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We present a novel new strategy using artificial intelligence (AI) to build the first Al-based Monte
Carlo event generator (MCEG) capable of faithfully generating final state particle phase space in
high-energy reactions. We show a blueprint for integrating machine learning strategy with calibrated
detector simulations to build a vertex-level, AlI-based MCEG, free of theoretical assumptions about
femtometer scale physics. As the first steps towards this goal, we present a case study for inclusive
electron-proton scattering using synthetic data from the PYTHIA MCEG for testing and validation
purposes. Our quantitative results validate our proof of concept and demonstrate the predictive
power of the trained models. The work suggests new venues for data preservation to enable future
QCD studies of hadrons structure, and the developed technology can boost the science output of
physics programs at facilities such as Jefferson Lab and the future Electron-Ion Collider.

Since the early 1970s, Monte Carlo event generators
(MCEGs) have played a vital role in facilitating studies
of high-energy particle scattering. From the experimen-
tal perspective, MCEGs are crucial for modeling the re-
sponses of the complex arrays of detectors that measure
the energies and momenta of final state particles. The
development of modern MCEGs, such as PYTHIA [1],
HERWIG [2], or SHERPA [3], has been driven by a com-
bination of high-precision experimental data and theoret-
ical inputs. The latter have involved a mix of perturba-
tive QCD methods, describing the dynamics of quarks
and gluons at short distances, and phenomenological
models that map the transition from quarks and glu-
ons to observable hadrons, as well as nonperturbative
inputs such as parton distribution functions for applica-
tions involving hadrons in the initial state. In this work
we present an alternative approach to building an event
generator based on machine learning (ML), free of the-
oretical assumptions about the femtometer-scale physics
that controls the production of particles at high energy.

An MCEG can be viewed as a form of a data com-
patification utility, encapsulating large amounts of data
collected from multiple experiments which can be regen-
erated from the MCEG. On the other hand, the reliance
of existing MCEGs on theoretical assumptions of factor-
ization and hadronization models limits their ability to
capture the full range of possible correlations between
the produced particles’ momenta and spins. To date,
for instance, no MCEG is able to reproduce all possi-
ble single-spin asymmetries in inclusive or semi-inclusive
electron-nucleon deep-inelastic scattering (DIS).

Having an MCEG that faithfully simulates particle re-
actions is also important for the development of theoret-
ical models. In practice, experimental data analyses are

tailored to specific physical observables, which limits the
possibility of accessing some other observable that was
not conceived prior to the analysis. While it is possible
to reconstruct other observables by repeating the analy-
sis, the relatively high cost of transforming detector-level
events into physical observables that can be studied in
QCD is often prohibitive.

This scenario poses difficulty for developing theory,
as the generic trends from particle distributions provide
important insights into how to improve the theory us-
ing QCD factorization methods. For instance, in semi-
inclusive DIS different regions of phase space are ex-
pected to be controlled by different physical mechanisms.
Having access to generic gross features of the data can
provide hints about such mechanisms, and can motivate
corresponding theoretical development. Such generic fea-
tures of the data cannot be accessed from theory-based
MCEGs as they are, by construction, biased towards spe-
cific physical pictures to which its parameters are tuned.

In this Letter, we suggest a new strategy for con-
structing MCEGs using machine learning (ML) meth-
ods involving generative adversarial networks (GANSs) [4],
which have been utilized in high-energy physics as a tool
for fast Monte Carlo simulations [5-11]. A crucial fea-
ture of GANSs is their ability to generate synthetic data
by learning from real samples without knowing the un-
derlying physical laws of the original system. Using par-
ticle momenta as event representations, we present a case
study of inclusive electron-proton (ep) DIS. The results
provide a new venue for experimental data analysis by
building an Al-based MCEG that serves as a data com-
pactification tool, which has the potential to boost the
scientific discoveries at existing and future facilities such
as Jefferson Lab [12] and the Electron-Ion Collider [13].
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FIG. 1. Schematic blueprint of the Al-based event-level
data analysis framework “ETHER”, comprising a vertex-level
GAN (red boxes), which includes an event generator paired
with a discriminator that receives inputs from the detector-
level events, and a secondary folding GAN (green boxes) to
fold the vertex-level events with detector response to mimic
real detector-level events. The folding GAN must be trained
separately using calibrated detector simulators with synthetic
event samples to faithfully mimic the detector effects.

