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Focusing on three-pion states with maximal isospin (π+π+π+), we present the first non-perturbative
determination of an energy-dependent three-hadron scattering amplitude from first-principles QCD.
The calculation combines finite-volume three-hadron energies, extracted using numerical lattice QCD,
with a relativistic finite-volume formalism, required to interpret the results. To fully implement
the latter, we also solve integral equations that relate an intermediate three-body K matrix to the
physical three-hadron scattering amplitude. The resulting amplitude shows rich analytic structures
and a complicated dependence on the two-pion invariant masses, represented here via Dalitz-like
plots of the scattering rate.

Introduction — The three-body problem lies at the core
of a broad range of outstanding questions in quantum
chromodynamics (QCD), from the determination of three-
body nuclear forces to the nature of the Roper resonance,
the lowest-lying excitation of the nucleon. In particular,
the largest systematic uncertainty in QCD-based structure
calculations of light nuclei is the estimate of the three-
nucleon force (see, for example, Ref. [1]). More generally,
the majority of QCD resonances lie above, and couple
strongly to multi-hadron asymptotic states including those
with three hadrons. For example, the Roper has defied
simple quark-model descriptions, due in part to its nature
as a broad resonance with a ∼ 30% branching fraction to
Nππ. A rigorous QCD calculation would elucidate the
role of non-perturbative dynamics in the Roper’s peculiar
properties, e.g. the fact that it has a lower mass than the
negative-parity ground state, which seems unnatural from
the perspective of the quark model [2, 3].

As a necessary step towards studying a broad class of
hadronic systems with significant three-hadron branching
fractions, in this work we present the first study of an
energy-dependent three-body scattering amplitude from
QCD. This non-perturbative result is achieved by the
coalescence of three novel techniques: a calculation of
finite-volume three-hadron energies based in numerical
lattice QCD using the distillation method [4], a relativis-
tic finite-volume formalism to relate the energies to K
matrices, and a numerical evaluation of corresponding in-
tegral equations to convert the latter into the three-hadron
scattering amplitude. The theoretical basis required to
achieve these final two steps was derived in Refs. [5, 6].1

This work considers the scattering of three-pion states
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with maximal isospin (I = 3) in QCD with three dynami-
cal quarks (Nf = 2+1): two degenerate light quarks, with
heavier-than-physical mass corresponding to a pion mass
mπ ≈ 391 MeV, and a strange quark. The calculation is
performed on two lattice gauge ensembles, differing only
in their spatial and temporal extents. Note that both
the maximal-isospin three-pion system, and the two-pion
subsystem to which it couples, are expected to be weakly
interacting and not to couple to any QCD resonances.

Many numerical studies of three-hadron states have
been published over the last decade, ranging from early
perturbative work describing the three-pion ground state
[45] to more recent results using quantization conditions
to study ground [46] and excited states [47–49], with the
latter set each analyzing the lattice QCD spectrum pub-
lished in Ref. [50]. Independent sets of finite-volume ener-
gies have also been calculated and analyzed in Refs. [51]
and [52], with the latter making the impressive step of
calculating at the physical value of the pion mass. The
present investigation goes beyond this previous work, by
providing the first complete numerical determination of
physical scattering amplitudes for three-body systems.

In the following, we first discuss our determination
of two- and three-pion finite-volume energies, before de-
scribing the fits used to relate these to infinite-volume K
matrices. This then directly leads us to the extraction
of the full 3π+ → 3π+ scattering amplitude, by solving
known integral equations. Various details of the analysis
are presented in the supplementary material.

Spectral Determination — Figure 1 summarizes the two-
and three-pion finite-volume spectra calculated in this
work.2 The figure also shows the “non-interacting” finite-

general methods for relating finite-volume energies to scattering
amplitudes for both two- and three-body states. See Refs. [7–25]
and Refs. [26–44], respectively.

2 Two-pion energies on the larger volume have already appeared in
Ref. [53].
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FIG. 1. The π+π+ and π+π+π+ finite-volume spectra in the
center-of-momentum frame for the relevant finite-volume irreps
with various overall momenta, as explained in the text. Points
are computed energy levels on the two volumes with error
bars showing statistical uncertainties. Each rectangular insert
shows a vertical zoom of the region indicated by the small
neighboring rectangle. Grey curves are the “non-interacting”
finite-volume energies, i.e. the energies in the absence of any
interactions between pions. Blue curves are predictions from
the finite-volume formalism based only on the two-particle
scattering length, given in Eq. (4).

volume energies in the absence of interactions between
pions and the predictions from the finite-volume formalism
discussed later.

Computations were performed on anisotropic lattices
which have a temporal lattice spacing, at, finer than
the spatial lattice spacing, as (at = as/ξ with ξ =
3.444(6) [53]), and two cubic spatial volumes with pe-
riodic boundary conditions. There are 2 + 1 flavors
of dynamical clover fermions, with three-dimensional
stout-link smearing in the fermion action, and a tree-
level Symanzik-improved gauge action. The bare pa-
rameters and basic lattice properties are detailed in
Refs. [54, 55], and some specific details of the ensembles
used in this work are summarized in Table I. Setting the
scale via a−1

t = mexp
Ω (atm

latt
Ω )−1,3 and combining with

3 where atmlatt
Ω = 0.2951(22) was measured in Ref. [56] and mexp

Ω

atmπ = 0.06906(13) [53] and atmK = 0.09698(9) [58],
then yields mπ ≈ 391 MeV and mK ≈ 550 MeV.

The spectrum of energies in a finite volume is discrete
and each energy level provides a constraint on the scatter-
ing amplitudes at the corresponding center-of-momentum
energy. To obtain more constraints, we perform calcu-
lations where the the two-pion and three-pion systems
have overall non-zero momentum, P , as well as for P = 0.
Momenta are quantized by the cubic spatial boundary
conditions, P = 2π

L (n1, n2, n3), where {ni} are integers,
and we write this using a shorthand notation as [n1n2n3].

In this work we restrict attention to S-wave scattering.
The reduced symmetry of a cubic lattice means that total
angular momentum, J , is not a good quantum number
and instead channels are labelled by the irreducible repre-
sentation (irrep, Λ) of the octahedral group with parity for
P = 0 or the relevant subgroup that leaves P invariant
for P 6= 0 [59, 60]. We consider the relevant irreps which
contain J = 0: A−1 (A+

1 ) for πππ (ππ) at rest and A2(A1)
for πππ (ππ) with non-zero P . Isospin, I, and G-parity,
G, are good quantum numbers in our lattice formulation;
these distinguish the two-pion (IG = 2+) and three-pion
(IG = 3−) channels. We neglect higher partial waves here,
in particular the two-particle D-wave which mixes with
the S-wave in the finite-volume energies. As described in
Ref. [53], a nonzero D-wave interaction can be extracted,
in particular if aided by the consideration of other, non-
trivial finite-volume irreps. However, as can also be seen
from the earlier work, this has a small influence on the
A+

