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ABSTRACT OF THE DISSERTATION

CROSS SECTION MEASUREMENTS OF DEUTERON

ELECTRO-DISINTEGRATION AT VERY HIGH RECOIL MOMENTA AND

LARGE 4-MOMENTUM TRANSFERS (Q2)

by

Carlos Yero Perez

Florida International University, 2020

Miami, Florida

Professor Werner Boeglin, Major Professor

The 2H(e, e′p)n cross sections have been measured at negative 4-momentum trans-

fers of Q2 = 4.5±0.5 (GeV/c)2 and Q2 = 3.5±0.5 (GeV/c)2 reaching neutron recoil

(missing) momenta up to pr ∼1.0 GeV/c. The data have been obtained at fixed

neutron recoil angles 5◦ ≤ θnq ≤ 95◦ with respect to the 3-momentum transfer ~q.

The new data agree well with the previous data which reached pr ∼ 550 MeV/c. At

θnq = 35◦ and 45◦, final state interactions (FSI), meson exchange currents (MEC)

and isobar configurations (IC) are suppressed and the plane wave impulse approx-

imation (PWIA) provides the dominant cross section contribution. The new data

are compared to recent theoretical calculations, and a significant disagreement for

recoil momenta pr > 700 MeV/c is observed.

The experiment was carried out in experimental Hall C at the Thomas Jefferson

National Accelerator Facility (TJNAF) and formed part of a group of four experi-

ments that were used to commission the new Super High Momentum Spectrometer

(SHMS). The experiment consisted of a 10.6 GeV electron beam incident on a liq-

uid deuterium target which resulted in the break-up of the deuteron into a proton

and neutron. The scattered electrons were detected by the SHMS in coincidence

with the knocked-out protons detected in the previously existing High Momentum

vii



Spectrometer (HMS) and the recoiling neutrons were reconstructed from energy-

momentum conservation laws. To ensure that the 2H(e, e′p)n reaction channel was

selected, we required the missing energy of the system to be the binding energy of

the deuteron (∼2.22 MeV).

The spectrometers’ central angles and momenta were set to measure three cen-

tral missing momentum settings of the neutron corresponding to pr = 80, 580 and

750 MeV/c, which required the SHMS central angle and momentum to be fixed and

the HMS to be rotated from smaller to larger angles corresponding to the lower and

higher missing momentum settings, respectively. The experiment was carried out in

a time period of six days with typical electron beam currents of 45-60 µA at about

50% beam efficiency.
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H. Arenhövel [49]. Note: Reprinted from Ref. [47]. . . . . . . . . . . 9

1.4 2H(e, e′p)n angular distributions of the cross section ratio, R = σexp/σpwia.
(Left) Hall A data at Q2 = 3.5 ± 0.25 (GeV/c)2 and recoil mo-
mentum settings (a) pr = 0.2 GeV/c, (b) pr = 0.4 GeV/c and (c)
pr = 0.5 GeV/c. Theoretical calculations for (i) solid (purple) curves
using the CD-Bonn potential by M. Sargsian [59], (ii) dashed (green)
curves using FSI and dashed-double dotted (black) curves using
FSI+MEC+IC by J.M. Laget [60] using the Paris potential and (iii)
dashed (pink) curves denote calculations by J.W. Van Orden [61].
(Right) Hall B data at various Q2 settings. The green data (with
FSI re-scattering peak) correspond to 400 ≤ pr ≤ 600 MeV/c, and
the blue data (no FSI re-scattering) correspond to 200 ≤ pr ≤ 300
MeV/c. The solid curves are calculations from J.M. Laget [60] and
the dashed curves are from M. Sargsian [59]. Note: Reprinted from
Ref. [47]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Simplified Feynman diagram of the 2H(e, e′p)n reaction kinematics and
the respective four momenta of the interacting particles. . . . . . . . 15

2.2 General 2H(e, e′p)n reaction kinematics. . . . . . . . . . . . . . . . . . . 16

2.3 (a) Anti-parallel kinematics. The neutron (blue) recoils in the opposite
direction to ~pf (red) and ~q (black). (b) Parallel kinematics. The
neutron recoils in the same direction as ~pf and ~q. (c) Perpendicular
kinematics. The neutron recoils in a perpendicular direction relative
to ~q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 2H(e, e′p)n Feynman Diagrams. The colors are: (yellow) deuteron tar-
get, (red) initial state proton, (blue solid) initial and final state
neutron, (magenta, green) final state proton, (orange oval) FSI re-
scattering, (orange rectangle) intermediate resonance state, (navy
blue) virtual photon and (black dashed line) meson exchange. . . . . 21

2.5 Qualitative inclusive deuteron-electron scattering cross section. Note:
Reprinted from Ref. [75]. . . . . . . . . . . . . . . . . . . . . . . . . 25

xiv



2.6 Ratio of the theoretical cross section ratios versus neureon recoil angles
θnq (denoted as θpsq in the figure) calculated within both the GEA
(solid) and Glauber approximation (dashed) for varios neutron recoil
momenta pr (denoted as ps in the figure). Note: Reprinted from
Ref. [57]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Aerial view of CEBAF at Newport News, Virginia. The service build-
ings mark the 7/8-mile (1.4 km) racetrack-shaped accelerator 30 feet
(base of tunnel) below the surface. The dome-shaped terrain repre-
sent the accelerator end-stations (experimental halls), which are also
underground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Schematic of CEBAF 12 GeV Upgrade. Note: Reprinted from Ref. [90]. 34

3.3 A single (C100) 7-cell Niobium cavity. [91]. Note: Reprinted from Ref. [90]. 35

3.4 A cartoon of electrons being accelerated by a 5-cell cavity. The principle
of operation is the same regardless of the SRF cavity design. . . . . . 36

3.5 Artist’s rendering of Experimental Hall C after the 12 GeV upgrade.
Note: Reprinted from Ref. [97]. . . . . . . . . . . . . . . . . . . . . . 38

3.6 The Hall C arc with the relevant beamline components for the beam en-
ergy measurements are shown. The electron (red vector) loses energy
(synchrotron radiation shown as yellow wiggly arrows) as it traverses
the arc under a perpendicular magnetic field B⊥. Two superharps
(wire-scanners) at each end of the arc are used to determine small
variations in the beam direction. . . . . . . . . . . . . . . . . . . . . 44

3.7 Hall C beamline from hall entrance to target chamber. Distances to
the relevant beamline components are measured from the origin (the
pivot center) and given in meters. The first three colored boxes
(green, blue and red) have multiple components with the relevant
distances to the target origin. The codenames used in the Fast Raster
magnets refer to the horizontally (H) and vertically (V) bending air-
core magnets. The commonly used names of the other beamline
components are indicated in parentheses. . . . . . . . . . . . . . . . 47

3.8 Hall C beamline from target chamber to beam dump. . . . . . . . . . . 48

3.9 Hall C beamline harp diagram. The harp enters (red arrow shows di-
rection of motion) at a 45◦ angle. The two vertical wires measure
the beam position along the x-axis and a vertical wire measures the
position alng the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Results from a harp scan of harp IHA3H07A taken at 5-pass on April
2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 Fast raster (X,Y) raw ADC signals measured by the pickup probe during
run 3289 for the 80 MeV/c setting. The 3D plot (and inset 2D
representation) show an approximately uniform XY raster distribution. 51

xv



3.12 Hall C BPM and electronics diagram. In EPICS coordinate system (left-
handed), the beam is directed out of the page. The antennae are
located along the axes of a coordinate system (blue) that is oriented
45◦ relative to the EPICS coordinate system. Note: Reprinted from
Ref. [97]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.13 Hall C BCM electronics diagram [97]. . . . . . . . . . . . . . . . . . . . 55

3.14 A CAD (computer-aided design) drawing of the Hall C Target Chamber
design. Note: Reprinted from Ref. [97]. . . . . . . . . . . . . . . . . 57

3.15 A CAD drawing of the Hall C Target Ladder. The arrow shows the
beam direction. Note: Reprinted from Ref. [97]. . . . . . . . . . . . . 58

3.16 Hall C Target GUI screen during the E12-10-003 experiment. . . . . . . 59

3.17 Carbon hole check during the E12-10-003 experiment shows the raster
pattern for FR-A (left) and FR-B (right) raster magents. . . . . . . . 60

3.18 Hall C cryotarget loop anatomy for the 12 GeV era (not to scale). Figure
adaptation from Refs. [118] [119]. . . . . . . . . . . . . . . . . . . . . 61

3.19 Spectrometer slit system. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.20 High Momentum Spectrometer (HMS) side view. . . . . . . . . . . . . . 68

3.21 Super High Momentum Spectrometer (SHMS) side view. . . . . . . . . . 70

3.22 High Momentum Spectrometer (HMS) detector stack. . . . . . . . . . . 72

3.23 Super High Momentum Spectrometer (SHMS) detector stack. . . . . . . 73

3.24 Side view of the plane orientation for the DC1 (left) where the colored
planes represent the wire planes, and DC2 (right) which is identical
in design to DC1 rotated by 180◦ about the x-axis (vertical) forming
a mirror image along the z-axis. . . . . . . . . . . . . . . . . . . . . 74

3.25 Front view of the wire (dashed) orientations for each plane, indicated
by representative sense wires of different colors, where the +z-axis
(particle direction) is into the page. The wires in each plane are
superimposed onto a single plane in this figure for convenience and
their orientation is defined by the vector normal to the wire. . . . . . 75

3.26 Front view of the SHMS S1X (front) and S1Y (back) hodoscope planes. 78
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CHAPTER 1

INTRODUCTION

In this introductory chapter I will first give a historical overview of the deuteron.

Then I will briefly discuss the transition from meson theory to phenomenology as

well as historical electron-scattering experiments on the deuteron that were done in

an effort to understand how the nucleon-nucleon (NN) interaction works. Finally,

I will give the motivation for doing this experiment.

1.1 The Deuteron and the Beginning of Nuclear Forces

The deuteron (originally called by various names such as “deuton,” “diplon” or

“diplogen”) was discovered in 1931 by H. Urey [1] while spectroscopically examining

the residue of a distillation of liquid hydrogen. It was not until the discovery of the

neutron by J. Chadwick [2] a few months later that the deuteron mass could be

explained. Within a few months, the first attempt to describe the nuclear force

between the proton and neutron using a quantum-mechanical approach was made

by W. Heisenberg [3–5] under the faulty assumption that the neutron was a bound

system of a proton and an electron, as this was the existing view of the nucleus

at the time. In 1934, H. Bethe and R. Peierls introduced for the first time the

Hamiltonian of the deuteron [6] (“diplon” at the time) treating it as a two-body

system with a nucleon-nucleon (NN) interactive potential, even though the details

of the interaction were unkown at the time. The approach to describe the NN

potential via a Hamiltonian would become a basis for the successful description of

nuclear systems and reactions in the future [7]. In that same year, the first semi-

successful attempt at explaining how the nuclear force worked was presented by H.

Yukawa using the idea of particle exchange introduced in the Quantum Field Theory
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(QFT) of electromagnetic interactions known as Quantum Electrodynamics (QED)

and developed by P.M. Dirac in the late 1920s. In a simplified version of Yukawa’s

theory, the NN potential is expressed as:

VYukawa = −CY
e−r/R

r
, R ≡ ~c

mπc2
(1.1)

where the overall “-” sign means that the force is attractive, CY is related to the

coupling strength between the nucleons, r is the distance between the nucleons, R is

the range of interaction, ~c = 197.3 MeV·fm, and mπ is the mass of the exchanged

particle. The attractive force between two nucleons is mediated by the exchange

of a single massive boson (meson) that Yukawa estimated to be mπ ∼ 200 times

the mass of an electron. The particle was later discovered in a cosmic ray experi-

ment in 1947 [8], and became known as the charged pion, which earned Yukawa the

Physics Nobel Prize in 1949. Since the exchanged particle has a finite mass (unlike

the virtual photon in QED), the strong nuclear force operates at small distances

where the mass of the exchanged mesons mediating the NN interaction is inversely

proportional to the interaction range. Using Heisenberg’s uncertainty principle and

the known pion mass, the NN interaction range is estimated to be R ∼ 1.4 fm. In

reality, the Yukawa potential is more complicated than presented in Eq. 1.1 and

only describes the long-range part of the NN interaction.

Before additional discussion of nuclear interactions, it is worth mentioning the

implications that an important experimental discovery had on the nature of the nu-

clear force. In 1939, Rabbi et al. [9,10] measured the deuteron’s electric quadrupole

moment (Qzz = +2.73 efm2). The implications of a static quadrupole moment were

that the nuclear potential did not only have a central (spherical symmetric) part,

but also a complicated non-central component that needed to be accounted for. To

understand the non-central component, consider the multipole expansion of a charge
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distribution in the presence of an external electric field, ~E = −~∇V , which can be

expressed as:

Eint = V (0)q +
∂V

∂z

∣∣∣
0
pz −

1

4

∂2V

∂z2

∣∣∣
0
Qzz + ... (1.2)

where Eint is the interaction energy, V is the electric potential and q, pz and Qzz are

the monopole (L = 0), dipole (L = 1) and quadrupole (L = 2) terms, respectively.

Figure 1.1: The L = 0 (spherically symmetric) and L = 2 (prolate spheroid) are
the charge distributions of the deuteron, where the spins of the proton (blue) and
neutron (red) are aligned. The existence of a positive electric quadrupole moment
indicates that the deuteron charge distribution is actually elongated about the axis
of rotation (z-axis).

The monopole term conserves angular momentum (L = 0), which is a property

of central forces and corresponds to a spherically symmetric charge distribution with

radius 〈r〉2 = 〈x2 + y2 + z2〉 ≡ 3〈z2〉 assuming that the expectation values of the

square of the distance from the center to the surface, 〈x2〉 = 〈y2〉 = 〈z2〉, are equal.

The existence of a quadrupole term (Qzz = e(3z2 − r2)) in the deuteron, however,

indicates that the nuclear force has a tensor component that arises from the spin-

orbit interaction between the angular momentum (L = 2) and the intrinsic nuclear
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spins. There also exist an interaction between the intrinsic particle spins known as

the spin-spin interaction that contributes to the tensor component of the nuclear

force, however, this interaction arises from a purely quantum-mechanical effect and

has no classical analog. The quadrupole term measures the lowest order departure

from a spherical charge distribution in a nucleus (see Fig. 1.1). To understand the

additional tensor component, consider the following:

J = L+ S, (1.3)

where S = sp + sn, (sp, sn) are the proton and neutron intrinsic spins, L is the

relative angular momentum between the two nucleons and J is the total angular

momentum. The range of possible angular momentum states is given by

|L− S| ≤ J ≤ L+ S. (1.4)

From the experimental fact that J = 1~ [11] for the deuteron, the possible combi-

nations are:

L = 0, S = 1 (sp, sn) parallel (1.5a)

L = 1, S = 0 (sp, sn) anti-parallel (1.5b)

L = 1, S = 1 (sp, sn) parallel (1.5c)

L = 2, S = 1 (sp, sn) parallel (1.5d)

From the observation that the deuteron parity1 is even or “+,” only even values

of relative angular momentum are allowed, which implies that the deuteron wave

function is not in a pure L = 0 state, but rather a superposition of L = 0 and L = 2

states. Using the spectroscopic notation (2S+1LJ), the L = 0 and L = 2 are referred

1Parity refers to the eigenvalue of the angular wave function under the trasnformation:
P̂ Y (θ, φ) = Y (π − θ, φ+ π) = PY (θ, φ), where P = (−1)L
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to as “sharp” (or S-wave) and “diffuse” (or D-wave) components, respectively. The

deuteron wave function can then be expressed as a linear combination of two possible

states

|Ψd〉 = pS
∣∣3S1

〉
+ pD

∣∣3D1

〉
, (1.6)

where p2
S+p2

D = 1 and the normalization coefficiencts, (pS, pD), represent the proba-

bility of finding the deuteron in either an S-state (pS) or D-state (pD). The relative

contribution from the S- or D-state are sensitive to the radial part of the deuteron

wave function, which is determined phenomenologically. A summary of the D-state

probability for different NN potentials can be found in Ref. [12], with typical ranges

pD ∼ 3− 7%.

1.2 From Meson Theory to Phenomenology

After the discovery of the pion in cosmic rays in 1947 and its artificial production

in the lab at the Berkeley Cyclotron in 1948 [13], a great deal of effort was devoted

to the development of meson theory as the fundamental theory of nuclear forces.

In 1951, Taketani, Nakamura and Sasaki [14] proposed that the nuclear potential

should be divided into different regions that should be treated separately (see Fig.

1.2).

It was suggested that the long-range part of the potential should be treated

using meson theory, while the intermediate and short-range parts should be ap-

proached phenomenologically as additional complications because of heavy mesons,

higher order perturbations, coupling strengths and relativistic effects become diffi-

cult to solve. Nevertheless, in the early 1950s there were various attempts to develop

a fundamental theory of strong interactions (meson theory) [16–19] that ultimately

failed when multi-pion exchanges where included in the theory. Only the long-range

5



Figure 1.2: Qualitative NN -potential versus inter-nucleon separation distance.
Note: Reprinted from Ref. [15].

part of the NN potential—or the One-Pion Exchange Potential (OPEP)—was found

to describe the NN scattering data at the time. A more general overview of the

development of pion theory can be found in Refs. [20, 21].

In the early 1960s, the possibility of the existence of heavier mesons started to

emerge theoretically [22] and experimentally [23]. These ideas led to the develop-

ment of the One-Boson Exchange Potential (OBEP) [24], where the idea of a single

pion exchange between two nucleons was generalized to a single boson exchange, in

which heavier mesons were also included in the model and would account for shorter

distances in the NN potential. Soon afterwards, several heavier mesons were dis-

covered experimentally, most notably the ρ(770) [25] and ω(783) [26] mesons. With

the discovery of heavier mesons, increased efforts were devoted to the development

of the OBEP [27, 28] and soon afterwards, the first NN potential models emerged

that seemed to describe the NN scattering data better than any previous models
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to date. Some of the best known potentials of the 1960s were by Hamada-Johnston

(HJ) [29] and Reid68 [30].

In the 1970s and 1980s efforts continued towards the development of improved

nuclear phenomenological models using the OBEP. Of particular importance was the

development of the relativistic OBEP [31–34] in the 1970s where the full relativistic

scattering amplitudes were used in the calculations. The inclusion of relativistic

amplitudes produced a significant improvement in the agreement between NN scat-

tering data and phenomenological models using the relativistic OBEP as compared

to previous non-relativistic models (see Fig. 2 of Ref. [35]). During the 1970s, there

was also an effort devoted to derive the 2π−exchange contributions to the nuclear

potential, which accounted for the intermediate range of the nuclear force. The rea-

son was that during its initial years, the OBEP models had to introduce the σ meson

in order to describe the intermediate-range nuclear force, however, no experimental

evidence for the σ meson had been found.

Well known examples of potentials that included 2π exchange contributions were

the Stony-Brook [36] and Paris [37,38] group potentials. In the 1980s, more sophis-

ticated potentials based on the OBE approach were constructed, particularly by the

Argonne and Bonn groups with NN potentials that included 2π exchange contri-

butions such as the Argonne V14 and V28 (AV14 and AV28) [39] potentials and

the full Bonn [40] potential, which included both 2π exchange contributions as well

as relativistic effects on the OBEP. It is important to note that some of the poten-

tials mentioned above were improved further in later years. As an example, in this

experiment we used the parametrized Paris [41], AV18 [42] and charge-dependent

Bonn (CD-Bonn) [43] potentials to compare with experimental data.
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1.3 Historical 2H(e, e′p)n Experiments

In order to probe the internal structure and dynamics of nuclei, electron-nucleon

scattering serves as the most valuable tool since the interaction is described by the

well established theory of QED, which is capable of making accurate predictions.

Electron scattering experiments can be separated into inclusive or exclusive types.

In the former, only the electron is detected in the final state (single-arm experi-

ments), and one studies the nucleus in question by integrating over all possible final

states [44]. In the latter, one or more particles are detected in coincidence with the

scattered electron, which allows one to investigate properties unique to the specific

reaction in question. In deuteron electro-disintegration (2H(e, e′p)n), for example,

one detects the scattered electron in coincidence with the proton and the missing

neutron is reconstructed from momentum conservation laws. The 2H(e, e′p)n re-

action proves to be the most direct way of probing the internal structure of the

deuteron since it is possible to deduce the internal momentum of the nucleons from

the neutron recoil (“missing”) momenta.

Historical 2H(e, e′p)n experiments were started in 1962 at the Stanford Mark III

Linear Accelerator (linac) at a very low Q2 = 0.085 (GeV/c)2 [45] and shortly after

in 1965 at the Orsay linac at Q2 = 0.264 (GeV/c)2 [46]. At the time, the smallest

cross sections measured were limited by the duty factor2 of the particle accelerators

at the time (fduty ∼ 10−5) [47]. In the 1970s and 1980s, the duty factor of accelera-

2The duty factor is defined by the ratio fduty = δTpulse/δTrep, where δTpulse is the pulse
length and δTrep is the pulse repetition period of the electron beam. The small duty
factor of the accelerators leads to high instantaneous particle rates and therefore high
accidental coincidence rates, or equivalently, low signal-to-noise ratio. As a result, the
amount of beam time required to measure smaller cross sections is not feasible due to
the high accidentals rate [44].
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tors increased and it became possible to measure smaller 2H(e, e′p)n cross sections,

corresponding to larger missing momenta.

Figure 1.3: 2H(e, e′p)n cross section versus neutron recoil momentum from the
MAMI (1998) experiment [48]. Theoretical calculations were performed by H.
Arenhövel [49]. Note: Reprinted from Ref. [47].

For example, the Kharkov Institute [50] 2 GeV linac extended the missing mo-

mentum range to ∼ 300 MeV/c and experiments done at SACLAY [51,52] measured

2H(e, e′p)n cross sections up to missing momenta ∼ 500 MeV/c. In the 1990s, the

duty factor of electron accelerators increased further (fduty ∼ 1) such as the Amster-

dan Pulse Stretcher (AmPS) at the National Institute for Nuclear and High Energy

Physics (NIKHEF) in the Netherlands, the Mainz Microtron (MAMI) in Germany
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and Thomas Jefferson National Accelerator Facility (TJNAF) in the United States.

The dramatic improvement in the electron accelerator duty factor allowed for the

first time measurements of very small cross sections in relatively short periods of

time. For example, 2H(e, e′p)n cross sections were measured at missing momenta

up to ∼ 700 MeV/c (Q2 = 0.28 (GeV/c)2) at NIKHEF [53] and ∼ 928 MeV/c

(Q2 = 0.33 (GeV/c)2) at MAMI [48]. While at TJNAF [54], the unique combi-

nation of high energy, duty factor and beam current allowed the measurements to

be carried out for the first time at relatively high missing momnetum up to ∼ 550

MeV/c and Q2 = 0.665 (GeV/c)2.

The comparison of the results (see Fig. 1.3) from the MAMI (1998) experiment

with H. Arenhövel’s calculations [49] demonstrated that only for very specific kine-

matics (e.g., SACLAY experiment in Ref. [51]), at missing momenta below ∼ 200

MeV/c meson exchange currents (MEC), isobar configurations (IC) and final state

interactions (FSI) are relatively small and cancel, leaving the plane wave born ap-

proximation (PWBA)3 as the dominant contribution to the cross section. However,

above ∼ 300 MeV/c, the PWBA (dashed blue), FSI (dashed-dotted green), MEC

(dotted purple) and IC (solid red) all contribute significantly to the 2H(e, e′p)n

cross section and obscure any possibility of extracting the momentum distributions

(PWIA in dashed green).

1.4 First 2H(e, e′p)n Experiments at Large Q2

The first 2H(e, e′p)n experiments at Q2 > 1 (GeV/c)2 were carried out at TJNAF in

experimental Halls A [55] and B [56]. Both experiments determined that the cross

3In the plane wave impulse approximation (PWIA), it is assumed that only the proton
gets knocked out by the virtual photon whereas in the PWBA, the process in which the
neutron is knock-out is also considered.
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sections for fixed recoil momenta indeed exhibited a strong angular dependence with

neutron recoil angles, peaking at θnq ∼ 70◦ in agreement with the generalized eikonal

approximation (GEA) calculations [57, 58] at high missing momentum and Q2 > 2

(GeV/c)2 (see Fig. 1.4).
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Figure 1.4: 2H(e, e′p)n angular distributions of the cross section ratio, R =
σexp/σpwia. (Left) Hall A data at Q2 = 3.5 ± 0.25 (GeV/c)2 and recoil momen-
tum settings (a) pr = 0.2 GeV/c, (b) pr = 0.4 GeV/c and (c) pr = 0.5 GeV/c.
Theoretical calculations for (i) solid (purple) curves using the CD-Bonn potential
by M. Sargsian [59], (ii) dashed (green) curves using FSI and dashed-double dotted
(black) curves using FSI+MEC+IC by J.M. Laget [60] using the Paris potential
and (iii) dashed (pink) curves denote calculations by J.W. Van Orden [61]. (Right)
Hall B data at various Q2 settings. The green data (with FSI re-scattering peak)
correspond to 400 ≤ pr ≤ 600 MeV/c, and the blue data (no FSI re-scattering)
correspond to 200 ≤ pr ≤ 300 MeV/c. The solid curves are calculations from J.M.
Laget [60] and the dashed curves are from M. Sargsian [59]. Note: Reprinted from
Ref. [47].
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In Hall B, the CEBAF Large Acceptance Spectrometer (CLAS) measured an-

gular distributions for a range of Q2 values as well as momentum distributions.

However, statistical limitations made it necessary to integrate over a wide angular

range to determine momentum distributions that are therefore dominated by FSI,

MEC and IC for recoil momenta above ∼ 300 MeV/c.

In Hall A, the pair of high resolution spectrometers (HRS) made it possible to

measure the missing momentum dependence of the cross section for fixed neutron re-

coil angles (θnq) reaching missing momenta up to pr = 550 MeV/c at Q2 = 3.5±0.25

(GeV/c)2. For the first time, very different momentum distributions were found for

θnq = 35± 5◦ and 45± 5◦ compared to θnq = 75± 5◦. Theoretical models attributed

this difference to the suppression of FSI at the smaller angles (θnq = 35, 45◦) com-

pared to FSI dominance at θnq = 75◦ [55].

1.5 Motivation

Being the most simple neutron-proton (np) bound state, the deuteron serves as a

starting point to study the strong nuclear force (or NN potential) without additional

complications that arise from A > 2 nuclei. As mentioned before, the NN potential

is sub-divided into three regions with inter-nucleon distance r as follows:

• the long range part (LR), where r > 2 fm

• the intermediate or mid-range part (MR), where 1 < r < 2 fm

• the short range part (SR), where r < 1 fm

The LR part is dominated by a single π exchange, where usually the OPEP is used

by most phenomenological models. The MR part is dominated by 2π exchange or

the exchange of a heavier mesons. Finally, the SR part is often modeled by a repul-

sive hard core and is determined completely phenomenologically. It is this part that
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is least known from a theoretical point of view and the most difficult to access exper-

imentally. At such small inter-nucleon distances, from a Quantum Chromodynamics

(QCD) perspective, a repulsive force is expected. For example, if one considers the

three quarks inside the nucleon, as the proton and neutron start to overlap, the

quarks in each nucleon cannot be considered independent of the other. Given that

quarks are fermions, the Pauli exclusion principle prevents any two fermions from

occupying the same quantum state. As a consequence, any three quarks must go to

energy states above the lowest states occupied by the other three [62]. This process

requires a large amount of energy that shows up as a resistance (repulsive hard core)

to bring the two nucleons to sub-Fermi distances.

From a nuclear physics perspective, the overlap between the nucleons in the

deuteron is directly related to short-range correlations (SRCs) observed in A > 2

nuclei [63–66]. Short-range studies of the deuteron are also important in determin-

ing whether, or to what extent, the description of nuclei in terms of nucleon/meson

degrees of freedom is still valid before having to include explicit quark effects, an

issue of fundamental importance in nuclear physics [67].

Presently, there are only a few nuclear physics experiments from which a transi-

tion between nucleonic to quark degrees of freedom have been observed [68–71]. The

experiment presented in this dissertation seeks to study the short range structure of

the deuteron by extending the previous Hall A measurements [55] of the 2H(e, e′p)n

cross section to Q2 = 4.5 ± 0.5 (GeV/c)2 at Bjorken scale xBj > 1 and neutron

recoil momenta up to pr ∼ 1 GeV/c, which is almost double of the maximum recoil

momentum previously measured in Hall A. Measurements at such large Q2 and high

missing momenta required a high beam energy and small electron scattering angles

leading to the detection of electrons at ∼8.5 GeV/c, made possible with the newly

commissioned Hall C Super High Momentum Spectrometer (SHMS). At the selected

13



kinematic settings with neutron recoil angles between 35◦ and 45◦, MEC, IC and

FSI are mostly suppressed. This leaves the PWIA as the dominant contribution to

the 2H(e, e′p)n cross section giving access to the high momentum components of the

deuteron wave function.
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CHAPTER 2

THEORETICAL BACKGROUND

In this chapter I will derive the basic formulas for the 2H(e, e′p) reaction kinematics

using the Feynmann diagram of Fig. 2.1 (assume natural units for speed of light,

c = 1). Then I will briefly discuss the general reaction cross section and the various

reaction mechanisms that can occur. Finally, the theoretical models that are used

to compare with the experimental data will be discussed.

2.1 The 2H(e, e′p)n Reaction Kinematics

Figure 2.1: Simplified Feynman diagram of the 2H(e, e′p)n reaction kinematics and
the respective four momenta of the interacting particles.
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The deuteron electro-disintegration reaction kinematics can be described in QED by

the exchange of a single virtual photon between the electron and deuteron assuming

a One-Photon Exchange Approximation (OPEA). The Feynman diagram in Fig.

2.1 describes a typical deuteron electro-disintegration reaction, where the electron

interacts with the deuteron via the exchange of a virtual photon that breaks the

deuteron up into a proton and a neutron. The scattered electron is detected by the

Super High Momentum Spectrometer (SHMS) in coincidence with the knocked out

proton in the High Momentum Spectrometer (HMS). The “missing” (recoil) neutron

is reconstructed from momentum conservation laws.

Figure 2.2: General 2H(e, e′p)n reaction kinematics.

Figure 2.2 shows a more detailed diagram of the 2H(e, e′p)n reaction kinematics,

where the scattering plane is defined by ŷsct = k̂× k̂′ where k̂ and k̂′ are unit vectors

in the direction of the incident and scattered electron, respectively, and ŷsct is a unit

vector normal to the scattering plane which defines its orientation. Similarly, the

orientation of the reaction plane is defined by ŷreact = q̂× p̂f , where q̂ and p̂f are unit

vectors in the direction of the virtual photon and final state proton, respectively,

and ŷreact is a unit vector normal to the reaction plane. The angle between the two

planes is defined by ŷsct · ŷreact = cos(φpq). In Hall C, the angle φpq is referred to as
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the out-of-plane angle between the two spectrometers, but since the spectrometers

are always in the same plane, the two possible values are φpq = 0◦ or 180◦, which

only apply to the central ray of the spectrometers.

The relevant kinematic variables in the 2H(e, e′p)n reaction can be obtained by

applying energy and momentum conservation at the electron and hadron vertices

in Fig. 2.2. At the electron vertex, the initial and final electron four momenta are

P µ
e = (E,~k) and P ′µe = (E ′, ~k′), where the final electron scatters at angle θe relative

to the incident electron direction. The energy and momentum transfer carried by

the virtual photon are defined as

qµγ ≡ P µ
e − P ′µe = (E − E ′, ~k − ~k′) = (ω, ~q). (2.1)

By taking the negative square of Eq. 2.1 and assuming E,E ′ ∼ k, k′ (electron mass

m2
e � k2, k′2), it is convenient to define the four-momentum transfer of the virtual

photon (also known as the virtuality) as

Q2 ≡ −qµqµ = q2 − ω2 ≈ 4kk′ sin2(θe/2). (2.2)

It is also convenient to define the Bjorken scale, xBj ≡ Q2

2Mpω
, where Mp is the

proton mass. At the hadron vertex, the deuteron nucleus with mass MD is station-

ary with total internal momentum of the proton and neutron, ~pp,i + ~pn,i = ~0, and

four-momentum, P µ
D = (MD,~0). The final state proton and neutron four-momenta

are defined as P µ
p = (Ef , ~pf) and P µ

n = (Er, ~pr), respectively. Applying energy-

momentum conservation at the hadron vertex,

qµγ + P µ
D = P µ

p + P µ
n =⇒ (ω, ~q) + (MD,~0) = (Ef , ~pf) + (Er, ~pr). (2.3)

From energy conservation of Eq. 2.3,

ω +MD = Ef + Er = Tp +Mp + Tn +Mn

=⇒ Em ≡ EBE = Mp +Mn −MD = ω − Tp − Tn, (2.4)
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where the missing energy (Em) is defined as the binding energy (EBE) of the deuteron

and (Tp, Tn) are the final kinetic energies of the proton and neutron, respectively.

From momentum conservation of Eq. 2.3,

~pf = ~q − ~pr =⇒ p2
f = q2 + p2

r − 2qpr cos(θnq). (2.5)

Or equivalenlty, the neutron recoil momentum from Eq. 2.3 can be expressed as,

~pr = ~q − ~pf =⇒ p2
r = q2 + p2

f − 2qpf cos(θpq). (2.6)

Substituting Eq. 2.6 into Eq. 2.5 and solving for cos(θnq),

cos(θnq) =
q − pf cos(θpq)√

q2 + p2
f − 2qpf cos(θpq)

, (2.7)

where (θnq, θpq) refers to the angle between the virtual photon and the recoiling neu-

tron (θnq) or scattered proton (θpq) direction. From Eq. 2.7, under the assumption

~q > ~pp,i and that the proton is struck and the neutron is a spectator without further

interaction, the limiting cases are shown in Fig. 2.3.

From Fig. 2.3, the proton (red) and neutron (blue) are initially inside the

deuteron moving in opposite direction with total internal momentum (~pp,i +~pn,i = ~0)

represented by the dashed vectors. The virtual photon (black solid vector) can in-

teract with the proton as follows:

• Anti-Parallel Kinematics: The virtual photon knocks out a proton initially

moving along ~q, transferring all its momentum to the proton in the final state

(solid red vector) such that ~q < ~pf . The neutron recoils in opposite direction

to ~q with missing momentum same as its internal momentum in the deuteron.

• Parallel Kinematics: The virtual photon knocks out a proton initially moving

opposite to ~q, transferring all its momentum to the proton causing it to change

direction in the final state such that ~q > ~pf . The neutron recoils along the
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direction of ~q with missing momentum same as its internal momentum in the

deuteron.

• Perpendicular Kinematics: The virtual photon knocks out a proton initially

moving perpendicular to ~q, transferring all its momentum to the proton caus-

ing it to change direction in the final state such that |~q| ∼ |~pf | and θpq is at very

small angles. The neutron recoils perpendicular to ~q with missing momentum

same as its internal momentum in the deuteron.

Figure 2.3: (a) Anti-parallel kinematics. The neutron (blue) recoils in the opposite
direction to ~pf (red) and ~q (black). (b) Parallel kinematics. The neutron recoils in
the same direction as ~pf and ~q. (c) Perpendicular kinematics. The neutron recoils
in a perpendicular direction relative to ~q.

These are limiting cases, but in general, the vectors do not have to be perfectly

aligned with ~q when referring to these kinematics. It is sufficient if the final state
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vectors are approximately along ~q. The Parallel and Anti-Parallel Kinematics are

more directly related to the short-range structure of the deuteron as FSI are ex-

pected to be reduced at these kinematics whereas in the Perpendicular Kinematics,

FSI become dominant at higher missing momentum, which can lead to a larger in-

ferred initial momentum than the true internal momentum of the proton [67]. This

experiment (E12-10-003) has chosen kinematics (θnq at forward angles) that favor

the Parallel Kinematics for short-range structure studies of the deuteron.

2.2 The 2H(e, e′p)n Cross Section

Assuming the OPEA, for the general A(e, e′p) reaction where an electron is detected

in coincidence with a knocked-out proton and the residual (A − 1) system recoils,

the unpolarized 6-fold differential cross section can be expressed as (See Chapter 6

of Ref. [72]):

d6σ

dE ′dΩedΩpdTp
= σMott(vLWL + vTWT + vLTWLT cosφpq + vTTWTT cos 2φpq), (2.8)

where the longitudinal (WL), transverse (WT) and interference (WLT,WTT) nuclear

response functions are determined from matrix elements of the hadronic four-current

operator and the leptonic kinematic factors (vL, vT, vLT, vTT) are determined from

matrix elements of the leptonic four-current operator. The Mott cross section, σMott,

describes the scattering of an electron off an infinitely massive and spinless point

charge and is defined as

σMott =
(2αk′ cos(θe/2)

Q2

)2

, (2.9)

where α ∼ 1/137 is referred to as the fine structure constant and characterizes the

coupling strength of the electromagnetic interaction.
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The leptonic kinematic factors and nuclear response functions are summarized in

Tables 2 and 4 of Ref. [72]. For a more detailed discussion of the formalism used to

derive the leptonic and hadronic matrix elements from their respective four-current

operators refer to Chapter 2 and 6 of Ref. [72].

The cross section in Eq. 2.8 can include the various nuclear processes such as

MEC, IC and FSI, which can significantly alter the nuclei momenta in the final

state. For the deuteron in particular, the Feynman diagrams in Fig. 2.4 describe

possible reaction mechanisms, which are further discussed in the following sections.