One of the challenges of any analysis of experimental
data is that data, in the form of final state particle mo-
menta, are affected by distortions introduced by particle
detectors. At present, such corrections are taken into ac-
count using unfolding procedures that attempt to correct
for the detector effects at the histogram level, and need
to be developed for each type of observable.

On the other hand, the GAN technology allows us
to define an analysis framework in which the unfolding
procedure can be realized at the event level. The nov-
elty of this approach is that once the Al-based MCEG
is trained along with detector response, arbitrary phys-
ical observables can be reconstructed, free of detector
effects as well as free of theoretical biases. A blueprint
for such an Al-based event-level data analysis framework
is illustrated in Fig. 1, which we refer to as the “empiri-
cally trained hadronic event regenerator” (ETHER). The
blueprint utilizes two GANs: (i) a GAN as a vertex-level
event generator, and (ii) a GAN for the event-level fold-
ing procedure to include detector effects for the vertex-
level events. Since the latter carries out the opposite of
the unfolding procedure, it still has the same goal for
accessing vertex-level distributions. While the full real-
ization of the blueprint in Fig. 1 is our ultimate goal, in
the current work we focus on an idealized situation in
which detector effects are absent.

For our idealized Al-based MCEG, the GAN model
is composed of a generator and a discriminator. The
generator transforms random noise through a deep neu-
ral network to produce candidate samples, while the dis-
criminator learns through another deep neural network to
differentiate the true samples from ones produced by the
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FIG. 2. Design of the ETHER in the absence of detector
effects. The GAN (red boxes) is composed of a generator
that creates synthetic events and a discriminator that trains
the generator to mimic true particle production. The FAT
procedure enhances the discriminator sensitivity to achieve
maximal fidelity for the production of synthetic data by the
generator. The Wasserstein and maximum mean discrepancy
(MMD) [11] loss functions provide a smooth metric to match
the distributions of fake and true events.

generator. The GAN training evolves as the generator
and discriminator compete adversarially, each updating
their parameters during the training process. Eventually,
the GAN is able to produce synthetic samples such that
the discriminator can no longer distinguish them from
the real samples.

Although GANs have demonstrated impressive re-
sults in applications such as generating near-realistic im-
ages [14], music [15], and videos [16], training a successful
GAN model is known to be notoriously difficult. Many
GAN models suffer from major problems, including a
mode collapse, non-convergence, a model parameter os-
cillation, destabilization, vanishing gradient, and overfit-
ting due to unbalanced training of the generator and dis-
criminator. Approaches and techniques to address these
general problems have been proposed and discussed re-
cently in the literature [17-19].

Unlike common GAN applications, such as the gener-
ation of realistic and high resolution images, the success
of our GAN application as an MCEG relies on its ability
to faithfully reproduce the aggregated representation of
events given by histograms or cross sections. The lat-
ter typically span over several orders of magnitude, with
complex correlations among the particle momenta, and
its reproduction via synthetic events generated by the
GAN requires custom-designed architectures and train-
ing strategies beyond pre-existing and commonly used
architectures.

In Fig. 2 we present our ML prototype for the
Al-based MCEG built upon the GAN framework and
extended with a feature-augmented and transformed
(FAT) strategy, which we refer to as the FAT-GAN. Our
approach is based on the following scheme:



e We design the generator to produce a minimal set
of event features, and reconstruct the rest of the
features using momentum conservation and particle
on-shell conditions. By construction we therefore
enforce the generator to obey basic physics laws,
and prioritize the learning on particle momentum
distributions and particle correlations.

e We use a suitable transformation of variables for
the feature space to flatten the particle distribu-
tions and reinforce energy and momentum conser-
vation in cases where the training is on inclusive
particle samples.

e To increase the discriminator sensitivity to parti-
cle correlations, the feature set is augmented with
additional features such as combinatorial products
among particle momenta.

We emphasize that the success of training the FAT-GAN
relies on a careful choice of the feature sets, parameter
initialization, and selection of hyper-parameters.

In our case study we apply the FAT-GAN to inclu-
sive electron-proton scattering, ep — e’X, where the
scattered electron e’ is detected with momentum k' and
energy F’, we use event samples from the PYTHIA [1]
MCEG as a surrogate for real events. While our ultimate
goal is to train on real experimental events using the ML
design in Fig. 1, the case study provides unique insights
into the GAN capabilities for generating event “images”,
as well as identifying challenges in formulating a suitable
feature space to be learned by the FAT-GAN.