1 and A1 two-pion energies considered here.4

To reliably extract the discrete set of energy levels
in the finite volumes considered here, in particular the
many excited energies in each channel, we have com-
puted two-point correlation functions using a large basis
of appropriate creation and annihilation interpolating
operators. From these, the finite-volume spectra were de-
termined using the variational method [61–63], with our
implementation described in Refs. [64, 65]. This amounts
to calculating a matrix of correlation functions,

Gij(t) = 〈Oi(t)O†j(0)〉 , (1)

and diagonalizing M(t, t0) = G(t0)−1/2 ·G(t) ·G(t0)−1/2

for a fixed t0. One can show that the corresponding eigen-
values satisfy λn(t, t0) → e−En(L)(t−t0), where En(L) is
the n’th energy level with overlap to some of the operators
in the basis. This basic methodology has been applied
to a wide range of two-hadron scattering observables for
several phenomenologically interesting channels [53, 66–
77]. See Sec. 1 of the supplementary material for some
example plots of λn(t, t0).

is the experimentally determined Ω baryon mass from Ref. [57]
4 There is nonetheless, in principle, a systematic uncertainty as-

sociated with neglecting the D-wave contribution. Given our
consistency with the results of Ref. [53], this appears to be well-
below the statistical uncertainty in the present fits. See also
Secs. VIII A and B of that work for more discussion.
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volume mπL Ncfg Nvec n
[000]
3π n

[001]
3π n

[011]
3π n

[111]
3π

203 × 256 4.76 256 128 8 8 11 7

243 × 128 5.71 553 162 10 16 20 7

TABLE I. Summary of lattice ensemble volumes (presented as
(L/as)

3 × T/at), number of gauge-field configurations (Ncfg),
number of distillation vectors (Nvec), and number of operators
used for each total momentum (nP

3π).

In order to robustly interpolate the two- and three-
pion energy eigenstates we use operators with two- and
three-meson-like structures in the appropriate irrep, con-
structed from products of single-meson-like operators pro-
jected to definite spatial momentum. The latter are built
from linear combinations, chosen to optimize overlap to
the single-pion states, of fermion bilinears of the form,
ψ̄ΓD . . .Dψ, where ψ is a quark field and D is a dis-
cretized covariant derivative. Details of these operator
constructions are given in Sec. 5 of the supplementary
material, and the two-pion and three-pion operators are
listed in respectively Table VI and Tables VII - XI. Using
such a wide variety of optimized operators, and espe-
cially multi-hadron operators with momentum-projected
single-hadron components, allows one to minimize excited
state contamination and extract the energies reliably and
precisely from small values of t. This approach is made
feasible due to the distillation method [4] which we em-
ploy to efficiently compute the numerous quark-field Wick
contractions that are required.

Returning to the two- and three-pion spectra summa-
rized in Fig. 1, we observe a one-to-one correspondence be-
tween the computed energy levels and the non-interacting
energies in all panels, with the computed values slightly
higher in energy than the non-interacting levels. This sug-
gests that the system is weakly interacting and repulsive
in both the two- and three-hadron sectors. To extract
quantitative meaning from the spectra, in the next section
we analyze the finite-volume energies in terms of two- and
three-hadron K matrices.

Analyzing the finite-volume spectra — Beginning with an
overview of scattering observables, the two-pion scattering
amplitude is defined as the connected part of the overlap
between an incoming π+π+ asymptotic state (with mo-
menta p,−p) to an outgoing π+π+ state (with p′,−p′).
Without loss of generality we have assumed the center-of-
momentum frame. We also define p = |p| = |p′|, where
we have used that the magnitudes must be equal to satisfy
energy conservation. In addition, s2 ≡ E?22 ≡ 4(p2 +m2

π)
defines the squared center-of-momentum frame energy.
The only remaining degree of freedom is the scattering an-
gle between p and p′. In this work we focus on the S-wave
scattering amplitude, denoted M2, in which this angle is
integrated to project onto zero-angular-momentum states.
Finally we recall the simple relation between M2 and

FIG. 2. Example of data and fits for K2 and K3,iso, as described
in the text. The red points are given by substituting finite-
volume energies into −1/F (E2,P , L) and −1/F3,iso(E3,P , L)
for the two- and three-particle energies, respectively, with the
volume and P value indicated in the legend. The green bands
represent the fit shown in Eq. (4). For the bottom panel we
normalize to m2

πKLO
3,iso = 4608π2(mπa0)2, with mπa0 taken

from Eq. (4). This simple relation between K3,iso and the
two-particle scattering length holds at leading order in chiral
perturbation theory, as was first derived in Ref. [47].

the K matrix in the elastic region, K−1
2 = ReM−1

2 .5 In
contrast toM2, K2 is real for real s2 and is meremorphic
in a region of the complex s2 plane around s2 = 4m2

π. In
this work we also consider an analogous, three-body K
matrix, introduced in Ref. [5] and denoted by Kdf,3.

In the two-pion sector, in the case that the S-wave
interactions are dominant, the scalar-irrep finite-volume
energies satisfy the quantization condition [7, 8, 10],

K2(E?2 ) + F−1(E2,P , L) = 0 , (2)

where E?2 ≡
√
E2

2 − P 2 is the center-of-momentum en-
ergy and F (E,P , L) is a known geometric function. For
the three-body sector, we use the isotropic approximation
of the general formalism derived in Ref [5], which takes
an analogous form, now for pseudoscalar-irrep energies

K3,iso(E
?
3 ) + F−1

3,iso[K2](E3,P , L) = 0 , (3)

where the notation is meant to stress that
F3,iso[K2](E3,P , L) is a functional of K2(E?2). F3,iso

5 In addition, the imaginary part of M−1
2 is completely fixed by

unitarity so that K2 is the only part free to depend on the
dynamics of the system. See, e.g., Ref. [24] for more details.
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is defined in Eq. (39) of Ref. [5]. Here K3,iso is the
component of Kdf,3 that only depends on the total
three-hadron energy, i.e. is “isotropic”. Equation (3)
holds only when Kdf,3 is well approximated to be
isotropic and our fits give evidence that this is a good
approximation for this system.

Combining these two conditions with the energies plot-
ted in Fig. 1 allows one to constrain both the two- and
three-hadron K matrices. One possible strategy is to fit
a parametrization of K2 and use this to then determine
the energy dependence of K3,iso. This is summarized in
Fig. 2. An alternative approach is to parametrize both K
matrices and fit these simultaneously to the entire set of
finite-volume energies. A detailed discussion with a wide
range of fits is given in Sec. 2 of the supplementary ma-
terial. Both strategies give consistent results and the key
message is that the full data set is well described by a con-
stant K3,iso that is consistent with zero, together with the
leading-order effective range expansion: tan δ(p) = −a0p
where K2(E?2) = −16πE?2 tan δ(p)/p. Here the second
equation defines the S-wave scattering phase shift, δ(p),
and the first defines the scattering length, a0. Our best
fit, performed simultaneously to all spectra shown in
Fig. 1 but with a cutoff in the center-of-momentum frame
energies included,6 yields

mπa0 = 0.296± 0.008

m2K3,iso = −339± 770

[
1.0 0.6

1.0

]
, (4)

with a χ2 per degree-of-freedom of 64.5/(37− 2) = 1.84.
The square-bracketed matrix gives the correlation be-
tween the two fit parameters. This is consistent with the
previous determination of the scattering length at this
pion mass, presented in Ref. [53], and is also the value
used to generate the blue curves in Fig. 1 (together with
K3,iso = 0). In Fig. 2 we illustrate the same fit using the
two horizontal blue curves. In addition, we include the
light-green curves corresponding to linear fits in p cot δ(p)
as well as K3,iso. These are described in detail in the
supplementary material where they are given the labels
D2 and B3(K3).