Figure 2.4: 2H(e, e′p)n Feynman Diagrams. The colors are: (yellow) deuteron target,
(red) initial state proton, (blue solid) initial and final state neutron, (magenta, green)
final state proton, (orange oval) FSI re-scattering, (orange rectangle) intermediate
resonance state, (navy blue) virtual photon and (black dashed line) meson exchange.
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2.3 Plane Wave Impulse Approximation

In the PWIA (Fig. 2.4(a)), the virtual photon couples directly to the bound proton,

which is subsequently ejected from the deuteron without any further interaction

with the recoiling neutron. The recoiling neutron carries a momentum equal in

magnitude but opposite in direction to the initial momentum of the bound proton,

~pr = −~pp,i, thus providing information on the momentum of the bound proton and

its momentum distribution. Within the PWIA, the general cross section in Eq. 2.8

can be factorized as follows:

d6σ

dE ′dΩedΩpdTp
= KσeNS(~pp,i, Em), (2.10)

where σeN describes the elementary cross section for an electron scattering off a

bound (off-shell) nucleon where the deForest [73] off-shell cross sections, σcc1 or

σcc2, are commonly used. The kinematic factor that results from the factorization

is defined as K ≡ Efpf , and S(~pp,i, Em) is referred to as a spectral function, which

describes the probability of finding a bound proton with momentum ~pp,i and sep-

aration energy Em. The separation (binding) energy of the bound state can be

integrated out of Eq. 2.10 to obtain,

σtheory ≡
d5σtheory

dE ′dΩedΩp

= KfrecσeNS(~pp,i), (2.11)

where frec is the recoil factor that arises from the integration in Em and is defined

as [74]

frec ≡
1

1− 1
2
Ef

Er

q2−(p2f +p2r )

p2f

. (2.12)

For the deuteron, the spectral function is interpreted as the momentum distribu-

tion of the proton inside a nucleus. Experimentally, the reduced cross section is

determined from the experimental cross section by

σred ≡
σexp

KfrecσeN
, (2.13)
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where σexp ≡ d5σexp
dE′dΩedΩp

. If the PWIA were completely valid, σred would be the

deuteron momentum distribution.

The inclusion of the process (not shown in Fig. 2.4) in which the virtual photon

couples to the neutron and the proton is a spectator is often defined as the Plane

Wave Born Approximation (PWBA) and can be suppressed by choosing the ap-

propiate kinematics such that the 3-momentum transfer (~q) is significantly greater

than the largest missing momentum (pm) studied and approximately on the order

of the momentum of the ejected proton. Both of these conditions are satisfied in

this experiment.

In reality, long-range processes such as FSI, MEC and IC always contribute to

some extent to the total 2H(e, e′p)n cross section, hence the word “Approximation”

in PWIA. As will be discussed next, these long-range contributions can significantly

alter the recoiling neutron momentum, thereby obscuring the initial momentum dis-

tribution of the bound nucleon reducing the possibility of directly probing the high

momentum component of the deuteron wave function.

2.4 Final State Interactions

In direct FSI (Fig. 2.4(b)), the ejected proton and recoiling neutron continue to

interact further causing re-scattering of both nucleons. This situation is unfavor-

able for the extraction a momentum distribution as during the interaction of the

knocked-out proton with the recoiling neutron, momentum is being exchanged lead-

ing to ~pr 6= −~pp,i. As any possible momentum can be exchanged between the final

state particles, they are not considered plane waves but rather distorted waves and

the factorization of the cross section breaks down. If the remaining conditions for

the PWIA are still valid, the spectral function in Eq. 2.11 can be replaced by a
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distorted spectral function, SD(~pr, ~pf), and the approximation is regarded as a Dis-

torted Wave Impulse Approximation (DWIA). See Section 6.4 of Ref. [72] for details.

At large missing momenta (pr > 300 MeV/c) and high Q2, FSI exhibit a strong

angular dependence on θnq with maximal FSI re-scattering at θnq ∼ 70◦ and a

minimal re-scattering at θnq = 40◦ and 120◦ as predicted by the GEA [57, 58] and

confirmed by the previous Halls A and B experiments [55,56]. From these observa-

tions, it became clear that FSI dominates the deuteron cross section at the Perpen-

dicular Kinematics (θnq ∼ 70◦) whereas in the Parallel/Anti-Parallel Kinematics

(θnq ∼ 40◦, 120◦) it is significantly reduced (see Fig. 2.3).

2.5 Meson Exchange Currents and Isobar Configurations

In the MEC diagram (Fig. 2.4(c)), the virtual photon couples to the virtual meson

being exchanged between the two nucleons, whereas in the IC diagram (Fig. 2.4(d)),

the virtual photon excites a bound nucleon into an intermediate isobar resonance

state (∆) that subsequently decays (∆N → NN) via FSI to the ground state caus-

ing further re-scattering between the final state nucleons via the exchange of a pion.

Early 2H(e, e′p)n experiments [48,52–54] showed that at low Q2 and high missing

momenta, MEC and IC contribute significantly to the deuteron cross section. At

large Q2, however, from a theoretical perspective, these contributions are expected

to be significantly reduced.

The suppression of MEC can be understood from the fact that the estimated

MEC scattering amplitude (AMEC) is proportional to the meson propagator in the

electromagnetic current operator(Jµm(Q2)) and theNN -meson form factor (ΓMNN(Q2))

that have the following Q2 dependence [57],

AMEC ∝ Jµm(Q2)ΓMNN(Q2) ∝ 1

(1 +Q2/m2
meson)

1

(1 +Q2/Λ)2
, (2.14)
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where mmeson ∼ 0.71 GeV and Λ ∼ 0.8 − 1 GeV2. Therefore, at Q2 > 1 (GeV/c)2,

MEC are expected to be suppressed by an overall factor of ∼ 1/Q6 as compared to

the PWIA.

Figure 2.5: Qualitative inclusive deuteron-electron scattering cross section. Note:
Reprinted from Ref. [75].

The suppression of IC arises in part due to the kinematics chosen. At large Q2,

one is able to select xBj > 1, which corresponds to probing the lower energy (ω) part

of the deuteron quasi-elastic peak, which is maximally far away from the inelastic

resonance electroproduction threshold. From Fig. 2.5, the inclusive 2H(e, e′) shows

qualitatively that at the left end of the quasi-elastic peak (xBj > 1) one is max-

imally away from the inelastic ∆ and N∗ resonance electroproduction region and

corresponds to the kinematics where this experiment was done.

2.6 From Theoretical Potentials to Cross Sections

In the E12-10-003 experiment, the theoretical cross sections used to compare to data

were determined using the following phenomenological NN -potentials:
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• Parametrized Paris (1980) [41]

• Argonne V18 (AV18) (1995) [42]

• Charge-Dependent Bonn (CD-Bonn) (2001) [43]

Each of these potentials are improved versions of the original potentials and were

developed by Paris, Argonne and Bonn theoretical groups, respectively. The groups

have employed different techniques used in their approach to describe the interme-

diate and short range parts of the NN potential, whereas for the long-range part,

all have used the well-known One Pion Exchange Potential.

In general, the construction of NN potentials is largely based on parameters

that the model must fit to either neutron-neutron (nn), proton-proton (pp) or

neutron-proton (np) scattering data and the results are usually presented in texts

as χ2/datum to determine the success of the model in describing the experimental

data.

The calculations to determine the theoretical cross sections from an NN poten-

tial are based on solving the Schrodinger equation,

ĤDψD(~r) = EDψD(~r) =⇒ (T̂p + T̂n + V̂NN)ψD(~r) = EDψD(~r), (2.15)

where ĤD is the Hamiltonian operator that acts on the deuteron wave function

(ψD(~r)) and is expressed in terms of the proton and neutron kinetic energy opera-

tors (T̂p, T̂n) and the interactive NN potential (V̂NN), which is determined by the

theory groups. By solving Eq. 2.15, the deuteron wave function as well as the scat-

tering amplitude (and theoretical cross section) can be determined. In reality, Eq.

2.15 is restricted to the non-relativistic description of the wave function as it uses

a classical definition of the kinetic energies in the Hamiltonian. In this situation,

a generalized form of the Schrodinger wave equation can be used to describe the

system relativistically. Alternatively, the Bethe-Salpeter equation [76], which uses
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a relativistically covariant formalism (Feynman S-matrix formalism), can also used

to describe a 2-body bound state including relativistic effects.

Different theoretical calculations [49, 59–61, 77, 78] have been developed to de-

scribe the deuteron wave function within the PWIA as well as to account for addi-

tional processes such as FSI, MEC or IC that are not described by theoretical poten-

tials. In addition, some of the most recent theoretical calculations also account for

off-shell effects1, which become important at higher missing momenta [59,61]. Some

theoretical potentials may also include off-shell effects in their models, however,

there is no way of knowing a priori whether they are correct since these potentials

were derived from NN scattering data where the interacting particles are by defini-

tion on their energy shell (free interacting particles). See Chapter 2 of Ref. [62] for

a detailed discussion.

In this experiment, the theoretical calculations used to determine the 2H(e, e′p)n

cross sections from the AV18 and CD-Bonn potentials were performed by M. Sargsian

[59], while those for the Paris potential were by J.M. Laget [60]. In the former, an

effective Feynman diagrammatic approach described in Ref. [57] is used to calculate

the scattering amplitudes within the virtual nucleon approximation. This approx-

imation has three main assumptions described in Ref. [59], which also defines its

range of validity. The first two assumptions are satisfied by requiring the neutron

recoil momenta to be pr ≤ 700 MeV/c, while the third assumption made is that at

large Q2(>1 GeV2), MEC are considered to be a sufficiently small correction (see

Section 2.5) such that they can be ignored. The assumptions of the virtual nucleon

1The off-shell effects arise from the fact that for a bound system, the energy-momentum
conservation applies to the nucleus as a whole, but the momentum of a pair of nucleons
within the nucleus is no longer restricted and the individual particles are considered to
be “off the energy shell” (off-shell). Whereas for a pair of free interacting nucleons, the
energy-momentum conservation applies and the particles are said to be “on the energy-
shell” (on-shell).
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approximation restrict the Feynman diagrams to the PWIA (Fig. 2.4(a)), direct

FSI (Fig. 2.4(b)), charge exchange FSI2 (not shown) and IC (Fig. 2.4(d)) where

the IC can be suppressed kinematically by choosing xBj > 1 and was not considered

in the calculations from Ref. [59]. These Feynman diagrams constitute the basis for

the theoretical framework of the generalized eikonal approximation (GEA) [57, 58],

which uses the effective Feynman diagram rules described in Ref. [57] to determine

the PWIA and FSI scattering amplitudes in covariant form that account for off-shell

effects.

The GEA predicts a strong angular anisotropy observed in FSI as a function of

the neutron recoil angles peaking at θnq ∼ 70◦. This prediction was confirmed by the

first high Q2 deuteron electro-disintegration experiments carried out at Halls A [55]

and B [56] of Jefferson Lab (see Fig. 1.4). Additionally, it was also found that at

very forward and backward neutron recoil angles, FSI were significantly reduced and

comparable to the PWIA. The reduction in FSI can be understood from the fact in

the high energy limit (Q2 > 1 GeV2) of the GEA, the pn re-scattering amplitude is

mostly imaginary:

A = APWIA + iAFSI, (2.16)

with AFSI ≈ i|AFSI|, where the total scattering amplitude A is expressed as the

sum of the PWIA (APWIA) and the imaginary part of the FSI (AFSI) scattering

amplitudes. The total theoretical cross section can then be obtained by taking the

modulus square of the total scattering amplitude and can be expressed as

σPWIA+FSI ∼ |A|2 = |APWIA|2 − 2 |APWIA||AFSI|︸ ︷︷ ︸
“Screening” or

interference term

+ |AFSI|2︸ ︷︷ ︸
re-scattering term

. (2.17)

2This process corresponds to the scenario in which the virtual photon strikes a neutron
that re-interacts with the spectator proton in the final state via np→ pn charge-exchange
re-scattering.
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Taking the ratio of the total to the PWIA part of the cross section,

R =
σPWIA+FSI

σPWIA

= 1− 2
|APWIA||AFSI|
|APWIA|2

+
|AFSI|2
|APWIA|2

. (2.18)

From the ratio of cross sections the interference term enters with an opposite sign as

compared to the re-scattering term, which provides an opportunity for an approxi-

mate cancellation at certain neutron recoil angles as shown in Fig. 1.4 of Ref. [47].

This cancellation is also approximately independent of the neutron recoil momenta,

which opens a kinematic window at θnq ∼40◦ where one can probe the short-range

structure of the deuteron beyond pr ∼ 500 MeV/c and is the main focus of this

experiment.

In contrast to GEA approach used by M. Sargsian, J.M. Laget uses a diagram-

matic approach described in Ref. [60], which he first introduced in Ref. [79] and is

used to calculate the theoretical cross sections including the IC, MEC and FSI con-

tributions. The kinematics of this experiment suppress IC and MEC contributions

and therefore we only used the PWIA and FSI contributions to the theoretical cross

sections to comparare with the data. The PWIA and FSI scattering amplitudes for

the 2H(e, e′p)n reaction have been reproduced by Laget in Ref. [60] and utilize the

relativistic expressions of the proton and neutron on-shell current density operators,

(Jp(q), Jn(q)), in both amplitudes. The current densities use the conventional dipole

expression for the magnetic form factors of the proton and neutron, while for the

neutron and proton electric form factor, the Galster parametrization [80] and the

results from the Hall A experiment described in Ref. [81] were used, respectively.

Similar to the predictions from the GEA, the FSI calculations from J.M. Laget

also show that the FSI peak at θnq ∼70◦ for pr ∼500 MeV/c, whereas for lower recoil

momenta, the peak shifts towards larger recoil angles with a dip at about θnq ∼ 90◦

for the smallest recoil momenta. This can be understood from the fact that as the
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incident electron scatters from a proton at rest, it transfers most of its energy and

momentum to the struck proton while the neutron (also at rest) recoils at θnq ∼ 90◦,

which is predicted by a non-relativistic eikonal approximation known as the Glauber

approximation [82].

The Glauber approximation assumes the bound nucleons are stationary within

the nucleus and predicts an FSI re-scattering peak at θnq ∼ 90◦ corresponding to the

transverse re-scattering of the stationary neutron relative to the exchanged virtual

photon direction. For configurations in which the internal momenta of the nucle-

ons increases, this approximation is valid up to a certain extent for nucleon recoil

momenta up to about the fermi momentum, kF ∼ 250 MeV/c. Beyond the fermi

momentum, however, the relativistic effects within the nucleus cannot be ignored

and must be accounted for in the theoretical calculations. In the classical Glauber

approximation, these relativistic effects are ignored since the nucleon propagator is

linearized and the FSI peak stays at θnq ∼ 90◦ for recoil momenta pr > kF. When

relativistic effects are accounted for, as it is done for both the GEA and Laget’s

diagrammatic approach, the FSI re-scattering peak shifts towards θnq ∼ 70◦ with

increasing recoil momenta. The agreement of the FSI peak location between M.

Sargsian’s and J.M. Laget’s approach can be understood from the fact that in the

GEA, the higher order recoil terms in the nucleon propagator are accounted for

while in the calculations by Laget, the full kinematics of the reaction are taken into

account from the beginning of the calculations as stated in Ref. [60].

To illustrate the results from this discussion, Fig. 2.6 shows the ratio of the

theoretical cross sections using the PWIA+FSI calculations to cross sections calcu-

lated within the PWIA plotted versus neutron recoil angles. At the lowest missing

momenta (pr = 100 MeV/c), the GEA and Glauber calculations are within almost a

perfect agreement, which validates the GEA approach, which reduces to the Glauber
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approximation at very small recoil momenta well within the fermi momentum of the

nucleons. At pr = 200 MeV/c, however, a shift in the FSI peak can already be

observed towards ∼ 80◦ whereas at pr = 400 MeV/c, a significant shift of ∼ 30◦

from θnq ∼ 90◦ to θnq ∼ 70◦ can be observed. While for the Glauber approximation,

the FSI peak stays “fixed” at θnq ∼ 90◦.

Figure 2.6: Ratio of the theoretical cross section ratios versus neureon recoil angles
θnq (denoted as θpsq in the figure) calculated within both the GEA (solid) and
Glauber approximation (dashed) for varios neutron recoil momenta pr (denoted as
ps in the figure). Note: Reprinted from Ref. [57].
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CHAPTER 3

EXPERIMENTAL SETUP

In this chapter I will discuss the experimental equipment used to carry out the 12

GeV Hall C commissioning experiments at the Continuous Electron Beam Accel-

erator Facility (CEBAF). First I will give a brief overview of the accelerator and

then discuss the Hall C 12 GeV upgrade and components required for experiments:

beamline, target, spectrometer systems (magnets and detectors) and the trigger

electronics setup used to collect data.

3.1 CEBAF Accelerator Overview

With the discovery of quarks inside the proton in a series of ep scattering exper-

iments at Stanford Linear Accelerator (SLAC) [83, 84] in the late 1960s and the

development of a new theory of strong interactions (QCD) in the early 1970s, many

questions regarding the role of quarks in nuclear forces arose. For example, “Why

weren’t the effects of the underlying quark structure immediately visible?” or “Could

new phenomena be discovered that were a direct consequence of QCD and our new

understanding of nuclear theory?” [85]. To answer these questions, electron-hadron

coincidence experiments would have to be carried out at high energies in relatively

short periods of time—a task that could not be done by the accelerators at the time

due to the low duty factors and high accidental rates (see Section 1.3). As a possible

solution to this issue it was recommended by both the Friedlander panel (1976) and

the Livingston panel (1977) that a new high energy, continuous wave (CW) beam,

electron accelerator should be built for nuclear physics research [85].

In 1985, the United States Department of Energy (DOE) approved the concept

of CEBAF based on superconducting radio-frequency (SRF) technology that would
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allow for a high energy and high duty factor machine to be built and in February

1987, the construction project of CEBAF along with three experimental end stations

(Halls A, B and C) officially began [85]. In 1994, the first beam was successfully

Figure 3.1: Aerial view of CEBAF at Newport News, Virginia. The service buildings
mark the 7/8-mile (1.4 km) racetrack-shaped accelerator 30 feet (base of tunnel)
below the surface. The dome-shaped terrain represent the accelerator end-stations
(experimental halls), which are also underground.

delivered to experimental Hall C and the following year CEBAF reached the design

energy of 4 GeV. Finally, in June 1998, beam was successfully delivered simultane-

ously to all three experimental halls [86,87].

Although the CEBAF was initially designed to operate at 4 GeV, the research

and development work on SRF technology at Jefferson Lab allowed the accelerator

to be upgraded to beam energies of nearly 6 GeV and total beam currents of up

to 200 µA combined for all experimental halls starting in the year 2000 [86, 88].

CEBAF operations at 6 GeV concluded in Spring 2012 by completing its 178th

experiment since 1994.
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3.1.1 Accelerator Upgrade to 12 GeV

The idea of a 12 GeV upgrade at CEBAF had already started in the late 1990s with

the purpose of probing the nuclear structure at even smaller scales (larger Q2) that

would enable new insights into the structure of the nucleon, the transition between

hadronic and quark/gluons degrees of freedom and the nature of confinement. In

2004, the U.S. DOE approved the development of the 12 GeV conceptual design

and approved start of construction in September 2008 [89].

Figure 3.2: Schematic of CEBAF 12 GeV Upgrade. Note: Reprinted from Ref. [90].

Figure 3.2 shows a schematic of CEBAF with the 12 GeV upgrade components. The

racetrack-shaped accelerator site consists of an injector, 2 (∼ 1/4 mile each) anti-

parallel SRF linear accelerators (linac), 2 recirculation arcs, a helium refrigerator
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(Central Helium Liquifer or CHL-1), and the end stations of each experimental hall.

The main upgrades of the 12 GeV era were as follows:

• 5 new cryomodules (C100) per linac [90]: The C100 cryomodules are an im-

proved design of the original C20 and refurbished C50 cryomodules of the 6

GeV era [88]. A single C100 cryomodule (see Fig. 3.3) consists of 8 7-cell 1497

MHz Niobium SRF cavities as compared to the previous 5-cell cavities and

can accelerate electrons up to 100 MeV/cryomodule, which yields 0.5 GeV

acceleration per linac. The existing cryomodules accelerate electrons to 0.6

GeV/linac for a total acceleration of 1.1 GeV/linac or 2.2 GeV per pass.

Figure 3.3: A single (C100) 7-cell Niobium cavity. [91]. Note: Reprinted from
Ref. [90].

• upgrade recirculating arc magnets [90, 91]: The arcs dipole magnets were up-

graded in order to accomodate the higher beam energies. In addition, a 5th

pass separator and 10th arc were added in order to extract and steer the beam

to the new experimental Hall D, which receives an extra half-pass for a total

of 5.5 passes (12.1 GeV beam), whereas the other halls, at a maximum of 5

passes, receive beam energies only up to 11 GeV1.

1Beam energies are actually smaller by a few 100 MeV mostly due to the inability of the
cryomodules to maintain sufficiently high gradients at acceptable trip rates and partly
due to energy loss due to synchrotron radiation in the arcs.
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• double cryogenic capacity [90]: The upgraded SRF linacs (adding the new

cryomodules) required doubling the cryogenics supply for the cryomodules to

operate at 2 K temperatures. This was done by constructing a 2nd helium

refrigerator building (CHL-2) to meet the demands.

• upgrade injector to 123 MeV [90]: The injector energy was upgraded by adding

a new C100 cryomodule towards the final acceleration portion of the injector

to increase the electrons’ acceleration from 67 to 123 MeV before entering the

north linac. An additional 4th laser was added for the new Hall D operation.

• upgrade experimental halls : To meet the demands of the higher beam energies

and the new experimental programs [92], the three existing experimental halls

were upgraded as well [89]. In addition, a new experimental hall (Hall D)

was built to carry out the GlueX physics program which requires a 9 GeV

polarized photon beam from a 12 GeV electron beam.

3.1.2 Particle Acceleration at CEBAF

To accelerate the electrons at CEBAF, the SRF resonant cavities (operating at 2K in

a 4He bath) are excited at the fundamental frequency f0 = 1497 MHz. The resulting

oscillating electric field causes the electrons to be accelerated (see Fig. 3.4).
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Figure 3.4: A cartoon of electrons being accelerated by a 5-cell cavity. The principle
of operation is the same regardless of the SRF cavity design.
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As the accelerated electrons reach the cell boundary, the electric field is reversed

(in periodic cycles of T = 1/f0) so that when the electrons reach the adjacent cell

they are accelerated again. To achieve this synchronicity, the electrons injected into

the north linac must have a frequency that is a sub-harmonic (f0/n, where n is an

integer) of the fundamental machine frequency f0. To achieve a sub-harmonic of the

fundamental frequency it is important to consider how the electrons are generated

at the injector.

The electron beam is generated in the injector [93] by shining a laser with fre-

quency f0/n into a GaAs photocathode creating electron beam bunches of the same

frequency as the laser. For simultaneous hall operations, a laser is used for each

hall2. The electron bunches for each hall are then sent into the injector beamline

and are further accelerated (up to 123 MeV) before entering the north linac. Once

in the north linac, the electrons are accelerated further with a gain of 1.1 GeV be-

fore being steered by the east arc into the south linac for an additional 1.1 GeV

gain in acceleration before completing a single pass. At this point, it depends on

the physics demands of each hall whether to receive 1-pass (2.2 GeV), 2-pass (4.4

GeV), 3-pass (6.6), 4-pass (8.8 GeV), 5-pass (11 GeV) or in the case of Hall D, 5.5

pass (12.1 GeV). Towards the end of the south linac are devices called separators

(see Fig. 3.2) used to separate the interleaved electron beam bunches to be sent to

their respective experimental hall. In the case of Hall D (at 5.5-pass), the 5th pass

separator (operating at 750 MHz) is used to separate Halls A, B and C from Hall D

electron beam bunches. The Hall D beam bunches have to travel an additional 1/2

2For simultaneous hall operation: In the 6 GeV era, three lasers each operating at fre-
quencies f0/3 (499 MHz) and out-of-phase by 120◦ were incident on the same GaAs
photocathode to produce 3 separate electron bunches for each hall. In the 12 GeV era,
with the addition of a fourth hall, a fourth new laser as well as the other three lasers
need to operate at the same frequency (249.5 MHz) for simultaneous four-hall operations
to be possible. Details can be found in Refs. [94, 95].
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pass through the 10th west arc and into the north linac for an additional 1.1 GeV

boost to reach the 12.1 GeV beam as required by the Hall D physics program.

3.2 Hall C 12 GeV Upgrade

The Jefferson Lab 12 GeV project was successfully completed in Spring 2017. Both

the accelerator and experimental halls passed the Key Performance Parameters

(KPP) test that required them to meet the operational goals for the project [96].

Figure 3.5: Artist’s rendering of Experimental Hall C after the 12 GeV upgrade.
Note: Reprinted from Ref. [97].

Figure 3.5 shows a general view of Hall C with the new Super High Momentum

Spectrometer (SHMS) alongside the High Momentum Spectrometer (HMS) from the

6 GeV era. During the KPP, Hall C showed its capability to run continuously for

8 hours with stable beam at 3-pass (beam currents Ib ∼ 5µA) and demonstrated a

satisfactory detector performance and particle identification for the new spectrom-
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eter [98]. In Spring 2018, a group of experiments was used to commission the new

spectrometer and test its full capabilities. The commissioning experiments were a

small part of the rich 12 GeV physics program developed by the Hall C collabora-

tion [99] and included physics topics at kinematics that were beyond the capabilities

of CEBAF in the 6 GeV era such as nuclear dynamics at short distances using ex-

clusive reactions [100], nucleon structure functions at high xBj [101], and nuclear

effects from QCD [102,103].

3.3 E12-10-003 Experiment Overview

This experiment was part of the group of experiments that commissioned the new

Hall C spectrometer. The experiment ran for six days (April 3-9, 2018) and was

divided into various groups of runs for specific studies (see Table 3.1).

For the main part of the experiment, a 10.6 GeV electron beam was incident

on a 10 centimeter-long liquid deuterium target (LD2). The scattered electron

was detected by the SHMS in coincidence with the knocked-out proton detected

in the HMS. The “missing”(undetected) neutron was reconstructed from energy-

momentum conservation laws (see Section 2.1). The beam currents delivered by

the accelerator ranged between 45-60 µA and the beam was rastered over a 2×2

mm2 area to reduce the effects of localized target density reduction on the cryogenic

targets (hydrogen and deuterium).

The event trigger for each spectrometer was set to require at least three of four

scintillator planes to fire, which is the lowest level trigger definition at Hall C. In

additon to the scintillators (hodoscope planes), each spectrometer also used a pair of

drift chambers for the determination of particle tracks. Additionally in the SHMS,

a calorimeter was used to improve the identification of electrons. However, due to
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the extremely low coincidence rates and the absence of any significant pion back-

ground, the electron sample collected in the SHMS calorimeter was very clean and

the calorimeter cut was found to have little to no effect on the final electron yield.

We measured three missing momentum settings for the deuteron centered at

pr = 80, 580 and 750 MeV/c. At each of these settings, the electron arm (SHMS)

was “fixed” in momentum and angle and the proton arm (HMS) was rotated from

smaller to larger angles corresponding to the lower and higher missing momentum

settings, respectively. In reality, the spectrometers’ angle and momentum changed

back and forth multiple times at each setting which made the reproducibility of the

exact setting impossible. As a result, the data collected from the 580 and 750 MeV/c

settings were separated into multiple datasets, each corresponding to a change in

either spectrometer. We analyzed separately 2 data sets for the 580 MeV/c setting,

and 3 data sets for the 750 MeV/c setting.

Hydrogen elastic 1H(e, e′)p data were acquired at kinematic settings close to the

deuteron 80 MeV/c setting for cross-checks with the spectrometer acceptance mod-

eled using the Hall C Monte Carlo simulation program, SIMC [104]. Additional

1H(e, e′)p data were also taken at three other kinematic settings that covered the

SHMS momentum acceptance range for the deuteron and were used for spectrometer

optics optimization, momentum calibration, and the determination of spectrometer

offsets and kinematic uncertainties. In addition to elastic data, SHMS data were

obtained using a 3-foil carbon target and a sieve slit to check and fix a problem en-

countered with one of the spectrometer magnets. A complete list of the kinematic

settings is given in Table 3.1.

From Table 3.1, only the data taken after the SHMS Optics studies (with the ex-

ception of Proton Absorption measurements) were analyzed since during data taking

it was found by the experts that the SHMS Q3 and HB magnets had a saturation
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Date Study Runs Target Eb PSHMS θSHMS PHMS θHMS

(April) [GeV] [GeV] [deg] [GeV] [deg]

03 Carbon Hole 3242 12C 10.60314 8.7 12.2 2.938 37.29

1H(e, e′)p 3243-3248 1H 10.60314 8.7 12.2 2.938 37.29

Proton Absorption∗ 3249-3251 1H 10.60314 8.7 12.2 2.938 37.29

04 Aluminum Dummy 3252-3258 Al 10.60314 8.7 12.2 2.938 37.29

Proton Absorption∗ 3259-3263 1H 10.60314 8.7 12.2 2.938 37.29

80 MeV/c (set0) 3264-3268 2H 10.60314 8.7 12.2 2.8438 38.89

04-05 580 MeV/c (set0) 3269-3282 2H 10.60314 8.7 12.2 2.194 54.945

05 SHMS Optics† 3283-3285 12C 10.60314 8.7 8.938 2.194 54.945
3286 12C 10.60314 8.7 8.938 2.765 37.338
3287 12C 10.60314 8.7 12.06 2.938 37.338

1H(e, e′)p 3288 1H 10.60314 8.7 12.194 2.938 37.338

80 MeV/c (set1) 3289 2H 10.60314 8.7 12.194 2.843 38.896

05-06 580 MeV/c (set1) 3290-3305 2H 10.60314 8.7 12.194 2.194 54.992

06-08 750 MeV/c (set1) 3306-3340 2H 10.60314 8.7 12.194 2.091 58.391

08 580 MeV/c (set2) 3341-3356 2H 10.60314 8.7 12.194 2.194 55.0

08-09 750 MeV/c (set2) 3357-3368 2H 10.60314 8.7 12.194 2.091 58.394

09 1H(e, e′)p 3371 1H 10.60314 8.7 13.93 3.48 33.545
1H(e, e′)p∗ 3372 1H 10.60314 8.7 9.928 3.48 33.545
1H(e, e′)p∗ 3373 1H 10.60314 8.7 9.928 3.017 42.9
1H(e, e′)p 3374 1H 10.60314 8.7 9.928 2.31 42.9
1H(e, e′)p∗ 3375 1H 10.60314 8.7 8.495 1.8904 42.9
1H(e, e′)p 3376 1H 10.60314 8.7 8.495 1.8899 47.605
1H(e, e′)p 3377 1H 10.60314 8.7 8.495 1.8899 47.605
1H(e, e′)p 3379 1H 10.60314 8.7 8.495 1.8898 47.605

09 750 MeV/c (set3) 3380-3387 2H 10.60314 8.7 12.21 2.091 58.391

Table 3.1: The E12-10-003 experiment comprehensive run list. The spectrometer
central momentum and angle were determined based on the dipole NMR set value
and spectrometer camera, respectively. The beam energy in this table is uncorrected
for synchrotron radiation (see Section 3.4.1). In the column Study, the (∗) are data
taken with SHMS single-arm (electron trigger ONLY) and the (†) represents data
taken with SHMS single-arm and Centered Sieve Slit positioned. The remaining
runs are taken with SHMS-HMS coincidence trigger only.
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correction that was not needed. This correction was removed from the magnet

controls software3 and the experiment resumed data-taking starting at run 3288

without the HB/Q3 correction. The analysis of Proton Absorption studies was not

impacted as it involved taking yield ratios.

3.4 The Hall C Beamline

When the electron beam exits the south linac, it is steered at the beam switchyard

to any one of the three experimental hall beamlines (A, B or C). In Hall C, the

beam is sent through a transport line with an entrance channel of 63.5 mm inner

diameter stainless steel tubing connected with conflat flanges which reduces the

inner diameter to 25.4 mm when passing through the steering magnets (dipoles,

quadrupoles, hexapoles and beam correctors) [97]. To reach the hall entrance, the

beam is bent by a series of 8 dipole magnets located at the hall arc (see Fig. 3.6).

The beam is then transported through the Hall C alcove4 into the scattering (target)

chamber and the beam dump at the other end of the hall. Several beam diagnostics

components are placed throughout multiple locations in the accelerator and hall

beamlines. The relevant ones used to monitor the beam in Hall C are the harps (wire

scanners), beam position monitors (BPMs) and beam current monitors (BCMs).

The beamline is also equipped with two permanent beam raster systems with the

possibility to add a third raster.

3See HCLOG entries below
1. https://logbooks.jlab.org/entry/3555385
2. https://logbooks.jlab.org/entry/3555428
3. https://logbooks.jlab.org/entry/3555436
4. https://logbooks.jlab.org/entry/3555447

4Transport line between green shield wall and hall entrance where the Compton and Møller
Polarimeters are located.
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3.4.1 Beam Energy Measurement

The accurate determination of the absolute beam energy is important as its uncer-

tainty is directly related to the uncertainty in the cross section. Various methods

have been proposed to determine the beam energy at CEBAF [105]. In Hall C,

the beam energy is determined by using the beamline arc as a spectrometer (first

proposed in Ref. [106]) and is the method used in this experiment. The method is

based on the equations of motion of a charged particle in a magnetic field. For an

electron the magnetic force is given by

|~FB| = e|~ve × ~B| = eveB⊥ =
γmev

2
e

ρc

, (3.1)

where e, ve, B⊥ and ρc are the elementary charge, electron velocity, magnetic field

(perpendicular to the velocity) and the local radius of curvature, respectively, and

γ ≡ (1 − v2
e/c

2), is the Lorentz factor to account for relativistic effects. From Eq.

3.1, the electron momentum is given by pe = γmeve and the radius of curvature can

be expressed as ρc = dL‖/dθarc where dL‖ and dθarc are the infinitesimal arc lenth

and arc angle, respectively. Using these definitions, Eq. 3.1 may be expressed as

pe =
eB⊥dL‖
dθarc

. (3.2)

In reality, as the electron beam traverses through the Hall C arc, the dipole magnetic

fields are not homogeneous and need to be integrated over infinitesimal (dL‖) arc

elements along the beam trajectory. Eq. 3.2 can then be expressed as

pe = Ck

∫ L
0
B⊥dL‖∫ θarc

0
dθarc

, (3.3)

where Ck is a constant determined from dimensional analysis and using the conver-

sion factor 1 [C][T][m] ≡ 1.87115736 × 1018 GeV/c and e = 1.602 × 10−19 C:

Ck ≡ 1.602 × 10−19C × 1.871 × 1018GeV/c

1[C][T][m]
= 0.29979[GeV/c][T−1][m−1],
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which gives Eq. 3.3 in units of [GeV/c] assuming the magnetic field and arc length

are given in [T][m]. This is the final form (Eq. 3.3) used in the beam eneergy

measurements.

Figure 3.6: The Hall C arc with the relevant beamline components for the beam
energy measurements are shown. The electron (red vector) loses energy (synchrotron
radiation shown as yellow wiggly arrows) as it traverses the arc under a perpendicular
magnetic field B⊥. Two superharps (wire-scanners) at each end of the arc are used
to determine small variations in the beam direction.

The integrated field
∫
B⊥dL‖ is determined by carefully mapping the magnetic

fields of the arc dipoles at the corresponding dipole current. The bend angle θarc

is determined from a survey by the relative orientation of the beam at the arc en-

trance and exit (see Fig. 3.6). The superharps5 at both ends of the arc are used

5Compared to harps, superharps have been more accurately fiducialized and surveyed for
absolute position measurements [107].
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to determine the absolute beam position and direction. See Ref. [108] for technical

details of the Hall C superharps.

During the beam energy measurement, Machine Control Center (MCC)6 oper-

ators turn off all the arc quadrupole and beam corrector magnets, which would

otherwise provide an achromatic beam7 and only use the dipoles to steer the beam.

As a result, dispersion (momentum dependent position) builds up across the arc,

which provides a very sensitive energy measurement as the beam will be spread out

based on small energy differences. The negative side effect of dispersion is that it

becomes very difficult for operators to guide the beam across the arc due to this

spread. If this is done successfully, the operators use a lookup table determined

from the field mapping to convert the dipole current to
∫
B⊥dL‖ across the arc.

To measure the beam direction, a pair of superharps located at the arc entrance

and exit (see Fig. 3.6) are used and controlled by MCC as they are invasive to the

beam. During the harp scans, the signals produced by two of the superharps were

unexpectedly wide and it was decided not to use this information. This was not a

cause of concern as the variations in the beam direction allowed by the beamline

diameter were sufficiently small and were expected to have a small effect on the∫
B⊥dL‖ measurements [109]. The measured beam energy at the arc entrance (un-

corrected for synchrotron radiation) is shown in Table 3.1. A detailed table with

beam energy measurements performed at different times can be found in Ref. [110].

As the electron beam traverses the Hall C arc, it changes direction, which causes

the beam to lose energy due to synchrotron radiation. This loss is not accounted for

6MCC operators control and steer the beam around the accelerator and into the experi-
mental end stations.

7Quadrupole magnets function as an achromatic (or in this case, momentum independent)
lens to the beam by providing the necessary restoring forces to focus the beam and
minimize dispersion.