Since the generator only produces inclusive electron
samples, momentum conservation cannot be imposed ex-
actly. We therefore employ a series of transformations on
the momentum vectors to generate a set of transformed
features, which help the generator to produce the phase
space for the electrons within physical limits. The feature
set to be used as input to the discriminator is further aug-
mented by including the scattered electron’s transverse
momentum, k7., the energy E’ (derived from the on-shell
condition) and the momentum correlations kjk;, ki k.
and ky k' as additional features.

The FAT-GAN architecture in Fig. 2 is designed with
the following characteristics:

— The generator: The input to the generator is a
100-dimensional white noise array centered at 0 with
unit standard deviation. The generator network consists
of 5 hidden dense layers, each with 512 neurons, acti-
vated by a leaky Rectified Linear Unit (ReLU) function.
The last hidden layer is fully connected to a 3-neuron
output, activated by a linear function representing the
generated features.

— Feature augmentation and transformation: A
customized Lambda layer is incorporated to calculate
the augmented features from the generated features.

— Discriminator: The output of the feature augmen-
tation and transformation is passed as an input for the
discriminator which consists on 5 hidden dense layers,
each of which has 512 neurons and activated by a leaky
ReLU function. To avoid overfitting, a 10% dropout rate
is applied to each hidden layer. The last hidden layer is
fully connected to a single-neuron output, activated by
a sigmoid function, where “1” indicates a true event and
“0” is a fake event.

— Loss functions: The discriminator D is trained to
give D(F') = 1 for each training sample F' generated by
PYTHIA, and D(f) = 0 for each sample F produced by
the generator. The discriminator is optimized using the
Wasserstein loss with gradient penalty [20] to improve
training stability and reduce the likelihood for mode
collapse. The loss function Lp of the discriminator is
defined as

Lp = (E[D(F))] - E[D(F)])

= 2 (1)
+AEs_p_[(IVD(E)]2 — 17,

where E denotes the expectation value. The first term
in (1) measures the Wasserstein distance [21], while the
second term is the gradient penalty, where F is arandom
sample from Pg, defined by a uniform distribution along
the straight lines between pairs of samples from the train-
ing samples and the generator’s output. The coefficient
A is a harmonic parameter to balance the Wasserstein
distance and the gradient penalty.

To ensure that the distributions of the event features
created by the generator match well with the true dis-
tributions, we incorporate a two-sample test based on
kernel MMD in ETHER. To compare two distributions,
the MMD employs a kernel-based statistical test method
to determine if the two samples were drawn from differ-
ent distributions. As a result, the loss function L of the
generator includes a Wasserstein distance term from the
discriminator and an MMD term [22],

Lg = —E[D(F))] + nMMD?(F, F), (2)
The MMD

where 7 is the balancing hyperparameter.
term is defined as

MMD?(F, F) = Eg, r.,~pp [F(Fu, Fy)]
+ Ep, F~pg [k(Fy, Fi)] (3)
—2Ep,~pp,Fopp K (Fu, Fy)),

where k(F,, F}) is a positive definite kernel function.
In this analysis we select a Gaussian kernel such that
k(F,, F,) = exp|—(F, — F})?/20?], where o is the hyper-
parameter determining the MMD resolution, tuned to
the same order of magnitude as the event feature width.

The combined network is trained adversarially for 100k
epochs, where an epoch is defined as one pass through
the training dataset. A batch of 10k events is employed
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FIG. 3. Phase space distributions (with yield normalized

to unity) for inclusive ep scattering from PYTHIA (black)
and ETHER (red with yellow bands) trained on the electron
momenta k; (i=z,y, 2, T) and energy E’, with predictions for
the reconstructed variables 6, ¢, Q% and Zbj (vertical scales
for 0 and xpj are given on the right hand sides of the panels).
The ratios of the ETHER distributions to PYTHIA are shown
at the bottom of each panel, with the uncertainty bands for
ETHER generated via bootstrap.

to ensure that there are sufficient samples to calculate a
stable MMD value in each batch, which contains random
examples from the training samples. For the optimizer
we use Adam [23] with a 107 learning rate, 5 = 0.5,
and B2 = 0.9. To balance the generator and discriminator
training, the training ratio is set to 5.