3π+ scattering amplitude — Following the relativistic
integral equations presented in Ref. [6], we can write the
J = 0 and K3,iso = 0 amplitude as follows:

M(u,u)
3 (p, k) = −M2(E?2,p)Gs(p, k)M2(E?2,k)

−M2(E?2,p)

∫
k′
Gs(p, k

′)M(u,u)
3 (k′, k) , (5)

6 This fit is denoted by B2+3 in Sec. 2 of the supplementary
material. As explained there, the fitted data includes all two-
pion energies below E?2,cut = 3.4mπ and all three-pion energies
below E?3,cut = 4.4mπ, with both cutoffs applied to energies in
the center-of-momentum frame.
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FIG. 3. Top: Dalitz-like plot of |M3|2 for
√
s3 = 3.7m with

final kinematics fixed to {p′21 , p′22 } = {0.01m2
π, 0.7m2

π} =⇒
{m′12, m

′
13} = {2.1mπ, 2.25mπ}. Bottom: Same total energy,

now with incoming and outgoing kinematics set equal, as
discussed in the text.

where
∫
k
≡
∫
d3k/[(2π)32ωk] and we have introduced

Gs(p, k) ≡ −H(p, k)

4pk
log

[
α(p, k)− 2pk + iε

α(p, k) + 2pk + iε

]
, (6)

α(p, k) ≡ (E3 − ωk − ωp)2 − p2 − k2 −m2 . (7)

M2 is the S-wave two-particle scattering amplitude, in-
troduced above, which depends on the invariant E?22,k ≡
(E3 − ωk)2 − k2, with ωk =

√
k2 +m2. The function Gs

encodes the spectator exchange, projected to the S-wave.
It inherits a scheme dependence through the smooth cut-
off function H, defined in Eqs. (28) and (29) of Ref. [5]
[and in Eq. (30) of Sec. 3 in the supplementary mate-
rial]. This scheme dependence is matched by that inside
of K3,iso such that the resulting scattering amplitude is
universal.

To use Eq. (5) in practice, one requires a parameteri-
zation for M2. As described in the previous section, the



5

π+π+ system is well described using the leading order
effective range expansion for M2,

M2(E?2 ) =
16πE?2

−1/a0 − i
√
E?22 /4−m2

π

. (8)

Finally, the (u, u) superscript emphasizes that specific
spectator momenta, k and p, are singled out in the initial
and final states. Following the derivation of Ref. [6], the
final step is to symmetrize with respect to the spectators,
to reach

M3(s3,m
′2
12,m

′2
13,m

2
12,m

2
13) =

∑
pi∈Pp

∑
k∈Pk

M(u,u)
3 (p, k) ,

(9)
where Pp = {p,a′,−p−a′} and Pk = {k,a,−k−a}. We
have presented the left-hand side as a function of the five
Lorentz invariants that survive after truncating to J = 0
in both the two and three particle sector: the squared
center-of-momentum frame energy, s3, as well pion-pair
invariant masses for the initial and final states. These
are defined by introducing the notation {k,a,−k− a} =
{p1,p2,p3}, then for example

m2
12 = (p1 + p2)2 = (E?3 − [m2

π + p2
3]1/2)− p2

3 , (10)

where the middle expression depends on on-shell four-
vectors with p2

1 = m2
π.

In the top panel of Fig. 3 we show a Dalitz-like plot of
|M3|2 as a function of (m′12,m

′
13), with all other kinemat-

ics fixed as indicated in the caption. The inputs to this
plot are the best-fit scattering length, given in Eq. (4),
together with the constraint K3,iso = 0. The three bands
represent enhanced regions due to long-lived intermediate
states, in which the intermediate particle goes on the mass
shell. The bottom panel of Fig. 3 shows the same

√
s3

but varies incoming and outgoing kinematics according
to m12 = m′12 and m13 = m′13. These kinematics may be
instructive in future resonant analyses since they lead to a
residue at the pole that can be roughly interpreted as an
overlap of the resonance state to a particular three-hadron
state.

Additional details concerning the S-wave integral equa-
tions, their numerical solutions, and the properties of the
resulting amplitude are presented in Secs. 3 and 4 of
the supplementary material, where we also describe the
propagation of the uncertainties of mπa0 and K3,iso into
the predicted scattering amplitude.7

Summary — In this work we have presented the first lat-
tice QCD determination of the energy-dependent three-to-
three scattering amplitude for three pions with maximal
isospin. The calculation proceeded in three steps: (i)
determining finite-volume energies with π+π+π+ quan-
tum numbers, (ii) using the framework of Ref. [5] to

7 See also Ref. [? ] for a discussion of related integral equations
and their solutions in a resonant three-hadron channel.

extract two- and three-body K matrices from these, and
(iii) applying the results of Ref. [6] to convert these to
the three-hadron scattering amplitude, by solving known
integral equations. The three steps are summarized, re-
spectively, by Figs. 1, 2 and 3 of the text.

Having established this general workflow, it is now well
within reach to rigorously extract three-hadron resonance
properties from lattice QCD calculations. In particular
the formalism has recently been extended to three-pion
states with any value of isospin in Ref. [42]. This should
enable studies, for example, of the ω, h1 and a1 resonances.
The main outstanding challenges here include rigorous
resonant parametrizations of the intermediate three-body
K matrix, as well as a better understanding of the ana-
lytic continuation required to identify the resonance pole
position.
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JHEP 03, 106 (2019), arXiv:1901.07095 [hep-lat].
[32] H.-W. Hammer, J.-Y. Pang, and A. Rusetsky, JHEP 09,

109 (2017), arXiv:1706.07700 [hep-lat].
[33] H. W. Hammer, J. Y. Pang, and A. Rusetsky, JHEP 10,

115 (2017), arXiv:1707.02176 [hep-lat].
[34] R. A. Briceño and Z. Davoudi, Phys. Rev. D87, 094507

(2013), arXiv:1212.3398 [hep-lat].
[35] K. Polejaeva and A. Rusetsky, Eur. Phys. J. A48, 67

(2012), arXiv:1203.1241 [hep-lat].
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FIG. 4. GEVP eigenvalues used to determine the P = [000], Λ = A−1 , three-pion spectrum on the 203 × 256 ensemble. As
explained in the text, the diagonalization is performed with t0/at = 10 and the eigenvalues are rescaled by their expected large-t
fall-off.

SUPPLEMENTARY MATERIAL

1. Spectra

In this section we give details concerning the finite-volume spectra described in the main text. We focus here on two
representative examples for the correlators used to extract the three-pion energies. The quality of two-pion correlators
can be inferred from the earlier work presented in Ref. [53], which includes a partially overlapping data set.