45



in the field integral measurements and must be determined separately. The usual

formula for energy loss due to synchrotron radiation is given by (see Ref. [111])

δEsync[keV] = 88.46
E4

meas[GeV]

ρc[m]

θarc

360◦
, (3.4)

where Emeas is the measured beam energy at the arc entrance. Since the original

energy loss formula is per 360◦, the fractional energy loss in the Hall C arc is

θarc/360◦, where θarc = 34.3◦ from the survey and the arc radius of curvature is

ρc = 40.09 m. Substituting the beam energy from Table 3.1 and the geometrical

values from the arc in Eq. 3.4 and converting keV to GeV, one obtains

δEsync = 0.00265 GeV. (3.5)

The corrected beam energy and its relative error at the target are then given by

Etgt = Emeas − δEsync, (3.6)(δEtgt

Etgt

)2

=
(δEmeas

Emeas

)2

+
(δEsync

Emeas

)2

, (3.7)

where δEmeas/Emeas is the relative error due to the field integral and δEsync/Emeas is

the relative error due to the measured beam energy due to synchrotron radiation.

From the beam energy measurement on April 30, 2018 [110]:

Emeas ± δEmeas = 10.60314± 0.00415 GeV. (3.8)

Substituting the numerical values of Eqs.3.5 and 3.8 in Eqs. 3.6 and 3.7 one obtains

the corrected beam energy and its relative uncertainty

Etgt = 10.6005 GeV, (3.9)

δEtgt

Etgt

= 4.64× 10−4. (3.10)
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3.4.2 Beamline Components

As the beam enters Hall C, it passes through various beamline components (see

Figs. 3.7 and 3.8) as it is transported to the target chamber and into the beam

dump. Upstream of the target chamber, are the fast raster (FR), beam position

and current monitors (BPMs, BCMs), and harps which were briefly mentioned in

the previous section.

Figure 3.7: Hall C beamline from hall entrance to target chamber. Distances to the
relevant beamline components are measured from the origin (the pivot center) and
given in meters. The first three colored boxes (green, blue and red) have multiple
components with the relevant distances to the target origin. The codenames used
in the Fast Raster magnets refer to the horizontally (H) and vertically (V) bending
air-core magnets. The commonly used names of the other beamline components are
indicated in parentheses.

Downstream of the target chamber, the entire beam pipe is ∼ 27.4 m long

measured from the exit of the chamber to the entrance of the beam dump with

two 1.5 meter-long, removable sections of 24-inch diameter beam pipes that can be

replaced each with Big BPMs towards the beam dump. These BPMs are used to

measure the beam position downstream of the target chamber. These are necessary
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because the fringe fields of the SHMS magnets can change the beam direction during

experimental configurations where the SHMS is at small angles (typically <10◦).

Figure 3.8: Hall C beamline from target chamber to beam dump.

Harps

The harps consist of a fork with three wires (see Fig. 3.9) and a stepper motor

attached that enables the entire system to move invasively through the unrastered

beam. As each of the wires comes in contact with the beam, a current is produced in

the wire due to secondary electron emission. This current signal is amplified before

being sent to an Analog-to-Digital Converter (ADC). The ADC spectrum formed

from the digitized signals is fit to obtain the beam profile (size). To determine the

absolute beam position, as each wire passes through the beam a position encoder

generates the number of pulses equivalent to the number of steps the motor has

moved, which corresponds to an absolute beam position.

Figure 3.10 shows the results of a typical harp scan (with beam currents ∼5 µA

CW) where the y-axis represents the ADC value plotted versus the distance the fork

travelled (mm) shown in the x-axis. The fit results for each wire (gaussian peak)

are shown at the right of the plot. The overall results of the absolute beam position

(X Pos (mm), Y Pos (mm)) and beam profile (X Sigma (mm), Y Sigma (mm)) are

48



Figure 3.9: Hall C beamline harp diagram. The harp enters (red arrow shows
direction of motion) at a 45◦ angle. The two vertical wires measure the beam
position along the x-axis and a vertical wire measures the position alng the y-axis.

Figure 3.10: Results from a harp scan of harp IHA3H07A taken at 5-pass on April
2018.

shown at the bottom. Since the harps are invasive to the beam, the scan is not

performed during normal experiment operations. Therefore, to monitor the beam
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positions in real time during the experiment, the BPMs must be calibrated using

the absolute beam positions from the harp scans.

Beam Raster Systems

The intrinsic electron beam size of CEBAF in the 12 GeV era8 is typically 200-700

µm in diameter (approximately a gaussian full width, 2σ). From the harp scan

results in Fig. 3.10 for example, a typical gaussian has a full width of 2σ ∼600

µm, which is a reasonably good approximation for the diameter of the unrastered

beam, considering that the beam is often asymmetric. The amount of power per

unit area (intensity) deposited by such a small beam size on either the target, target

chamber or the beam dump for extended periods of time can cause damage to these

components by overheating. For cryogenic targets such as liquid hydrogen and

deuterium used in this experiment for example, there are two effects [112]:

• At lower beam currents, the target density change is due to warming of the

cryogenic fluid with a density variation of the order ∼ 1%/K. Rastering the

beam reduces this temperature rise and hence the systematic density change.

• At higher beam currents, bubbles also start to form and break-off at the target

cell windows.

These effects have a direct impact on the high-precision cross section measurements

required by the Hall C physics program as significant target density changes cause

the data yield to be significantly lower. To solve this issue, the intrinsic beam is

smeared out (rastered) to reduce the temperature changes over a larger area.

8In the 6 GeV era, CEBAF delivered average beam spot sizes of 50-200 µm, which were
comparatively smaller than in the 12 GeV era. The increase in the intrinsic beam size
from the 6 to 12 GeV era is attributed to an increase in synchrotron radiation emitted
by the beam.
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The Hall C raster system consists of two beam rasters permanently installed in

the Hall C beamline. The Møller Raster (not shown) is located upstream of the

Møller target in the Hall C alcove and the fast raster is located ∼14 m upstream of

the Target Chamber (see Fig. 3.7). A third raster (Slow Raster) can be added for

experiments that require a polarized target but does not form part of the standard

beamline components [97]. For most experiments (including this experiment), the

fast raster is used and is discussed in more detail in Appendix B.

Figure 3.11: Fast raster (X,Y) raw ADC signals measured by the pickup probe
during run 3289 for the 80 MeV/c setting. The 3D plot (and inset 2D representation)
show an approximately uniform XY raster distribution.

Figure 3.11 shows a 3D (and inset 2D projection) of the fast-raster raw ADC

signal distribution measured during the E12-10-003 experiment. The raster was set

to 2 × 2 mm2 to minimize localized density changes in the 10-cm liquid deuterium
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cryogenic target. The raster distribution in Fig. 3.11 shows that the beam is

uniformly distributed across the entire 2×2 mm2 raster, especially at the boundaries,

which was a major issue with the original Hall C raster in use from 1996 to 2002 [113].

Beam Position Monitors (BPM)

The BPMs are cylindrical cavities that form part of the beamline and are used to

make continuous, non-invasive measurements of the beam position during normal

beam operations. To measure the beam position in Hall C, three BPMs located up-

Figure 3.12: Hall C BPM and electronics diagram. In EPICS coordinate system
(left-handed), the beam is directed out of the page. The antennae are located along
the axes of a coordinate system (blue) that is oriented 45◦ relative to the EPICS
coordinate system. Note: Reprinted from Ref. [97].

stream of the target are used (see Fig. 3.7). Each BPM consists of an enclosure that

forms part of the beam-pipe with four wire-antennae attached to feedthroughs on

the interior wall of the pipe. The antennae (blue) are in a coordinate system oriented

at γ =45◦ relative to the EPICS [114] coordinate system (see Fig. 3.12). When the

beam (499 MHz sub-harmonic of f0) passes through the BPM cavity it induces a sig-

nal in the antennae with an amplitude inversely proportional to the distance between

the beam and each of the antennae. This RF (radio-frequency) signal is then con-
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verted to a more convenient lower frequency known as IF (intermediate-frequency).

This signal is subsequently detected by the S/H (sample-and-hold) section, which as

its name indicates, samples the input signal and holds it until it can be further pro-

cessed by the ADCs to be analyzed by software. This method, however, requires the

user to retrieve the constants and perform a separate calculation to convert the raw

ADC (processed antennae signals) to raw beam position values. Alternatively, the

antennae signals are interpreted and calibrated by the EPICS readout chain using

the standard difference-over-sum method to determine the raw beam positions. The

beam position is averaged over 0.3 seconds and is logged into the EPICS database

with 1 Hz updating frequency and injected in the data-stream every few seconds,

unsynchronized but with a reference timestamp [97]. Using the Hall C analysis soft-

ware, the raw BPM positions are retrieved from EPICS and calibrated relative to

the absolute beam position determined from the harp scans.

Beam Current Monitors (BCM)

The experimental cross section measurements at Hall C require the data yield to

be normalized by the total charge at the target. To achieve this, multiple BCMs

are used for the continuous, non-invasive measurement of the beam current inside

the hall. The primary system consists of two BCMs and an adjacent Unser Monitor

(BCM1, Unser, BCM2) located ∼7.5 m upstream of the target. Three supplemen-

tary BCMs (BCM4A, BCM4B, BCM4C) located ∼10.5 m upstream of the target

are also used to measure the beam current in parallel with the primary system, but

must be removed during certain configurations of the beamline (e.g., during polar-

ized target experiments that require the slow raster system) [97].

Each BCM consists of a stainless steel, cylindrically-shaped cavity. The beam

excites the cavity at its resonant frequency of 1497 MHz. An antenna inside the
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cavity couples some of this RF power into a heliax cable which goes to the counting

house for further processing. Electrically, the resonant cavities act like a resistor

through which the beam current flows, extracting .1 mW from a beam that usually

has 0.1-1 MW of total power [115]. Although the extracted power (antennae signal)

is a small fraction of the total beam power, it is still considered a large RF signal

that has to be converted to a lower frequency by down-converters to be processed

by the electronics.

The Unser monitor (Parametric Current Transformer or PCT) [116] is a beam

current monitor that is toroidal in shape with circular strips of an extremely perme-

able material9. As the electron beam passes through the toroid axis of symmetry,

its circular magnetic field magnetizes the strips of permeable material in the toroid.

A modulator-demodulator circuit senses this magnetization and sends a current to

a compensating coil to cancel out the field established by the beam. This compen-

sating current is proportional to the beam current [117].

Both the resonant cavities (BCMs) and the Unser are sensitive to temperature

variations in their surroundings. The variations in temperature cause thermal ex-

pansion or contraction of the BCM cavities and the Unser toroid material resulting

in the detuning of the cavities and undesirable zero drifts10 in the output signal of

the Unser monitor. To minimize the effects due to temperature variations, the Hall

C BCMs and Unser are thermally insulated in a box and kept at a temperature of

110 ◦C with a tolerance of ±0.2 ◦C, which is monitored periodically.

9The circular strips used in the Unser toroid consist of (CoFe)70(MoSiB)30—an amorphous
magnetic alloy that exhibits extreme magnetic permeability, which means the material
internal dipoles become easily aligned in response to an applied external magnetic field
[116].

10The “zero drift” refers to the effect where the zero reading of an instrument is modified
by the ambient conditions.
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Figure 3.13: Hall C BCM electronics diagram [97].

Figure 3.13 shows a schematic diagram of the Hall C BCMs and Unser. The

output RF signals from the BCMs are at 1497 MHz and must be converted to a

lower frequency signal by down-converters to be processed by the Hall C electronics.

In the primary BCMs (BCM1 and BCM2), the RF signal is converted to a lower

frequency (∼100 kHz) by an analog down-converter and fed into an RMS-to-DC

converter with a 20 kHz bandpass filter. The output signal is amplified and sent to

a Voltage-to-Frequency converter (V-to-F) before being read out by the scalers. The

supplementary BCMs (BCM4A, BCM4B, BCM4C) RF signals are processed by a

digital down-converter with an onboard ADC, FPGA and DAC, which provides an

analog signal that can be sent to a V-to-F and finally to the scalers [97]. The Unser
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has a nominal output signal of 4 mV/µA and is also sent to a V-to-F before being

read out by a scaler. The BCM/Unser signals from the V-to-F are also read out

by EPICS scalers directed by the EPICS controller located in the Hall C Counting

Room. The Unser gain is verified during downtimes by running a precision current

through a wire which passes through the toroid head.

Even though the Unser has an extremely stable gain, its output signal offset can

drift significantly on a time scale of several minutes and cannot be used to contin-

uously monitor the beam current. On the other hand, the BCMs in general have a

stable offset but their gain needs to be calibrated and is not as stable as the Unser

gain. Therefore, to use the BCMs as continuous current monitors they must be

calibrated relative to the absolute beam current determined by the Unser.

3.5 Target Chamber

The target chamber is a large evacuated cylindrical aluminum tank in two stacked

sections (see Fig. 3.14) that contains the solid and cryotargets in a target ladder.

The aluminum chamber is nominally 2 inches thick with an inner diameter of 41

inches and outer diameter of 45 inches. The vacuum in the chamber is kept at a

pressure of a few 10−6 torr by a turbomolecular vacuum pump connected through a

gate valve in the lower cylinder. In the standard configuration, both spectrometers

share a single chamber exit window that covers a horizontal angular range from

3.2◦ to 77.0◦ on the HMS side and 3.2◦ to 47.0◦ on the SHMS side with a vertical

coverage of ±17.3◦ for both sides.

Both spectrometers’ entrance window are actually very close to, but not in con-

tact (or vacuum coupled) with the chamber window itself. So as the electron beam

scatters from the target, the outgoing particles have to exit the target cell, pass
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Figure 3.14: A CAD (computer-aided design) drawing of the Hall C Target Chamber
design. Note: Reprinted from Ref. [97].

through the exit window of the chamber into the air and then through the spectrom-

eter entrance window before entering the spectrometer vacuum. The unscattered

beam exits the chamber through an opening in the exit window to which the exit

beam pipe is connected via a threaded compression flange. There are also various

openings in the target chamber through which the beam can enter, two pumping

ports, several viewports and some spare ports. The viewports are used with a re-

mote TV camera and light to observe the target motion and position in the counting

room [97].

3.5.1 Target Ladder

The solid and cryogenic targets are accommodated in a target ladder with a single

axis (vertical) motion system employed to select the desired target. Figure 3.15

shows a CAD representation of the target ladder with the three cryogenic target
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cells above the solid targets. The target ladder motion is controlled remotely via

a target GUI in the Counting Room. During this experiment, the cryogenic tar-

get cells were filled with liquid helium (Loop 1), hydrogen (Loop 2) and deuterium

(Loop 3), respectively.

Figure 3.15: A CAD drawing of the Hall C Target Ladder. The arrow shows the
beam direction. Note: Reprinted from Ref. [97].

Figure 3.16 shows a typical target GUI screen during this experiment. The cen-

tral white screen shows a representation of the targets and an arrow indicating which

target was being hit by the beam. The live status of the beam current and the target

chamber vacuum pressure are also visible at the top of that screen. To the extreme

left of the GUI is the panel used to move the target ladder to a specific target.

During this operation, it is extremely important for the beam to be taken away to

prevent any damage to the target ladder system. To the right of the white screen

are two panels with live feedback of the helium coolant supply from the End Station
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Refrigerator (ESR) as well as the cryogenic targets temperature and pressure and

other relevant information which can be displayed on strip charts. See Refs. [97,118]

for detailed information.

Figure 3.16: Hall C Target GUI screen during the E12-10-003 experiment.

The relevant targets11 used in this experiment were:

• Carbon Hole: A carbon hole target consists of a thin carbon foil with a

central hole of 2 mm in diameter. With a rastered beam of at least 2×2 mm2,

this target can be used to check how well is the beam centered at the target.

As the beam passes through the hole, the edges of the beam do interact with

the carbon at the edges of the hole causing the electrons to re-scatter and be

detected by either spectrometer. The (x, y) raster values are plotted (when

the spectrometer recorded a particle) forming a raster pattern with a hole (see

Fig. 3.17).

11See HCLOG entry:https://logbooks.jlab.org/entry/3555843 for detailed informa-
tion and pictures on the Hall C Target Configuration for Spring 2018 run period.
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Figure 3.17: Carbon hole check during the E12-10-003 experiment shows the raster
pattern for FR-A (left) and FR-B (right) raster magents.

• Aluminum Dummy (10 cm): The dummy target consists of aluminum foils

mounted on separate frames at the locations Z = ±5 cm corresponding to the

cryogenic target entrance and exit windows. The dummy target runs are used

for the subtraction of the background associated with the actual aluminum

cryotarget windows. Note: dummy target windows are ∼ 10 times thicker

than the actual cryotarget windows which must be accounted for.

• Optics-1: The optics target consists of carbon foils located at Z = -10, 0,

10 cm along the beam axis and are used for spectrometer optics optimization

studies. Even though these foils are beyond the target length used in Hall C,

they are necessary for an optics reconstruction along the full target length.

• Liquid Hydrogen (10 cm): The cryogenic liquid hydrogen (LH2) is kept

at a temperature of TLH2 = 19± 0.1 K (∼ 25 psia). LH2 freezing and boiling

points are TF = 13.8 K and TB = 22.1 K, respectively. A 2× 2 mm2 raster is

used to minimize density reduction at high beam currents.
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• Liquid Deuterium (10 cm): The cryogenic liquid deuterium (LD2) is kept

at a temperature of TLD2 = 22± 0.1 K (∼ 23 psia). LD2 freezing and boiling

points are TF = 18.7 K and TB = 25.3 K, respectively. A 2× 2 mm2 raster is

used to minimize density reduction at high beam currents.

3.5.2 Cryotarget Loop Anatomy

Cryogenic targets are more complex than the solid targets, which are kept cool by

thermal conduction (or direct contact) between the cryotarget and solid target lad-

ders. To keep the cryotargets at very low temperatures, the hydrogen and deuterium

must be re-circulated constantly through a heat exchanger. Figure 3.18 shows a sim-

plified version of the loop anatomy for a typical target cell used in the Hall C 12

GeV era.

Figure 3.18: Hall C cryotarget loop anatomy for the 12 GeV era (not to scale).
Figure adaptation from Refs. [118] [119].

61



A gas panel outside the building provides the heat exchanger with a constant

supply of either hydrogen or deuterium, which is cooled to either 19 K (hydrogen)

or 22 K (deuterium) by the 15 K He coolant supply from the ESR. The amount of

coolant sent to the heat exchanger is controlled via a Joule-Thompson (JT) valve.

The target fluid is then sent to the target cell and enters the high-performance block

through an inlet. The flow diverter inside the target cell then guides the liquid from

the inlet to the outlet such as to make the flow velocity constant and minimize

localized density changes caused by the beam. The liquid then leaves the target cell

back to the heat exchanger at a higher temperature than which it entered the cell,

mostly due to the heat deposited by the electron beam. The liquid is then cooled

again by the 15 K He supply from the ESR completing the loop. This way, the

target fluid is constantly recirculated between the target cell and heat exchanger to

keep the fluid at operating temperatures.

3.6 Hall C Spectrometers

The main experimental equipment in Hall C consists of a pair of magnetic spectrom-

eters designed to perform high-precision cross section measurements at a relatively

high luminosity12. The spectrometers have bearings at the pivot which permit rapid,

remote spectrometer rotation. Each spectrometer consists of a series of optical ele-

ments (quadrupoles and dipoles) followed by a series of particle detectors that are

housed in a heavily shielded detector hut. The optical elements are used to trans-

port the scattered particles from the target chamber to the particle detectors. The

tracks are then reconstructed at the focal plane and translated back to the target.

12Luminosity in nuclear physics is defined as (# of beam particles/second) × (# of target
particles/cm2), typically expressed in units of cm−2s−1 (see Section 5.1).
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The entire spectrometer system rests on a rotatable support structure or car-

riage that keeps the optical elements and detectors aligned relative to each other

and to the target. The support structure rides on steel wheels mounted on steel

rails that enable spectrometer rotation. The rotation can be controlled remotely

via the spectrometer control screens in the Counting Room. The central angles are

determined from a camera attached at a surveyed location towards the rear end of

each spectrometer and is monitored remotely from a TV screen in the Counting

Room.

Parameter HMS SHMS
Performance Specification

Range of Central Momentum 0.4 to 7.4 GeV/c 2 to 11 GeV/c
Momentum Acceptance ±10% −10% to +22%
Momentum Resolution 0.1%− 0.15% 0.03%− 0.08%
Scattering Angle Range 10.5◦ to 90◦ 5.5◦ to 40◦

Target Length Accepted at 90◦ 10 cm 50 cm
Horizontal Angle Acceptance ±32 mrad ±18 mrad
Vertical Angle Acceptance ±85 mrad ±50 mrad
Solid Angle Acceptance 8.1 msr >4 msr

Horizontal Angle Resolution 0.8 mrad 0.5 – 1.2 mrad
Vertical Angle Resolution 1.0 mrad 0.3 – 1.1 mrad
Target resolution (ytar) 0.3 cm 0.1 - 0.3 cm

Maximum Event Rate 2000 Hz 10,000 Hz
Max. Flux within Acceptance ∼ 5 MHz ∼ 5 MHz

e/h Discrimination >1000:1 at 98% efficiency >1000:1 at 98% efficiency
π/K Discrimination 100:1 at 95% efficiency 100:1 at 95% efficiency

Table 3.2: Demonstrated performance of the HMS and design specifications for the
SHMS.

The major component of the Hall C 12 GeV upgrade is the new Super High

Momentum Spectrometer (SHMS) that replaced the orginal companion of the HMS

known as the Short Orbit Spectrometer (SOS). The new SHMS-HMS pair makes

Hall C the only facility in the world capable of carrying out the rich nuclear physics
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program detailed in Refs. [99,120]. To be able to carry out this program successfully,

the SHMS13 was designed to achieve a maximum momentum of 11 GeV/c, which is

well matched with the maximum beam energy delivered to Hall C. The SHMS is also

able to rotate to very small forward central angles down to 5.5◦ as well as operate

at an unprecedented high luminosity of 1039 cm−2s−1 and has a 32% momentum

acceptance which measures the percent deviation of the particle momentum relative

to the central momentum of the spectrometer. A detailed description of the HMS

performance parameters and SHMS design specifications is given in Table 3.2.

3.6.1 Spectrometer Slit System

As the electron beam interacts with the target atoms, the final-state particles scat-

ter radially outwards in all possible directions, but only a small fraction of these fall

within the momentum and angular acceptance set by the spectrometer. Each spec-

trometer is equipped with a slit system containing collimators defining the angular

acceptance, and a sieve slit used for spectrometer optics studies. Table 3.3 gives a

summary of the apertures as well as the corresponding solid angles defined by the

collimators in each spectrometer.

The slit system in each spectrometer is housed in a vacuum box with a mov-

able slit ladder that has space for three separate slits. Each ladder position can

either hold a collimator or an optics sieve slit in accordance to the experimental

requirements. The ladder motion is controlled remotely from the Hall C Counting

Room. Figure 3.19 shows the slit configuration used for each spectrometer during

the commissioning experiments.

13The SHMS was built from 2009 to 2016, and was first commissioned in 2017 as part of
the Hall C KPP.
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Horizontal (mr) Vertical (mr) Solid Angle (msr) Shape

HMS
Large Collimator ±70 ±27.5 6.74 Octagonal, Flared
Pion Collimator ±54 ±21.3 4.03 Octagonal, Flared

SHMS
Collimator ±49.4 ±33.6 5.81 Octagonal, Flared

Table 3.3: Spectrometer apertures at the collimator entrance.

Figure 3.19: Spectrometer slit system.

The HMS Slits

In the HMS, the slit system is installed at the entrance of the first quadrupole

magnet (Q1) at a distance of Z
(HMS)
coll =166.37 cm from the center of the target to
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the collimator entrance. The slit system consists of two collimators and a sieve slit.

Each slit is a rectangular block of a heavy alloy metal (90% W, 10% Cu/Ni) with

a density of 17 g/cm3. The collimators have a machined octagonal-shaped opening

whereas the sieve slit has several rows of holes drilled into it with the exception of

two specified locations that are used to determine the orientation of the slit in the

reconstruction analysis. During this experiment, there was no need to insert the

sieve as the HMS optics is well understood and it was decided to only use the new

Large Collimator and not the original Pion Collimator (6 GeV era) to define the

acceptance.

The SHMS Slits

In the SHMS, the slit system is installed between the horizontal bender (HB) and

first quadrupole (Q1) magnets at a distance of Z
(SHMS)
coll =253 cm from the center of

the target to the collimator entrance. The slit system consists of a collimator and

two sieve slits. The collimator and two sieves are made of Mi-TechTM Tungsten

HD-17 (90% W, 6% Ni, 4% Cu) with a density of 17 g/cm3. Similar to the HMS,

the SHMS collimator has an octagonal-shaped opening and the sieves have several

rows of holes drilled into it (see Fig. 3.19). The centered sieve has 11 columns of

holes with the sixth column at the center, whereas the shifted sieve has 10 columns

and shifted from the central axis. More details about the HMS/SHMS slit system

can be found in Refs. [97,121].

3.6.2 Spectrometer Magnets

The spectrometers’ optical elements consist of a series of superconducting magnets

that guide the scattered particles towards a detector stack. To keep the magnet
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coils at superconducting temperatures, a constant supply of liquid 4He at a temper-

ature of 4.5 K is provided by ESR to Hall C. The cryogenic supply is distributed

to each spectrometer via flexible transfer lines emanating from a main distribution

box located over the pivot into each spectrometer cryogenics network. The magnet

power supplies are located on the spectrometer support structure adjacent to the

magnets. To remove the excess heat, the power supplies are all water-cooled by

a constant flow rate that can be monitored by a water flow meter located on the

electronic boxes on the floor near the pivot [97]. The magnet cryogenics and power

supplies, as with the spectrometer rotation controls, are operated and monitored

remotely via the magnet control screens in the Counting Room.

Stored
Magnet Type EFL14 Aperture Momentum Current Field/Gradient Energy

(m) (cm) (GeV/c) (A) (MJ)

HMS Q1 Cold Fe 1.867 40 7.4 1012 7.148 T/m 0.335
HMS Q2 Cold Fe 2.104 60 7.4 1023 6.167 T/m 1.59
HMS Q3 Cold Fe 2.104 60 7.4 1023 6.167 T/m 1.59
HMS D Warm Fe 5.122 40 7.4 3000 2.073 T 9.79

SHMS d “C” Septum 0.752 14.5 x 18 11 3930 2.56 T 0.2
SHMS Q1 Cold Fe 1.86 40 11 2460 7.9 T/m 0.382
SHMS Q2 cos(2θ) 1.64 60 11 3630 11.8 T/m 7.6
SHMS Q3 cos(2θ) 1.64 60 11 2480 7.9 T/m 3.4
SHMS D cos(θ) 2.85 60 11 3270 3.9 T 13.7

Table 3.4: Spectrometer magnets design parameters [122].

Table 3.4 summarizes the design parameters of the spectrometer magnets. Each

spectrometer is designed to provide point-to-point focusing (Q1, Q2, Q3) and a

vertical momentum dispersion (D) and can be configured to transport either positive

or negatively charged particles by setting the individual magnets to a “+” or “-”

polarity in an alternating pattern. The central momentum is also set individually for

14EFL refers to the Effective Field Length of the magnet.
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each magnet via a field setting program that uses a current-to-field map associated

with a central momentum for each magnet. The detailed procedure of how to operate

the spectrometer magnets from the magnet GUI is discussed in Ref. [123].

The HMS Magnets

The HMS optics elements consist of three quadrupoles (Q1, Q2, Q3) and a dipole

(D) magnet arranged in a (QQQD) configuration that are used to transport the

scattered particles into a series of particle detectors located in a detector hut (see

Fig. 3.20). The quadrupoles focus the collimated particles into the dipole that

bends the central momentum particles vertically by 25◦ into the detector stack.

Figure 3.20: High Momentum Spectrometer (HMS) side view.

The HMS is capable of detecting particles with central momentum from 0.4 to

7.4 GeV/c and can be rotated from 10.5◦ to 85◦ where the minimum/maximum

angles are restricted by administrative, software, and hardware limits. These limits

depend on the beamline configuration and obstructions in the Hall at the time of

the experiment [97]. The spectrometer magnets and shield hut (with detectors)
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are actually supported by two separate, but firmly attached carriages that keep the

detectors and magnets aligned to each other and to the target.

Even though the HMS is a well understood spectrometer from the 6 GeV era, it

underwent minor modifications in preparation for the experimental requirements of

the 12 GeV era and had to be re-commissioned. First, the NMR probe15 used for

precise field regulation of the HMS dipole was replaced and second, the old HMS drift

chambers were replaced with a new design similar to the SHMS drift chambers. With

the replacement of the NMR probe, the precise mapping between the NMR probe

reading and the dipole magnetic field had to be re-done (see Ref. [124]) and, with the

installation of the new HMS drift chambers, the tracking and optics reconstruction

to the target had to be checked as well. Furthermore, some of the 12 GeV era

experiments required the HMS central momentum to operate above ∼ 4 GeV/c,

where saturation effects in the dipole and quadrupole magnets were expected but

had not been previously studied since no experiment in the 6 GeV era required HMS

central momenta > 4 GeV/c. For this purpose, special runs using hydrogen elastic

scattering and carbon data with the HMS sieve inserted were taken and used for

the re-optimization of the HMS reconstruction optics [124].

The SHMS Magnets

Similar to the HMS, the SHMS optics elements consist of an array of three quadrupoles

(Q1, Q2, Q3) and dipole (D) magnet used to guide the scattered particles into a

series of particle detectors in a shielded hut. The SHMS has an additional dipole

15The NMR probe is used to determine the spectrometer central momentum, which is
mostly determined by the dipole. Ideally, the probe is placed at the center of the
dipole and picks up a field reading from it and regulates this field by re-adjusting the
dipole current to achieve a more precise dipole field and hence a more precise central
momentum. In reality, more than one probe is used in this procedure (see Ref. [124] for
details).
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magnet (d) located between the target chamber and the first quadrupole known

as the Horizontal Bender (HB). The magnets are arranged in a (dQQQD) optics

configuration (see Fig. 3.21).

Figure 3.21: Super High Momentum Spectrometer (SHMS) side view.

The HB is used to horizontally bend the scattered particles that match the SHMS

central momentum by 3◦ away from the beamline and towards the collimator before

entering Q1. To achieve a horizontal bend, the optical axis of the HB is oriented

3◦ lower (towards the beamline) relative to the optical axis of the rest of the spec-

trometer (collimator, Q1, Q2, Q3, D, detectors). With the HB equipped, the SHMS

is able to detect particles at angles that would have otherwise been impossible to

reach due to the obstruction of the quadrupole magnets and shield house with the

beamline.

As the particles are bent horizontally towards the collimator and enter Q1, they

are focused through the remaining quadrupoles (Q2, Q3) and into the dipole (D)

where the central-momentum particles are vertically bent by 18.4◦ into the detector

stack. The SHMS can detect particles with central momentum from 0.2 to 11 GeV/c

and can be rotated from a central angle of 8.5◦ up to 40◦. In reality, due to the 3◦
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bend by the HB, the central-ray particles detected at the hut actually scatter from

the target 3◦ lower relative to the hut, therefore, the SHMS full angular coverage is

from 5.5◦ to 37◦.

Given that the SHMS is a new spectrometer, a significant amount of work during

the Fall-2017 to Spring-2018 run period has been devoted towards understanding

and optimizing the magnetic optics as well as commissioing the particle detectors.

See Ref. [125] for details of the optics commissioning work for the SHMS. Details

on the detector calibrations and SHMS optics optimization for this experiment will

be discussed in detail in Chapter 4.

3.6.3 Spectrometer Detectors

Each spectrometer is equipped with a similar set of particle detectors housed in

a heavily shielded hut. The detector package consists of a pair of drift chambers

(DC1 and DC2) used for track reconstruction, two pairs of hodoscope planes used

for particle triggering, a calorimeter used for e/π separation, and a gas and aerogel

Čerenkov used for additional particle identification.

In the HMS (see Fig. 3.22), the particles enter the detector hut through a cylin-

drical vacuum vessel that extends from the dipole exit window (outside the hut)

to just upstream of DC1. As the particles exit the vacuum vessel, they first pass

through the drift chamber pair followed by an aerogel Čerenkov detector, a first

pair of XY hodoscope planes, a Heavy Gas Čerenkov (HGC), a second pair of XY

hodoscope planes, and towards the end, a preshower and shower counters that make

up the calorimeter detector. During the commissioning run period, the aerogel de-

tector was not installed in the HMS detector stack.
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Figure 3.22: High Momentum Spectrometer (HMS) detector stack.

In the SHMS (see Fig. 3.23), as the particles enter the detector hut, they pass

through a vacuum vessel (similar to HMS) coupled to the dipole, which partially

protrudes inside the hut due to space constraints. Depending on the experimental

requirements for particle identification, the vacuum extension pipe can be replaced

with the Noble Gas Čerenkov (NGC) at higher spectrometer momenta, where the

effects of multiple scattering are minimized.

As the particles exit the vacuum vessel (or NGC), they pass through a pair of drift

chambers, followed by a pair of XY hodoscope planes, a Heavy Gas Čerenkov, an

aerogel Čerenkov, a second pair of XY hodoscope planes and finally, the preshower

and shower counters, which constitute the calorimeter detector.
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Figure 3.23: Super High Momentum Spectrometer (SHMS) detector stack.

During the commissioning run period, the NGC was installed as the spectrometer

central momentum was relatively high in each of the experiments. In this experi-

ment (E12-10-003) in particular, both spectrometers used the standard hodoscopoe

and drift chamber detectors for event triggering and tracking. Due to the negligible

background and low coincidence trigger rates the need of additional particle identi-

fication was minimal. Only the SHMS calorimeter was used to select a clean sample

of electrons.

Drift Chambers

The drift chambers in both the HMS and SHMS are of similar design (see Refs.

[126, 127]). In each spectrometer, the two drift chambers are mounted on an alu-

minum frame and are separated by about 80 cm as measured from their middle

plane. Each chamber consists of 6 anode (wire) planes and 8 cathode planes con-

fined between two cathode windows. The middle plane is used for mounting (on

both sides of the plane) the 16-channel amplifier discriminator cards required for
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sense wire readout. The middle plane also divides the chamber in half, each con-

sisting of three wire planes and four cathode planes (see Fig. 3.24).

Figure 3.24: Side view of the plane orientation for the DC1 (left) where the colored
planes represent the wire planes, and DC2 (right) which is identical in design to
DC1 rotated by 180◦ about the x-axis (vertical) forming a mirror image along the
z-axis.

DC1 and DC2 are separated by an “imaginary” plane referred to as the focal

plane, which is chosen such that the focal point of the spectrometer optics coincides

with the origin of the focal plane. This means that the particles transported to

the hut are focused at the focal plane and those with a momentum equal to the

central spectrometer momentum are focused at the origin. This assumes that the

spectrometer is also positioned at the central angles corresponding to the central

momentum, otherwise, the focal point will be shifted.

The wire planes for each chamber were designed such that a 180◦ rotation of the

unprimed wire planes about the z-axis produce the primed planes with wires at the

same orientation, but slightly shifted, which allows the resolution of the left/right

ambiguities16. For each wire plane, the wire orientation is defined by a vector

16The left/right ambiguities refers to our ignorance of whether a particle passed to the
left or right side of the sense wire that detected it
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perpendicular to the wire where (U,U’) and (V,V’) are oriented at ±60◦ relative to

the (X,X’) wires as illustrated in Fig. 3.25.

Figure 3.25: Front view of the wire (dashed) orientations for each plane, indicated by
representative sense wires of different colors, where the +z-axis (particle direction)
is into the page. The wires in each plane are superimposed onto a single plane in
this figure for convenience and their orientation is defined by the vector normal to
the wire.

A wire plane consists of alternating field and sense wires. In both the HMS and

SHMS, the sense wires are made of 20 µm gold-plated tungsten and the field wires

are made of copper plated beryllium with thickness of 100 µm in HMS and 80 µm in

SHMS. The numbering scheme of the sense wires is determined by the direction of

the perpendicular vector to the wire (see Fig. 3.25) which points towards increasing

wire numbers. For the HMS drift chambers, the (U, U’, V, V’) consist of 96 sense

wires per plane and the (X, X’) consist of 102 sense wires per plane. In contrast, the

SHMS (U, U’, V, V’) consist of 107 sense wires per plane and the (X, X’) consist of

79 sense wires per plane.
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During operations, each chamber was filled with a carefully chosen gas mixture

(50:50 argon/ethane) such that the charged particles that pass through the chamber

ionize the surrounding argon gas atoms producing an avalanche of electrons where

the ethane served as the quenching element. In addition, the cathode planes and

field wires were kept at a negative potential (∼ -1940 V) relative to the sense wires,

which were kept grounded at zero potential. The potential difference between the

field wires and cathode planes relative to each sense wire established an electric field

with field lines pointing away from the sense wires and towards the adjacent field

wires and cathode planes. The calibration procedures will be discussed in detail in

Section 4.3.2.