In Fig. 3 we compare the inclusive ep phase space dis-
tributions for the scattered electron, with yields normal-
ized to unity, from the PYTHIA training samples and
those generated from ETHER with the same statistics,
at a center of mass energy of 100 GeV. The uncertainty
bands were generated by training 10 independent FAT-
GANSs, where for each training the samples were pre-
pared using the bootstrapping procedure (taking ran-
dom samples with replacement). Each of the features on
which the generator is trained, namely the components
ki (i = z,y,z) of the electron momentum, the electron

transverse momentum k. = | /k/? + k;?, and the energy

K + k2 + m2 display sharp peak structures with
tails that fall rapidly within the phase space. Despite
variations over several orders of magnitude, ETHER is
able to learn the underlying hidden distributions directly
from the training events. Its predictability worsens in
regions where the event rates are low, as reflected in the
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FIG. 4. Comparison of the neutral current inclusive ep (re-

duced) cross section O’ﬁ+p (scaled by a factor 2°) from the
HERA collider [24] (black points) with data generated from
PYTHIA [1] (yellow solid lines) and the trained ETHER (red
dashed lines).

ratio plots, consistent with statistical expectations.

While the momenta &, and energy E’ were part of the
feature sets in the training, the polar and azimuthal scat-
tering angles 6 and ¢ are derived quantities. Even when
these features were not included in the training set, Fig. 3
shows that ETHER is able to predict correctly the true
distribution within uncertainties. Also included are pre-
dictions for the standard DIS variables, namely, the four-
momentum transfer squared Q% = —(k — k’)? and the
Bjorken scaling variable z1,; = Q2?/2P- (k—Fk'), which are
found to be in excellent agreement with PYTHIA. Since
the structure functions and parton distribution functions
extracted from DIS measurements depend explicitly on
Tp; and Q?, the results in Fig. 3 indicate that physical
observables can be accessed a posteriori from the event-
level distributions even if they are not included in the
original data analysis.

As an example of ETHER’s ability to replicate real
data, in Fig. 4 we compare the etp neutral current in-
clusive DIS (reduced) cross section o€ ? from the HERA
collider [24] with data generated from PYTHIA [1] and
with ETHER trained on PYTHIA samples at HERA



kinematics. Note that the high-zy; and high-Q? region
is expected to have larger statistical errors, reflecting
the smaller event rates relative to those in the low-zp;
and low-Q? region. The cross section reconstructed with
1M PYTHIA samples indeed exhibits rather noisy be-
havior at high xy,; and Q2. While ETHER was trained
on the same 1M PYTHIA samples, the reconstructed
ETHER cross sections in Fig. 4 were generated from
100M trained samples. Consequently, the phase space
with 100M events populates the high-zy; and high-Q? re-
gion more densely, providing statistical convergence for
the reconstructed cross sections.

More strikingly, the Q2 dependence of the synthetic
cross sections displays the scaling behavior consistent
with the HERA data and theoretical expectations from
perturbative QCD [25]. The fact that ETHER was
trained with low statistics relative to the number of sim-
ulated synthetic samples highlights the super-resolution
capabilities of our generator, as encountered in earlier ML
applications for images. This demonstrates that train-
ing an Al-based MCEG allows the reconstruction of ob-
servables in regions of phase space that have low rates.
The ETHER technology therefore offers the possibility of
boosting the scientific discoveries beyond the maximum
machine luminosity attainable for a given experiment.

While the long term goal remains to build a generator
capable of producing vertex-level events for QCD studies
that can be trained directly on experimental data, the
present analysis is an important proof of concept that
demonstrates the viability of an Al-based MCEG, free
of theoretical bias about the underlying particle dynam-
ics. The promising results found with the ETHER sim-
ulations of synthetic as well as real data suggests po-
tentially important applications of the Al-based technol-
ogy to physical processes beyond inclusive ep scattering.
As obvious improvements of this technology, we envis-
age implementation of the event-level folding tool based
on GANSs and trained on calibrated detector simulators,
as well as integration of the folding with the FAT-GAN
framework, where the generator produces vertex-level
events while the discriminator is trained on detector-level
events.

Future extensions will include dedicated closure
tests of the super-resolution capabilities of GANs in
phenomenological applications, such as the extraction of
parton densities in global QCD analysis [26]. The use of
the trained Al-based MCEG as a data compactification
utility will also allow future exploration of QCD beyond
the physical observables that were conceived of during
the data taking, thus boosting the scientific discovery
potential of experimental physics programs at current
and planned facilities such as Jefferson Lab [12] and the
Electron-Ion Collider [13].
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