As a first example, consider the three-pion spectrum for the P = [000], Λ = A−1 irrep on the 203 × 256 ensemble. In

this case Gij(t) = 〈Oi(t)O†j(0)〉 is an 8× 8 matrix of correlators, built from the first 8 operators listed in Table VII of

Sec. 5. In Fig. 4 we plot the corresponding eigenvalues, λn(t, t0), of the matrix

M(t, t0) ≡ G(t0)−1/2 ·G(t) ·G(t0)−1/2 , (11)

entering the generalized eigenvalue problem (GEVP). These are determined for t0/at = 10 and are plotted vs. t/at for
a range of values both before and after the reference time. To display the eigenvalues in a useful manner, we plot the
combination eEn(t−t0)λn(t, t0), where En has been determined from a two-state fit to λn(t, t0)

λn(t, t0) = (1−An)e−En(t−t0) +Ane
−E′

n(t−t0) . (12)

The quality of the fit is indicated by the χ2/dof in each panel. The plotted combination behaves as expected for a
successful GEVP, showing a reasonable plateaux over a range of t/at.

This result also exhibits no evidence for thermal states on this lattice, as expected given the length of the temporal
extent, mπT ≈ 17.7. We detour slightly, to explain this point in more detail:

In general, for multi-pion systems, the leading finite-T effects are given by

Gij(t) = 〈0|Oi(0) e−ĤtO†j(0)|0〉+ e−mπ(T−t)〈π−|Oi(0) e−ĤtO†j(0)|π−〉+ · · · , (13)

where Ĥ is the Hamiltonian and the ellipsis represents thermal effects falling faster than e−mπT . For concreteness, we
have assumed that O†(0) creates three-π+ quantum numbers, so that O†(0)|π−〉 has the quantum numbers of two
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FIG. 5. GEVP eigenvalues used to determine the P = [000], Λ = A−1 , three-pion spectrum on the 243 × 128 ensemble. The
diagonalization is performed with t0/at = 9 and the eigenvalues are rescaled as in Fig. 4.

pions with isospin two. A spectral decomposition of Eq. (13) then yields

Gij(t) =
∑
n

c
(n)
i c

(n)∗
j e−E

πππ
n t + e−mπ(T−t)

∑
n

b
(n)
i b

(n)∗
j e−E

ππ
n t + · · · , (14)

where the sum in the first term (second term) runs over all maximal-isospin three-pion (two-pion) finite-volume
states with specified P . In the case of P = [000], the two- and three-pion ground states take the form Nmπ + ∆EN
where N = 2, 3 and ∆EN ∼ 1/L3 for weakly-interacting systems. Taking the leading (n = 0) terms of Eq. (14) and
substituting this scaling then yields

Gij(t) = c
(0)
i c

(0)∗
j e−(3mπ+∆E3)t + b

(0)
i b

(0)∗
j e−mπ(T+t)e−∆E2t + · · · . (15)

When this same exercise is performed for a two-pion correlator, again focusing on the case of P = [000], one finds
that the leading thermal contamination is a constant in t in the non-interacting limit. As discussed in Ref. [53] this
can thus be removed by applying a shift to the correlator Gij(t)→ Gij(t)−Gij(t+ δt). In the present case, however,
the leading contaminations are t-dependent. One option is to reweight and shift, i.e.

Gij(t) → e−mπt
(
Gij(t)e

mπt −Gij(t+ δt)emπ(t+δt)
)
. (16)

This approach, already used in Ref. [53] for ππ systems with non-zero total momentum, reduces thermal effects at the
cost of generally degrading the signal quality. Fortunately, for the 203 × 256 lattice, this is not required. Comparing
the leading and subleading terms of Eq. (15), and neglecting the interactions, one finds that the relative size of the
three-pion thermal contamination is e−mπ(T−2t). Thus, assuming that the relevant matrix elements have the same
order of magnitude, for the range of t considered these effects are ∼ 10−7 and are safely negligible, despite the high
statistical precision of the extracted energies. This concludes our general comments on thermal effects.

As a second example, in Fig. 5 we consider the same three-pion quantum numbers (P = [000], Λ = A−1 ) on the
243 × 128 ensemble. Because the larger spatial volume lowers the value of the nth level, here we include 2 additional
operators to better absorb the excited states. As with the previous example, the χ2/dof and the plotted curves provide
strong evidence of a successful GEVP extraction. For this case, e−mπ(T−2t) ∼ 10−3 so that finite-T effects potentially
present a more significant issue. As a result we have also considered shifting and reweighting, as summarized by
Eq. (16), in our various fits. However, across all values of P , we find that more stable fits are achieved via the
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unmodified correlators, relying on the basis of operators to push the extraction to earlier times and examining the
resulting GEVP eigenvalues. This is in contrast to the 243 × 128 two-pion fits, where the extractions are improved by
shifting in certain cases, as described in Ref. [53].

2. K matrix fits

In this subsection we give additional details concerning the K matrix fits, summarized in the main text. We present
four basic types of fits:

1. Fitting only the π+π+ spectra to various choices of p cot δ(p) [Table II].

2. Fitting only the π+π+π+ spectra to various choices of p cot δ(p), with K3,iso = 0 [Table III].

3. Fitting only the π+π+π+ spectra to various choices of K3,iso, with p cot δ(p) fixed by independent π+π+ fits
[Table IV].

4. Fitting all spectra simultaneously to various choices of p cot δ(p) and K3,iso [Table V].

Here δ(p) is the S-wave, π+π+ scattering phase shift, related to the scattering amplitude via

M2(E?2 ) =
16πE?2

p cot δ(p)− ip , (17)

where p2 = E?22 /4−m2
π. One standard parametrization of the scattering amplitude follows from the effective range

expansion

p cot δ(p) = − 1

a0
+

1

2
r0p

2 +O(p4) , (18)

and below we present fits to the leading term as well as to the leading two terms.
In the case of π+π+ scattering, chiral perturbation theory predicts the Adler zero, which leads to a pole in p cot δ(p),

limiting the range of convergence for the effective range expansion. This motivates the alternative form

p cot δ(p) = A(c, p)
[
− 1

a0
+ c′p2 +O(p4)

]
, (19)

where we have introduced

A(c, p) ≡ cmπ

√
p2 +m2

π

2p2 + cm2
π

. (20)

The function A(c, p) is chosen to match the analytic structure predicted by leading-order chiral perturbation theory
(both the energy numerator and the pole in the denominator) and is normalized so that A(c, 0) = 1. The leading-order
prediction for the pole position corresponds to c = 1 and in the following we present fits both with c fixed and allowed
to vary.

As we explain in detail in Sec. 3 below, the three-particle scattering amplitude, M3, is determined from the
two-particle scattering amplitude together with a local three-particle K matrix, first introduced in Ref. [5] and
denoted by Kdf,3. As already described in the main text, we work here in the isotropic approximation, for which this
three-particle K matrix reduces to a simple function of the total center-of-momentum frame energy, denoted K3,iso(E

?
3 ).