Hodoscopes

Each spectrometer is equipped with a series of four scintillator arrays (hodoscope

planes) grouped into two pairs separated by a distance of about 2.2 m. Each pair

is segmented along the dispersive (x-axis) and non-dispersive (y-axis) direction by

an array of long rectangular elements that can be either a plastic scintillator paddle

or quartz bar with a photomultiplier tube (PMT) coupled at each end. The plastic

scintillating materials used in the HMS and the first three planes of the SHMS are the

BC-404 [128] from Saint-Gobain Crystals and RP-408 [129] from Rexon Corporarion,

respectively. The last plane in the SHMS, known as the quartz plane, is composed

of Corning HPFS 7980 Fused Silica (or quartz) [130] bars. To eliminate the possible

gaps and avoid dead spots between adjacent elements where a particle could pass

undetected, the paddles/bars are slightly overlapped by a few millimeters in every

plane. Table 3.4 summarizes the dimensions of each paddle for every hodoscope

plane in both spectrometers.
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Plane Thickness (mm) Width (cm) Length (cm) # of Elements

HMS
1X 2.12 8.0 75.5 16
1Y 2.12 8.0 75.5 10
2X 2.12 8.0 75.5 16
2Y 2.12 8.0 75.5 10

SHMS
1X 5 8.0 100 13
1Y 5 8.0 100 13
2X 5 10.0 110 14
2Y 25 5.5 125 21

Table 3.5: Summary of hodoscopes paddle dimensions for each plane.

The fast timing properties of the plastic scintillators makes the hodoscope de-

tector ideal for particle triggering specially after the 12 GeV energy upgrade where

particle rates become significantly higher. The addition of the quartz plane in the

SHMS detector package provides a clean detection of charged particles while main-

taining a high level of background rejection that optimizes the hodoscope tracking

efficiency at higher rates where the background is also expected to be larger.

Even though the plastic scintillators and the quartz both emit light due to

charged particle interactions, the process by which the light is produced is dif-

ferent. In a scintillator, as a charged particle traverses the medium, it excites the

molecules in the scintillator material that decay back into the ground state via the

emission of scintillation photons in (or near) the visible light range, a process known

as fluorescence. The photons propagate towards the end of the scintillator paddles

where they are detected by the PMT. As the photons interact with the PMT photo-

cathode, a certain number of photoelectrons will be produced via the photoelectric

effect. These electrons are accelerated towards a series of dynodes creating an elec-

tron avalanche towards the end of the PMT at the anode creating a measurable

analog signal that is sent via a signal cable to the Counting Room for further signal

processing (see Fig. 3.26).
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Figure 3.26: Front view of the SHMS S1X (front) and S1Y (back) hodoscope planes.

As the light propagates through the scintillator material, when it reaches the

boundaries, the light may not be completely reflected and can be lost due to re-

fraction. If the light ray incident on the boundary exceeds the critical angle17, it

is reflected via total internal reflection where no losses occur at the boundary. To

maximize the scintillator light output in case of partial refraction, the scintillators

are wrapped in a layer of a highly reflective material (aluminum foil) and multiple

layers of Tedlar (HMS) or electrical tape (SHMS) to ensure light tightness.

In contrast to the plastic scintillators, the radiation produced in the quartz plane

is based on the Čerenkov effect, which will be discussed in more detail in the next

17The critical angle required for total internal reflection depends on the index of refraction
between the two media at the boundary.
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detector section. Additional technical information on the hodoscopes design and

construction can be found in Refs. [131–133].

Threshold Čerenkovs

At high particle momenta (≥ 3 GeV/c), the use of the hodoscope Time-of-Flight

(TOF) method to identify different particles becomes practically useless, which can

be understood from the relation, ∆t ∼ 1/p2, where ∆t is the hodoscope time differ-

ence between the first and second pair of planes and p is the particle momentum.

This means that at higher particle momenta, it becomes very difficult to identify

each particle due to the small and indistinguishable time difference between differ-

ent particle masses. Therefore, the use of additional particle identification detectors

becomes a necessity.

The Hall C spectrometers are equipped with various threshold Čerenkov par-

ticle detectors. These detectors depend on Čerenkov effect, which occurs when a

charged particle traverses a transparent medium faster than the speed of light in the

medium. As a result, the charged particle creates an electromagnetic disturbance

in the medium that causes Čerenkov radiation to be emitted and distributed in a

conical shape about the tracjectory of the particle (see Fig. 3.27).

From Fig. 3.27, the electromagnetic disturbance (light) created by the passage

of the charge particle is analogous to the sound waves emitted by a supersonic jet.

Since the charged particle moves faster than the spherical waves it emits, a conical

shape is formed given by the relation

cos(θc) =
1

nβ
, (3.11)

where β = v/c is the ratio of the velocity (v) of the charged particle to the speed

of light in vacuum (c) and n = c/u is the index of refraction of the medium, where
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u is the speed of light in the medium. Alternatively, β = p/
√
m2 + p2 where m is

the particle’s mass. Since the charged particle must travel faster that light in the

medium for Čerenkov light to be emitted, one requires v > c/n =⇒ n > 1/β which

can be expressed in terms of momentum as

n >

√
m2 + p2

p
. (3.12)

From this inequality, the index of refraction of the medium can be adjusted ac-

cordingly such that at a fixed momentum, the mass of the particle will determine

whether or not Čerenkov radiation will be produced.

Figure 3.27: Cartoon of the Čerenkov effect. The charged particle (red) traverses a
medium faster than the speed of light (blue) in that medium, producing a conical
light wavefront.

Both the gas and aerogel threshold Čerenkov detectors in Hall C utilize this

basic inequality for particle identification. In addition, for the gas Čerenkovs, the

quantity (n−1) is proportional to the gas pressure, which can be adjusted to change

the index of refraction and hence select the desired particle mass that will trigger

the Čerenkov effect. Below is a brief description of each Čerenkov detector.

80



Heavy Gas Čerenkov (HGC) Each spectrometer is equipped with an HGC

detector located between the front and rear hodoscope planes. The detector is filled

with a gas that is kept at a specific pressure depending on the experimental require-

ments. The detector is also equipped with several mirrors mounted and oriented so

as to reflect and focus the Čerenkov light towards the PMTs.

Figure 3.28: CAD rendering of the SHMS Heavy Gas Čerenkov detector. Note:
Reprinted from Ref. [134].

The HMS Čerenkov [97, 135] consists of a 1.5 meter-long cylindrical tank with

2 spherical mirrors installed that focus the Čerenkov light onto 2 PMTs. The de-

tector can operate as an e/π or π/p discriminator, depending on whether the tank

is filled with C4F10 or N2 gas for the former, or Freon-12 gas for the latter, at a

range of operating pressures depending on the gas used. In contrast, the SHMS

Čerenkov [97,134] (see Fig. 3.28) consists of a 1.3 meter-long cylindrical tank (1.88
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m in diameter) and has 4 mirrors installed that focus the light onto 4 PMTs. The

detector is filled with C4F10 or C4F8O gas, which are functionally equivalent, and is

able to operate as an e/π or π/K discriminator depending on the gas pressure used.

Noble Gas Čerenkov (NGC) The SHMS is equipped with an additional gas

Čerenkov detector [97,136] (see Fig. 3.29) located in front of the drift chambers due

to space constraints in the hut. The detector consists of a rectangular tank 2.5

Figure 3.29: CAD rendering of the SHMS Noble Gas Čerenkov detector.

meters in length (along z-axis) and 0.8 meters wide with 4 spherical mirrors used to

reflect and focus the Čerenkov light onto 4 PMTs. The tank is designed to operate

at a gas pressure of 1 atm of either argon, neon or a mixture of the two gases, which

provides e/π discrimination at momenta above 6 GeV/c. At lower central momenta,

the NGC is replaced with an extended vacuum pipe of the same length to minimize

the effects of multiple scattering on the particle trajectory.
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Aerogel Čerenkov The strange physics part of the program at Hall C requires

the capability to carry out a clean p/π/K separation. To achieve a clean particle

identification, both spectrometers are equipped with an aerogel Čerenkov detector.

Figure 3.30: CAD rendering of the SHMS aerogel Čerenkov detector. The HMS
design is very similar with slightly different dimensions and an additional PMT at
both ends.

In contrast to the gas Čerenkovs, this detector uses an aerogel, which is a trans-

parent, highly porous material with a refractive index typically between those of

gases and liquids. The aerogel detector in each spectrometer are of similar design

consisting of an aerogel tray followed by a light diffusion box with a highly reflective

material at the inner boundaries. As the charged particle passes through the aero-

gel material, depending on the refractive index, specific particles will emit Čerenkov

light that travels into the diffusion box where it is reflected at the boundaries of

the box and into an array of PMTs mounted on each side. The analog signal from
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the light collected by the PMTs is sent to the Counting Room for further signal

processing. A detailed description of the aerogel detector including the dimensions

and material specifications can be found in Refs. [137,138].

Calorimeters

The electromagnetic (EM) calorimeter in each spectrometer is primarily used for

e/π discrimination and to complement the gas Čerenkov detectors for a more ro-

bust electron identification and pion suppression. The calorimeters provide a de-

structive measurement of the projectile particle energy and are therefore located at

the end of the detector stack. The projectile energy is measured by the detection of

Čerenkov radiation primarily from EM showers produced mainly via bremsstrahlung

and pair production processes. As the electrons traverse the calorimeter, they are

slowed down (decelerated) by the calorimeter radiator and emit bremsstrahlung

photons that decay to e+e− pairs via pair production. These pairs further radiate

bremsstrahlung photons triggering an EM shower cascade reaction until most or all

the initial electron energy has been deposited in the calorimeter.

From Fig. 3.31, a single electron with initial energy, E0, enters the calorimeter

radiator material and produces a particle cascade in a chain reaction that becomes

less energetic as it traverses the radiator. The horizontal axis (along particle trajec-

tory) is defined as a multiple of one radiation length (X0 [g/cm2]), which is defined

as the mean distance over which a high-energy electron loses all but 1/e of its initial

energy (E0) due to bremsstrahlung radiation [139]. The radiation length can also

be expressed in [cm] by dividing X0 by the density of the material in [g/cm3].

To ensure that all (or most) of the incident projectile energy is deposited in the

radiator material, the Hall C calorimeters are made of several stacked layers of thick

lead glass blocks (or modules) that are tilted a few degrees lower relative to the
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Figure 3.31: Typical electromagnetic shower cascade in a calorimeter.

spectrometer central ray. The original HMS calorimeter [140] (see Fig. 3.32) was

commissioned in 1994 as one of the first detectors to operate in Hall C and remains

in the stack since no significant deterioration in performance has been observed.

The detector consists of 52 TF-1 lead glass modules (refractive index 1.65, density

3.86 g/cm3) stacked in four layers of 13 blocks/layer with dimensions of 10×10×70

cm3 per block. A single layer measures 3.65 radiation lengths along the particle

trajectory (+z) for a total of ∼14.6 radiation lengths for the entire calorimeter, suf-

ficient to absorb most of the electron projectile energy. The total energy deposited

is read out by PMTs coupled at both ends of the first two layers, and PMTs coupled

at one end on the last two layers of the calorimeter.

The new SHMS calorimeter [140] (see Fig. 3.33) consists of TF-1 and F-101

type lead glass modules (refractive index 1.65, density 3.86 g/cm3) assembled sepa-
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Figure 3.32: HMS electromagnetic calorimeter. The entire detector is tilted verti-
cally by 5◦ lower relative to the central ray of the spectrometer hut.

rately into a preshower (TF-1) and shower (F-101) counter. The preshower blocks

used in the SHMS were removed from the decommissioned SOS calorimeter and

consist of 28 modules stacked in two adjacent columns. Each module has dimen-

sions of 10 × 10 × 70 cm3 and is coupled to a PMT at one end. In contrast to the

preshower, the shower counter blocks were obtained from the decommissioned HER-

MES calorimeter detector and consist of 224 modules of dimensions 8.9×8.9×50 cm3

per module with a coupled PMT towards the long end of the block. The modules

were stacked in a fly’s eye configuration behind the preshower plane. This configura-

tion, which is ∼ 18 radiation lengths deep, guarantees that the EM showers from the

highest energetic projectiles (∼ 10 GeV) will be mostly absorbed. The preshower

counter, in contrast, is only 3.6 radiation lengths thick and is specifically positioned

in front of the shower to improve the particle identification capabilities by detecting
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the early onset of EM showers. A detailed report of the HMS/SHMS calorimeter

detector performance and design specifications can be found in Ref. [140].

Figure 3.33: SHMS electromagnetic calorimeter. The entire detector is tilted verti-
cally by 2◦ lower relative to the central ray of the spectrometer hut.

3.7 The Hall C Electronics Trigger Setup

The majority of the detector electronics in the HMS/SHMS detector huts are read

out by Read-Out Controllers (ROCs) crates located in the Counting Room except

for the HMS/SHMS drift chambers and the SHMS shower counter signals, which

are read in their respective ROCs in the detector huts. In the HMS/SHMS huts,

the drift chamber signals are transmitted by 20-25 foot-long ribbon cables that are

read out in the hut electronics rack (see Figs. 3.34 and 3.37). On the SHMS side,

the shower counter consists of 224 signal cables read directly in the hut electronics

rack.
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3.7.1 HMS Detector Hut Electronics

The HMS drift chambers are read out through a VXS Crate (ROC 03) in the

detector hut electronics rack (see Fig. 3.34). The signals are carried through 16-

channel ribbon cables fed into various CAEN1190 (C1190) [141] TDC modules.

The Trigger Interface (TI) [142] module at the front end of the crate distributes the

readout trigger throughout all modules in the crate and initiates data readout.
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Figure 3.34: HMS detector hut electronics rack (left) and patch panels (right).

The rest of the HMS detector signals (gas Čerenkov, hodoscopes, calorimeter)

are sent to the Hall C floor patch panel via the hut patch, with the exception of the

aerogel, which is sent directly from the detector to the floor patch. All the signals

are then sent to the Counting Room patch panel to be processed by the electronics

(see Fig. 3.35).
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Figure 3.35: HMS patch diagram from detectors to Counting Room.

3.7.2 SHMS Detector Hut Electronics

Similar to the HMS drift chambers, the SHMS drift chambers are also read out by

TDCs in a VXS Crate in the SHMS electronics hut (see Fig. 3.36).

Figure 3.36: SHMS hut patch panel (left) and electronics racks (right).
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The 224 shower counter signals are directly connected to 250 MHz flash ADCs

[143], hereafter referred to as fADCs, in a separate VXS Crate (ROC 04). The

preshower signals (x14/side) pass through a 50:50 splitter where a part of the signal

is fed to an fADC and the other part is partially summed in the hut and sent via

the hut patch panel to the Counting Room patch. The rest of the SHMS detector

signals (HGC/NGC, hodoscopes, aerogel) are sent to the Counting Room via the

hut patch panel to be processed by the electronics (see Fig. 3.37).

Figure 3.37: SHMS patch diagram from detectors to Counting Room.

3.7.3 Hall C Counting Room Electronics

Once the detector signals arrive at the Counting Room patch (see Fig. 3.38(left)),

they are processed by the NIM/CAMAC18 electronics (see Fig. 3.38(right)) to form

the single-arm or coincidence triggers for each spectrometer. The signals are also

sent to fADCs/TDCs to determine energy and timing information for individual

detectors.

18NIM or Nuclear Instrumentation Modules and CAMAC or Computer Automated Mea-
surement and Control define a set of standard modular-crate electronics commonly used
in experimental nuclear/particle physics.
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Figure 3.38: Counting Room patch panels (left 2 racks) and main electronic racks
for HMS/SHMS detector signal processing (right 2 racks).

3.7.4 HMS Trigger Setup

The XY scintillator arrays (hodoscope planes) form part of the standard HMS trigger

configuration. Additional particle detectors may also be incorporated into the HMS

trigger as required by different experiments. The gas Čerenkov and calorimeter

triggers are used for e/π discrimination, whereas the aerogel Čerenkov trigger is

used for π/K/p discrimination.

Hodoscopes Pre-Trigger

Each hodoscope plane consists of an array of scintillator paddles coupled to a PMT

at each end (see Fig. 3.22), so each paddle reads out two signals. In Fig. 3.39, for

example, hodoscope plane h1X consists of 32 signals (16 paddles) read out in the

Counting House (CH) patch. Each side of the plane (x16 signals/side) is fed into a

64-channel input passive splitter (16 Ch./set). One-third of the signal amplitude is
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Figure 3.39: HMS hodoscopes electronics diagram.

sent via a 16-channel ribbon cable to a 64-channel input Ribbon-to-BNC converter

(16 Ch./set) fed into a 16-channel NIM input fADC. The remaining two-thirds of

the signal amplitude is sent to a 16-channel input CAMAC discriminator unit. The

HMS discriminator thresholds and gate widths were set to -44.5 mV and 60 ns,

respectively, but may be subject to change.

The discriminated signals are sent via two ribbon cable outputs to C1190 TDCs

and scalers (daisy-chained) and to a LeCroy 4564 CAMAC logic unit to form the

plane pre-triggers. The logic unit takes four sets of 16-channel input ribbon cables

and forms a 16-fold OR for each set by default. Further boolean operations are

done through the module backplane by connecting a twisted pair cable to the pin
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corresponding to the desired boolean operation. For the HMS hodoscope plane

pre-triggers, the boolean operations are as follows:

h1X = h1X+ (16-fold OR) AND h1X- (16-fold OR)

h1Y = h1Y+ (10-fold OR) AND h1Y- (10-fold OR)

h2X = h2X+ (16-fold OR) AND h2X- (16-fold OR)

h2Y = h2Y+ (10-fold OR) AND h2Y- (10-fold OR)

Once a pre-trigger has been made for each plane, they are sent to a NIM/ECL

converter (Level Translator - Phillips Scientific (or P/S) Model 7126) via twisted

pair cables. The NIM output is then sent to individual sets of a P/S Model 752

NIM logic unit to adjust the widths of each of the plane pre-triggers as necessary

before making coincidence. An XY hodoscope plane coincidence (h1 = h1X OR

h1Y, h2 = h2X OR h2Y) is then made by feeding each hodoscope XY plane pair

into a P/S Model 755 NIM logic unit19. A copy of each of the four individual plane

pre-triggers is also sent to another set of P/S Model 755 to make a 3/4 or 4/4

plane coincidence (via a front-panel knob), which defines the standard hodoscope

pre-trigger (hHODO 3/4). An additional pre-trigger (hSTOF = h1 AND h2) is

formed by requiring the coincidence between any two of the front (h1) and back

(h2) scintillator plane pairs to measure the time-of-flight (TOF) between any of the

two front and back planes. A copy of all the pre-triggers discussed above are sent

to TDCs and scalers via a NIM/ECL converter for timing and counting information

(see Fig. 3.39).

19The output widths of the P/S Model 755 logic units were set to ∼ 50 ns for the HMS.
See HCLOG entry https://logbooks.jlab.org/entry/3501357.
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Calorimeter Pre-Trigger

Figure 3.40: HMS calorimeter electronics diagram.

The HMS calorimeter consists of four layers of lead blocks. Layers A and B read

out 26 PMT signals per layer (13 signals/side) while layers C and D read out 13

signals/layer on one side. The first layer forms the preshower counter while all four

layers (A, B, C and D) form the shower counter. Each layer is read out in the

Counting Room patch and fed into 50:50 splitters. One output of the splitter is

connected to an fADC via a Ribbon-to-BNC converter (same as hodoscopes) while

the other output is sent to P/S Model 740 NIM Linear FI/FO summing modules.

Each side of a layer is summed first (hA+, hA-, hB+, hB-, hC and hD sums). The

sums are connected into a LeCroy Model 428F summing module where layers hA+/-

and hB+/- are summed to form hA and hB sums. A copy of each layer sum is then

sent to an fADC. The preshower sum (preSh SUM) is made from layer A, while

the shower sum (Shower SUM) is made by summing all four layers. A copy of
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the preshower and shower sums is also sent to an fADC channel. The preshower

and shower sums are also sent to a P/S Model 715 NIM discriminator unit to form

the preshower Low/High (hPreSH LO,hPreSH HI) and shower Low (hShower

LO) pre-triggers with thresholds -40 mV , -60 mV and -45 mV , respectively, with

all gate widths set to 30 ns. A copy of the pre-triggers is sent to TDC and scaler

modules for trigger timing and counting information.

Gas Čerenkov Pre-Trigger

Figure 3.41: HMS gas Čerenkov electronics diagram. Same electronics diagram
applies for SHMS gas Čerenkovs.

The HMS gas Čerenkov detector consists of a 1.5 m long cylindrical tank between

the first and second set of hodoscope planes (see Fig. 3.22). The tank is filled with

a gas and has two spherical mirrors that focus the Čerenkov photons towards two 5-

inch PMTs. The signals are read out in the Counting Room patch and pass through

a 50:50 splitter. One output is fed into an fADC module via a Ribbon-to-BNC

converter. The other output is sent to a LeCroy Model 428F summing module, and
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a copy of the sum is fed to an fADC. The sum is also sent to a P/S Model 715 NIM

discriminator to form the Čerenkov pre-trigger (hCER TRG) with a threshold

and gate width set to -50 mV and 30 ns. A copy of the discriminated signal is also

sent to TDCs and scalers via a NIM/ECL converter for trigger and counting rate

information.

Aerogel Čerenkov Pre-Trigger

The HMS aerogel Čerenkov detector signals are sent directly to the Hall C floor

patch panel and then sent to the Counting Room patch and connected to a 50:50

splitter. One output leads to an fADC module via a Ribbon-to-BNC converter.

The other output is sent to a summing module, and a copy of the sum is sent to an

fADC. The sum is also sent to a NIM discriminator to form the aerogel pre-trigger

(hAERO TRG). A copy of the discriminated signal is registered by TDCs and

scalers via a NIM/ECL converter for trigger and counting information purposes.

The electronics diagram is the same as in Fig. 3.41.

HMS Single Arm Pre-Trigger

The HMS single arm pre-trigger is formed from the standard pre-trigger (hodoscopes)

and a combination of other detector pre-triggers as required by the experiment. The

standard and other experiment-specific pre-triggers are sent to a P/S Model 755

NIM logic unit to form a final single-arm pre-trigger (hHODO 3/4, hEL REAL,

hEL CLEAN). A copy of every pre-trigger (shown in red in Fig. 3.42) is sent to

scalers/TDCs (not shown). The final pre-triggers are sent to the front-end of the

TI module in ROC 01, which can receive up to 6 individual pre-triggers. A copy

of the accepted trigger (Level 1 or L1 Accept) is sent via fiber optics cables to all

the ROCs associated with the HMS for data readout by all fADC/TDC modules.
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Figure 3.42: HMS single arm pre-trigger electronics diagram.

A copy of certain final pre-triggers are also OR’ed and are ultimately distributed

to all ROCs with fADC/TDC modules to function as a reference time associated

with the L1 Accept. The reference time is subtracted from every channel in every

fADC/TDC module on an event-by-event basis to reduce intrinsic jitter and achieve

the design resolution of the module. To guarantee that every event has an associated

reference time, the HMS standard pre-trigger (hHODO 3/4) is OR’ed with the

hEL-REAL pre-trigger to guarantee a reference time in the rare case where the

hHODO 3/4 fails due to trigger inefficiency which is very small (. 1%).

3.7.5 SHMS Trigger Setup

The three planes (X1, Y1, X2) of scintillator arrays and the quartz plane (Y2) form

part of the standard SHMS trigger configuration (see Fig. 3.23). Additional particle
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detectors may also be incorporated into the SHMS trigger as required by different

experiments. The NGC and calorimeter triggers are used for e/π discrimination,

whereas the HGC and aerogel Čerenkov triggers are used for e/π/p and π/K/p

discrimination, respectively, depending on the gas pressure and aerogel material

used.

Hodoscopes Pre-Trigger

Figure 3.43: SHMS hodoscopes electronics diagram. It is important to note that
only 18 of the 21 quartz bars are currently usable.

Each hodoscope plane consists of an array of scintillator paddles (or quartz bars)

coupled to a PMT at each end (see Fig. 3.26), so each bar reads out two signals.

As shown in Fig. 3.43, for example, hodoscope plane S1X consists of 26 signals (16
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paddles) read out in the Counting House (CH) patch. Each side of the plane (x13

signals/side) is connected to a 64-channel input passive splitter (16 Ch./set). One-

third of the signal amplitude is sent via a 16-channel ribbon cable to a 64-channel

input Ribbon-to-BNC converter (16 Ch./set) and subsequently into a 16-channel

NIM input fADC. The remaining two-thirds of the signal amplitude is sent to a 16-

channel input CAMAC discriminator unit. The SHMS scintillator discriminators

thresholds and gate widths were set to -30 mV and 60 ns, respectively, whereas the

quartz plane discriminators thresholds and gate widths were set to -60 mV and 60

ns, respectively.

The discriminated signals are sent via two ribbon-cable outputs to C1190 TDCs

and scalers (daisy-chained) and to a LeCroy 4564 CAMAC logic unit to form the

plane pre-triggers. The logic unit takes four sets of 16-Ch. input ribbon cable

and forms a 16-fold OR for each set by default. Further boolean operations are

done through the module backplane by connecting a twisted pair cable to the pin

corresponding to the desired boolean operation. For the SHMS hodoscope plane

pre-triggers, the boolean operations are as follows:

S1X = S1XL (13-fold OR) AND S1XR (13-fold OR)

S1Y = S1YT (13-fold OR) AND S1YB (13-fold OR)

S2X = S2XL (14-fold OR) AND S2XR (14-fold OR)

S2Y =
{

S2Y[1-16]T OR S2Y[17-21]T
}

AND
{

S2Y[1-16]B OR S2Y[17-21]B
}

Once a pre-trigger has been made for each plane, they are sent to a NIM/ECL

converter (Level Translator P/S Model 7126) via twisted pair cables to convert the

ECL signal (twisted pair) to a NIM signal. The NIM output is then sent to individual

sets of a P/S Model 752 NIM logic unit to adjust the widths of each of the plane

pre-triggers as necessary before making a coincidence. An XY hodoscope plane

coincidence (S1 = S1X OR S1Y, S2 = S2X OR S2Y) is then made by connecting
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each hodoscope XY plane pair into a P/S Model 755 NIM logic unit20. A copy

of each of the four individual plane pre-triggers is also sent to another set of P/S

Model 755 to make a 3/4 or 4/4 plane coincidence (configured via a front-panel knob)

which defines the standard hodoscope pre-trigger (pHODO 3/4). An additional

pre-trigger (pSTOF = S1 AND S2) is formed by requiring the coincidence between

any two of the front (S1) and back (S2) scintillator (or quartz) plane pair to measure

the TOF between any of the two front and back planes. A copy of the hodoscope

pre-triggers are also sent to TDCs and scalers via a NIM/ECL converter for timing

and counting information.

PreShower and Shower Calorimeter Pre-Trigger

The SHMS preshower consists of two sets of fourteen PMT-coupled lead blocks

oriented perpendicular to the shower counter blocks. The initial sum was done in

the SHMS electronics hut. The PMT signals in groups of four blocks were summed

to form:
preSh SUM [1-4]: [1-4]L + [1-4]R

preSh SUM [5-8]: [5-8]L + [5-8]R

preSh SUM [9-12]: [9-12]L + [9-12]R

preSh SUM [13-14]: [13-14]L + [13-14]R

The partial preshower signal sum was sent to the Counting Room patch where a

final sum was made. Two copies of the final sum were sent to a discriminator to form

two preshower pre-triggers (pPreSH HI, pPreSH LO) with a lower and higher

threshold, respectively.

20The output widths of the P/S Model 755 logic units were set to ∼ 100 ns for the SHMS.
See HCLOG entry https://logbooks.jlab.org/entry/3501354.
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Figure 3.44: SHMS PreShower and Shower electronics diagram.

A copy of the pre-triggers were sent to TDCs and scalers via a NIM/ECL con-

verter for timing and counting information. The shower counter consists of 224 lead

blocks, each coupled to a PMT at the end. Becasue of the high channel density of

this detector, its signals do not form part of the trigger and are sent directly to the

ROC 04 fADCs in the SHMS detector hut.

Heavy and Noble Gas Čerenkov Pre-Trigger

The SHMS HGC detector consists of a 1 meter-long, 1.6 meters in diameter cylin-

drical tank located between the front and back sets of hodoscope planes (see Fig.

3.23). The tank is filled with a gas and has four thin spherical mirrors that focus

the Čerenkov light towards four 5-inch PMTs.

The SHMS NGC detector consists of a 2 meter-long active length of argon/neon

gas tank located before the first drift chamber (see Fig. 3.23). The tank is filled

with a gas and has four overlapping mirrors that focus the Čerenkov photons to-

wards four 5-inch PMTs. The electronics trigger setup for the SHMS Čerenkovs is

shown in Fig. 3.45 and is very similar to the HMS Čerenkovs. Refer to Fig. 3.41

and read the corresponding section for a full description of the corresponding trigger

setup.
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Figure 3.45: SHMS gas Čerenkovs electronics diagram.

Aerogel Čerenkov Pre-Trigger

The SHMS aerogel Čerenkov detector consists of a 110×100×24.5 cm3 rectangular

aerogel tray coupled to a diffusion box. The diffusion box has seven 5-inch PMTs

on each side which detect Čerenkov light produced by interactions with the aerogel

material. The detector is located between HGC and second set of hodoscope planes

(see Fig. 3.23). The electronics diagram is the same as in Fig. 3.45.

SHMS Single Arm Pre-Trigger

The SHMS single arm trigger is formed exactly as the HMS single arm trigger, with

the exception of the detectors pre-triggers involved which depend on the experiment.

Refer to Fig. 3.42 and read the corresponding section for a detailed description of

the electronic diagrams.
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Figure 3.46: SHMS single arm trigger electronics diagram.

Coincidence Trigger Set-Up

In coincidence mode (see Fig. 3.47), the HMS and SHMS pre-triggers are sent to a

NIM logic module where the first spectrometer pre-trigger that arrives will open a

coincidence time window during which the second spectrometer pre-trigger may or

may not arrive in that time. This will determine whether two spectrometers pre-

triggers are correlated with the event originated at the target. If the coincidence

pre-trigger is formed, a copy is sent to scalers/TDCs while another copy is sent

to the fron-end of the TI module in ROC 02 which acts as the Trigger Master

(TM) in coincidence mode. Once the TM accepts the coincidence trigger, multiple

copies of the L1 Accept are distributed to all HMS and SHMS ROCs (except ROC
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02) via fiber obtics cables in all crates for data readout. An additional copy of

the L1 Accept is also sent to the front-end of the TDCs in ROC 02. Multiple

copies of the HMS/SHMS pre-triggers (reference times) are also distributed to their

respective spectrometer ROCs with fADC/TDC modules to function as a reference

time associated with the coincidence trigger.

Figure 3.47: Coincidence trigger electronics diagram.

3.7.6 Electronic Dead Time Monitoring (EDTM)

The EDTM system is a new method used in Hall C to measure the total dead time

of the data acquisition (DAQ) system. It consists of introducing a controlled (fixed

frequency) pulse as near as possible to the detectors that form part of the trigger.

Ideally, one would send the EDTM pulses at the detector level in the hut such that
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both the real physics and EDTM signals pass through the same electronics. Since

this is not easy or practical to do, the EDMT logic pulses are injected at the trigger

logic level in the Counting Room.

Figure 3.48: EDTM electronics diagram.

By design, the EDTM is a real trigger as measured by the electronics and read-

out systems. Since the EDTM is invasive to the trigger electronics, its frequency

should be small enough to minimize the probability of blocking actual physics trig-

gers, but sufficiently large to gather the necessary statistics for a precise dead time

measurement during the course of a run.

Figure 3.48 shows a simplified diagram of the EDTM signal distribution through

the trigger electronics. The EDTM logic signals (purple) are injected into the trigger

logic where they mix with the physics pre-triggers (magenta). A separate copy of

the EDTM is also sent to scalers/TDCs to be used in the dead time calculation. If
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the EDTM makes it to the front-end of the Trigger Interface (TI) module and gets

accepted (L1 Accept), it has esentially measured both the electronics and computer

dead time.

Figure 3.49: Cartoon representation of EDTM (purple) and physics (magenta) pre-
triggers at the TI module front-end.

Figure 3.49 shows the random physics (magenta) and clocked (purple) EDTM

pulses at an input channel of the TI front-end where the EDTM has been set to

a sufficiently large frequency (1/Tclk) to ensure that enough EDTM signals get ac-

cepted in order to make a statistically significant and reliable dead time calculation.

In this example, an EDTM signal has been accepted by the TI which triggered a

BUSY signal for a time τ during which all other incoming pre-triggers are blocked

contributing to the DAQ computer dead time. The accepted pre-triggers are dis-

tributed to all ROCs for data readout.

Over the course of a run, the total dead time (TTDT), or alternatively, the total

live time (TTLT) in terms of the EDTM is defined as

TTDT ≡ 1− TTLT = 1− Nedtm,acc

Nedtm,scl

, (3.13)

where Nedtm,acc is the number of accepted EDTM counts obtained by requiring a

non-zero hit on the EDTM TDC spectrum, and Nedtm,scl is the number of EDTM
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scaler counts regardless of whether or not the EDTM was accepted. In reality,

frequent beam trips occur during the course of a run which makes this calculation

biased since one can measure live times of ∼100% during beam-off periods as only

the EDTM signal (and cosmic rays) are measured. To eliminate this bias, the live

time calculation was done by making a software cut on the beam current above a

certain threshold (refer to target density corrections in Section 5.4). Furthermore,

since the EDTM events are generated by a clock, rather than a poisson source, it

introduces an additional bias since the EDTM cannot block itself. To account for

this bias, an additional correction to the total live time was derived and can be

found in Ref. [144]. This correction, however, is negligible provided that the EDTM

rate is sufficiently low as was the case for this experiment (∼ 2 Hz).

Even though only the total live time is required as a correction factor in the

measured cross section, one may also calculate the computer live time defined as

TCLT =
Nphy,acc

Nphy,scl

, (3.14)

where Nphy,acc is the number of accepted physics triggers obtained by requiring a

zero hit on the EDTM TDC spectrum (EDTM rejected by TI) and Nphy,scl is the

number of physics trigger scaler counts after having subtracted the EDTM scaler

counts. The electronic live time can then be obtained from the following formula:

TTLT = TCLT · TELT, (3.15)

where TELT is the electroninc live time expressed as a fraction (not percent).

In the E12-10-003 experiment, the data from the main analysis was read out

by an unprescaled coincidence trigger which simplified the live time calculations

discussed above, since there was no need to divide by a prescale factor or account

for simultaneous multiple input triggers. For a more detailed discussion on the live

time calculations and its correction factors see Refs. [144,145].
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CHAPTER 4

GENERAL HALL C ANALYSIS OVERVIEW

The general Hall C analysis procedure for experiments in the 12 GeV era is discussed.

The procedure outlines the first necessary steps in the data analysis regardless of the

nature of the experiment. These include, but are not limited to, setting reference

time cuts, detector time window cuts, and performing detector calibrations. Optics

checks and optimization analysis of the SHMS reconstruction matrix using 1H(e, e′)p

elastic data are discussed for this experiment. Finally, the data-to-simulation com-

parisons of the spectrometer acceptance as well as the event selection criteria for

1H(e, e′)p elastics and the 2H(e, e′p)n reaction are shown.

4.1 Reference Time Cuts

The first step in Hall C data analysis is to make sure the reference time cuts are

set properly, as one needs to make sure the reference times correlated with the

trigger are selected. The reference time1 signal is defined as a copy of either one

or multiple OR’ed pre-trigger logic signals described in the electronics diagram of

Figs. 3.42, 3.46 and 3.47. The reference time is distributed to all fADCs2 and

C1190 TDC modules of all Read-Out Controllers (ROCs). The fADC and TDC

modules register either analog (fADC) or discriminated logic (TDC) signals from

every detector output as well as the corresponding reference time signal generated

by the trigger electronics. The main objective of the reference time signal is 2-fold:

1As with any hardware electronics signal, the reference time signal is arbitrary and is only
useful when compared relative to any other arbitrary signal such as to measure a relative
time.

2Before being sent to an fADC, the reference time logic signal must be converted into an
analog signal. This is done with a passive circuit.
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• the reference time signal serves as a common stop (initiates a look-back win-

dow) for all detector input channels in each fADC/TDC module

• the reference time signal is used to determine time intervals from the raw

detector signals sent to the TDC module

Figure 4.1: Cartoon illustrating the synchronization of the a detector signal with
the internal clocks of a C1190 TDC Module.

Before modern TDCs such as the C1190 TDC [141], in the original fastbus TDC

modules [146] a L1 Accept (accepted trigger) was sent to the front-end of the module

and acted as a common start time to all channels of the module as well as initi-

ated data readout. The common start time was measured relative to the stop signal

which was provided by the individual input channels on the TDC module. This time

difference was converted to a number and histogrammed to form a TDC spectrum

of counts vs. channel number.
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On modern TDCs (see Fig. 4.1), the L1 accept, which has an intrinsic 4 ns

jitter3, is sent to the front-end to initiate data readout. The detector signal (green)

sent to the front-end of the module serves as the TDC Start and is synchronized

with the internal 40 MHz clock of the TDC (slow clock). The detector signal (TDC

Start) latches onto the leading edge of the next 40 MHz clock cycle, which means

the signal could have landed anywhere in a 25 ns range between the previous and

next clock cycle. As a result, a 25 ns jitter arises intrinsically when the raw TDC

signal is measured relative to the L1 accept, which has an additional 4 ns jitter.

This means that the raw TDC detector signals cannot be determined better than

29 ns resolution, which is well above the module specifications of 0.1 ns resolution.

To improve the timing resolution, the TDC uses a second internal clock (fast clock)

at 10 GHz or 0.1 ns periodicity. The reference time (copy of pre-trigger which is

effectively a delayed L1 accept) is sent to the TDC module at a time delay relative

to all the detector signals and effectively serves as the TDC Stop, which latches

onto the leading edge of the next clock cycle of the 10 GHz high resolution clock,

and initiates a look-back time window (usually a few µs) corresponding to the full

TDC spectrum (e.g., see Fig. 4.2). This internal reference time, which is known to

approximately 0.1 ns, is subtracted from the raw detector signal TDC time, thereby,

improving the timing resolution of the detector signals to ∼0.1 ns per channel.

