1 −1

Eð2Þ
u

1 1 −1
B1u 1 1 −1

2 1 1 −1 −1

TABLE IV. Three pion interpolating operators used for ensemble E1 with total momentum P ¼ 0, transforming according to irrep Γ.
The label n indicates the order of the noninteracting energy levels with 1 being the lowest energy level in that irrep. Where relevant, the
irrep row is indicated by an integer superscript. Operators are denoted in terms of the constituent momenta as ½d1�½d2�½d3�, where
p ¼ 2π

L d. Empty entries indicate vanishing coefficients.

Γ n
½0 0 0�½0 0 0�

½ 0 0 0�
½−1 0 0�½0 0 0�

½1 0 0�
½0 − 10�½0 0 0�

½0 1 0�
½0 0 − 1�½0 0 0�

½0 0 1�
½−1 − 1 0�
½0 0 0�½1 1 0�

½−1 0 − 1�½0 0 0�
½1 0 1�

½−1 0 1�½0 0 0�
½1 0 − 1�

½−1 1 0�½0 0 0�
½1 − 1 0�

½0 − 1 − 1�
½0 0 0�½0 1 1�

½0 − 1 1�½0 0 0�
½0 1 − 1�

A1u 1 1
2 1 1 1
3 1 1 1 1 1 1

Eð1Þ
u

1 1 −1
2 1 1 −1 −1

Eð2Þ
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1 1 1 −2
2 −2 1 1 −2 1 1
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