This quantity admits an expansion similar to the effective range expansion

K3,iso(E
?
3 ) = c1/m

2
π + c2∆/m4

π +O(∆2) , (21)

where ∆ ≡ E?23 − 9m2
π. The fits presented below take either the first or else the first two terms in this expansion.

In each case, the fit is performed by minimizing the χ2({ηi}), where

χ2({ηi}) ≡ [Ed − E({ηi})] · C−1 · [Ed − E({ηi})]T . (22)

Here Ed is a vector built from two and three-particle energies extracted from the lattice calculation, C is the covariance
matrix, and E({ηi}) is a vector of solutions to the two- and three-particle quantization conditions. The solved energies
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Fit E?2,cut p cotδ(p) fit result χ2/dof

A2 4.0mπ −1/a0 mπa0 = 0.278± 0.007 89.8/(32− 1) = 2.90

B2 3.4mπ −1/a0 mπa0 = 0.292± 0.010 26.9/(21− 1) = 1.35

C2 4.0mπ −1/a0 + r0p
2/2

mπa0 = 0.317± 0.015
mπr0 = −0.39± 0.12

[
1.0 −0.9

1.0

]
79.6/(32− 2) = 2.65

D2 3.4mπ −1/a0 + r0p
2/2

mπa0 = 0.258± 0.018
mπr0 = 0.68± 0.33

[
1.0 −0.9

1.0

]
22.7/(21− 2) = 1.20

E2 4.0mπ −A(c0, p)/a0
mπa0 = 0.355± 0.021
mπc0 = 11.2± 2.1

[
1.0 −0.8

1.0

]
96.7/(32− 2) = 3.22

F2 3.4mπ −A(c0, p)/a0
mπa0 = 0.260± 0.035
mπc0 = 3.7± 1.1

[
1.0 −0.9

1.0

]
22.7/(21− 2) = 1.20

G2 4.0mπ A(1, p)(−1/a0 + c0p
2)

mπa0 = 0.223± 0.019
mπc0 = −2.88± 0.19

[
1.0 0.9

1.0

]
70.1/(32− 2) = 2.34

H2 3.4mπ A(1, p)(−1/a0 + c0p
2)

mπa0 = 0.184± 0.022
mπc0 = −2.2± 0.4

[
1.0 0.96

1.0

]
26.5/(21− 2) = 1.40

I2 [r = 0.01 (9/32)] 4.0mπ −1/a0 mπa0 = 0.292± 0.008 40.5/(32− 1) = 1.31

J2 [r = 0.01 (9/32)] 4.0mπ −1/a0 + r0p
2/2

mπa0 = 0.300± 0.016
mπr0 = −0.08± 0.14

[
1.0 −0.8

1.0

]
40.3/(32− 2) = 1.34

TABLE II. Summary of fits to π+π+ finite-volume energies, for various choices of p cot δ(p). All values of total momentum P
(from [000] to [002]) and both volumes (203 and 243) are used in each fit. The entries below the lower double horizontal line are

determined using a regularized covariance matrix as explained in the text. The function A(c0, p) = c0mπ

√
p2 +m2

π/(2p
2 +c0m

2
π)

encodes the effect of the Adler zero, with c0 = 1 corresponding to the pole position from leading-order chiral perturbation theory.
The columns are understood as follows: “Fit” gives a label to the fit (and defines the regularized covariance matrix for the final
two fits); “E?2,cut” gives the two-particle center-of-momentum frame energy cutoff (i.e. only points with central values below this
threshold enter the fit); “p cotδ(p)” indicates the fit function; “fit result” displays the extracted parameters and their correlation;
“χ2/dof” gives the value of χ2({ηi}) (evaluated at the best fit parameters) divided by the number of degrees of freedom.

depend on {ηi}, which stands for all two- and three-particle K matrix parameters, over which the minimization is
performed.

In certain cases the low-lying eigenvalues of C cannot be estimated reliably and, if underestimated, can lead to
artificially enhanced eigenvalues in C−1, and therefore inflated values for χ2({ηi}). To study this problem we have also
considered an alternative method in which the low lying eigenvalues of C are adjusted. To do so, one first diagonalizes
C

C = RT ·D ·R , (23)

where R is an orthogonal matrix of eigenvectors and D a diagonal matrix of eigenvalues. We label the eigenvalues
(ordered from smallest to largest) by λ1, · · · , λN and note that these are positive. We assume also that the rows and
columns of R are organized such that

D = diag[λ1, λ2, · · · , λN ] . (24)

χ2({ηi}) may be poorly estimated if there is a large hierarchy between the smallest and largest eigenvalues, λ1 and
λN , respectively. This motivates the definition

Cr = RT ·Dr ·R , (25)

where Dr is a diagonal matrix defined as

Dr = diag
[
max[λ1, rλN ], max[λ2, rλN ], · · · , max[λN , rλN ]

]
. (26)

Note, if r = 0, then D = Dr =⇒ C = Cr. As this parameter is increased, the lowest eigenvalues are adjusted to some
fixed fraction of the largest value. This approach defines a new test statistic and, in principle, one can sample its
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corresponding distribution to define p-values and assess the quality of fits. This goes beyond the scope of this work
and we only perform the modified fits as a cross check to show that the extracted fit parameters are robust under
these regularizations of the covariance matrix. Such fits are reported in the tables of this section with labels of the
form [r = 0.01 (n/m)] where r indicates the adjustment parameter and (n/m) indicates the number of eigenvalues
that have been changed versus the total number.

Fit E?3,cut p cot δ(p) fit result χ2/dof

A3(K2) 4.4mπ −1/a0 mπa0 = 0.293± 0.011 31.5/(16− 1) = 2.10

B3(K2) [r = 0.01 (5/16)] 4.4mπ −1/a0 mπa0 = 0.298± 0.014 24.5/(16− 1) = 1.63

TABLE III. Summary of fits to π+π+π+ finite-volume energies, for p cot δ(p) = −1/a0 with K3,iso = 0 fixed. All values of total
momentum P (from [000] to [111]) and both volumes (203 and 243) are used in each fit. Columns as in Table II, with “E?3,cut”
indicating the three-particle center-of-momentum frame energy cutoff.

Fit p cot δ(p) E?3,cut K3,iso fit result χ2/dof

A3(K3) −1/a0 (B2) 4.4mπ c1/m
2
π c1 = −253± 874 31.4/(16− 1) = 2.10

B3(K3) −1/a0 (B2) 4.4mπ c1/m
2
π + c2∆/m4

π
c1 = 5039± 1731
c2 = −637± 92

[
1.0 − 0.8

1.0

]
25.9/(16− 2) = 1.85

C3(K3) [r = 0.01 (5/16)] −1/a0 (B2) 4.4mπ c1/m
2
π c1 = −1057± 718 26.4/(16− 1) = 1.76

TABLE IV. Summary of fits to π+π+π+ finite-volume energies, for various choices of K3,iso (with p cot δ(p) given by fit B2

of Table II). Columns as in Tables II and III, with “K3,iso” indicating the fit function used and ∆ ≡ E?23 − 9m2
π encoding a

linear-dependence in the squared center-of-momentum frame energy.