The reference time signal is common to all modules in a given ROC and is

therefore subtracted from all input channels of every fADC/TDC module present

in said ROC. The reference time subtraction is performed by the Hall C analyzer

hcana during the analysis replay. When using the reference time, hcana chooses the

first hit in the time window if multiple hits are present per event. In this scenario,

3In electronics terminology, jitter refers to a small, irregular variation or unsteadiness in
an otherwise periodic signal.
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the first hit may not necessarily be the good hit and the wrong reference time would

be chosen resulting in the wrong time being subtracted in the fADC/TDC spectra.

By placing a reference time cut, the analyzer then considers the first hit after the

cut, which is likely to be a good hit.

As an example, consider the 1H(e, e′)p elastic coincidence run 3377, which had

the highest SHMS rate of elastics taken during the E12-10-003 experiment.

Figure 4.2: SHMS reference time spectrum for coincidence run 3377 of the E12-10-
003 experiment. Background hits are shown in blue and good hits in red. Inset:
Multiplicity histogram corresponding to the reference time spectrum.

Figure 4.2 shows an uncorrected reference time spectrum in the SHMS drift cham-

bers crate (ROC 06) where the red spectrum represents the prompt peak correspond-

ing to the reference time signal events and the blue spectrum represents background

events corresponding to signals other than the reference time. The inset plot shows

the multiplicity histogram corresponding to the TDC spectrum. The multiplicity

histogram shows the total number of counts or L1 accept (y-axis) versus the number
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of TDC hits (or multiplicity) corresponding to each event where the number of TDC

hits are defined as the total hits in the TDC readout window for any given event.

For example, the inset of Fig. 4.2 shows that most of the events had a multiplicty

of three, which means that for every event, the TDC readout window registered 3

hits. In this case, the 3 hits correspond to three reference time signals, which were

OR’ed and used as an effective reference time. The other multiplicities (> 3 hits)

represent additional background hits that were present in the readout window and

can potentially pass as a reference time, thereby blocking the true reference time,

resulting in the wrong reference time being subtracted. The multiplicities below 3

hits represent the very unlikely case (hodoscope trigger inefficiency) in which one or

more of the reference time signals is not formed, in which case the other reference

times are used.

Following the poisson behavior of physics triggers, the probability that 2 hits

(one background hit, one good hit) fall within a certain time window ∆T at a given

physics rate R is given by

P (λ; k) = e−λ
λk

k!
, (4.1)

where λ = R∆T and k is the number of TDC hits. From the multiplicity in Fig. 4.2,

most reference time events had 3 good hits (HODO 3/4, EL-REAL, EL-CLEAN).

For simplicity of the calculation, we redefine 3 good hits as a single good hit. Then,

from Eq. 4.1 and Fig. 4.2, the probability of finding 2 hits within the drift chamber

time window is

P (λ; k) = e−R∆T (R∆T )2

2!
= 0.1865 (4.2)

From Fig. 4.2, this probability is given by taking the ratio of the background (blue)

to the total number of events normalized to one good hit (divide by 3) to obtain

Pdata =
1

3

346600

602000
= 0.1919 (4.3)
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The two results agree to ≤ 1%. These results indicate that if the reference time

had not been set for this run, then ∼ 19% of the events would have the incorrect

reference time and a lower tracking efficiency by ∼ 19%, hence, the importance of

setting the reference times.

In Hall C, each spectrometer has multiple pre-triggers (HODO 3/4, STOF, EL-

REAL, EL-CLEAN) that may change depending on the nature of the experiment.

The base pre-trigger is the HODO 3/4, which requires at least 3 of 4 hodoscope

planes to fire. During the commissioning phase of the spectrometers, the reference

time logic was initially defined to be4:

T logic
reftime,init ≡ p(h)HODO 3/4 OR p(h)STOF

OR p(h)EL-REAL OR p(h)EL-CLEAN (4.4)

where the logic pre-trigger signals described in Eq. 4.4 have been delayed in time

relative to each other and the p(h) refers to prefix used in the software to denote

the SHMS (HMS). Figure 4.3 shows a visual representation of Eq. 4.4 of how typical

reference time logic signals might appear on an oscilloscope. On January 2018, the

STOF trigger was removed from this definition5. Finally, on August 2018, EL-

CLEAN was removed from the reference time definition6 as well. It was determined

that any pre-trigger that required the HODO 3/4 was unnecessary and redundant

to have in the reference time definition so they were removed.

4See December 2017 HC-Log Entry https://logbooks.jlab.org/entry/3501198.

5See HC-Log Entry https://logbooks.jlab.org/entry/3519686.

6See HC-Log Entry https://logbooks.jlab.org/entry/3585301.
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Figure 4.3: Cartoon illustrating how reference time logic definition of Eq. 4.4 might
appear on an oscilloscope. This corresponds to a multiplicity of four, or equivalently,
4 good hits in the TDC readout window.

As of the Fall 2019 run period, the reference time logic definition in Hall C was:

T logic
reftime ≡ p(h)HODO 3/4 OR p(h)EL-REAL (4.5)

as the EL-REAL did not require a HODO 3/4, and in the rare instances the latter is

missing, the former can be used as a reference time. The STOF was also completely

removed from the trigger definition and the reference time was redefined as HODO

3/4. Since STOF was removed, the EL-REAL now requires a HODO 3/4 and it

was determined that this reference time (EL-REAL) was no longer needed so it was

removed from the reference time definition as well. Therefore, as of the current run

period (Spring 2020), for the A1n/d2n experiment, the reference time is defined to

be: T logic
reftime ≡ p(h)HODO 3/4, which is the lowest level pre-trigger required to

form all other pre-triggers.

Figure 4.4 shows the reference time histograms with the set reference time cuts

for the 80 MeV/c setting of this experiment. The same reference time cuts used

for the higher missing momentum setting (580/750 MeV/c) as there should not be
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a significant shift in the reference time signals provided that there is no change in

the hardware (signal cable lengths, threhsolds, etc.) or the DAQ ROCs readout

window, which can only be modified by the experts and should not change during

the course of an experiment. See Ref. [147] for a detailed list of the reference times

as well as instructions on how to set the reference time cuts in the analysis.

Figure 4.4: SHMS (top panel) and HMS (bottom panel) reference time cuts for
coincidence run 3289 of the E12-10-003 experiment. The conversion from TDC
channel to time is ∼ 0.1 ns/Ch. The conversion from fADC channel to time is
0.0625 ns/Ch.

4.2 Detector Time Window Cuts

The next step in the analysis procedure is setting up the detector time window cuts.

These are necessary to reduce sources of background that slip into the detector time

windows when detecting the physics signals of interest. The time window cut is

made on a time difference between the fADC and TDC times on a PMT basis for
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all the detectors except the drift chamber, which cut on the raw drift times for each

plane. The time difference is defined in hcana as

AdcTdcDiffTime = TdcTime[ipmt][jhit] - AdcPulseTime[ipmt][jhit]

AdcTdcDiffTime = HodoStartTime - AdcPulseTime[ipmt][jhit]

where the HodoStartTime is the hodoscope time projected at the focal plane7, and

the (TdcTime[ipmt][jhit], AdcPulseTime[ipmt][jhit]) are the TDC and fADC pulse

time, respectively, for any given ith PMT and the jth hit within the corresponding

ith PMT fADC/TDC look-back time window. The pulse times are timing signals

corresponding to a detector output that have been measured relative to the ref-

erence time and are therefore considered corrected pulse times as opposed to the

raw detector arbitrary pulse times that are sent to the front-end of the module. If

the event is truly a physics event originating from the target, then in principle, the

time difference should be a δ-function, however, due to the finite detector/module

timing resolution, it has a finite width and gaussian shape. Events that are far away

from the main peak are clearly out-of-time indicating that the fADC pulse time and

TDC time are NOT correlated with the same event, and a time window cut must

be made. With respect to the drift chambers, a cut on the raw drift time spectrum

is made to reduce the background from multiple TDC hits.

Figure 4.5 shows typical examples of the detector time window cuts on an SHMS

hodoscope plane, a drift chamber plane and calorimeter block. The plots show dis-

tributions with (red) and without (blue) a 3-hit multiplicity cut. A narrow peak

is clearly distinguishable in all plots with the dashed lines representing the time

window cut region. The detector time window cuts were determined for every PMT

7The focal plane is an imaginary mid-plane in-between the first and second drift chambers.
Its nominal origin coincides with the focus of the spectrometer for momentum acceptance
δ = 0%, Ytar = 0 cm. (see Fig. 3.24).
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channel (or DC plane) of all detectors that were used in the analysis of E12-10-003.

See Ref. [147] for a detailed list of the detector time windows as well as instructions

on how to set the detector time window cuts in the analysis.

Figure 4.5: SHMS hodoscope (left), drift chamber (middle) and calorimeter (right)
time window cuts for an individual PMT channel (or DC plane). The time difference
between fADC and TDC pulse times is denoted by ∆T .

4.3 Detector Calibrations

After selecting the right reference times and setting proper detector time window

cuts, detector calibrations can be started. Ideally, one would use specific runs for

calibrations in which most of the focal plane (refer to footnote 7) is illuminated.

Sometimes, a magnet de-focused run is used, however, one has to be careful as some

calibrations actually depend on reconstructed quantities at the target, and hence,

knowledge of the reconstruction optics elements. In this case, it is recommended to

use single-arm runs over coincidence runs, as the former will be less constrained and

occupy a larger region of the focal plane.
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4.3.1 Hodoscopes

When a particle traverses a hodoscope plane (see Fig. 4.6), depending on the tra-

jectory, any paddle (or quartz bar) could in principle be hit.

Figure 4.6: Cartoon of individual scintillator paddles to illustrate the various timing
corrections applied. Note: Timewalk Effect illustration reprinted from Ref. [148].

At this stage, the raw TDC signal has multiple unwanted timing offsets that must

be subtracted to obtain the true arrival time of the particle at the hodoscope plane.

The corrected TDC time is then used to determine the correct particle velocity,

β = v/c. The general expression for the corrected TDC time for a hodoscope PMT

can be expressed as:

tCorr = tRAW − tTW − tCable − tprop. − tλ, (4.6)
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where the corrected TDC time represents the particle arrival time at the scintillator

paddle (or quartz bar). The corrections are summarized as follows:

• Time-Walk Corrections, tTW: For analog signals arriving at the Leading

Edge Discriminators, the logic signal is produced when the signal crosses the

discriminator threshold and therefore depends on the signal amplitude (see

Fig. 4.6). The fADCs do not have this disadvantage since they correct for

Figure 4.7: Fit correlation between TDC pulse time and fADC pulse amplitude
(left). Time-walk corrected pulse time versus fADC pulse amplitude shows no cor-
relation (right).

time-walk internally, and as a result, the fADC pulse time is not correlated

with the signal amplitude. The algorithm used by the fADCs to effectively

remove time-walk effects is similar to that of a constant fraction discriminator

(CFD) timing algorithm. In the CFD algorithm, the logic signal is generated

at a constant fraction of the signal peak height which makes the discrimination

of the signal independent of the pulse amplitude as illustrated in Fig. 4.7 of

Ref. [148] or Fig. 7.4 of Ref. [149]. To correct for the TDC time walk, the

fADC pulse time is used as a reference by taking the TDC-ADC pulse time

difference plotted against the fADC amplitude. A model function is fit to this
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correlation, and the parameters extracted are used to correct the TDC time

(see Fig. 4.7).

• Cable Time Corrections, tCable: This correction takes into account the fact

that the analog signal has to propagate across signal cables from the PMT all

the way into the Counting House electronics rack into the TDC. To determine

this correction, a correlation between time-walk corrected time and hodoscope

paddle track position is fit to extract the velocity of propagation across the

paddle, and the cable time offset. The propagation velocity is determined from

Figure 4.8: Fit correlation between track position along paddle and time-walk cor-
rected (TDC-ADC) time difference used to determined the propagation velocity
across the paddle.

the distance and time of the hit from the center of a paddle. The time is

determined by taking half of the time-walk corrected TDC time difference

between the two ends of a paddle. The half is to ensure that if the particle

hits the edge of the paddle, half of the total propagation time across the entire

paddle is taken to obtain the time from the edge to the center. The hit distance

is determined by extrapolating the distance determined by the drift chambers
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from tracking. The correlation between time and distance is fit to extract

the propagation velocity and the cable time difference between the two ends

(see Fig. 4.8). The cable time offset parameter is determined for all paddles

and the parameter is read by hcana, and added as a correction factor to the

time-walk corrected TDC time.

• Hodoscope Plane Time Difference Corrections, tλ: This correction ac-

counts for any additional time difference (other than the particle propagation

time to travel across the two paddles) between any two distinct scintillator

paddles in different hodoscope planes.

Figure 4.9: Illustration of all possible time difference combinations that are consid-
ered in this correction.

Six possible combinations between the four hodoscope planes are considered

when correcting for the time difference between any two of their paddles (see

Fig. 4.9). The combinations of all six possible time differences were expressed

as a system of 6 linear equations that were solved using the method of Single-

Value Decomposition (SVD) to determine the calibration coefficients for each

individual PMT.
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Figure 4.10 shows the representative plots of the calibration results for the 580

MeV/c setting of the E12-10-003 experiment. The β distribution shown uses the

tracking information from the drift chambers, whereas the dashed lines use the

formula: β = Pc/
√
m2 + P 2

c , where Pc and m represent the spectrometer central

momentum and particle mass, respectively.

Figure 4.10: HMS/SHMS hodoscope calibration results for the 580 MeV/c setting
of E12-10-003. The histograms are plotted using the drift chamber tracking infor-
mation to determine β.

The HMS hodoscope β distribution shows three distinctive peaks formed from

the coincidence with the electrons in the SHMS. The β peak corresponding to the

protons are from quasi-elastic scattering off the liquid deuterium target, while the

deuteron and triton are produced from knockout reactions, most likely, quasi-elastic

electron scattering off the aluminum walls. The dashed lines were determined based

the assumption that the particle mass is either that of a proton (1H), deuteron

(2H) or triton (3H) and momentum acceptance, δ = 0%. In the SHMS, the peak at

exactly β = 1 clearly represents the electron as its mass is negligible compared to the

energy and momentum. See Ref. [150] for a detailed explanation of the hodoscope

calibration procedure.
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4.3.2 Drift Chambers

When a charged particle traverses the drift chambers, it passes through 12 wire

planes, each surrounded by two cathode planes. The wire planes consist of alter-

nating field and sense wires. The field wires and the cathode planes are kept at a

negative voltage while the sense wires are kept grounded (0 potential). The potential

gradient creates an electric field oriented outwards from the sense wires.

Figure 4.11: Illustration of a single drift cell (top view) in a drift chamber. The
dashed lines represent equipotential surfaces where the electric field is perpendicular
to the contour. Figure adaptation from G. Niculescu.

As the charged particle passes through a single drift cell, it ionizes the gas atoms

in the chamber gas mixture, which causes the free electrons from the ionized gas

to drift towards the sense wire producing a measurable current signal. The sense

wire signals are pre-amplified and read out by 16-channel input discriminators which

produce logic signals that are sent to the TDC via 16-channel ribbon cables. The

TDC registers the time when the signal is registered. This time contains the cable

delay it would have taken the signal to propagate across the sense wire, through the
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ribbon cable and into the TDC if the particle would have passed through the sense

wire itself. The drift time is the time it takes the free electrons to drift towards the

sense wire and can be expressed as,

tD = (tmeas − tREF)− [(twire + tcable)︸ ︷︷ ︸
t′

−tREF] (4.7)

where tmeas is the measured time by the TDC, and t′ is the time it takes the signal

to propagate across the sense wire, through the cable and into the TDC if the track

were to pass directly through the sense wire. These times are measured relative to

a reference time, tREF, used by the TDC as a common stop.

A coarse reconstruction of the track can be carried out with only the knowledge

of the wires that fire from a physics event. Knowing the associated drift times of the

wires that were hit, however, allows for a more precise track reconstruction, as the

drift time can be converted to a drift distance from the determination of the time-

to-distance maps resulting from the drift chamber calibration as described below.

For a collection of events illuminating all cells in any given wire plane, one ob-

tains a drift time distribution for each sense wire that can be averaged over an entire

group (up to 16 wires in a discriminator card) or over the entire plane to form a

drift time distribution per plane (see Fig. 4.12).

Associated with each drift-time spectrum is a quantity called “t0”. The t0 corre-

sponds to the location in the histogram where the ionized particle comes in contact

with the wire. If its value is anything other than zero nanoseconds (0 ns), it is

interpreted as the value by which the drift time must be shifted in order to assure

that t0 = 0 ns. All subsequent times in each drift time spectra are measured relative

to this time.
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Figure 4.12: HMS drift time spectrum for plane 1x1. Inset: Fit of the leading edge in
a drift time spectrum corresponding to a group of wires from a specific discriminator
card of plane 1x1.

Figure 4.13: HMS drift times versus wire number for plane 1x1 before t0 correction.
Inset: Same as in Fig. 4.12.

125



Figure 4.14: Fit of the leading edge in an HMS drift time spectrum for the wire
card #3 of plane 1x1. Inset: Close-up of fit region indicating the t0.

Figure 4.15: HMS drift times versus wire number for plane 1x1 after t0 correction.
Inset: Drift time for wire group #3 of plane 1x1 before (red) and after (blue) t0
correction.
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The t0 for each plane is determined by calculating the t0 for individual wires in

each plane and taking a weighted average. The t0 for individual sense wires (or wire

group) is determined by a linear fit of the drift time spectra at around 20% of the

peak ±∆t for each sense wire (or wire group), where ∆t is the fit range. The linear

fit is then extrapolated to the horizontal axis (drift time), and this extrapolated

value is defined as t0 (see Fig. 4.14).

Depending on the calibration method used, the t0 correction is applied on a sense

wire basis from the individual wire fits, or on a wire group basis where the same t0

correction is applied to all wires of a group. The latter procedure is usually better

since the edge wires have very low statistics that cause the fit to fail, whereas a

group of wires will have sufficient statistics for a successful fit.

To determine the drift distances from the drift time spectra, it is assumed that

the drift distances are uniformly distributed across the cell. This assumption is

based on the fact that a cell is uniformly illuminated with particles, and the ions

have an approximately uniform drift velocity, which implies there should be no

preferred drift distance for any ionized charge. Mathematically, the drift distance is

calculated as

ddrift(τ = T ) =
∆

2

∫ T≤tmax

t0
F (τ)dτ∫ tmax

t0
F (τ)dτ

, (4.8)

where ∆ is the cell width and F (τ) is the drift time distribution integrated from

t0=0 ns to some arbitrary time T ≤ tmax where tmax is the maximum drift time

within a cell. In the limiting case of Eq. 4.8, the drift distance becomes

ddrift =


0 cm, τ = 0 ns

0.5 cm, τ = tmax,

(4.9)

which is the expected drift distance at the sense wire (τ = 0 ns) and at the edges

of the cell (τ = tmax).
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Due to the finite resolution of the TDC and other factors involved, the drift

times are not determined to infinite precision and the integral in Eq. 4.8 becomes a

sum over a finite bin width,∫
τ

F (τ)dτ →
∑

bin(τ)

F (τ)︸︷︷︸
bin content

· ∆τ︸︷︷︸
bin width

. (4.10)

Re-writing Eq. 4.8 in terms of the finite sums in Eq. 4.10, one obtains

bin(t0+T )∑
bin(t0)

F (τ)∆τ

bin(t0+tmax)∑
bin(t0)

F (τ)∆τ

→ 1

Ntot

bin(t0+T )∑
bin(t0)

F (τ) (4.11)

The ratio in Eq. 4.11 is the lookup value used to convert drift time to distance for

an arbitrary drift time bin, T . The numerator represents the sum of all bin contents

up to a drift time T , and the denominator represents the sum over the bin contents

of all drift times up to tmax, in a given plane. The bin width, ∆τ , is a constant

during the sum, therefore it is cancelled, which simplifies the equation as a ratio of

the sum of bin contents (up to some drift time) and the sum over all bin contents

(up to a maximum, tmax), Ntot.

The results of this calibration are per-plane look-up tables that map any given

drift time to a drift distance in that plane. The drift distance for the X-plane of

HMS drift chamber 1 is shown in Fig. 4.16. As expected, the drift distances for all

planes are uniformly distributed across the cell width.

The best way to determine the drift chamber performance is by measuring

the spatial resolution, or how well it can measure the position of particle tracks.

This measurement is done through the determination of per-plane residuals. For

a particle traversing at least 4 planes of the chamber, a collection of space-points

(X,Y) is measured based on the wires that fired. The space points are fit with a

straight line such as to minimize the chi-square, and obtain a best fit. The line fit
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Figure 4.16: HMS drift distance for plane 1x1 before (red) and after (blue) calibra-
tion of the drift maps.

Figure 4.17: HMS fit drift residuals for plane 1x1 before (red) and after (blue) cali-
bration of the drift maps. The standard deviation (σ) from the fit is representative
of the spatial resolution.

129



is then compared to the measured space-point from the plane wires that fired, and

the difference is called the residual for that plane. The residuals are calculated on

an event by event basis, and should be centered around zero (see Fig. 4.17).

For the E12-10-003 experiment, typical residuals per plane were found to be on

average ∼250 µm for the SHMS and ∼350 µm for the HMS drift chambers. See

Ref. [151] for details on the drift chambers calibration procedure.

4.3.3 Calorimeters

The calorimeter in each spectrometer is used primarily for particle identification

based on the incident particle track momentum and the subsequent energy showers

detected by the PMTs coupled at the ends of the lead glass blocks. The signals

are sent to fADCs where the signal amplitude is proportional to the fADC channel,

which is subsequently converted to the corresponding energy deposited at the PMT.

In order to make the calorimeter trigger efficiency uniform across the calorimeter

plane, the output signals were matched by adjusting the PMTs High Voltage (HV)

to make the signal amplitudes as similar as possible [140]. This resulted in the

PMTs gain being different across the vertical or dispersive direction since particles

with higher momentum (lower bend angles) impact the lower calorimeter blocks

and deposit more energy (larger signal amplitude), whereas less energetic particles

impact higher blocks and deposit less energy in the calorimeter. This results in

a gain variation across the calorimeter plane that is approximately equal to the

spectrometer momentum acceptance.

The purpose of the calibration is thus to correct for the gain variations on a

PMT basis across all the calorimeter blocks. The formula used for the deposited
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energy in the ith PMT is estimated to be [140]:

εi = ci · (Ai − Aped,i) · f(y), (4.12)

where ci is a calibration constant, Ai is the raw fADC signal, Aped,i is the correspond-

ing fADC pedestal8, and f(y) is a correction factor for the light attenuation across

the horizontal hut coordinate, y. The standard calibration algorithm minimizes the

variance between the total energy deposited in all channels (EDEP = Σei) relative

to the measured momentum of an incident electron at the face of the calorimeter.

The algorithm was developed by Ts. Amatuni in the early 1990s.

Figure 4.18 shows the representative calibration plots for the SHMS calorimeter

using the combined runs corresponding to the 580 MeV/c setting of E12-10-003. The

upper (A) and lower (B) left plots show the total energy deposition divided by the

central spectrometer momenta (Edep/P ) before and after calibration, respectively.

Since the electron mass is negligible compared to its momentum, the total energy de-

posited by the electron is approximately equal to its momentum before entering the

calorimeter and therefore its ratio is unity. The upper right plot (C) shows the cor-

relation between the deposited energy by the electron in the PreShower and Shower

normalized by the momentum of the best reconstructed track. The correlation on

this plot shows how the PreShower can be used to augment the electron detection

capabilities of the SHMS calorimeter. Finally, the lower right plot (D) shows a cor-

relation between the SHMS momentum acceptance (δ) and the normalized energy

deposited in the calorimeter, which demonstrates that the energy deposited by the

electron is uniform across the entire calorimeter dispersive direction. See Ref. [152]

for instructions on how to perform the calorimeter calibration.

8The pedestal is an electronic offset at the input to the digitization stage.
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Figure 4.18: SHMS calorimeter calibration plots for the 580 MeV/c setting of E12-
10-003. (A) is before calibration and (B), (C) and (D) are after calibration.

4.3.4 Gas/Aerogel Čerenkovs

The calibration procedures for the threshold gas and aerogel Čerenkovs are very

similar. The calibration is based on identifying the location of the single photo-

electron (SPE) peaks relative to the pedestal of the corresponding PMTs. After

pedestal subtraction, each SPE peak is fit with a gaussian. The mean of the gaus-

sian represents the corrected fADC channel corresponding to the SPE peak, from

which a conversion factor between the SPE peak and fADC channel can be obtained

per PMT channel. Each detector calibration procedure employs slightly different

methods to identify the SPE peaks as well as different particle identification require-

ments. See Ref. [153] for more details on the gas Čerenkov detetcor calibrations. For

the aerogel detector calibration, refer to the official Kaon-LT experiment page [154].
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4.4 Hall C Coordinate System

Before discussing the spectrometer optics checks and optimization in the next section

(see Section 4.5), the coordinate systems used to reconstruct the events at the target

reaction vertex must be introduced.

Figure 4.19: Top view of the spectrometer and hall coordinate systems in Hall C.

The hall (or vertex) coordinate system is denoted by the subscript “h” in Fig.

4.19, where +zh is parallel to the incident beam direction, +xh is oriented beam-left

and denotes the horizontal beam position, and +yh points towards the ceiling and

denotes the vertical beam position. These coordinates are used to describe the beam

position at the reaction vertex.
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The spectrometer coordinate system is denoted by the subscript “s” where +zs

is aligned with the spectrometer central ray rotated by the central spectrometer

angle θc, +xs points in the dispersive direction (towards the hall floor), and +ys

is oriented beam-left in the non-dispersive direction. The detector hut coordinate

system is defined by a simple spectrometer coordinate rotation about the ys-axis to

align +zs with the dipole bend.

From Fig. 4.19 consider the following case in which the incident electron is

aligned with the beam axis (shown in blue). The electron interacts with the target

foil (gray slab) at the reaction vertex zv and scatters at angle θc parallel to the

spectrometer central-ray. The reconstructed event is projected along the dashed

(black) line and is denoted as Ytar. In reality, the electron can also scatter rela-

tive to the spectrometer central ray determined by the tangents, tan(φ) = dys/dzs

(in-plane) and tan(θ) = dxs/dzs (out-of-plane). Since the spectrometer aperture

angles are usually very small (see Table 3.2), the tangents can be approximated

by tan(φ) ≈ φ and tan(θ) ≈ θ, which are commonly referred to as Y ′tar and X ′tar,

respectively. These derivatives are interpreted as angular distributions of the scat-

tered particles relative to the spectrometer central-ray. Similar quantities can also

be derived in the hut coordinate system using the focal plane variables, (Xfp, Yfp),

to obtain dXfp/dZfp ≈ X ′fp and dYfp/dZfp ≈ Y ′fp.

In a more general case, the electron (shown in red) incident on the target is

offset by an amount xbeam and scatters parallel to the central ray. As a result, the

reconstructed Ytar is offset by an amount xbeam cos(θc) which is geometrically equiv-

alent to a spectrometer mispointing along ys. Furthermore, if the electron scatters

at an arbitrary angle φ, the reconstructed Ytar is further offset by an amount L · φ.

Combining all these offsets and adding an arbitrary y-mispointing offset (ymispoint),
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Ytar can be expressed in its most general form as

Ytar + ymispoint
9 = zv sin(θc) + xbeam cos(θc) + L · φ

= zv sin(θc) + xbeam cos(θc) + [zv cos(θc)− xbeam sin(θc)]Y
′

tar

= zv[sin(θc) + Y ′tar cos(θc)] + xbeam[cos(θc)− Y ′tar sin(θc)] (4.13)

Alternatively, it is also useful to express Eq. 4.13 in terms of the reaction vertex,

zv =
Ytar + ymispoint − xbeam[cos(θc)− Y ′tar sin(θc)]

sin(θc) + Y ′tar cos(θc)
. (4.14)

Equation 4.14 is the most general form of the z-reaction vertex in terms of measur-

able quantities. The difference between the z-reaction vertex in both spectrometers

was used as an event selection criteria for this experiment (see Section 4.6).

4.5 Optics Checks and Optimization

The commissioning of the HMS/SHMS optics took place during the 2017-18 run

period and underwent multiple revisions of the reconstruction matrix elements for

both spectrometers during that period [124, 125]. This section presents the optics

optimization checks and procedures done on the HMS and SHMS for this experi-

ment (E12-10-003) on April 2018. At the time, E12-10-003 also served as part of the

general optics commissioning as during data-taking, it was found that the SHMS

Q3 magnet had an unnecessary correction in the matrix elements. As a result, the

data for this experiment is divided into two sections. Only the section after the

correction in the SHMS optics was used in the optimization procedure.

9The spectrometer mispointing is defined as a parallel displacement of the spectrometer
central ray either horizontally (y-mispointing) or vertically (x-mispointing). The mis-
pointing was determined by survey at various spectrometer angles and a function was fit
to the x- and y-mispointing data [124,125], separately.
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The problem of optics optimization can be approached in different ways, depend-

ing on the circumstances of the experiment. In this particular experiment, a series

of 1H(e, e′)p elastic runs were taken at different configurations such as to cover the

entire HMS momentum range corresponding to the 2H(e, e′p)n reaction kinematics.

The original and corrected 1H(e, e′)p kinematics are summarized below.

Run
HMS

Angle [deg]
HMS

Momentum [GeV/c]
SHMS

Angle [deg]
SHMS

Momentum [GeV/c]
3288 37.338 2.938 12.194 8.7
3371 33.545 3.48 13.93 8.7
3374 42.9 2.31 9.928 8.7
3377 47.605 1.8899 8.495 8.7

Table 4.1: Original 1H(e, e′)p elastic kinematics in E12-10-003.

Run
HMS

Angle [deg]
HMS

Momentum [GeV/c]
SHMS

Angle [deg]
SHMS

Momentum [GeV/c]
3288 37.338 2.9355 12.194 8.5342
3371 33.545 3.4758 13.93 8.5342
3374 42.9 2.3103 9.928 8.5342
3377 47.605 1.8912 8.495 8.5342

Table 4.2: Corrected 1H(e, e′)p elastic kinematics in E12-10-003.

Spec δθ[rad] δφ[rad] X ′tar-offset[rad] Y ′tar-offset[rad]
HMS 0.0 1.521× 10−3 2.852× 10−3 9.5× 10−4

SHMS 0.0 0.0 0.0 0.0

Table 4.3: Spectrometer offsets determined from 1H(e, e′)p elastic run 3288 in E12-
10-003. See Section 4.5.3 of this dissertation for more information.

Since this is a coincidence experiment, the spectrometers are highly correlated,

which makes the optics optimization more complicated as changes in one spectrom-

eter can affect the other spectrometer. Based on the kinematics, it was determined

to focus on the HMS first, as the momentum is well below the dipole saturation (∼5

GeV), and the optics are much better understood from the 6 GeV era.
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4.5.1 HMS Optics Check

The procedure to check the HMS Optics involves determining whether a central

momentum correction is needed and check that the HMS momentum fraction δ is

independent of the HMS focal plane variables for constant momenta. That is to say,

that there should not exist a correlation between the momentum fraction and the

focal plane variables.

HMS Central Momentum Correction

Since the 1H(e, e′)p reaction is used and the HMS is set to detect protons, one can

calculate the proton momentum as follows:

Pcalc =
2MpEb(Eb +Mp) cos(θp)

M2
p + 2MpEb + E2

b sin2(θp)
, (4.15)

where Eb is the initial beam energy and θp is the reconstructed proton angle. The

measured proton momentum, Pmeas, depends on the δ from the following definition:

δ

100
=
Pmeas − P0

P0

→ Pmeas = P0(1 +
δ

100
), (4.16)

where P0 is the central momentum of the spectrometer and δ is the fractional devi-

ation of the particle momentum from the central momentum in %.

From the measured and calculated momentum, the momentum difference is de-

fined as

∆P = Pcalc − Pmeas. (4.17)

In Eq. 4.17, it is assumed that the beam energy and HMS angle are well known,

which may not entirely be true, but serves as the best available approximation. The

momentum difference, ∆P , is determined for data and SIMC independently on an

event-by-event basis in terms of (θp, δ). It is expected that ∆P be near zero in

SIMC, as the δ-reconstruction is well described by the TOSCA models, however
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in data, this may not be the case, as the NMR probe location in the HMS has

changed since the 6 GeV era and the magnetic field for the central momentum may

be different from what is expected.

Figure 4.20: Comparison of HMS momentum difference (∆P ) between data and
SIMC. The inset shows the calculated and measured HMS momentum distribution
for data.

From the mean of the fit in Fig. 4.20, ∆Pdata is ∼8 MeV/c smaller than ∆PSIMC,

or equivalently, Pmeas
data > P calc

data. The data momentum correction factor can be deter-

mined as follows:

fHMS
corr = 1− ∆PSIMC −∆Pdata

P0

, (4.18)

and the corrected HMS momentum can then be expressed as

PHMS
corr = PHMS

uncorr · fHMS
corr . (4.19)

Figure 4.21 shows the difference in the mean of the fit for data and SIMC before

and after the HMS momentum corrections. After correction, the difference between

data and SIMC is within ∼1 MeV/c for the four elastic runs. It is important to
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Figure 4.21: HMS momentum difference, ∆Pdiff = ∆PSIMC − ∆Pdata, before and
after applying the momentum correction to data.

Figure 4.22: HMS momentum difference for data, before (blue) and after (green)
applying the momentum correction (2nd iteration) to data.
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note that the corrections applied are after a second iteration, once the spectrometer

offsets were determined.

Figure 4.22 shows the difference between the HMS calculated and measured

data momentum before and after applying a momentum correction during the 2nd

iteration. The corrected data momentum difference has clearly shifted towards zero,

which indicates a successful momentum correction.

HMS δ Check

To check the HMS delta (δ)10 reconstruction, the HMS fractional momentum is

defined as

∆Pfrac =
Pcalc − Pmeas

Pmeas

(4.20)

and is plotted as a function of the HMS focal plane variables.

Figure 4.23: HMS fractional momentum difference vs. focal plane variables for
1H(e, e′)p elastic run 3288.

10The HMS (or SHMS) δ is defined as δ ≡ P−P0
P0

, where P and P0 are the reconstructed
particle momentum (P ) and central spectrometer momentum (P0), respectively.
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Figure 4.24: HMS fractional momentum difference vs. focal plane variables for
1H(e, e′)p elastic run 3371.

Figure 4.25: HMS fractional momentum difference vs. focal plane variables for
1H(e, e′)p elastic run 3374.
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Figure 4.26: HMS fractional momentum difference vs. focal plane variables for
1H(e, e′)p elastic runs 3377.

Figures 4.23, 4.24, 4.25, and 4.26 show that ∆Pfrac is uncorrelated across each

of the HMS focal plane variables, which demonstrates that the δ-reconstruction is

already optimized for the HMS. Now that the HMS optics are well understood, one

can move on to the SHMS optics checks.

4.5.2 SHMS Optics Check

Similar to the HMS, the procedure to check the SHMS optics involves determining

the central momentum correction and checking that the reconstructed δ is uncorre-

lated with the SHMS focal plane variables. Additional checks on the Ytar, Y
′

tar and

X ′tar reconstruction variables may also be needed as the SHMS optics optimization

is still incomplete.
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SHMS Central Momentum Correction

Figure 4.27: Missing energy spectrum for 1H(e, e′)p elastic run 3288 before central
momentum correction.

To determine the SHMS central momentum correction, one starts with the missing

energy definition for elastic scattering on hydrogen, 1H(e, e′)p

Em = (Eb − E ′) +Mp − Ep, (4.21)

where E ′ and Ep are the electron and proton final energies, respectively. Since it

was assumed that the beam energy, and the HMS momentum are well known, any

deviation from the expected missing energy is attributed to the electron momentum

in the SHMS. The expected location of Em ideally would be at zero since 1H(e, e′)p

is a completely determined system. However, due to the energy loss and radiative

effects, the peak has a small offset from zero (.10 MeV), which can be simulated.

The measured and simulated Em are then compared to determine if the SHMS cen-

tral momentum needs to be corrected.
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The SHMS central momentum was kept fixed during the entire experiment, which

would suggest that the missing energy offset would be the same for the four elastic

runs after the HMS momentum correction. This was found to be the case due to

the fact that the spectrometer offsets have not been determined at this stage. Alter-

natively, it was decided to only focus on finding the central momentum correction

for run 3288, as it was the closest kinematic setting to the 2H(e, e′p)n 80 MeV/c

setting. This correction would then be applied to the remaining elastic runs.

Assuming any variation in missing energy between data and SIMC was due to

the electron momentum, E ′,

δEm

δE ′
= −1→ δEm = −δE ′, (4.22)

where δEm = ESIMC
m −Edata

m from the missing energy peak fit. The electron momen-

tum correction is then

E ′corr = E ′uncorr + δE ′

= E ′uncorr(1−
δEm

E ′uncorr

), (4.23)

where the correction factor is defined as

fSHMS
corr ≡ 1− δEm

E ′uncorr

. (4.24)

After correcting the SHMS central momentum, the SHMS δ-reconstruction also

needs to be checked as a function of the SHMS focal plane variables, as it may need

to be optimized.