Fit E?2,cut E?3,cut p cot δ(p) K3,iso fit result χ2/dof

A2+3 3.4mπ 4.4mπ −1/a0 0 mπa0 = 0.300± 0.007 64.7/(37− 1) = 1.80

B2+3 3.4mπ 4.4mπ −1/a0 c1/m
2
π

mπa0 = 0.296± 0.008
c1 = −339± 770

[
1.0 0.6

1.0

]
64.5/(37− 2) = 1.84

C2+3 [r = 0.005 (11/37)] 3.4mπ 4.4mπ −1/a0 0 mπa0 = 0.297± 0.008 50.9/(37− 1) = 1.42

D2+3 [r = 0.005 (11/37)] 3.4mπ 4.4mπ −1/a0 c1/m
2
π

mπa0 = 0.293± 0.010
c1 = −426± 814

[
1.0 0.7

1.0

]
50.7/(37− 2) = 1.45

TABLE V. Summary of combined fits to both two- and three-pion energies. Columns as in Tables II-IV.

3. Details of the three-particle integral equations

In this subsection we prove Eq. (5) and give details on its numerical implementation. We begin by reviewing the
integral equations presented in Ref. [6]. As the results of the fits summarized in the main text (and detailed in the
previous subsection) are consistent with K3,iso = 0, we focus here on the case of a weak three-body interaction, keeping
only the linear contribution in this term. We begin with the unsymmetrized three-body scattering amplitude

M(u,u)
3 (p,k) = D(u,u)(p,k) + E(u)(p)K3,isoE(u)(k) +O(K2

3,iso) , (27)

where the superscripts indicate the lack of exchange symmetry, and k and p specify the momenta of the so-called
spectator particles in the initial and final state, respectively. In general, the factors appearing in Eq. (27) carry angular
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momentum indices. However, as discussed in the main text, the π+π+ system at low energies is dominated by the

S-wave component. Thus, we restrict attention here to π+π+ with zero angular momentum, such that M(u,u)
3 (p,k)

and D(u,u)(p,k) are simple functions, with no implicit indices.
In this limiting case, D(u,u)(p,k) satisfies the implicit equation

D(u,u)(p,k) = −M2(E?2,p)G
∞(p,k)M2(E?2,k)−M2(E?2,p)

∫
d3k′

(2π)32ωk′
G∞(p,k′)D(u,u)(k′,k) , (28)

where E?22,k ≡ (E − ωk)2 − k2 is the center-of-momentum energy for the non-spectator pair (with k = |k| defined in the

three-particle zero-momentum frame). In words, the unsymmetrized amplitude D(u,u) can be evaluated by solving an
integral equation depending only on the two-particle scattering amplitude M2(E?2,p) and the exchange propagator

G∞(p,k) ≡ H(p, k)

b2pk −m2 + iε
. (29)

Here b2pk ≡ (E? − ωp − ωk)2 − (p + k)2, and H(p, k) is a cut-off function, built into the relation between finite-volume
energies and K3,iso, as well as that between K3,iso and the physical scattering amplitude. The definition used here is

H(p, k) ≡ J
(
E?22,k/[2m]2

)
J
(
E?22,p/[2m]2

)
, J(x) ≡


0 , x ≤ 0 ;

exp
(
− 1
x exp

[
− 1

1−x

])
, 0 < x ≤ 1 ;

1 , 1 < x .

(30)

(See also Refs. [5, 6] for more discussion on this technical aspect.) Finally E(u)(p) is a function closely related to
D(u,u)(p,k) and defined, in a specific limiting case, in Eq. (38) below. In this work it is only relevant to demonstrate
that K3,iso contributes negligibly to both the central value and uncertainty of the three-hadron scattering amplitude,
as we describe in the following section.

The next step is to project the remaining directional freedom within D(u,u) onto vanishing three-particle angular
momentum, i.e. to J = 0. Defining

D(u,u)
s (p, k) ≡

∫
dΩk̂
4π

dΩp̂
4π
D(u,u)(p,k) , (31)

one can show that Ds satisfies a one-dimensional integral equation of the form

D(u,u)
s (p, k) = −M2(E?2,p)Gs(p, k, ε)M2(E?2,k)−M2(E?2,p)

∫ kmax

0

k′2 dk′

(2π)2ωk′
Gs(p, k

′, ε)D(u,u)
s (k′, k), (32)

where

Gs(p, k, ε) ≡
∫
dΩp̂
4π

dΩk̂
4π

G∞(p,k) = −H(p, k)

4pk
log

[
2pk − (E − ωk − ωp)2 + p2 + k2 +m2 − iε
−2pk − (E − ωk − ωp)2 + p2 + k2 +m2 − iε

]
. (33)

In Fig. 6 we plot Gs for a range of kinematic values. Setting K3,iso = 0 and combining Eqs. (27), (32) and (33), we
arrive at Eq. (5) of the main text. Note that, in Eq. (32), we have included an explicit cutoff at kmax = (s+m2)/(2

√
s).

This is done without any additional approximation as H(p, k) has vanishing support for k > kmax.

To solve Eq. (32) numerically we replace the integral
∫ kmax

0
dk′ with a discrete sum

∑
k′ ∆k containing N terms.

Then a discretized version of the equation can be written in a matrix form

D(N, ε) = −M ·G(ε) ·M−M ·G(ε) · P ·D(N, ε) , (34)

where we have introduced the following N ×N matrix representations

Gpk(ε) = Gs(p, k, ε) , Mk′k = δk′kM2(E?2,k) , Pk′k = δk′k
k2∆k

(2π)2ωk
, (35)

as well as D(N, ε), which becomes our target quantity in the ordered double limit

D(u,u)
s (p, k) = lim

ε→0
lim
N→∞

Dpk(N, ε) . (36)
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FIG. 6. Plots of the kernel function Gs(p, k, ε) [defined Eq. (33)] vs E?2,k, here for four different energies as shown in the legend

and with p = 0.1mπ and ε→ 0+. For Im[pkGs(p, k, ε)], in the right panel, we have vertically off-set the curves for improved
readability.

Here, in a slight abuse of notation, the indices pk represent the choices that are closest to physical momenta p and k
for a given N value. Eq. (34) can then be solved through a matrix inverse to yield

D(N, ε) = −
[
I + M ·G(ε) · P

]−1 ·M ·G(ε) ·M . (37)

Finally we return to the endcap factors appearing on either side of K3,iso in Eq. (27). These are defined in Eqs. (105)
and (106) of Ref. [5] and in the overall S-wave approximation they take the form

E(u)
s (p) =

1

3
−M2(E?2,p)ρ(E?2,p)−

∫
dp′p′2

(2π)2ωp′
D(u,u)

s (p, p′)ρ(E?2,p′) , (38)

where

ρ(E?2,p) ≡ −i
J
(
E?22,k/[2m]2

)
16πE?2,k

√
E?22,p/4−m2 , (39)

and it is understood that the the i
√−x branch is taken for x < 0.