SHMS δ Optimization

To check the SHMS δ-reconstruction, similar to the HMS, one needs to determine

and correct for any correlation that might exist between the reconstructed δ and each
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of the focal plane variables. In general, from each of the measured trajectories at

the focal plane (Xfp, X ′fp, Yfp, Y ′fp), one has to reconstruct the measured trajectories

at the target, which are characterized by five quantities (Ytar, X
′
tar, Y

′
tar, Xtar, δ),

leading to an underdetermined system. To overcome this problem, one of the target

variables has to be fixed (usually Xtar). Once the horizontal target position Xtar

has been surveyed, one can express each of the reconstructed target variables as a

polynomial expansion of the focal plane variables. For our case, the δ component

can be expressed as

δ =
∑
ijklm

Dijklmx
i
fpx
′j
fpy

k
fpy
′l
fpx

m
tar, (4.25)

where i, j, k, l,m are the powers of the focal plane quantities and Dijklm are the

matrix coefficients for a particular combination of powers where the target position

is typically set to xmtar = 0.

To optimize the δ-component, we define the calculated δ as

δcalc ≡
Pcalc − P0

P0

, (4.26)

where the calculated electron momentum is determined from momentum conserva-

tion to be

Pcalc = Eb +Mp − Ep. (4.27)

From Eq. 4.27, the proton energy is Ep =
√
P 2

meas +M2
p and the electron momentum

can be approximated by Pcalc ∼ Ecalc. The measured proton momentum, Pmeas, is

the corrected HMS momentum determined in the previous section. Taking the

difference between the calculated and measured momenta,

χ2 ≡ (δcalc(Eb, Pmeas)− δmeas(xfp, x
′
fp, yfp, y

′
fp))2. (4.28)

From Eq. 4.28, the SHMS δ-optimization is now a χ2-minimization problem, where

the goal is to find a set of matrix coefficients, Dijklm, that minimizes the differ-

ence between the calculated and measured δ. For further details, see Ref. [155].
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The χ2-minimization procedure was done simultaneously on the four hydrogen

elastic 1H(e, e′)p runs taken during this experiment. Each of these runs covered a

different (also overlapping) region of the SHMS reconstructed δ with a coverage of

−10% < δ < 12%. The advantage of doing the simultaneous fit on the delta covered

by each of these runs is that it allowed the determination of a common table of

Dijklm matrix coefficients as opposed to having done the fits separately for each run,

which resulted in matrix correction factors that would have to be applied to each

run.

Additionally, only the (xfp, x
′
fp) focal plane terms were used in the fit since with

elastic events there is a kinematic correlation between the momentum and scatter-

ing angle that translates into a correlation between xfp and (y′fp, yfp). So if one fits

(y′fp, yfp) then one can be fitting this kinematic correlation and not an optics corre-

lation [156].

The δ terms that were used in the fit can be expanded from Eq. 4.25 to obtain,

δmeas = D10000 ·xfp +D01000 ·x′fp +D11000 ·xfp · x′fp +D20000 · x2
fp +D02000 · x′2fp. (4.29)

The coefficents were optimized for the first and second order (xfp, x
′
fp) terms as well

as for the cross terms since the correlations observed were not completely linear as

shown in Fig. 4.28. After fitting the correlations and determining the optimum

coefficients, these were updated in the SHMS optics parameter file, and the data

were re-analyzed.

From Fig. 4.29, there is a noticeable improvement in the (xfp, x
′
fp), as the corre-

lations have been corrected, whereas in the (yfp, y
′
fp), the effect is less noticeable as

these were not involved in the fit.

Figure 4.30 shows that after the SHMS central momentum correction and opti-

mization, there is a clear improvement in the missing energy spectrum.
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Figure 4.28: SHMS (δcalc − δmeas) vs. focal plane variables for 1H(e, e′)p elastic run
3288 before δ-optimization.

Figure 4.29: SHMS (δcalc − δmeas) vs. focal plane variables for 1H(e, e′)p elastic run
3288 after δ-optimization.
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Figure 4.30: Missing energy spectrum for 1H(e, e′)p elastic run 3288 after central
momentum correction and δ-optimization.

From Fig. 4.30, the improvements observed are:

• Alignment of data missing energy to SIMC from the central momentum cor-

rection

• Narrower width in data missing energy from δ-optimization of the matrix

coefficients.

The first bullet point is easy to understand, as the alignment is simply due to a

change in the SHMS central momentum. The second bullet point can be understood

from the fact that since the SHMS δmeas matrix coefficients 11 have been optimized,

an event in the missing energy spectrum that would otherwise be reconstructed far

away from the main peak, is now reconstructed underneath the main peak resulting

in an improvement in the resolution as well as in the recovered events.

11The SHMS δ matrix coefficients are directly associated with the SHMS measured mo-
mentum on an event-by-event basis, so if these coefficients are optimized, the measured
SHMS momentum is optimized, which directly affects where the Missing Energy event
will be reconstructed.
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SHMS (Ytar, Y
′

tar, X
′
tar) Optimization

During the E12-10-003 experiment, an optics run with the centered sieve inserted

was taken after the optics in SHMS Q3 was fixed. These data were used to opti-

mize the (Ytar, Y
′

tar, X
′
tar) components of the reconstruction matrix. The target used

consists of three carbon foils positioned at (-10, 0, 10) cm to mimic the Hall C

extended target edges and center. The 3 foils provide events with known and fixed

Ytar positions that are used to optimize the Ytar reconstruction whereas the sieve

slit provides events with known and fixed sieve holes to optimize the X ′tar and Y ′tar

reconstruction. The optimization code used can be found in Ref. [157].

To check the optics, the SHMS δ vs. Ytar was plotted to verify how well the

Ytar has been reconstructed across δ for each of the three foils. Below are the plots

showing before and after the optimization.

Figure 4.31: SHMS δ vs. Ytar for carbon sieve run 3286 before Ytar-optimization.
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Figure 4.32: SHMS δ vs. Ytar for carbon sieve run 3286 after Ytar-optimization.

After the optimization, it is clear from Fig. 4.32 that there is almost no correla-

tion as compared to before optimization. From the optimized variables (Ytar, Y
′

tar, X
′
tar),

the last two are related to the in-plane and out-of-plane angles of the reconstructed

particle trajectory relative to the spectrometer central ray as discussed in Section

4.4. Removing the correlation in Ytar improves the determination of the SHMS elec-

tron scattering angle, which in turn corrects the location of the invariant mass (W )

peak as it depends on the electron angle.

4.5.3 Spectrometer Offsets

The optics optimization was originally done assuming there were no spectrometer

offsets. This is not true, however, as there were still some small mis-alignments

observed in the missing energy spectrum. An extensive study of the spectrometer
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offsets in Hall C has not been performed yet. We have estimated these offsets based

on observations in 1H(e, e′)p elastic run 3288, as it is closest in kinematics to the

deuteron 80 MeV/c setting.

Central Angle Offsets

The central angle offsets refer to the angular offsets of the spectrometer central ray

and can be classified as follows:

• In-plane central angle offset (θc + δθoff
c ), [h(p) thetacentral offset]12

• Out-of-plane central angle offset (φc + δφoff
c ), [h(p) oopcentral offset]

where the bracketed parameters represent the nomenclature in the analysis software.

In-plane is parallel to the hall floor, whereas the out-of-plane is perpendicular to

the hall floor. The central angle offsets can be determined from the missing mo-

mentum components of 1H(e, e′)p elastic events as these should ideally be centered

around zero. In the hall coordinate system, the in-plane central angle offsets can

be determined by taking the fractional difference between the measured (data) and

expected (SIMC) X-component of the missing momentum as follows:

δθoff
c =

P SIMC
mx − P data

mx

P0

. (4.30)

The out-of-plane central angle offset can be determined by taking the fractional

difference between the measured (data) and expected (SIMC) Y-component of the

missing momentum as follows:

δφoff
c =

P SIMC
my − P data

my

P0

. (4.31)

12The spectrometer central angle offset parameters can be found at
hallc replay/PARAM/(S)HMS/GEN/(s)hmsflags.param
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Figure 4.33: Missing momentum components with no spectrometer offsets applied.

Figure 4.34: Missing momentum components with out-of-plane central offset ap-
plied.

After applying the out-of-plane offset, the Y-component of the missing momen-

tum agrees with simulation as shown in Fig. 4.34. With respect to the X-component

of the missing momentum, it was decided not to apply an in-plane angle offset as this

would directly impact the location of the invariant mass peak. Alternatively, it was

decided to apply a relative in-plane angle offset that would align the X-component.

The relative angle offsets are discussed in the next section.

Relative Angle Offsets

The relative angle offsets refer to the angle offset relative to the spectrometer central

ray and can be classified as follows:
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• In-plane relative angle (Y ′tar + δθoff) offset, [h(p)theta offset]

• Out-of-plane relative angle (X ′tar + δφoff) offset, [h(p)phi offset]

The Y ′tar offset is directly related to the spectrometer angle, and therefore has a

direct impact on the electron/hadron kinematics, depending on which spectrometer

is associated with the particle type. In E12-10-003, this offset was determined for

the HMS in order to align the X-component of the missing momentum as well as

to improved the HMS central momentum correction. Recall that in Section 4.5.1 it

was assumed that the proton (HMS) angle was well known, which is not completely

true.

Figure 4.35 shows the relative out-of-plane angle distributions for all events

within the spectrometer acceptance. The zero value in the distribution represents

events whose trajectory was parallel to the central ray, whereas the events away

from the zero value represent those events that are at an out-of-plane angle relative

to the central ray. The X ′tar offset was determined by “eye”, using the mean of the

distribution.

Figure 4.35: HMS X ′tar for run 3288 before (left) and after (right) applying the offset
correction.
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Similarly to the relative out-of-plane angles, the relative in-plane angles in the

Y ′tar distribution (not shown) represent angles relative to the central ray, with the

zero value representing particles parallel to the central ray. The Y ′tar offset was de-

termined based on how well the X-component of the missing momentum between

data and simulation were matched, as well as how well were the HMS momentum

from data and simulation matched (see Fig. 4.21).

After determining the spectrometer offsets, a second iteration of the HMS and

SHMS Optics check procedure was performed to obtain improved results. Finally,

the four 1H(e, e′)p elastic runs were used to determine the HMS momentum correc-

tions for the 2H(e, e′p)n data, to be discussed in the next section.

4.5.4 HMS Momentum Calibration

During the E12-10-003 experiment, the four 1H(e, e′)p elastic runs analyzed cov-

ered the HMS momentum range such that the 2H(e, e′p)n measured momentum was

within the range covered by the elastic data. From this knowledge, one can de-

termine the 2H(e, e′p)n data momentum correction from a simple linear fit of the

1H(e, e′)p data.

From Fig. 4.36, the momentum correction factor is plotted against the original

HMS central momentum and the four data points are fit with a straight line. Using

the line fit, the 2H(e, e′p)n momentum correction for the three missing momentum

settings are determined from the 2H(e, e′p)n original HMS momentum setting.

Tables 4.4 and 4.5 summarize the 2H(e, e′p)n kinematics before and after the

SHMS (see Section 4.5.2) and HMS central momentum corrections. Since the SHMS

momentum was fixed during the experiment, the single correction factor determined

from the 1H(e, e′)p data analysis applies for all runs.
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Fit Results

�2/ndof = 21.0474777485

o↵set = 1.0030 ± 9.59 ⇥ 10�05

slope = �0.00128 ± 3.55 ⇥ 1005
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Figure 4.36: HMS momentum correction for 1H(e, e′)p and 2H(e, e′p)n.

Pm

Setting [MeV/c]
HMS

Angle [deg]
HMS

Momentum [GeV/c]
SHMS

Angle [deg]
SHMS

Momentum [GeV/c]

80 38.896 2.8438 12.194 8.7
580 (set1) 54.992 2.194 12.194 8.7
580 (set2) 55.000 2.194 12.194 8.7
750 (set1) 58.391 2.091 12.194 8.7
750 (set2) 58.394 2.091 12.194 8.7
750 (set3) 58.391 2.091 12.210 8.7

Table 4.4: Original 2H(e, e′p)n kinematics for E12-10-003.

Pm

Setting [MeV/c]
HMS

Angle [deg]
HMS

Momentum [GeV/c]
SHMS

Angle [deg]
SHMS

Momentum [GeV/c]

80 38.896 2.840 12.194 8.5342
580 (set1) 54.992 2.1925 12.194 8.5342
580 (set2) 55.000 2.1925 12.194 8.5342
750 (set1) 58.391 2.0915 12.194 8.5342
750 (set2) 58.394 2.0915 12.194 8.5342
750 (set3) 58.391 2.0915 12.210 8.5342

Table 4.5: Corrected 2H(e, e′p)n kinematics for E12-10-003.
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4.5.5 Spectrometer Acceptance Post-Optimization

After optics checks and optimization for each spectrometer, the data and simulated

(SIMC) reconstructed variables at the target were compared using 1H(e, e′)p elastics

run 3288. The ratio of the data-to-simulation was also taken and is plotted below.

The data were normalized by the total accumulated charge and corrected for exper-

imental inefficiencies that will be discussed in Chapter 5. In addition, several event

selection cuts were applied for both data and simulation (see Section 4.6).

Figure 4.37: SHMS target reconstruction after optics optimization of 1H(e, e′)p elas-
tic run 3288 for the E12-10-003.

Figure 4.37 shows a generally good agreement betweem data and simulation over

a wide range of the spectrometer acceptance. The main issues seem to be at the
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edges of the acceptance where differences beyond 20% (blue dashed line) can be

observed in the ratios. For the most part of the acceptance, the ratios indicate

a discrepancy of ∼ 10% between data and simulation yields with the exception

of X ′tar, which seems to have a resolution issue as the simulation appears slighly

narrower than data. The overall integrated yield over the entire range, however,

shows only a discrepancy of ∼ 3− 4%. The simulation used the proton form factor

parametrization of Ref. [158] to generate 1H(e, e′)p events. It is important to keep

in mind that the simulation program does not take into account the uncertainties

due to the elastic form factors that are used to simulate the hydrogen elastic events.

Figure 4.38: HMS target reconstruction after optics checks of 1H(e, e′)p elastic run
3288 for the E12-10-003.
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Similarly to the SHMS, the HMS reconstructed variables (see Fig. 4.38) show

a generally good agreement between data and simulation with discrepancies below

∼ 10% for most of the acceptance range, with discrepancies beyond ∼ 20% at the

edges.

Given that these studies were done using the coincidence elastic 1H(e, e′)p data,

determining systematic effects due to our knowledge of the spectrometer acceptances

is rather complicated given the correlations that exist between both spectrometer

arms. Ideally, one would have to look at either single-arm elastic or deep-inelastic

(DIS) data to carry out a complete spectrometer acceptance systematics study.

Figure 4.39: SHMS target reconstruction of 2H(e, e′p)n run 3289 (80 MeV/c setting)
for the E12-10-003.
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The spectrometer acceptance for the deuteron 80 MeV/c setting are shown in

Figs. 4.39 and 4.40 since the kinematics were very close to that of hydrogen elastics,

and were used to check the spectrometer acceptance before looking at the higher

momentum settings. The data have been normalized by the total charge and cor-

rected for inefficiencies and in addition, have also been integrated over the full range

of neutron recoil angles (θnq) for better statistical precision.

Similar to the hydrogen, there is an overall good agreement between data and

simulation with up to ∼ 20% difference (blue dashed line) in the yield over most of

the acceptance range on both spectrometers. The Laget FSI model [60] was used in

the simulation.

Figure 4.40: HMS target reconstruction of 2H(e, e′p)n run 3289 (80 MeV/c setting)
for the E12-10-003.
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4.6 Event Selection

A variety of cuts have been applied during the analysis of E12-10-003 to select true

1H(e, e′)p elastics and 2H(e, e′p)n events at the reaction vertex. Due to the similarity

in kinematics between the hydrogen elastic (run 3288) and the deuteron 80 MeV/c

setting (run 3289), similar cuts were placed on both hydrogen and deuteron data to

select good events. The same cuts were also placed on the simulation for a direct

comparison, and ultimately, for the determination of the spectrometer phase space

from SIMC. An additional kinematic cut was placed on the deuteron data to select

events at the highest momentum transfers (Q2) allowed by the kinematics to further

suppress MEC and IC contributions as stated in Section 2.5. The same cuts placed

on the 80 MeV/c setting were also placed on the 580 and 750 MeV/c settings (not

shown below) since the cut ranges were not affected by the change in kinematics

from lower to higher missing momenta.

4.6.1 Missing Energy Cut

Figure 4.41: Missing energy cut on the 80 MeV/c setting of E12-10-003.
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The primary cut used to select true 2H(e, e′p)n is a missing energy cut around

the deuteron binding energy (∼ 2.2 MeV) from the formula in Eq. 2.4 where the

recoiling system is assumed to be a neutron. The peak is not exactly at the deuteron

binding energy because energy loss corrections have not been applied to the data

nor SIMC.

4.6.2 Momentum Acceptance Cuts

Figure 4.42: Momentum acceptance cuts on the 80 MeV/c setting of E12-10-003.

To ensure that events are reconstructed in a momentum acceptance region where

the optics reconstruction matrix is reliable, a cut is placed on the HMS momentum

acceptance in the range −8% < δHMS < 8%, where the reconstruction is well known.

Since the two spectrometers are in coincidence, there exists a correlation between

the momentum acceptances. As a result, the HMS acceptance region at this partic-

ular kinematics automatically constrains the SHMS acceptance to be in the range

−3% . δSHMS . 2%.
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4.6.3 HMS Collimator Cut

Figure 4.43: Data HMS collimator cut on the 80 MeV/c setting of E12-10-003.
Inset: SHMS collimator geometry and reconstructed events.

Figure 4.44: Simulated HMS collimator cut on the 80 MeV/c setting of E12-10-003.
Inset: SHMS collimator geometry and reconstructed events.
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To make sure that all events that enter the spectrometer pass through the collimator,

and not re-scatter at the edges, a cut is placed on the HMS collimator. The inset

plots represent the SHMS collimator geometry whose events are constrained by

the HMS collimator entrance. The events shown are projected at the collimator

entrance and are functions of the reconstructed variables (Ytar, X
′
tar, Y

′
tar, δ) and the

surveyed collimator position measured from the target center. It was preferred to

put a geometrical cut rather than a cut on the reconstructed variables as the latter

are subject to change when the spectrometer moves whereas the former is a fixed

cut that defines the particles that enter the spectrometer.

4.6.4 Reaction zv-Vertex Difference Cut

Figure 4.45: Reaction zv-vertex difference cut on the 80 MeV/c setting of E12-10-
003.
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To ensure real coincidence events are selected, a cut was made on the difference

between HMS and SHMS z-reaction vertex (using Eq. 4.14) at ± 2 cm relative to the

peak. If the events originated from the same reaction vertex (i.e., true coincidences),

the difference should peak at zero with a finite resolution width. If the events

are uncorrelated (i.e., accidental coincidences), however, the reconstruction along

the zv-vertex can be significantly different between the two spectrometers, which

contributes to the tails of the distribution (see Fig. 4.45). Additionally, the tails

can also arise from a bad Ytar reconstruction, as the zv-vertex is calculated from this

variable.

4.6.5 SHMS Calorimeter Cut

Figure 4.46: SHMS calorimeter cut on the 80 MeV/c setting of E12-10-003.
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The SHMS calorimeter was used to separate electrons from background (pions),

however, as it is shown in Fig. 4.46, the deposited energy in the calorimeter nor-

malized by the incident particle track shows a very clean distribution with a peak

at one indicating the detected particles were electrons. The clean electron sample

can be attributed to the low accidental trigger rates and low pion background in the

SHMS to form these coincidences with the protons in the HMS.

4.6.6 Coincidence Time Cut

Figure 4.47: Coincidence time cut on the 80 MeV/c setting of E12-10-003.

To further clean the electron-proton coincidence sample of events, a coincidence cut

was made in the range 10.5 < tcoin < 14.5 ns. Similar to the calorimeter spectrum,

the coincidence time spectrum formed between the HMS and SHMS 3/4 triggers is
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very clean as the beam bunch structure is not observed. The out-of-time events at

the tails can originate from the radiation in the Hall partially entering the detector

huts and forming a trigger in coincidence with the other arm.

4.6.7 Four-Momentum Transfer (Q2) Cut

Figure 4.48: Four-momentum transfer (Q2)cut on the 80 MeV/c setting of E12-10-
003.

A kinematical cut on the 4-momentum transfer is made at Q2 = 4.5± 0.5 (GeV/c)2

to select events only at the highest possible momentum transfers. The previous

deuteron experiment in Hall A [55] measured the cross sections up to pr =550

MeV/c and Q2 = 3.5± 0.25 (GeV/c)2, whereas this experiment seeks to probe the

deuteron momentum distributions at extreme kinematics by moving beyond 500

MeV/c recoil momenta at the highest Q2, where MEC and IC are suppresed. The
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cross sections for this experiment were also extracted at a lower kinematic bin of

Q2 = 3.5 ± 0.5 for comparison with the Hall A data as well as achieving a higher

statistical precision compared to our higher Q2 setting.
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CHAPTER 5

DATA CROSS SECTION EXTRACTION

In this chapter I discuss how the experimental cross section was determined for

this experiment as well as the various corrections applied to extract the yield. In

addition, I will also describe the studies to determine the systematic uncertainties

from various sources on the cross section.

5.1 Experimental 2H(e, e′p)n Cross Section

The deuteron cross section was introduced in Section 2.2 from a theoretical ap-

proach, however, to make a direct comparison between theory and experiment, one

must also consider how the cross section is determined experimentally. Figure 5.1

shows a simple cartoon of a typical coincidence experiment that will be used to

derive the experimental cross section.

Figure 5.1: Cartoon representation of a typical coincidence experiment.
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Consider an electron beam with cross-sectional area Ab[cm2] incident on a target

of length (thickness) ∆L[cm] and density nt([g]/[cm3]). The incident beam flux on

the target is then defined as

Jinc ≡ nbAbvb =
dNinc

dt
, (5.1)

where nb is the beam density in Ninc/[cm]3, Ninc is the total number of incident

particles, and vb is the electron velocity in [cm]/[s]. The beam flux is also interpreted

as the instantaneous rate of the number of beam particles incident on an target area

Ab (beam current). The beam current is ususally measured in milli-Coulomb per

second (mC/s), which can also be expressed as the total number of incident electrons

per second using the conversion factor: 1 mC/s ≡ 6.2415x1015 e−/s. As the electron

beam passes through the target, each electron can interact with any target atom

within the area Ab. The total number of atoms that can potentially be scattered by

the beam within this area are determined to be

Nt ≡ ntAb∆L. (5.2)

In reality, only a certain fraction of the total target atoms that can be scattered will

interact with the beam, which is characterized by the probability,

p = Nt
σ

Ab
= nt∆Lσ, (5.3)

where σ is defined as the cross section and describes the effective area of interaction

for a particular reaction out of a total area Ab.

From the number of interactions between the incident electrons and target atoms,

the reaction rate Jsct of the scattered particles is determined from the probability

that the beam flux interacts with the target atoms, which is defined as

Jsct ≡ pJinc = Jincnt∆Lσ. (5.4)
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From 5.4 a useful quantity to define is the experimental luminosity,

L ≡ Jincnt∆L (5.5)

in units of [cm−2][s−1], which describes the total number of interactions that can

be produced from beam particles illuminating a specific target area. From the

luminosity, the experimental cross section can be expressed in its simplest form as

σ =
Jsct

L , (5.6)

where the cross section is a constant of proportionality between the luminosity and

reaction rate.

To determine the differential cross section in a typical coincidence experiment,

consider a general A(e, e′p) reaction where the incident electron knocks out a pro-

ton and the (A − 1) recoiling system is undetected. The scattered electron and

knocked-out proton are detected in coincidence between each spectrometer within

a finite angular acceptance region limited by either the spectrometer apertures or

collimator (if inserted). In reality, the acceptance region (phase space) covered

by the electrons in coincidence with protons is determined by the reaction kine-

matics, which may be smaller than the full acceptance of the spectrometers. For

the specific case of the deuteron break-up reaction, the phase space was deter-

mined via a Monte Carlo simulation (SIMC) by randomly generating a set of values,

(X ′e,tar, Y
′
e,tar, X

′
p,tar, Y

′
p,tar, E

′)1, which along with a known beam energy, completely

determines the final proton momentum. The volume formed by this hypercube was

defined as

VPS =
Nacc

Ngen

∆Ωe∆Ωp∆E
′, (5.7)

1The primed variables represent relative spectrometer angles introduced in Section 4.4
and E′ is the scattered electron energy (or approximately, its momentum).
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where Nacc is the number of accepted coincidence events that lie in the hypercube

and Ngen is the total number of events generated by the random sampling process.

The ∆Ω(e,p) = ∆X ′(e,p)tar∆Y
′

(e,p)tar defines the angular range of the electrons in coin-

cidence with protons and ∆E ′ defines the range of the scattered electron momenta.

The differential cross section can then be determined by dividing the total number

of detected electron-proton coincidences in the experiment by the Monte Carlo gen-

erated phase space at the same reaction kinematics. By substituting Eqs. 5.5 into

5.6 and dividing by Eq. 5.7 one obtains

d5σ

dΩedΩpdE ′
=

Jsct

Jincnt∆LJcorr(∆Ωe,p → dΩe,p)
Nacc

Ngen
∆Ωe∆Ωp∆E ′

, (5.8)

where Jcorr(∆Ωe,p → dΩe,p) is a Jacobian matrix that is used to convert the solid

angles from the spectrometer coordinates to spherical coordinates. The incident

(Jinc) and reaction (Jsct) rates can be integrated over the entire experimental run

time to obtain ∫
Jincdt ≡

∫
dNinc

dt
dt = Ninc, (5.9)∫

Jcoindt ≡
∫
dNcoin

dt
dt = Ncoin, (5.10)

where Ninc is the total number of incident electrons, which is normalized to 1 mC

in SIMC and Ncoin is the true number of detected 2H(e, e′p)n coincidences, provided

that the event selection cuts defined in Section 4.6 have been applied. It is impor-

tant to note that these coincidences, hereafter referred to as Yuncorr, have not been

corrected for detector inefficiencies. Therefore, to obtain the final reaction cross

section, the data yield has been corrected as follows:

Ycorr ≡
Yuncorr · frad

Qexp
tot · εtLT · εhtrk · εetrk · εtgt.Boil · εpTr

, (5.11)

where Qexp
tot is the total experimental accumulated charge from the electron beam at

the target, frad is the correction due to radiative effects, and the εi’s are corrections
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from various experimental inefficiencies described in the following sections. The

normalization of the data by the accumulated charge (yield/mC) is necessary for a

direct comparison to the SIMC yield. Substituting Eq. 5.11 into Eq. 5.8, the final

averaged experimental cross section for the 2H(e, e′p)n can be expressed as

( d5σ̄

dΩedΩpdE ′

)
k

=
( Ycorr

nt∆LJcorr(∆Ωe,p → dΩe,p)
Nacc

Ngen
∆Ωe∆Ωp∆E ′

)
k
, (5.12)

where the “average” refers to the fact that the cross section has been calculated at

the center of the kth kinematic bin in question, where k = pr, Q
2, xBj, θnq, etc. In

reality, the true cross section must be determined at the averaged kinematics for

that bin. See Section 5.9 for a detailed discussion of the bin-centering corrections.

Similar to the averaged data cross sections, the Laget model cross sections im-

plemented in SIMC were determined using Eq. 5.12, where the simulated yield had

the same cuts as the data yield, but the efficiencies were all εi = 1 as SIMC does

not simulate detector inefficiencies.

5.2 Tracking Efficiencies (εhtrk, εetrk)

To account for the experimental yield loss due to a bad track reconstruction or

the selection of the wrong track by the Hall C tracking algorithm, the tracking

efficiencies have been determined. The tracking efficiency per experimental run is

generally defined as

ε(htrk,etrk) ≡
Ndid

Nshould

, (5.13a)

δε(htrk,etrk) ≡
√
Nshould −Ndid

Nshould

, (5.13b)

where Ndid are the number of events for which there was at least one track formed

by the drift chambers tracking algorithm given a specific criteria and Nshould are

172



the number of events where at least one track was expected but was not necessarily

reconstructed by the algorithm using the same criteria. For simplicity, we define the

logical operator AND as “∧” and the EQUALITY operator as “==” to be used in

the tracking criteria definition. For the electron arm (SHMS), the criteria for the

formation of a track was defined as

Nshould
2 ≡ (NgoodScinHit == 1) ∧ (βnotrk > 0.5) ∧ (βnotrk < 1.5)∧ (5.14)

(Etot.norm > 0.6) ∧ (NNGC,npeSum > 0.5),

Ndid ≡ (Nshould) ∧ (NDCtrk > 0). (5.15)

For the hadron arm (HMS), a similar set of variables were used and defined as

follows:

Nshould ≡ (NgoodScinHit == 1) ∧ (βnotrk > 0.5) ∧ (βnotrk < 1.5)∧ (5.16)

(Etot.norm < 0.6) ∧ (NCER,npeSum < 0.5),

Ndid ≡ (Nshould) ∧ (NDCtrk > 0). (5.17)

The variables for both spectrometers are defined as

• NgoodScinHit: Number of good scintillator hits, which can either be 1 or 0. The

requirement for one hit is that the candidate track passes through a fiducial

region in each XY hodoscope plane. The fiducial region is defined by requiring

a TDC hit on a certain number of scintillator paddles that are adjacent to the

paddle the candidate track passed through.

• βnotrk: The hodoscope beta (β = v/c) is calculated without using tracking

information, as this would make the drift chamber efficiency calculation biased.

2As an example the tracking criteria defined in Eq.5.14 can be read out as: “the total
number of events that should have passed the tracking criteria require that the total
number of good scintillator hits must be exactly 1 AND βnotrk be between 0.5 and 1.5
AND the total normalized calorimeter energy be below 0.6 AND the total number of
Čerenkov photoelectrons be below 0.5”
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• Etot.norm: The total energy deposited in the calorimeter normalized by the

spectrometer central momentum. In the SHMS, a cut is made > 0.6 to select

electrons, whereas in the HMS, it is chosen to be < 0.6 to suppress positrons.

Due to the low experimental background, both HMS and SHMS spectra were

very clean after all cuts were applied.

• NNGCER,CER,npeSum: The total number of photoelectrons from the NGC detec-

tor in SHMS or HGC detector on the HMS. A cut is made > 0.5 for SHMS and

< 0.5 for HMS to select the respective particles in each spectrometer. Similar

to the calorimeter, the spectra for the Čerenkovs in both spectrometers were

clean of background sources.

• NDCtrk: Total number of tracks formed by the tracking algorithm. We require

at least one track to increment Ndid.

In the tracking algorithm, it is possible that there may be multiple, but not neces-

sarily real physics tracks that passed the criteria set above. In this case, Hall C uses

three distinct methods to select the best track:

• scintillator hit method : Selects the best track as the track closest to the paddle

hit in the last scintillator plane (S2Y). In addition, it also rejects tracks if

they fail certain criteria imposed on the hodoscope calculated and normalized

calorimeter energy.

• best χ2 method : Selects the best track as the track fit with the lowest χ2.

• pruning method : Selects among multiple possible tracks, the track with the

lowest χ2 after pruning (“cutting” or “trimming”) tracks that do not meet

certain criteria imposed on the reconstructed variables at the target, hodoscope

β, focal plane time and number of PMT hits among others. For example, an

event with a bad X ′tar reconstruction might have the track with the lowest χ2
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(among multiple tracks for a single event), which would have been chosen by

the best χ2 method. The pruning method, however, would have pruned this

potential “good track” candidate, thereby reducing the probability of what

would have otherwise been considered a “good track” by the best χ2 method.

A judgement needs to be made regarding which are reasonable variables to

prune on.

For the E12-10-003, the best χ2 method was used to determine the tracking effi-

ciencies. In general, the rates for the SHMS varied between ∼ 120-170 kHz, and

in the HMS, between ∼110-170 Hz (see Fig. 5.3), which did not present a problem

(multiple real tracks per event) in the determination of the tracking efficiency. In

general, the tracking efficiency for both spectrometers was found to be very stable

over the course of the experiment and was measured to be on average, 98.8% for the

HMS and 96.4% for the SHMS (see Fig. 5.2).
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Figure 5.2: Tracking efficiency of HMS (open) and SHMS (full) for the E12-10-003
experiment.
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Figure 5.3: Trigger rates for the SHMS (top), HMS (middle) and coincidence trigger
(bottom) during the E12-10-003 experiment.

5.3 DAQ Live Time Efficiency (εtLT)

Another source of inefficiency in the experimental yield arises from the total dead

time of the data acquisition (DAQ) system which is separated into an electronic and

computer deadtime. The electronic deadtime arises from signal pile-up at the front-

end of the electronic modules due to high rates, whereas the computer deadtime

refers to the amount of time the DAQ is unable to accept a pre-trigger.
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In E12-10-003, the live time calculation was determined using the EDTM system

described in Section 3.7.6. This method determines the electronic and computer

live time simultaneously by feeding a clocked EDTM logic signal into the trigger

electronics (mixed with the physics signals) and counting how many of them were

accepted by the trigger interface. Using the formula from Eq. 3.13, the total EDTM

live time was determined to be on average ∼ 92.7% (see Fig. 5.4).
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Figure 5.4: Total EDTM live time determined for the E12-10-003 experiment.

The uncertainty on the EDTM system is not a straightforward calculation and

needs to be given more thought since 1) the numerator and denominator involved in

the calculation (see Eq. 3.13) are correlated and 2) the accepted number of EDTM

logic pulses (numerator) are governed by a random process that can be understood

from the fact that even though these are clocked pulses, they are mixed with the

physics pre-triggers, which are random and follow a poissonian distribution. An

educated guess of ∼ 3% relative uncertainty on the total live time was made based

on a crude estimate of the dominant source of electronic deadtime in the system.

Given that the SHMS S1X hodoscope plane is the dominant source of electronic
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dead time as it had the highest trigger rates (typically R ∼ 1 MHz) out of the four

hodoscope planes and that the time window of the electronics module (LeCroy 4564

logic module) used to form the S1X pre-trigger was set to τ ∼ 60 ns, the electronic

deadtime can be approximated to be Rτ ∼0.06 or 6%. Assuming that the computer

dead time is negligible given that the coincidence pre-triggers were only ∼ 3 Hz, we

take ∼ 6% (or ±3%) as the relative uncertainty in the total live time calculation.

Given that this is a statistically dominated experiment (∼ 20−30%), a conservative

estimate of a few percent is negligible in comparison.

5.4 Target Density Corrections (εtgt.Boil)

The exposure of a cryogenic target to the beam can cause density reductions in the

beam path or even localized boiling on the target due to the large amounts of heat

deposited by the beam. To minimize boiling, the beam can be rastered (“smeared

out”) by up to 5x5 mm2 in area to re-distribute the heat deposited over a larger

area on the target (see Section 3.4.2). Even though the rastered beam minimizes the

local boiling, there may still be a small reduction in the target density that results

in the reduction of the data yield by a few percent.

To correct the experimental data yield for target density, a series of dedicated

runs (see Table 5.1) were taken independently in each spectrometer (single-arm) at

various beam currents. In this section I present the target density study results

using the HMS only, however, a similar study using the SHMS should be carried

out as a cross-check.

The runs in Table 5.1 were taken at a spectrometer central angle and momentum

settings of 25◦ and -4.4 GeV/c (negative polarity), respectively, at a beam energy of

Eb = 10.6 GeV. At these kinematics, the inclusive electrons detected by the HMS
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correspond to the inelastic electron scattering off a target nucleon. The spectrom-

eter was set to negative polarity to detect electrons that scattered from carbon-12,

LH2 and LD2 targets, respectively, at various beam currents. To select electrons in

the HMS, the trigger was set to HMS EL-REAL (see Fig. 3.42).

HMS Run Target Beam Current [µA]

2093 Carbon-12 60
2094 Carbon-12 50
2095 Carbon-12 35
2075 LH2 80
2076 LH2 70
2078 LH2 10
2080 LH2 10
2081 LH2 20
2082 LH2 35
2083 LH2 35
2084 LH2 45
2085 LH2 55
2073 LD2 80
2074 LD2 70
2087 LD2 55
2088 LD2 45
2089 LD2 35
2090 LD2 20
2091 LD2 10

Table 5.1: Target density reduction studies run list taken on April 02, 2018.

The target density reduction analysis consists of determining the charge normal-

ized yield as a function of the beam current to determine the yield loss per unit

beam current. To correctly determine the yield corresponding to a specific beam

current, a cut was made to select events that correspond to a stable beam current

period, and not to the beam ramp up or down periods.
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To precisely select events corresponding to a certain beam current threshold,

consider the following example illustrated in Fig. 5.5. In this example, the scaler

reads (vertical black lines) are registered by the DAQ and dumped into the data-

stream at either every 2 seconds or 1000 events.

Figure 5.5: Illustration of scaler and event reads during a typical experimental run.

As the run progresses, the average beam charge and time interval in between

scaler reads can be determined from which the average beam current is calculated

for each interval. A beam current low and high cut can then be set to select only

those scaler read intervals for which the average beam current is within the cut

limits. In the data event loop, each event is then compared to the next scaler read

and is discarded if it lies within a scaler read interval that did not pass the cut.

After selecting only those events that passed the nominal beam current for each

run, the charge normalized yields can be determined and plotted as a function of

the average beam current. In this analysis, three separate charge normalized yields

were determined, designed to test the computer live time and tracking efficiency

corrections.
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The yields were defined as

Yscl =
Nscl

Qtot

, (5.18)

Yno.trk =
Nacc

Qtot · εcpuLT

, (5.19)

Ytrk =
Nacc

Qtot · εcpuLT · εhtrk

, (5.20)

where Eq. 5.18 is the yield calculated from the total number of HMS pre-trigger

scaler counts normalized by the total charge, Eq. 5.19 defines the charge normalized

yield (using accepted HMS triggers) corrected for computer live time but does not

use tracking information in the event selection criteria, and Eq. 5.20 defines a charge

normalized yield that uses tracking information in the event selection criteria and is

therefore also corrected for the tracking efficiency. The associated histograms used

to determine the counts for each of these yield calculations are shown below.