As K3,iso is consistent with zero in all fits we have considered, the main purpose in keeping track of these quantities
is to estimate the propagation of uncertainties into M3. In particular we note

∆M2
3 =

∑
η,η′

[∂ηM3]Cηη′ [∂η′M3] , (40)

where Cηη′ represents the fit-parameter covariance matrix and the sums run over all inputs to the scattering amplitude,
in particular the scattering length a0 as well as K3,iso. In the next section we present numerical solutions forM3 based
on the parameters extracted from the finite-volume energies.

4. Solutions for M3

1.8 1.9 2.0 2.1 2.2 2.3
E?

2,k/mπ

−500

0

500

R
e[
pk
M

(u
,u

)
s

]

1.8 1.9 2.0 2.1 2.2 2.3
E?

2,k/mπ
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1000

Im
[p
k
M

(u
,u

)
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]

FIG. 7. Real (left) and imaginary (right) parts of p kM(u,u)
s , determined by solving Eq. (37) using mπa0 = 0.296 and K3,iso = 0

for the central values. As we explain in the text, the uncertainties here follow from propagating the uncertainties on K3,iso and
mπa0, taken from Fit B2+3 in Table V.
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Figure 7 shows the result of solving Eq. (37) and varying N and ε in order to ensure that the ordered double limit
has been saturated. Symmetrizing this function over the three incoming and three outgoing momenta yields the full
three-hadron scattering amplitude, plotted in Fig. 3 of the main text.

To assign an uncertainty estimate to M(u,u)
s (p, k) we have applied a straightforward adaptation of Eq. (40).

Specializing to the case of only mπa0 and K3,iso as input parameters, and neglecting the covariance between them, this
becomes

(
∆M(u,u)

s (p, k)
)2

=
(
∆[mπa0]

)2(∂M(u,u)
s (p, k)

∂(mπa0)

)2

+
(
∆K3,iso/9

)2
+O(∆K3,isoρM2)2 , (41)

where ∆(mπa0) and ∆K3,iso denote the uncertainties on the input parameters and ∆M(u,u)
s (p, k) is the resulting

amplitude uncertainty plotted in the figure. In practice one finds that ∆K3,iso contributes negligibly to the overall
uncertainty, simply because the series of M2 and Gs insertions dominates the value of the amplitude for weakly-

interacting systems. For this reason we have taken the leading part of E(u)
s , resulting in the ∆K3,iso/9 term. The

additional corrections, indicated by the final term, are negligible for this system.
The dominate source of uncertainty enters through the scattering length, i.e. the first term in Eq. (41). To estimate

this, we have numerically performed the derivative with respect to mπa0. Since M(u,u)
s (p, k) is dominated by the

contribution proportional to M2
2, in this case the overall uncertainty is well approximated by

∆M(u,u)
s (p, k)

M(u,u)
s (p, k)

= 2
∆[mπa0]

mπa0
. (42)

To produce Fig. 7 we have used ∆[mπa0] = 0.016 and ∆K3,iso = 770. These are taken from B2+3 in Table V with the
uncertainty on mπa0 doubled to account for systematic variations between the various fits that have been performed.

5. Operator construction and lists

Following Ref. [53], to determine the ππ I = 2 finite-volume energies we compute correlation functions featuring
operators constructed to resemble a ππ structure. Schematically, for an operator in lattice irrep Λ12 and row µ12 with
overall momentum k12,

(ππ)
[k1,k2]†
Λ12 µ12

(k12) =
∑

k1,k2
k1+k2=k12

C(k12,Λ12, µ12;k1,Λ1;k2,Λ2) π†Λ1
(k1) π†Λ2

(k2) , (43)

where the sum is over all momenta related to k1 and k2 by allowed lattice rotations, C is an appropriate generalized
Clebsch-Gordan coefficient for Λ1 ⊗ Λ2 → Λ12, and flavor indices and the projection onto I = 2 are not written

explicitly. Here π†Λi(ki) is the optimal linear combination of operators to interpolate a π with momentum ki in irrep8

Λi using a basis of fermion-bilinear operators featuring various Dirac γ matrices and gauge covariant derivatives –
see Ref. [53] for details. In this work the basis of fermion-bilinear operators used for a π operator has up to three
derivatives for π at rest and up to one derivative for π at non-zero momentum, except we use up to two derivatives for
1 ≤ |ki|2 ≤ 4 on the 243 volume. The operators used to compute the ππ spectra shown in Fig. 1 are listed in Table VI.

In a similar way, operators used to compute πππ I = 3 energies resemble a πππ structure and are formed by
combining a ππ I = 2 operator with a π operator, as detailed in Ref. [82]. Schematically, for an operator in lattice
irrep Λ and row µ with overall momentum P ,

(πππ)
[k12[k1,k2],k3]†
Λµ (P ) =

∑
k12,k3

k12+k3=P

C(P ,Λ, µ;k12,Λ12, µ12;k3,Λ3) (ππ)
[k1,k2]†
Λ12 µ12

(k12) π†Λ3
(k3) , (44)

where the sum is over all momenta related to k12 and k3 by allowed lattice rotations and, again, flavor indices and the
projection onto I = 3 are not written explicitly.

From Bose symmetry, a πππ system must be symmetric under the interchange of any pair of pions. The pions have
no intrinsic spin and we are considering I = 3 which means that the flavor structure is symmetric under interchange

8 These are all one dimensional and so we omit the irrep row index.
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P Λ L/as = 20 L/as = 24

[000] A+
1 π[000]π[000], π[100]π[100], π[110]π[110], π[111]π[111], π[000]π[000], π[100]π[100], π[110]π[110], π[111]π[111],

π[200]π[200] π[200]π[200]

[100] A1 π[000]π[100], π[100]π[110], π[110]π[111], π[100]π[200] π[000]π[100], π[100]π[110], π[110]π[111], π[100]π[200],

π[110]π[210], π[200]π[210], π[111]π[211]

[110] A1 π[000]π[110], π[100]π[100], π[100]π[111], π[110]π[110] π[000]π[110], π[100]π[100], π[100]π[111], π[110]π[110],

π[110]π[200], π[100]π[210], π[111]π[210], π[110]π[211]

[111] A1 π[000]π[111], π[100]π[110] π[000]π[111], π[100]π[110], π[111]π[200], π[110]π[210],

π[100]π[211]

[200] A1 π[100]π[100], π[000]π[200], π[110]π[110], π[111]π[111] π[100]π[100], π[000]π[200], π[110]π[110], π[100]π[210],

π[111]π[111], π[110]π[211], π[210]π[210]

TABLE VI. The ππ I = 2 operators, πk1πk2 , used to compute the finite-volume energy levels shown in Fig. 1 (upper plots) in
irrep Λ with overall momentum P . These are constructed from optimized π operators with momentum types k1 and k2; different
momentum directions are summed over as in Eq. (43). Momenta are displayed using the shorthand notation [ijk] = 2π

L
(i, j, k).