Figure 5.6: Example of a BCM scaler current cut used to determine the yield.
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Figure 5.7: Example of the histograms used to determine the non-tracking (top)
and tracking (bottom) yields. Top: x-axis shows the total deposited energy in the
calorimeter normalized by the central spectrometer momentum, EDEP/Pc. Bottom:
x-axis shows the HMS momentum acceptance, δ, in percent.

Figure 5.8 shows the charge normalized yields using BCM4A (red) and BCM4B

(black) beam current cuts in the event selection process. This study was done to

check the behavior of both BCMs at very high currents. As can be seen from the

normalized yields using the LH2 and LD2 targets, above ∼ 75 µA, the BCM4A

yield is significantly lower than the BCM4B yield indicating that BCM4A begins to

saturate above this current (see Ref. [159]).
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Figure 5.8: Normalized tracking yields using BCM4A (red) and BCM4B (black)
beam current cuts on carbon-12 (top), LH2 (middle) and LD2 (bottom) targets.
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Due to the saturation of BCM4A at beam currents > 75 µA, it was decided to use

BCM4B for the remaining target density studies.

Figure 5.9: Linear fit of the charge normalized yields for carbon-12.

The normalized yields for each of the targets were determined from Eqs. 5.18,

5.19 and 5.20 and fit as a function of the BCM4B average beam current using the

fit function

Ynorm = m · Ibeam + Y0, (5.21)
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where Ynorm is the charge normalized yield (y-axis), Ibeam is the average beam current

(x-axis), and (m, Y0) are the slope and y-intercept parameters, respectively. The fit

results are shown in Figs. 5.9, 5.10 and 5.11.

Figure 5.10: Linear fit of the charge normalized yields for LH2.

A gradual improvement is observed in the χ2 fit from the top to bottom panels

for each of the targets, indicating that the yield calculated using Eq. 5.20 gives the

best fit results. To apply the target density corrections, one needs to determine the

fractional yield loss per µA. This is done by normalizing the yield to the y-intercept,
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Y0, which corresponds to the yield at 0 µA to obtain a relative yield. From the

relative yield and the slope, the fractional yield loss at any beam current within

the fit range can be calculated. This correction is then applied to the experimental

yield.

Figure 5.11: Linear fit of the charge normalized yields for LD2.

Figure 5.12 shows the fit results after normalizing the fit function by Y0. From

the final fit results of the HMS target density studies, carbon-12 has a reduction

in the yield of ∼ 0.18%/µA, which shows almost non-existent density changes as
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is expected from a solid target. Liquid hydrogen and deuterium, however, show a

significant reduction in the yield corresponding to ∼ 0.063%/µA and ∼ 0.080%/µA,

respectively.

Figure 5.12: Linear fit function normalized to the y-intercept, Y0 for each of the
three targets.

Target Slope, m0 ≡ m/Y0 Slope Error, δ(m0)

Carbon-12 -1.87x10−4 3.1x10−4

LH2 -6.34x10−4 6.2x10−5

LD2 -8.00x10−4 7.0x10−5

Table 5.2: Target boiling (or density reduction) studies fit results normalized to the
y-intercept.
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The target density correction was applied on a run by run basis using the formula,

εtgt.Boil = 1−m0 · Iavg, (5.22a)

δεtgt.Boil =
√
I2

avgδ
2
m0

+m2
0δ

2
Iavg

, (5.22b)

where m0 is the slope of the corresponding target and Iavg is the averaged BCM4A

beam current over the entire run, provided the beam current cuts have been ap-

plied. It is important to note that the beam current cut on the data analysis was

less strict (> 10 µA) than in the target density studies to avoid cutting out possible

coincidences during the ramping up periods of the beam.
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Figure 5.13: Target density correction of deuterium determined for the E12-10-003
experiment.

Figure 5.13 shows the target density correction factor for all data sets of the

E12-10-003 experiment. The correction factor seems stable over all runs, which is a

result of the beam currents during this experiment were stable and within a small

range of ∼ 45− 60 µA as shown in Fig. 5.14.
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Figure 5.14: Averaged beam currents (BCM4A) determined for the E12-10-003
experiment.

5.5 Proton Absorption Corrections (εpTr)

In general A(e, e′p) coincidence experiments there is a small (∼ few percent) proba-

bility that the knocked-out proton never makes it to the required detectors to form

a coincidence trigger with the electron. This is due to the fact that as the proton

leaves the target, traverses various windows (e.g., the target cell window, the spec-

trometer entrance/exit windows) and enters the detectors, it can lose energy and/or

outscatter and so fails to form a trigger or pass cuts.

The proton absorption coefficient can be determined in theory from the knowl-

edge of the material thickness and interaction length, which depends on the cross

section of the interaction process. In the E12-10-003 experiment, the proton ab-

sorption coefficient was determined by taking several dedicated hydrogen elastic
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runs (see Table 3.1) using either only a single-arm or a coincidence trigger at the

same kinematics. The general steps taken were:

• Use the 1H(e, e′)p coincidence runs to determine the spectrometer acceptance

region for both HMS/SHMS corresponding to ep elastics events (see Fig. 5.15).

• Use the 1H(e, e′)p SHMS single-arm runs to determine the number of elec-

trons that lie within SHMS the acceptance region corresponding to SHMS

acceptance for ep elastics determined in the first step.

Figure 5.15: Cartoon to illustrate how the proton absorption coefficient is deter-
mined experimentally by selecting the ep elastics acceptance region.

By selecting the SHMS acceptance region (single-arm) corresponding to the ep elas-

tics, one is selecting the total number of electrons that should have been in coinci-

dence (during the coincidence runs) with the proton in the HMS, but because the

proton was absorbed by some material, never made it to form a trigger. The number

of electrons that did pass the requirements to be in coincidence with the protons
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were determined by imposing additional restrictions (“cuts”) on the HMS variables.

It should be noted that even though only the SHMS singles triggers were used for

data readout, since these runs were taken with the DAQ in coincidence mode, the

HMS detectors are also readout, which enables one to put cuts on the HMS related

variables.

Coincidence 1H(e, e′)p Acceptance Selection

To determine the acceptance region in the SHMS corresponding to elastic events,

the momentum acceptance correlation between the two spectrometers is plotted in

Fig. 5.16 and shows that the SHMS momentum acceptance corresponding to elec-

trons from ep elastics is completely determined by the HMS momentum acceptance

for protons.

Figure 5.16: Momentum acceptance correlation between SHMS and HMS for coin-
cidence 1H(e, e′)p data run 3248. Inset: Missing energy spectrum cut below 30 MeV
to select true elastic events.
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Figure 5.17: SHMS electron angular acceptance for coincidence 1H(e, e′)p data run
3248.

Figure 5.18: HMS proton angular acceptance for coincidence 1H(e, e′)p data run
3248.

Figure 5.17 shows the SHMS angular acceptance where the δ momentum ac-

ceptance and missing energy cuts determined from Fig. 5.16 have been applied.
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Similarly, for the HMS angular acceptance shown in Fig. 5.18, the same cuts on

missing energy and momentum acceptance have been applied. The dashed color

lines in both Figs. 5.17 and 5.18 define the angular acceptance cuts for ep elastics

events. The SHMS acceptance cuts determined in this section will be applied to the

SHMS singles ep elastics data in the next section.

SHMS Singles 1H(e, e′)p Acceptance Selection

To help suppress quasi-elastic electrons which scattered from the target cell walls,

an aluminum dummy run was taken at the same kinematics as the hydrogen elas-

tics data. Figure 5.19 shows the reconstructed events along the z-vertex with the

two peaks representing the target cell end caps. A z-vertex cut of ±2.5 cm on the

dummy target was determined to remove the target windows from the good elastic

events.

Figure 5.19: Reaction z-vertex cut determination from aluminum dummy run 3254
taken with SHMS singles trigger.
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Figure 5.20: SHMS angular acceptance from electron singles run 3259. The red
square is the elastic acceptance region determined from coincidence elastics data at
the same kinematics.

Figure 5.21: Proton invariant mass (W ) determined from SHMS electron singles run
3259.
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After doing the dummy target analysis, we now focus on the analysis of the

single-arm 1H(e, e′)p elastic runs. Figure 5.20 shows the SHMS angular acceptance

from electron singles. The boxed (red) region corresponds to the angular acceptance

from ep elastics determined from the coincidence data. A cut was also placed on

the SHMS momentum acceptance determined from the elastic coincidence data as

well as the z-target cut mentioned above.

Finally, a cut on the proton invariant mass W (reconstructed from 1H(e, e′)p

electron singles) has been placed between 0.9 and 1.0 GeV/c to ensure electrons

that correspond to true ep elastics are selected (see Fig. 5.21).

After determining the cuts to select electrons singles that truly originated from

hydrogen elastic scattering, we define the proton transmission coefficient as

εpTr ≡
e−did/εhtrk

e−should

, (5.23a)

δεpTr ≡
√
e−should − (e−did/εhtrk)

e−should

, (5.23b)

where e−should is the number of electrons that passed the above-mentioned cuts for

which the correlated proton should have been detected in the HMS and e−did is

a superset of (or contains) e−should with the additional requirement that the HMS

reconstructed events are within the well defined HMS momentum acceptance (|δ| <

8%) and that there was an HMS 3/4 hodoscope trigger (hTRIG1 TDC >0). The e−did

has also been corrected for HMS tracking efficiency εhtrk since HMS tracking-related

variables have been used in the determination of e−did. Using these definitions, the

number of electrons singles that should have and did pass the cuts can be expressed

as

e−should ≡ (δSHMS) ∧ (∆ΩSHMS) ∧ (∆Ztar) ∧ (∆W), (5.24)

e−did ≡ (e−should) ∧ (δHMS) ∧ (hTRIG 3/4), (5.25)
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where ∧ represent the logical AND operator, and the variables in parentheses rep-

resent the applied cuts (∆ΩSHMS → angular acceptance cuts). Using these cuts,

the ratio of e−did/e
−
should using Eqs. 5.24 and 5.25 was taken for the X ′tar and Y ′tar to

determine the variations in the proton transmission factor across the acceptance of

the SHMS. The plots are shown in Figs. 5.22 and 5.23, respectively.

Figure 5.22: Ratio of X ′tar from SHMS electron singles run 3259. Inset: X ′tar his-
tograms before taking the ratio, where did is in red and should is in blue.

Figure 5.23: Ratio of Y ′tar from SHMS electron singles run 3259. Inset: Y ′tar his-
tograms before taking the ratio, where did is in red and should is in blue.
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From these ratios, the proton transmission factor is ∼ 90% for the X ′tar ratio and

∼ 95% for the Y ′tar near the center (Note: these early plots were not corrected for the

tracking efficiency). At the edges, however, the ratio drops rapidly which indicates

that the angular acceptance cuts need to be tightened. This is presumably due to

the HMS momentum acceptance rolling off at large X ′tar. The dashed blue lines

indicate the region where the new SHMS angular acceptance cuts will be placed.

In addition to the tighter acceptance cuts, a cut on the total energy deposited in

the SHMS calorimeter normalized by the central momentum was made to eliminate

any possible pion background. The e−did also needed to be corrected for the HMS

tracking efficiency as this correction factor does not cancel in the ratio of Eq. 5.23a.

The tracking efficiency for the analyzed run was determined to be 99.07% (< 1%

correction).

Figure 5.24: Invariant mass W determined from SHMS elastic electron singles run
3259.

The final proton transmission factor was determined by taking the ratio of the

integrated invariant mass histograms reconstructed from SHMS electron singles (see
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Fig. 5.24). The Wdid and Wshould have their respective cuts, e−did and e−should, as

described above where the tighter acceptacne cuts, calorimeter cut and tracking

efficiency corrections have been included.

From Eqs. 5.23a, 5.23b and the number of electrons from Fig. 5.24, the final

proton transmission coefficient and its uncertainty were determined to be: εpTr =

0.9534± 0.0047. This result is interpreted as the fraction of the protons that made

it to the detector hut to form the trigger.

5.6 Charge Normalization (Qtot)

To make a direct comparison between data and SIMC and determine the experi-

mental cross section, the data must be normalized by the total experimental charge.

The charge normalization for E12-10-003 was done on a data-set basis. That is,

for each of the missing momentum sets, the runs were combined and scaled by the

corresponding accumulated charge. The precise determination of the uncertainty in

the charge is dependent on the BCM calibration, which is a work in progress. For

this experiment, a conservative estimate of the relative uncertainty on the BCM4A

charge was determined to be dQ/Q = 0.02 (or 2%) [160].

5.7 Hydrogen Normalization Check

The 1H(e, e′)p is the ideal reaction to study spectrometer acceptances, as well as de-

termining spectrometer/kinematical offsets and misalignments. This is possible due

to the wide variety of data that exists at different kinematics, which has enabled the

determination of the electric (GEp) and magnetic (GMp) form factors very precisely

over a wide kinematic range [161].
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Figure 5.25: Fully corrected experimental data to SIMC yield ratio for four 1H(e, e′)p
elastic data.

In the E12-10-003, four 1H(e, e′)p elastic data points taken at kinematics that

covered a significant part of the SHMS acceptance (δSHMS : −10 to 12%) were mainly

used for optics optimization (see Section 4.5). In addition, the hydrogen data were

also used to check how well they would agree with the calculated cross sections

using the form factor parametrization from Ref. [158]. This was achieved by taking

the ratio of the fully corrected data yield to the SIMC yield, which is equivalent

to the ratio of the cross sections (see Fig. 5.25). The yields were determined by

integrating the invariant mass W in the range [0.85, 1.05] GeV using similar event

selection cuts as described in Section 4.6. There is a significant drop in the ratio

with increasing SHMS trigger rates, which is currently not well understood, but

likely due to unresolved issues with the tracking efficiency and/or the electronic

deadtime at very high rates. However, with respect to the first two data points, the

ratio is very close to one.
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We have decided to focus on the second data point (run 3288), as it is the

closest in kinematics to the 80 MeV/c deuteron data. From this data point, the

1H(e, e′)p elastic cross section has been measured with a normalization systematic

error of about 3% at a Q2 region where the absolute cross section is known at the

∼6% level (shaded gray error) determined from the uncertainties in the form factors

(Supplemental Materials of Ref. [161]). We quote the precise ratio of this data point

to be:

R ≡ Ydata

YSIMC

± δstats ± δ(norm)
syst ± δ(GEp,GMp)

syst

= 0.969± 0.0027± 0.031± 0.0561 (5.26)

This supports our estimate of the normalization systematic error for the 80 MeV/c

setting, ∼ 0.036 (see Table 5.4), but it does not tell us the normalization systematic

error better than the 5.6% error from the form factors. For this reason, we have

decided not to normalize the deuteron data to the ep elastics run 3288.

5.8 Radiative Corrections (frad)

Radiative effects contribute significantly to the determination of the experimental

cross sections. These effects refer to the process by which the electron interacts

with the electric field of a nearby nucleus causing the electron to change its ve-

locity and emit either real or virtual photons known as bremsstrahlung radiation.

This process can be further divided into either external or internal bremsstrahlung

radiation. In external bremsstrahlung, the electron interacts with the electric field

of a nucleus other than the nucleus involved in the scattering process, whereas in

internal bremsstrahlung, it interacts with the electric field of the same nucleus it

scatters off. Furthermore, the electron can radiate before and (or) after the (hard)
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scattering process. As a result, the reaction kinematics and the cross section can

be modified significantly and the events might not necessarily be reconstructed at

the vertex, but at some other kinematics. This process becomes evident in the

so-called radiative tails present in some of the reconstructed histograms, for exam-

ple, the reconstructed missing energy in Fig. 4.41 or the invariant mass in Fig. 5.21.

Figure 5.26: Examples of internal bremsstrahlung photons (red) for a general
N(e, e′)N . In the top diagrams, the electron emits a real bremsstrahlung photon
(a) before and (b) after scattering off a nucleus N . In the bottom diagrams, the
electron exchanges a virtual bremsstrahlung photon with (c) the nucleus N and (d)
between its own initial and final state.

Theoretical models do not account for these radiative effects in their calculations

of the cross sections, therefore, the experimental data must be corrected before a
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comparison with theory can be made. The theoretical calculations for radiative

effects were first carried out by Schwinger [162] and later improved by Mo and

Tsai [163]. The simulation program SIMC uses the radiative correction formulas

for coincidence (e, e′p) reactions calculated using the Mo and Tsai formulation by

R. Ent et al. in Ref. [164]. A brief report describing how radiative effects are sim-

ulated in SIMC can be found in Ref. [165]. Figure 5.26 shows a Feynman diagram

representation of a typical radiative process involving internal bremsstrahlung.

In the E12-10-003 experiment, the radiative corrections were applied by multi-

plying by the ratio of non-radiative to radiative SIMC yields,

frad,k =
Ynorad

Yrad

, (5.27)

where k is an arbitrary kinematic bin that is defined based on the choice of kinematic

for binning the cross sections. For convenience, the radiative and non-radiative yield

histograms were binned in k=(pr, θnq) bins and a ratio was taken and multiplied by

the experimental yield per data set, also binned in k=(pr, θnq). As an illustrative

example, Fig. 5.27 shows a 2D histogram of the ratio between the non-radiative and

radiative SIMC yields. The inset shows a vertical projection along pr for the bin

θnq = 35±5◦, where the vertical axis of the inset corresponds to radiative correction

factor, frad.

Figure 5.28 shows the experimental data yield binned in missing momentum

before and after applying the radiative correction factor of the inset plot of Fig.

5.27. After radiative corrections, it is clear from Fig. 5.28 that there is a significant

increase in the number of coincidence counts per mC for each bin in pr. These

“recovered” counts are interpreted as the number of coincidences that should have

been detected if it were not for the radiative effects modifying the reaction kinematics

at the vertex, as shown in Fig. 5.26.
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Figure 5.27: 2D histogram of radiative correction factor, frad, binned in (pr, θnq) for
the 80 MeV/c setting of E12-10-003. Inset: Y-projection of θnq between 30 and 40
degrees.

Figure 5.28: Missing momentum yield for θnq = 35 ± 5◦ before and after radiative
corrections for the 80 MeV/c setting of E12-10-003.
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5.9 Bin Centering Corrections (fbc)

As mentioned in Section 5.1, the experimental cross sections are averaged over a

kinematic bin k, which was re-defined as k=(pr, θnq) in Section 5.8. In reality,

(pr, θnq) has a sub-range of kinematics over which the theoretical cross section can

vary rapidly so the question arises as to which kinematic value within this bin should

be associated with the experimental cross section.

We define the bin-centering correction factor for the k=(pr, θnq) kinematic bin as

fbc,k ≡
σmodel(k̄)

σ̄model(k)
, (5.28)

where the numerator is the theoretical cross section calculated at the averaged kine-

matics (calculation is external to SIMC) and the denominator is the theoretical cross

section determined from SIMC, averaged over the kinematic bin k=(pr, θnq). The

Laget FSI model was used for the theoretical cross section calculations. See Section

5.10 for systematic studies using the PWIA and FSI Laget models.

The bin-center corrected data cross sections at each kinematic bin were deter-

mined by multiplying the average experimental cross section by the correction factor

at each kinematic bin as follows:

σdata
bc,k̄ ≡ σ̄data,k · fbc,k, (5.29)

where σdata
bc,k̄

is the bin-centered corrected data cross section evaluated at the aver-

aged kinematics (k̄) over bin k=(pr, θnq).

Figure 5.29 shows an illustrative example of how the bin-centering corrections

were done for this experiment. The blue and green bins represent the bin content

of the average data and model cross sections, and the theoretical curve represents

the same model cross section evaluated at the averaged kinematics, denoted by a

bar. The orange bin represents the bin content of the data cross sections after ap-

plying the bin-centering corrections. The advantage of performing the bin-centering
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corrections this way is that one can avoid time-consuming Monte Carlo calculations

when comparing the experimental data to different theoretical models.

Figure 5.29: Cartoon illustrating bin-centering calculation for this experiment.

The averaged kinematics on this experiment were determined from SIMC at the

reaction vertex for every (pr, θnq) bin since the vertex quantities are corrected for

energy loss at the target. The average for a kinematic quantity X for the kinematic

bin k=(pr, θnq) was calculated as

X̄k =

(
∑
i

Xiwi)k

(
∑
i

wi)k

, (5.30)

where Xi is the value of the kinematic quantity X for the event i and the model

cross section was used as weight (wi).

Figures 5.30 and 5.31 show the bin centering correction versus pr±20 MeV/c

bins at θnq=35 and 45±5◦ bins using either the PWIA or FSI models from Ref. [60].
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Figure 5.30: Bin-centering correction factor at θnq = 35 ± 5◦ for each pr setting
of E12-10-003. The dashed reference lines indicate ±10% (black) or ±20% (red)
deviation from unity. The correction factor was calculated by taking the ratio
of cross sections (see Eq. 5.28) either within the PWIA (full data points) or by
including FSI (empty data points) for each dataset (see Section 3.3). The theoretical
cross section calculations were by J.M. Laget [60] using the Paris potential [41].

Figure 5.31: Bin-centering correction factor at θnq = 45 ± 5◦ for each pr setting of
E12-10-003. See Fig. 5.30 for definition of lines and data points.
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At the low missing momentum setting (80 MeV/c), the corrections are relatively

large (ignoring the lowest missing momenta at ∼ 20 MeV/c) with correction factors

between 10-20% for recoil momenta up to pr ∼ 240 MeV/c whereas at higher recoil

momenta up to ∼ 1 GeV/c, the correction factors are typically within 10%. The

larger bin-centering corrections at lower missing momenta reflect the rapid fall-off

of the deuteron wavefunction with increasing pr, whereas the smaller corrections at

higher missing momenta are representative of a smaller (less steep) fall-off as will

be shown in the reduced cross sections presented in Chapter 6.

5.10 Systematic Uncertainty Studies

A study of the sensitivity of the bin-center corrected experimental cross sections

to variations in the event selection cuts described in Section 4.6 was carried out.

Comparing two data subsets one needs to take into account the fact that part of the

data are correlated. To determine if the variation in each of the cuts contributes to

a systematic effect and whether this contribution is significant enough to be consid-

ered as a systematic error, we use the approach by R. Barlow described in Ref. [166].

Consider a cross section measurement done two different ways (i.e., apply differ-

ent cuts). Let the measurements and their statistical uncertainties be: (σexp
bc,1±δσexp

bc,1)

and (σexp
bc,2 ± δσexp

bc,2) where one of the measurements is a subset of the other. The

difference and its associated uncertainty can be expressed as,

∆ ≡ σexp
bc,1 − σexp

bc,2, (5.31a)

σ2
∆ ≡ (δσexp

bc,1)2 − (δσexp
bc,2)2, (5.31b)

where the error of the difference between the two measurements is found by taking

the difference of their variance. As demonstrated in Ref. [166], this error accounts
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for the possible correlation between the two measurements. By taking the ratio

RBarlow ≡
∆

σ∆

, (5.32)

a criterion imposed onRBarlow determines whether the difference is significant enough

to be considered as a systematic error or sufficiently small that it may be ignored.

This criterion requires knowledge of the correlation between the subsets, but in

general, as suggested in Ref. [167]: if RBarlow < 2 (or ∆ < 2σ∆) the test passes and

if RBarlow > 4 (or ∆ > 4σ∆), the test fails and the discrepancy must be added as a

systematic error. For 2 < RBarlow < 4, a judgement must be made.

In E12-10-003, for each of the event selection cuts, the difference between the

data cross section corresponding to the largest cut and each of the subset cuts was

taken and divided by the corresponding difference in their variances to the half

power to determine the ratio for each (pr, θnq) bin. As an example, the results for a

single θnq bin on each of the event selection cuts are shown in Figs. 5.32-5.36.
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Figure 5.32: Systematic effects of the missing energy cut. The inner dashed and
outer solid lines represent the ∆ = ±2σ∆ and ±4σ∆ boundaries, respectively.
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Figure 5.33: Systematic effects of the Ztar difference cut. The lines are described in
Fig. 5.32.
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Figure 5.34: Systematic effects of the HMS collimator cut. The lines are described
in Fig. 5.32.
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Figure 5.35: Systematic effects of the coincidence time cut. The lines are described
in Fig. 5.32.
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Figure 5.36: Systematic effects of the SHMS calorimeter cut. The lines are described
in Fig. 5.32.
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The Barlow ratio shown in these plots are used mainly as a check that the deviations

in the cross section due to applied cuts are within a reasonable boundary (< 4σ∆)

such that the systematic effects can be neglected. Some important points to keep

in mind on the interpretation of these systematic studies results are:

• As can be seen from some of these plots, for example, in Fig. 5.35 or 5.36,

the data points are scarce, which indicates that there was no difference in the

measured cross sections giving a ratio of zero. This is understood from the

fact that this experiment was very clean of any background sources, and so

taking the difference in cross sections with and without these cuts does not

affect the final result at all.

• For the missing energy cut, we do expect the ratio to change, as we are chang-

ing how much of the radiative tail we include in the cut, so a different number

of counts is expected. The ratio was found to be more spread out in the 80

MeV/c setting, however, it was mostly within the boundaries at the higher

missing momentum settings. This could be attributed to the low number

of statistics in the larger settings and hence larger variances (and statistical

fluctuations).

• Some of the ratios might be slightly negative. So one asks, how it can be that

when a subset cut cross section is subtracted from the cross section of the

total set, we end up with negative? Which could only mean that the subset

cross section is larger. One possible explanation is that this is due to the

radiative correction factor becoming smaller with larger cuts, which means

that a very tight cut (subset) can have a larger cross section due to a larger

radiative correction factor. Another possibility is that a smaller cut reduces

the acceptance of the spectrometer.
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• If the variances of the two measurements are almost the same, this can give

very large values of the ratio, as the denominator is the difference in the

variances.
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Figure 5.37: Systematic effects of the model dependency of radiative corrections.
The lines are described in Fig. 5.32.
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Figure 5.38: Systematic effects of the model dependency of bin-centering corrections.
The lines are described in Fig. 5.32.
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An additional study was carried out to determine the magnitude of the systematic

effects due to the model dependency of the radiative and bin-centering corrections

applied to the experimental data. In this case, the Barlow ratio was calculated from

the difference between the experimental cross sections using the Laget PWIA and

FSI models for both radiative and bin-centering corrections. In other words, the

experimental cross sections were radiation and bin-center corrected using both the

Laget PWIA and FSI models and the difference between these models was compared.

Figures 5.37 and 5.38 are shown for a single bin in θnq and demonstrate that the

effects of model dependency on the correction factors are negligible on the measured

cross sections.

5.11 Normalization Systematics

Starting from the fully corrected experimental cross section,

σexp = σexp
uncorr · f1 · f2... · fn, (5.33)

where σexp
uncorr is the uncorrected data yield (Yuncorr) divided by the SIMC phase space,

and f ′ns are the correction factors, which are re-defined for covenience as

f1 =
1

εtgt.Boil

target density factor (5.34)

f2 =
1

εpTr

proton transmission factor (5.35)

f3 =
1

εetrk

electron tracking efficiency (5.36)

f4 =
1

εhtrk

hadron (proton) tracking efficiency (5.37)

f5 =
1

εtLT

total live time (5.38)

f6 =
1

Qexp
tot

total accumulated charge (5.39)
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f7 = frad radiative correction factor (5.40)

f8 = fbc bin-centering correction factor (5.41)

The systematic uncertainty on the cross section due to the uncertainty in each of

these correction factors are added in quadrature as

(dσexp)2 =
8∑
i=1

(∂σexp

∂fi

)2

df 2
i . (5.42)

From Eq. 5.33, the derivative with respect to factor fi is

∂σexp

∂fi
=
σexp

fi
. (5.43)

Substituting Eq. 5.43 into Eq. 5.42, one obtains

(dσexp)2 = (σexp)2

8∑
i=1

(dfi
fi

)2

(5.44)

From Eq. 5.44, one can see that the overall relative error on the cross section due to

the normalization uncertainties is simply the quadrature sum of the relative errors

of each normalization factor. For the radiative and bin-centering correction factors,

the relative error is zero as determined from the systematics studies in the previous

section.

The normalization uncertainties on the cross sections were determined per data

set by averaging each normalization factor and its associated uncertainty over all

runs of said set. The average was taken as there were no significant fluctuations

in the factors over all runs for each data set. The results from each data set were

added in quadrature for overlapping missing momentum bins once the reduced cross

sections were combined for all sets. For the relative normalization uncertainties that

did not vary over the entire experiment, that is, the uncertainties associated with

the proton transmission factor, the total live time and charge, these were added in

quadrature as an overall factor to the final error (see Tables 5.3 and 5.4).

214



pr [MeV/c] εhtrk εetrk εtgt.Boil εpTr εtLT Qexp
tot [mC]

80 0.989 0.965 0.958 0.953 0.908 142.140
580(set1) 0.990 0.965 0.960 0.953 0.929 1686.83
580(set2) 0.987 0.964 0.959 0.953 0.929 1931.77
750(set1) 0.988 0.964 0.957 0.953 0.924 5329.49
750(set2) 0.989 0.962 0.956 0.953 0.923 1894.01
750(set3) 0.989 0.962 0.956 0.953 0.924 1083.70

Table 5.3: Summary of the averaged normalization correction factors (or efficiencies)
in fractional form and the total accumulated charge per data set.

pr [MeV/c] δεhtrk/εhtrk δεetrk/εetrk δεtgt.Boil/εtgt.Boil δεpTr/εpTr δεtLT/εtLT δdQexp
tot /Q

exp
tot

80 0.0344 0.0413 0.3948 0.4951 3.0 2.0
580(set1) 0.3999 0.7586 0.3766 0.4951 3.0 2.0
580(set2) 0.4786 0.6041 0.3842 0.4951 3.0 2.0
750(set1) 0.5329 0.7155 0.4013 0.4951 3.0 2.0
750(set2) 0.4719 0.7089 0.4196 0.4951 3.0 2.0
750(set3) 0.5127 0.7584 0.4150 0.4951 3.0 2.0

Table 5.4: Summary of relative systematic error on the measured cross sections due
to the normalization factors (units are in percent).

5.12 Kinematical Systematics

The determination of the experimental cross sections depends on the spectrometer

kinematics. In particular for this coincidence experiment, the determination of the

beam energy (Eb), final electron angle and momentum (θe, kf) and either the proton

angle (θp) or momentum (pf) completely determines the deuteron reaction kinemat-

ics. Therefore, how well can we measure these quantities (kinematic uncertainties)

determines how well can we measure the experimental cross sections.

Ideally, the kinematic uncertainties can be determined by taking a series of dedi-

cated 1H(e, e′)p elastic singles for each spectrometer arm at a wide range of kinemat-

ics as well as beam energies. The data can then be simultaneously fit to determine

the kinematical offsets as well as the kinematic uncertainties. In reality, this is very
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difficult to do due to the availability of the beam as well as the required time for

these runs to take place in a very busy experimental schedule at Jefferson Lab.

In E12-10-003, we had a limited and usable hydrogen elastic data set (runs 3288,

3371 and 3374) taken in coincidence, which we used to simultaneously determine the

kinematical uncertainties using the procedure described in Ref. [168]. This method

basically consisted of a general χ2-minimization procedure using a matrix approach

that enables one to extract the variance-covariance matrix that contain the uncor-

related (diagonal) as well as the correlated (off-diagonal) kinematical uncertainties.

Of the several models described, we used the results from MODEL 2 of Ref. [168],

which simultaneously fit the elastic data to determine the kinematical as well as

the correlated uncertainties on (Eb, kf , θe, θp). Tables 5.5 and 5.6 summarize the

kinematical and correlated uncertainties on each of the variables.

Kinematic Uncertainties

δθe 0.1659 [mr]
δθp 0.2369 [mr]
δkf/kf 9.132×10−4

δEb/Eb 7.498×10−4

Table 5.5: Kinematic uncertainties corresponding to the diagonal elements of the
correlation matrix.

Correlated Kinematic Uncertainties

cov(Eb, kf) 6.838× 10−7

cov(Eb, θe) -1.213× 10−7 [rad]
cov(Eb, θp) -6.267× 10−8 [rad]
cov(kf , θe) -1.488× 10−7 [rad]
cov(kf , θp) -7.014× 10−8 [rad]
cov(θe,θp) 8.432× 10−9 [rad]2

Table 5.6: Kinematic uncertainties corresponding to the off-diagonal elements of the
correlation matrix.
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As a side note, recall from the beam energy measurements made in Section

3.4.1, that the relative error in the beam energy was determined to be δEb/Eb =

4.64 × 10−4 as compared to δEb/Eb = 7.498 × 10−04 determined from Ref. [168].

These two measurements are very close to each other and on the same order of

magnitude at the ∼ 10−4 level. Given the small effect that variations in the beam

energy (by itself, and not correlated) has on the deuteron cross sections, we decided

to use the more conservative and slighly larger value determined from Ref. [168].

To determine the systematic effects of the kinematical uncertainties on the mea-

sured cross sections, the derivatives of the cross section with respect to each of

the kinematic variables are needed. For this experiment, a table of the cross section

derivatives has already been calculated using the Laget FSI model. These derivatves

have been calculated using the averaged kinematics determined per data set as input.

Using the standard error propagation formula, the table of cross section derivatives

and the kinematical uncertainties, the full kinematic uncertainty contribution to the

experimental cross section can be expressed as

(δσexp
kin )2 =

( dσ
dθe

δθe

)2

+
( dσ
dθp

δθp

)2

+
( dσ
dkf

δkf

kf

kf

)2

+
( dσ
dEb

δEb

Eb

Eb

)2

+ 2
dσ

dEb

dσ

dkf

cov(Eb, kf) + 2
dσ

dEb

dσ

dθe
cov(Eb, θe) + 2

dσ

dEb

dσ

dθp
cov(Eb, θp)

+ 2
dσ

dkf

dσ

dθe
cov(kf , θe) + 2

dσ

kf

dσ

dθp
cov(kf , θp) + 2

dσ

dθe

dσ

dθp
cov(θe, θp). (5.45)

By including the covariance errors from Eq. 5.45, the overall kinematics uncer-

tainty can actually be reduced in the case where any two variables are anti-correlated

(“-” covariance sign) as it is the case from most of the variables in Table 5.6.

As an example, Fig. 5.39 shows the model cross section derivatives wirh respect

to each kinematic variable and Fig. 5.40 shows the systematic contribution to the

measured cross section due to the kinematics as well as the correlated uncertaintites

for θnq = 35± 5◦.
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Figure 5.39: Laget FSI model cross section derivatives at θnq = 35 ± 5◦ for the 80
MeV/c setting.

In Fig. 5.39, the electron scattering angle uncertainty (δθe) clearly has the largest

effect on the cross sections with a ∼ 20−25%/mrad effect for up to pr ∼ 300 MeV/c,

whereas the other kinematics have a . 5% effect per mrad (or MeV). This large

effect on the electron angle is attributed to the Mott cross section, σMott, which

has a dependence of σMott ∝ 1
sin4(θe)

on the electron angle. Therefore, it is crucial

that we determine the SHMS (electron arm) angle to much better than 1 mrad of

uncertainty. The variations on the higher momentum settings are still dominated

by the electron angle but to a much lower extent of ∼ 10%/mrad (not shown).

Figure 5.40 shows the contributions from each of the terms on Eq. 5.45 on the

total relative kinematic systematic error. It is clear that the main contributors to

the systematic error are the correlated errors, cov(Eb, θe) in cyan, cov(Eb, kf) in
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navy blue, and cov(kf , θe) in green. Two out of these three major contributors, how-

ever, are anti-correlated so when the errors are added in quadrature, the final result

is actually smaller, as can be seen by the total kinematic systematic error (color red).
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Figure 5.40: Kinematic systematics relative error contributions to the experimental
cross sections at θnq = 35± 5◦ for the 80 MeV/c setting. The overlall relative error
on the cross section is shown in red.

The kinematic systematic errors, such as that shown on Fig. 5.40, were deter-

mined poin-to-point in (pr, θnq) bins for each missing momentum setting, and added

in quadrature for overlapping pr bins. The overall systematic uncertainty in the

final cross section was determined by the quadrature sum of the normalization and

kinematic systematic uncertainties. This result was then added in quadrature to

the statistical uncertainty (20-30% on average) to obtain the final uncertainty in
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the cross section. See Appendices A1 and A2 for a summary of the relative sta-

tistical and systematic uncertainties for each (pr, θnq) bin at Q2 = 3.5 ± 0.5 and

Q2 = 4.5± 0.5 (GeV/c)2, respectively.
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CHAPTER 6

RESULTS AND DISCUSSION

In this chapter I will discuss how the experimental reduced cross sections were

extracted. Finally, I will present the final experimental reduced cross sections com-

pared to various theoretical models as well as their cross section ratios and discuss

the implications of these results.

6.1 Extraction of the 2H(e, e′p)n Reduced Cross Sections

From the theoretical cross sections introduced in Eq. 2.11 under the PWIA assump-

tion, we define the experimental (or theoretical) reduced cross section evaluated at

a kinematic bin k=(pr, θnq) as

(σexp,th
red )k ≡

(σexp,th)k

(Efpffrecσcc1)k

, (6.1)

where σexp,th is the fully corrected data (or theoretical) cross section, (Ef , pf) are the

final proton energy and momentum, respectivelty, frec is a recoil factor introduced

in Eq. 2.12, and σcc1 = σcc1(GEp , GMp) is one of two variations of the deForest [73]

off-shell cross section that describes the scattering between an electron and a loosely

bound (“free”) proton.

By dividing by the kinematical and recoil factors as well as the deForest cross

section, which depends on the proton elastic form factors, most of the kinematical

dependencies found on the cross sections are cancelled leaving only a dependence

on the neutron recoil momentum, pr. Therefore, the reduced cross sections are

closely related to the genuine momentum distributions of the nucleons provided the

kinematics have been chosen such that the PWIA is dominant. In analogy, this is

also observed in 1H(e, e′)p, where the elastic cross sections are divided by σMott to
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extract the proton elastic form factors which describe the internal structure of the

proton.

It is important to note that each of the kinematic variables in the denominator of

Eq. 6.1, similar to the fully corrected cross sections (σexp,th) determined in Section

5.9, were also determined at the averaged kinematic setting for each kinematic bin in

(pr, θnq). Finally, the reduced cross sections calculated for each missing momentum

data set were combined for overlapping bins in (pr, θnq) to gain better statistical

precision.

6.2 2H(e, e′p)n Momentum Distributions

The experimental and theoretical reduced cross sections have been combined for

overlapping bins in pr for each data set and are shown in Figs. 6.1-6.10. The

ratio of the experimental and theoretical reduced cross sections to the CD-Bonn

PWIA model has also been evaluated where the inset plot shows a more detailed

(close-up) representation of the ratios taken. In addition to the results presented

at Q2 = 4.5 ± 0.5 (GeV/c)2, reduced cross sections have also been determined at

Q2 = 3.5±0.5 (GeV/c)2 for comparison. For θnq = 35◦, 45◦ and 75◦ we have plotted

the reduced cross sections from the previous deuteron break-up experiment per-

formed in Hall A [55] at Q2 = 3.5± 0.25 (GeV/c)2.

The error on the cross sections have been determined by adding the statistical

and systematic errors in quadrature. See Appendices A1 and A2 for the tabulated

reduced cross sections and the associated statistical and systematic errors for each

(pr, θnq) bin at Q2 = 3.5± 0.5 and Q2 = 4.5± 0.5 GeV2, respectively.
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Figure 6.1: 2H(e, e′p)n reduced cross sections at θnq = 5 ± 5◦. Top panel: The
blue lines represent the theoretical calculations by J.M. Laget [60] using the Paris
potential [41] denoted by JML and the green/magenta lines are calculations from
M. Sargsian [59] using either the AV18 (green) [42] or CD-Bonn (magenta) [43] po-
tentials denoted by MS. The dashed lines are calculations within the PWIA and the
solid lines are calculations including FSI. Bottom panel: The dashed reference (ma-
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of the reduced cross section ratio shown in the bottom panel.

223



10−5

10−3

10−1

101

σ
re

d
[f

m
3
]

Reduced Cross Section, θnq = 15± 5◦

JML Paris PWIA

JML Paris FSI

MS AV18 PWIA

MS AV18 FSI

MS CD-Bonn PWIA

MS CD-Bonn FSI

Q2 = 4.5± 0.5 GeV2 (Hall C)

Q2 = 3.5± 0.5 GeV2 (Hall C)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
pr [GeV/c]

0

2

4

6

8

10

12

R
=
σ

re
d
/σ

C
D
−

B
on

n
P

W
IA

re
d

0.00 0.05 0.10 0.15 0.20

0.8

1.0

1.2

1.4

1.6
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Figure 6.3: 2H(e, e′p)n reduced cross sections at θnq = 25 ± 5◦. The lines are
described in Fig. 6.1.
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Figure 6.4: 2H(e, e′p)n reduced cross sections at θnq = 35 ± 5◦. The lines are
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Figure 6.5: 2H(e, e′p)n reduced cross sections at θnq = 45 ± 5◦. The lines are
described in Fig. 6.1.
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Figure 6.6: 2H(e, e′p)n reduced cross sections at θnq = 55 ± 5◦. The lines are
described in Fig. 6.1.
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Figure 6.7: 2H(e, e′p)n reduced cross sections at θnq = 65 ± 5◦. The lines are
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Figure 6.8: 2H(e, e′p)n reduced cross sections at θnq = 75 ± 5◦. The lines are
described in Fig. 6.1.
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Figure 6.9: 2H(e, e′p)n reduced cross sections at θnq = 85 ± 5◦. The lines are
described in Fig. 6.1.
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Figure 6.10: 2H(e, e′p)n reduced cross sections at θnq = 95 ± 5◦. The lines are
described in Fig. 6.1.
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6.3 Discussion of Results

Even though the focus of this experiment was to extract the 2H(e, e′p)n reduced

cross sections at 35◦ < θnq < 45◦ where the FSI are significantly reduced, it has

been possible to determine the reduced cross sections at a different range of neutron

recoil angles, 5◦ < θnq < 25◦ and 55◦ < θnq < 95◦, for comparison. In general, there

is an overall good agreement between the Halls A and C data (θnq = 35◦, 45◦ and

75◦) even though they were taken at different Q2 kinematics. This can be under-

stood from the fact that the kinematical dependencies of the cross sections have

been divided out in the reduced cross sections, as mentioned in Section 6.1. The

good agreement between both experiments at lower pr gives us confidence in the

measurements made at the higher missing momentum settings for which no previ-

ous data exist.

For all recoil angles shown in Figs. 6.1-6.10, at recoil momenta pr ≤ 250 MeV/c,

the reduced cross sections are well reproduced by all models when FSI are included.

The agreement at pr ≤ 250 MeV/c can be understood from the fact that this re-

gion corresponds to the long-range part of the NN potential where the One Pion

Exchange Potential (OPEP) is well known and common to all modern potentials.

Beyond pr ∼ 250 MeV/c at θnq = 35◦ and 45◦, the JML Paris and MS AV18

models significantly differ from the MS CD-Bonn calculation. In this region, the

JML Paris and MS AV18 cross sections are dominated by the PWIA and within

good agreement of each other up to pr ∼ 700 MeV/c. The MS CD-Bonn based

cross sections, in contrast, are generally smaller than those calculated with the JML

Paris or MS AV18 wave function in this region. In addition, for θnq = 35◦, the MS

CD-Bonn cross sections are dominated by the PWIA up to pr ∼ 800 MeV/c while

for θnq = 45◦, FSI start to contribute already above pr ∼ 600 MeV/c.
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At θnq = 75◦ and pr > 180 MeV/c, FSI become the dominant contribution to the

cross sections for all models that exhibit a similar behavior (smaller fall-off) that

eliminates any possibility of extracting the momentum distributions.

The difference between the deuteron wave functions with CD-Bonn, Paris and

AV18 potentials [169] is how the NN potential is modeled based on the empirical

NN scattering data. The CD-Bonn model is based on the One-Boson-Exchange

approach in which the nucleon-meson-meson couplings are constrained to describe

the NN scattering phase shifts extracted from the data. The interaction poten-

tial represents the static limit of this potential. The Paris and AV18 models are

phenomenological in which the Yukawa type interaction is introduced and parame-

ters are fit to describe the same NN scattering phase-shifts. The major difference

between CD-Bonn and Paris/AV18 potentials is that the former predicts a much

softer repulsive interaction at short distance that results in a smaller high momen-

tum component in the deuteron wave function in momentum space. The effect of

these local approximations on the NN potential are shown in Fig. 2 of Ref. [43].

To quantify the discrepancy observed between data and theory at higher miss-

ing momenta for θnq = 35◦ and 45◦, the ratio of the experimental and theoretical

reduced cross sections to the deuteron momentum distribution calculated using the

CD-Bonn potential is shown in the lower subplot of Figs. 6.1-6.10. For θnq = 35◦

and 45◦, the data are best described by the MS CD-Bonn FSI calculation for recoil

momenta up to pr ∼ 700 MeV/c and ∼ 600 MeV/c, respectively, with a ratio of

R ∼ 0.5 − 1 as compared to R ∼ 2 − 4 at θnq = 75◦ which indicates a significant

reduction in FSI at forward θnq angles. Furthermore, the agreement between the

Halls A and C data supports the Hall A approach of selecting a kinematic region

where recoil angles are small and FSI are reduced.
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At larger recoil momenta, where the ratio is R > 1 and increasing, for θnq = 35◦,

FSI start to dominate for missing momenta typically above 800 MeV/c for the MS

CD-Bonn calculation, while the other models predict still relatively small FSI below

900 MeV/c. At θnq = 45◦, the FSI dominance starts earlier for all models above 800

MeV/c and for the MS CD-Bonn based calculation, above 600 MeV/c.

Overall, it is interesting to note that none of the calculations can reproduce the

measured pr dependence above 600 MeV/c in a region where FSI are still relatively

small (< 30%). This behavior of the data is new and additional data in this kine-

matic region are necessary to improve the statistics.

At θnq = 75◦, FSI are small below pr ∼ 180 MeV/c, but do not exactly cancel the

PWIA/FSI interference term in the scattering amplitude, which results in a small

dip in this region in agreement with the data. At pr > 300 MeV/c, the data were

statistically limited as our focus was on the smaller recoil angles. The Hall A data,

however, show a reasonable agreement with the FSI from all models, which gives us

confidence in our understanding of FSI at smaller recoil angles.

6.4 Conclusion

This experiment extended the previous Hall A cross section measurements [55] on

the 2H(e, e′p)n reaction to very high neutron recoil momenta (pr > 500 MeV/c) at

kinematic settings where FSI were predicted to be small and the cross section was

dominated by the PWIA and sensitive to the short range part of the deuteron wave

function. The experimental and theoretical reduced cross sections were extracted

and found to be in good agreement with the Hall A data. Furthermore, the MS

CD-Bonn model was found to be significantly different than the JML Paris or MS

AV18 models and was able to partially describe the data over a larger range in pr. At
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higher missing momenta, however, all models were unable to describe the missing

momentum dependence of the data. Additional measurements of the 2H(e, e′p)n

would be required at a wider range in central missing momentum, as stated in

the original proposal [100], to reduce the statistical uncertainties in this very high

missing momentum region (pr > 500 MeV/c) and to better understand the large

deviations observed between the different models and data.
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APPENDICES

Appendix A: Reduced Cross Section Data Table

The 2H(e, e′p)n reduced cross sections are tabulated for fixed Q2 and θnq bins. The

pr,bin represents the neutron recoil (missing) momentum central bin with a bin width

of ±0.02 GeV/c and the pr,avg represents the recoil momentum averaged over each

pr,bin. The uncertainties in the reduced cross sections (σred) are expressed as relative

statistical (δσstat), normalization (δσnorm), kinematic (δσkin) and systematic (δσsyst)

and total (δσtot) where δσ2
sys = δσ2

norm + δσ2
kin and δσ2

tot = δσ2
stat + δσ2

syst.

A1. Reduced Cross Sections at Q2 = 3.5± 0.5 (GeV/c)2

Table A1: θnq = 5± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03027 6.37735E+00 33.23 3.66 3.40 5.00 33.61
0.060 0.05398 2.07666E+00 22.38 3.66 5.18 6.34 23.26

Table A2: θnq = 15± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.02958 5.72716E+00 18.91 3.66 3.61 5.14 19.59
0.060 0.05397 2.17760E+00 13.01 3.66 5.46 6.57 14.57
0.100 0.08841 8.09013E-01 24.49 3.66 6.83 7.75 25.69
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Table A3: θnq = 25± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03069 5.29384E+00 14.29 3.66 3.41 5.00 15.14
0.060 0.05562 1.95390E+00 9.28 3.66 5.70 6.78 11.49
0.100 0.09083 5.07866E-01 14.93 3.66 7.36 8.22 17.04
0.420 0.42185 1.26426E-04 37.87 5.30 0.43 5.32 38.25
0.460 0.46232 8.69872E-05 43.33 6.51 0.55 6.53 43.81

Table A4: θnq = 35± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.02981 5.75153E+00 12.70 3.66 2.77 4.59 13.51
0.060 0.05656 1.97889E+00 7.55 3.66 5.60 6.69 10.09
0.100 0.09245 4.77584E-01 9.78 3.66 7.48 8.33 12.85
0.140 0.12870 1.16331E-01 25.84 3.66 7.18 8.06 27.06
0.340 0.34540 2.95606E-04 36.50 5.30 1.07 5.41 36.90
0.380 0.38192 2.09371E-04 20.20 5.30 0.93 5.38 20.90
0.420 0.42697 1.09994E-04 18.63 7.51 1.22 7.61 20.12
0.460 0.46198 9.26702E-05 15.50 7.51 1.16 7.60 17.26
0.500 0.50001 3.99584E-05 19.22 8.41 1.28 8.51 21.02
0.540 0.53895 4.28367E-05 16.35 8.41 1.28 8.51 18.43
0.580 0.57799 3.07679E-05 17.99 8.41 1.30 8.51 19.90
0.620 0.61752 2.82866E-05 19.84 6.53 1.18 6.63 20.92
0.660 0.65675 2.00139E-05 27.60 6.53 1.26 6.65 28.39
0.700 0.69653 2.55271E-05 36.10 5.33 1.08 5.44 36.51
0.740 0.73542 3.82137E-05 44.95 3.77 0.78 3.85 45.12
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Table A5: θnq = 45± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03068 6.49330E+00 11.19 3.66 2.46 4.41 12.03
0.060 0.05804 1.80699E+00 6.22 3.66 5.23 6.39 8.91
0.100 0.09531 3.64016E-01 7.30 3.66 7.08 7.97 10.80
0.140 0.13365 8.33640E-02 13.32 3.66 6.86 7.77 15.43
0.180 0.16738 4.94696E-02 33.93 3.66 6.25 7.24 34.70
0.340 0.34768 4.20104E-04 36.82 5.30 1.72 5.57 37.24
0.380 0.38332 3.01566E-04 17.06 5.30 1.50 5.51 17.93
0.420 0.42863 1.61313E-04 13.62 6.51 1.61 6.70 15.18
0.460 0.46385 1.25089E-04 10.97 8.41 1.97 8.64 13.96
0.500 0.50159 9.86100E-05 9.51 8.41 1.96 8.63 12.85
0.540 0.54044 7.40245E-05 8.97 8.41 2.00 8.64 12.46
0.580 0.57974 6.26061E-05 8.39 8.41 2.10 8.67 12.06
0.620 0.61922 4.38124E-05 9.09 8.41 2.19 8.69 12.58
0.660 0.65889 3.68714E-05 9.49 8.41 2.33 8.73 12.89
0.700 0.69869 3.28269E-05 10.07 8.41 2.52 8.78 13.36
0.740 0.73850 3.02874E-05 10.81 8.41 2.68 8.83 13.96
0.780 0.77853 2.62080E-05 12.42 7.52 2.70 7.99 14.77
0.820 0.81836 1.64611E-05 16.49 8.41 3.21 9.00 18.79
0.860 0.85822 1.61986E-05 17.65 8.41 3.49 9.10 19.86
0.900 0.89815 1.67930E-05 18.69 7.53 3.58 8.34 20.46
0.940 0.93824 9.87289E-06 25.96 6.53 3.56 7.43 27.00
0.980 0.97838 7.98887E-06 30.33 7.52 4.41 8.72 31.56
1.020 1.01834 6.65554E-06 35.45 6.53 5.48 8.53 36.46
1.060 1.05790 6.25747E-06 38.86 6.53 25.32 26.15 46.84

257



Table A6: θnq = 55± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03135 5.68088E+00 10.16 3.66 1.76 4.06 10.94
0.060 0.05799 1.71593E+00 5.42 3.66 4.45 5.76 7.91
0.100 0.09654 3.21520E-01 5.85 3.66 5.97 7.01 9.13
0.140 0.13567 8.93298E-02 8.62 3.66 5.88 6.92 11.06
0.180 0.17490 2.23853E-02 18.36 3.66 5.14 6.31 19.41
0.380 0.38595 5.59781E-04 25.63 5.30 1.96 5.65 26.25
0.420 0.42326 2.84214E-04 16.63 5.30 1.77 5.59 17.54
0.460 0.46828 2.16829E-04 11.82 6.51 2.00 6.80 13.63
0.500 0.50462 1.91949E-04 9.00 8.41 2.51 8.78 12.57
0.540 0.54230 1.69112E-04 7.40 8.41 2.58 8.80 11.50
0.580 0.58117 1.25412E-04 7.05 8.41 2.73 8.84 11.31
0.620 0.62050 9.92010E-05 6.74 8.41 2.87 8.89 11.15
0.660 0.66011 9.09309E-05 6.21 8.41 3.09 8.96 10.90
0.700 0.69960 8.10597E-05 6.05 8.41 3.34 9.05 10.88
0.740 0.73933 6.87813E-05 6.23 8.41 3.56 9.13 11.05
0.780 0.77900 6.30654E-05 6.40 8.41 3.85 9.25 11.25
0.820 0.81856 5.16239E-05 7.20 8.41 4.18 9.39 11.83
0.860 0.85833 5.00020E-05 7.59 8.41 4.43 9.50 12.16
0.900 0.89803 3.77447E-05 9.31 8.41 4.81 9.69 13.44
0.940 0.93774 2.20978E-05 13.24 8.41 5.20 9.89 16.52
0.980 0.97741 2.37352E-05 14.04 8.41 5.65 10.13 17.31
1.020 1.01709 2.09706E-05 17.02 8.41 7.60 11.33 20.44
1.060 1.05664 1.30169E-05 25.95 6.53 25.11 25.95 36.70
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Table A7: θnq = 65± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03201 5.46553E+00 9.55 3.66 1.27 3.87 10.30
0.060 0.05898 1.72017E+00 4.87 3.66 2.83 4.63 6.72
0.100 0.09658 3.37215E-01 4.86 3.66 4.24 5.60 7.42
0.140 0.13579 7.71106E-02 7.00 3.66 4.18 5.56 8.94
0.180 0.17593 1.60043E-02 13.98 3.66 3.31 4.94 14.83
0.220 0.21683 3.86961E-03 31.70 3.66 2.54 4.46 32.02
0.260 0.25715 3.21213E-03 35.77 3.66 1.97 4.16 36.01
0.420 0.42498 8.41352E-04 43.89 6.44 2.11 6.78 44.41
0.460 0.46269 4.15285E-04 30.13 6.44 1.95 6.73 30.88
0.500 0.50123 5.38070E-04 15.63 5.30 1.86 5.62 16.61
0.540 0.54015 2.97346E-04 14.39 5.30 1.89 5.63 15.45
0.580 0.58396 2.43462E-04 12.73 6.51 2.40 6.93 14.50
0.620 0.62122 2.56870E-04 11.14 6.51 2.50 6.97 13.14
0.660 0.66021 1.78182E-04 13.00 6.51 2.68 7.04 14.79
0.700 0.69824 1.46847E-04 14.18 7.51 3.30 8.21 16.39
0.740 0.73708 1.17390E-04 17.61 6.51 3.03 7.17 19.01
0.780 0.77597 7.64768E-05 26.01 6.51 3.26 7.28 27.01
0.820 0.81519 8.07370E-05 33.59 5.30 2.91 6.05 34.13
0.860 0.85377 7.90722E-05 46.40 5.30 3.11 6.15 46.80

Table A8: θnq = 75± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03171 5.06893E+00 9.13 3.66 0.76 3.74 9.86
0.060 0.05974 1.57799E+00 4.50 3.66 1.54 3.97 6.01
0.100 0.09702 3.07899E-01 4.23 3.66 1.77 4.07 5.87
0.140 0.13679 5.87380E-02 5.97 3.66 1.65 4.02 7.20
0.180 0.17715 1.75816E-02 10.67 3.66 1.10 3.82 11.34
0.220 0.21708 4.50003E-03 21.85 3.66 0.82 3.75 22.17
0.260 0.25832 1.96842E-03 30.79 3.66 0.55 3.70 31.01
0.300 0.29956 1.38562E-03 32.14 3.66 0.36 3.68 32.35
0.340 0.34019 1.22510E-03 32.70 3.66 0.27 3.67 32.90
0.460 0.45934 7.70540E-04 40.98 3.66 0.31 3.67 41.15
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Table A9: θnq = 85± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03231 4.79539E+00 8.87 3.66 0.84 3.76 9.63
0.060 0.05981 1.57054E+00 4.30 3.66 0.53 3.70 5.67
0.100 0.09790 2.51174E-01 3.88 3.66 0.88 3.76 5.41
0.140 0.13759 5.62479E-02 4.99 3.66 1.15 3.84 6.29
0.180 0.17779 1.61925E-02 7.74 3.66 1.24 3.86 8.65
0.220 0.21862 5.88967E-03 12.69 3.66 1.28 3.88 13.27
0.260 0.25921 2.77418E-03 21.35 3.66 1.30 3.88 21.70
0.300 0.29994 1.88288E-03 19.32 3.66 1.24 3.86 19.71
0.340 0.33991 1.35843E-03 20.48 3.66 1.13 3.83 20.84
0.380 0.37952 9.67146E-04 24.63 3.66 0.99 3.79 24.92
0.420 0.41918 3.76107E-04 40.86 3.66 0.89 3.77 41.03

Table A10: θnq = 95± 5◦ at Q2 = 3.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03213 5.03786E+00 8.99 3.66 1.11 3.83 9.77
0.060 0.06053 1.50083E+00 4.27 3.66 1.98 4.16 5.96
0.100 0.09861 2.56864E-01 3.63 3.66 2.57 4.48 5.77
0.140 0.13869 5.57178E-02 4.38 3.66 3.07 4.78 6.48
0.180 0.17838 1.64757E-02 6.26 3.66 3.08 4.79 7.88
0.220 0.21883 7.18822E-03 8.31 3.66 3.04 4.76 9.58
0.260 0.25901 2.93957E-03 12.22 3.66 2.77 4.59 13.06
0.300 0.29899 1.24017E-03 18.02 3.66 2.40 4.38 18.54
0.340 0.33891 9.18492E-04 21.36 3.66 2.04 4.19 21.77
0.380 0.37883 9.05995E-04 22.41 3.66 1.67 4.03 22.77
0.420 0.41818 3.81181E-04 37.84 3.66 1.45 3.94 38.04
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A2. Reduced Cross Sections at Q2 = 4.5± 0.5 (GeV/c)2

Table A11: θnq = 5± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03259 5.03296E+00 42.52 3.66 4.31 5.65 42.90
0.060 0.06183 1.29738E+00 14.47 3.66 5.46 6.58 15.89
0.100 0.09878 2.97336E-01 10.63 3.66 5.28 6.42 12.42
0.140 0.13646 6.46574E-02 16.60 3.66 5.02 6.21 17.73
0.180 0.17414 2.42630E-02 32.29 3.66 4.87 6.10 32.86

Table A12: θnq = 15± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03223 4.95610E+00 27.92 3.66 4.08 5.48 28.46
0.060 0.06248 1.37967E+00 8.42 3.66 5.29 6.43 10.60
0.100 0.09853 3.01980E-01 6.37 3.66 5.21 6.36 9.00
0.140 0.13669 7.71973E-02 8.79 3.66 5.18 6.35 10.84
0.180 0.17523 2.30324E-02 17.23 3.66 5.34 6.47 18.41
0.220 0.21438 1.16646E-02 33.63 3.66 5.59 6.68 34.29

Table A13: θnq = 25± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03215 7.38964E+00 24.01 3.66 3.15 4.83 24.49
0.060 0.06256 1.30154E+00 6.82 3.66 4.61 5.89 9.01
0.100 0.09921 3.00459E-01 5.06 3.66 4.88 6.10 7.93
0.140 0.13785 7.18842E-02 6.82 3.66 5.21 6.36 9.33
0.180 0.17685 2.79617E-02 10.91 3.66 5.59 6.68 12.79
0.220 0.21664 1.25066E-02 17.84 3.66 5.81 6.86 19.12
0.260 0.25638 2.73915E-03 44.80 3.66 5.63 6.71 45.30
0.540 0.54391 2.40863E-05 42.51 5.30 0.41 5.32 42.84
0.580 0.58139 1.87981E-05 39.24 6.51 0.54 6.53 39.78
0.620 0.62026 1.87498E-05 31.00 8.41 0.75 8.44 32.13
0.660 0.65945 1.05641E-05 40.99 6.51 0.62 6.54 41.51
0.740 0.73868 1.44096E-05 35.55 6.53 0.72 6.57 36.16
0.780 0.77812 8.41457E-06 42.55 6.53 0.74 6.57 43.05
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Table A14: θnq = 35± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03181 4.00752E+00 20.91 3.66 2.52 4.45 21.38
0.060 0.06217 1.18175E+00 6.32 3.66 3.36 4.97 8.04
0.100 0.09914 2.89098E-01 4.60 3.66 4.09 5.49 7.17
0.140 0.13875 7.58637E-02 5.77 3.66 4.76 6.00 8.33
0.180 0.17780 2.00701E-02 10.12 3.66 5.22 6.38 11.97
0.220 0.21766 8.64055E-03 15.72 3.66 5.46 6.57 17.04
0.260 0.25754 2.78281E-03 28.92 3.66 5.25 6.40 29.62
0.460 0.46038 9.62137E-05 45.41 5.30 0.72 5.35 45.72
0.500 0.50522 6.00910E-05 28.20 5.30 0.71 5.35 28.70
0.540 0.54507 4.24708E-05 23.10 5.30 0.72 5.35 23.71
0.580 0.58242 1.86894E-05 26.66 7.51 1.09 7.59 27.72
0.620 0.62089 2.27589E-05 18.76 8.41 1.33 8.51 20.60
0.660 0.66017 1.23535E-05 21.67 7.51 1.26 7.62 22.97
0.700 0.69960 1.24201E-05 18.34 8.41 1.52 8.55 20.24
0.740 0.73908 1.00135E-05 19.13 8.41 1.63 8.57 20.96
0.780 0.77892 1.16154E-05 18.11 7.52 1.63 7.70 19.68
0.820 0.81867 6.12313E-06 23.62 8.41 1.91 8.62 25.14
0.860 0.85839 7.12090E-06 22.31 8.41 2.06 8.66 23.93
0.900 0.89810 4.19552E-06 31.34 6.53 1.97 6.82 32.07
0.940 0.93788 3.56356E-06 35.39 6.53 2.17 6.88 36.06
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Table A15: θnq = 45± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03147 6.12951E+00 21.33 3.66 2.06 4.20 21.74
0.060 0.06241 1.33396E+00 6.20 3.66 1.87 4.11 7.44
0.100 0.09921 2.56392E-01 4.58 3.66 2.79 4.60 6.49
0.140 0.13844 6.81619E-02 5.64 3.66 3.74 5.23 7.69
0.180 0.17838 2.09058E-02 8.57 3.66 4.24 5.61 10.24
0.220 0.21825 5.25342E-03 16.75 3.66 4.36 5.69 17.69
0.260 0.25782 2.83263E-03 24.31 3.66 4.10 5.50 24.93
0.500 0.50150 1.01565E-04 39.86 5.30 1.22 5.44 40.23
0.540 0.54628 6.89393E-05 25.86 5.30 1.25 5.45 26.43
0.580 0.58274 4.37230E-05 22.56 6.51 1.59 6.70 23.53
0.620 0.62105 4.00389E-05 19.21 6.51 1.69 6.73 20.35
0.660 0.65942 2.35715E-05 19.55 8.41 2.37 8.74 21.41
0.700 0.69700 3.33076E-05 13.85 8.41 2.56 8.79 16.40
0.740 0.73983 1.78688E-05 16.45 8.41 2.74 8.85 18.68
0.780 0.77941 1.78408E-05 15.02 8.41 2.99 8.92 17.47
0.820 0.81913 1.49904E-05 15.46 8.41 3.25 9.02 17.90
0.860 0.85887 8.17710E-06 20.51 8.41 3.50 9.11 22.44
0.900 0.89857 1.12852E-05 17.45 8.41 3.85 9.25 19.75
0.940 0.93835 7.34202E-06 23.14 7.53 3.83 8.45 24.64
0.980 0.97818 1.13769E-05 19.69 7.51 4.14 8.58 21.47
1.020 1.01796 6.96669E-06 25.22 8.41 6.49 10.63 27.37
1.060 1.05769 4.08780E-06 43.73 6.51 21.71 22.66 49.26

Table A16: θnq = 55± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03172 5.19176E+00 21.36 3.66 0.65 3.72 21.68
0.060 0.06218 1.39665E+00 6.48 3.66 0.77 3.74 7.48
0.100 0.09928 2.88440E-01 4.72 3.66 0.58 3.71 6.00
0.140 0.13833 7.07323E-02 5.86 3.66 1.67 4.03 7.11
0.180 0.17855 2.00806E-02 9.24 3.66 2.35 4.35 10.21
0.220 0.21843 7.04831E-03 14.24 3.66 2.59 4.49 14.93
0.260 0.25868 2.68877E-03 21.99 3.66 2.40 4.38 22.42
0.300 0.29881 1.20419E-03 33.39 3.66 2.02 4.18 33.66
0.660 0.66108 1.11857E-04 38.02 5.30 1.89 5.63 38.44
0.700 0.69701 5.89375E-05 45.24 5.30 2.01 5.67 45.60
0.740 0.74043 9.02150E-05 33.47 5.30 2.12 5.71 33.95

263



Table A17: θnq = 65± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03116 5.30229E+00 25.05 3.66 2.00 4.17 25.40
0.060 0.06157 1.38623E+00 7.47 3.66 2.78 4.60 8.77
0.100 0.09847 2.95014E-01 5.23 3.66 2.33 4.34 6.79
0.140 0.13752 7.10214E-02 6.39 3.66 1.25 3.87 7.47
0.180 0.17772 1.89572E-02 9.85 3.66 0.38 3.68 10.52
0.220 0.21785 4.85172E-03 17.33 3.66 0.46 3.69 17.72
0.260 0.25887 2.20313E-03 24.19 3.66 0.67 3.72 24.48
0.300 0.29937 1.11419E-03 32.38 3.66 0.66 3.72 32.60
0.340 0.33983 1.10155E-03 33.42 3.66 0.56 3.70 33.62
0.380 0.37986 7.82393E-04 40.87 3.66 0.45 3.69 41.04

Table A18: θnq = 75± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03205 4.87258E+00 29.30 3.66 4.72 5.98 29.90
0.060 0.06131 1.38829E+00 8.83 3.66 5.60 6.69 11.08
0.100 0.09788 2.68647E-01 6.34 3.66 4.58 5.87 8.64
0.140 0.13715 6.42865E-02 7.43 3.66 3.55 5.10 9.01
0.180 0.17692 1.72874E-02 10.83 3.66 2.58 4.48 11.72
0.220 0.21724 5.28775E-03 17.61 3.66 1.75 4.06 18.07
0.260 0.25809 3.33391E-03 22.42 3.66 1.23 3.86 22.75
0.300 0.29969 1.24831E-03 35.03 3.66 0.92 3.77 35.23
0.340 0.33965 1.09697E-03 38.01 3.66 0.72 3.73 38.20
0.380 0.37969 1.41619E-03 35.62 3.66 0.58 3.71 35.82

Table A19: θnq = 85± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03071 5.12075E+00 36.38 3.66 6.22 7.22 37.09
0.060 0.06108 1.16768E+00 11.57 3.66 7.25 8.12 14.13
0.100 0.09839 2.72421E-01 8.45 3.66 6.04 7.06 11.01
0.140 0.13708 6.28795E-02 9.87 3.66 5.20 6.36 11.74
0.180 0.17669 1.61885E-02 14.42 3.66 4.32 5.66 15.49
0.220 0.21679 5.35054E-03 22.55 3.66 3.65 5.17 23.14
0.260 0.25716 4.56765E-03 26.89 3.66 2.92 4.68 27.30
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Table A20: θnq = 95± 5◦ at Q2 = 4.5± 0.5 (GeV/c)2

pr,bin

[GeV/c]

pr,avg

[GeV/c]
σred

[fm3]
δσstats

[%]
δσnorm

[%]
δσkin

[%]

δσsyst

[%]
δσtot

[%]
0.020 0.03048 3.39695E+00 46.80 3.66 6.23 7.23 47.35
0.060 0.05984 1.63954E+00 16.85 3.66 8.27 9.05 19.12
0.100 0.09783 2.41635E-01 14.49 3.66 7.19 8.07 16.58
0.140 0.13606 8.15882E-02 17.95 3.66 6.17 7.18 19.33
0.180 0.17524 3.55495E-02 26.77 3.66 5.23 6.38 27.52
0.220 0.21358 3.30732E-02 46.09 3.66 4.55 5.84 46.46
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Appendix B: The Hall C Fast Raster

Figure B.1: Cartoon showing how the fast-raster system works. The beam bunches
feel a kick (time-varying magnetic force) along the (x, y) coordinates due to a time-
varying magnetic field and form a rectangular pattern at the target.

The Hall C fast raster (FR) system consists of a set of X and Y air-core magnets.

A linear1 (triangular) waveform generator provides a ∼ 25 kHz [113] time-varying

current to the FR magnets coils which produces an oscillating magnetic field trans-

verse to the beam axis. As the electron beam bunches pass by the FR-X and FR-Y

magnets, they are deflected by a magnetic force (“kick”) along the x and y axis,

1The first linear raster in Hall C has been operating since August 2002. The advantage of
the linear (triangular) waveform over the original sinusoidal waveform is the higher linear
velocity and suppression of the turning time at the crests and troughs of the oscillating
magnetic field. This suppression significantly reduces the dwelling time of the field at the
edges of the raster and contributes to less beam energy being deposited at the boundaries.
As a result, the overheating generated in the cryogenic target due to the edges of the
raster is reduced. For a detailed description of the linear raster, see Ref. [113].
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respectively. The “kick” to coordinate (∆x,∆y) at the target effectively smears out

the beam in a rectangular raster pattern (See Fig. B.1).

The deflection angle of the electron beam bunch along (x, y)2 -axes at the target

center is given by

θ∆x,y = ∆x, y/LFR, (B.1)

where the length from the center of the target to the average distance between FR-X

and FR-Y magnets is LFR = 13.56 m. To estimate the deflection of the beam at the

target, substitute Eq. B.1 into the equation of motion for a charged particle under

a magnetic field (Eq. 3.3) to obtain

pe = Ck

∫
By,x(t)d`

∆x, y/LFR

. (B.2)

From the FR-magnet specifications in Table 1 of Ref. [113], the field integral is given

by ∫
By,xd` = 8.1× 10−5 [T][m]

[A]
× Ix,y. (B.3)

Substituting Eq. B.3 in Eq. B.2 and solving for ∆x and ∆y,

∆x, y = 0.329× Ix,y
pe
, (B.4)

where ∆x, y is the electron beam bunch deflection in [mm] at the target center, Ix,y

is the FR-magnet current in [A] and pe is the electron momentum in [GeV/c]. Since

each FR-magnet has two coils and each coil gives equal deflection, both coils will

give double deflection, therefore Icoilx,y = Ix,y/2. Using this expression, Eq. B.4 can

be expressed as

∆x, y = 0.329× 2Icoilx,y

pe
, (B.5)

2The deflection equations of the FR-X and FR-Y magnets have the same form and are
denoted by the (x, y) subscripts to differentiate between the magnets.
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and the raster dimension along the (x, y)-axes are defined as twice the deflection

angle,

Rx,y ≡ 2∆x, y = 1.316× Icoilx,y

pe
. (B.6)

From Table 2 of Ref. [113], the maximum operating current of each FR-magnet is

Ipeak ≈ 100 A, and assuming that running the power supply at 80% of the voltage

is best for the long-term lifetime of the power supply, Ipeak ≈ 80 A [170]. The

maximum operating current per coil is then given by Icoil,maxx,y
= Ipeakx,y

/2 = 40

A. Using these approximations and Eq. B.6, the maximum raster dimension is

restricted to

R(x,y),max =
52.64

pe
. (B.7)

Therefore, for a 5-pass beam (pe =10.6 GeV/c) the maximum possible raster size is

Rx,max ×Ry,max = 5× 5 mm2. (B.8)

From these results and Eq. B.6, the maximum deflection is ∆xmax, ymax = R(x,y)max/2 =

2.5 mm. Starting from Eq. B.1, the maximum deflection angle at both ends (-,+)

of a target of length Ltgt is given by

θmax
∆x∓ =

∆xmax

LFR ∓ Ltgt

2

, (B.9)

θmax
∆y∓ =

∆ymax

LFR ∓ Ltgt

2

. (B.10)

Inserting the numerical values ∆x, y = 2.5 mm, LFR = 13560 mm, and Ltgt = 100

mm (10-cm long target) in Eqs.B.9 and B.10,

θmax
∆x∓ , θ

max
∆y∓ = (1.85× 10−4, 1.83× 10−4) rad. (B.11)

From Eq. B.11 the maximum deflection angle at both ends of the target along the

(x, y) axes is negligible for the maximum possible raster size, therefore, the raster is
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approximately uniform across the target length. This experiment used a raster size

of 2 × 2 mm2 across a 10-cm long target at 5-pass, therefore, the deflection angles

are expected to be even smaller than in Eq. B.11.

To detect and process the raster signals, the fast-raster system is equipped with

2 current probes and a field pickup probe. The current probes are used for precise

measurements of the magnet current amplitude and direct current (DC) offset de-

tection and the field pickup probe is used to detect the variations in the ramping

magnetic field. The signals are sent to a beam raster monitor in the hall that com-

pares the setting and readback parameters to create a fast shutdown detection for

the machine safety operation [113]. The signal from the field pickup probe is sent to

an ADC module in the Hall C Counting House and the raw ADC signals are then

further processed by the analysis software.
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