of any pair; therefore, the spatial structure must also be symmetric under the interchange of any pair of pions. The
operator construction in Eq. (44) gives operators with the correct symmetry properties because the three pions are
identical, but it does not make this symmetry manifest and two different sets of (|k1|, |k2|, |k3|, |k12|, Λ12) may lead
to equivalent operators, or a number of different sets may give linearly-dependent operators.9 To ensure we have an
appropriate set of independent operators, for each P Λ we construct an operator for every possible
(|k1|, |k2|, |k3|, |k12|, Λ12) with |k1|2 + |k2|2 + |k3|2 less than some cutoff. We write Eq. (44) schematically as,

(πππ)Λµ(P ) =
∑
C̃(k1,k2,k3)π†(k1)π†(k2)π†(k3) = C̃ · V[πππ] , (45)

where C̃ with no labels represents a row vector of coefficients and V[πππ] a column of operators, such that the dot-
product reproduces the sum. We then introduce the matrix R(ijk) which acts on V[πππ] by mapping a given entry

π†(p1)π†(p2)π†(p3) into π†(pi)π
†(pj)π

†(pk). This, allows us to define the symmetrized vector of Clebsch-Gordan
coefficients

C̃ ·R(123) + C̃ ·R(231) + C̃ ·R(312) + C̃ ·R(132) + C̃ ·R(213) + C̃ ·R(321) , (46)

where R(123) is just the identity matrix. The final step is to check that the resulting vector is non-zero and linearly
independent from the analogous expressions for the already considered operators. The resulting sets of independent
operators used in this work are listed in Tables VII, VIII, IX, X and XI.10

Finally, in order to give further intuition into the operators used, we also include a diagrammatic representation of
the individual pion momentum assignments in the tables. The diagrams portray the integer vectors d1, d2, d3, each
given by di = Lki/(2π). The vectors are assigned a color (orange and purple for the first two pions, and red for the
third) and the absence of any given color corresponds to a vector of magnitude zero. All vertical and horizontal lines
accompanying a diagonal vector are only intended to aid in viewing perspective, e.g. for [111] the unit cube enclosing
the vector is drawn. As summarized by Eq. (44), our operator construction is based on combining two-pion operators
in a definite irrep with the third pion. An alternative basis is given by summing a given momentum assignment,
represented by a given set d1d2d3, over all rotations in the octahedral group (in the case of P = [000]) or else a little
group thereof (for non-zero total momentum) weighted by the appropriate Clebsch-Gordan coefficients. The operators
reached via this alternative construction are equal to a linear combination of those given by Eq. (44).

For example, on the third line of Table VIII, two distinct momentum assignments arise from combining the ππ[000]A+
1

with the third π[100] operator. In this case the ππ[000]A+
1

is built from individual pions with a unit of back-to-back

momentum. When one sums over the coefficients projecting onto A+
1 , contributions arise with the back-to-back

9 Strictly we mean the types of momenta (i.e. the equivalence class
of momenta related by rotations in the octahedral group or little
group) rather than the magnitudes, but there is no distinction

for the momenta we are considering here.
10 This is not always a unique choice and any independent set of

operators could be used to achieve the same results.
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axis both aligned and perpendicular to the total momentum direction, P = [001]. Thus, momentum assignments
corresponding to both diagrams shown in line 3 of Table VIII contribute to the operator on that line. By contrast, on
line 4 of Table VIII only a single momentum configuration contributes, as indicated. This implies that the two operators
are independent, since they are built from independent linear combinations of the two momentum configurations.

Operators 8 through 11 of Table VIII give a more complicated example. The first two (8 and 9) correspond to two
linear combinations of two configuration types, labeled with subscripts 1 and 3, and the next two (10 and 11) are
equal to linear combinations of the operators labeled 1, 2, and 4.

The diagrams in Tables VII, VIII, IX, X and XI provide a cross check on the linear-independence of the operators.
Each row corresponds to a linear combination of the displayed momentum configurations and the number of linearly
independent operators is equal to the number of distinct momentum configuration diagrams.

d2
1 d

2
2 d

2
3 πk1 πk2 ππk12Λ12 (I = 2) πk3 momentum configurations

1 000 π[000] π[000] ππ
[000]A+

1
π[000]

2 011 π[100] π[000] ππ[100]A1
π[100]

3 022 π[110] π[000] ππ[110]A1
π[110]

4 112 π[100] π[100] ππ[110]A1
π[110]

5 033 π[111] π[111] ππ
[000]A+

1
π[000]

6 114 π[200] π[100] ππ[100]A1
π[100]

7 123 π[111] π[100] ππ[110]A1
π[110]

8 222 π[110] π[110] ππ[110]A1
π[110]

9 044 π[200] π[000] ππ[200]A1
π[200]

10 125 π[210] π[100] ππ[110]A1
π[110]

TABLE VII. The πππ I = 3 operators used to compute the finite-volume energy levels shown in Fig. 1 (lower left plot) in
irrep A−1 with overall momentum P = [000], labeled by d2

1 d
2
2 d

2
3 where di = ki(L/2π). Different momentum directions for

the momentum types k1, k2, k3 and k12 are summed over as in Eq. (44). Operators 1 to 8 are used on the 203 volume and
operators 1 to 10 are used on the 243 volume. The momentum configuration diagrams in the rightmost column are explained
in the text. Operators separated by a single horizontal line correspond to states that are degenerate in the non-relativistic,
non-interacting theory.
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d2
1 d

2
2 d

2
3 πk1 πk2 ππk12Λ12 (I = 2) πk3 momentum configurations

1 001 π[000] π[000] ππ
[000]A+

1
π[100]

2 012 π[100] π[000] ππ[100]A1
π[110]

3 111 π[100] π[100] ππ
[000]A+

1
π[100]

1 2

4 111 π[100] π[100] ππ[110]A1
π[100]

1

5 014 π[100] π[000] ππ[100]A1
π[200]

6 023 π[110] π[000] ππ[110]A1
π[111]

7 113 π[100] π[100] ππ[110]A1
π[111]

8 122 π[110] π[100] ππ[111]A1
π[110]

1 3

9 122 π[110] π[100] ππ[111]E2
π[110]

10 122 π[110] π[100] ππ[100]A1
π[110]

1 2 411 122 π[110] π[100] ππ[100]B1
π[110]

12 025 π[110] π[000] ππ[110]A1
π[210]

13 115 π[210] π[100] ππ[110]A1
π[100]

14 115 π[210] π[100] ππ[110]B1
π[100]

15 124 π[200] π[100] ππ[210]A1
π[110]

16 124 π[200] π[100] ππ[100]A1
π[110]

TABLE VIII. As Table VII but for the A2 irrep with overall momentum P = [001]. Operators 1 to 8 are used on the 203 volume
and operators 1 to 16 are used on the 243 volume. Operators separated by a single horizontal line correspond to states that
are degenerate in the non-relativistic, non-interacting theory. Operators with no horizontal line correspond to states that are
degenerate in the relativistic, non-interacting theory but are split by the interactions.
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d2
1 d

2
2 d

2
3 πk1 πk2 ππk12Λ12 (I = 2) πk3 momentum configurations

1 002 π[000] π[000] ππ
[000]A+

1
π[110]

2 011 π[100] π[000] ππ[100]A1
π[100]

3 013 π[100] π[000] ππ[100]A1
π[111]

4 022 π[110] π[000] ππ[110]A1
π[110]

5 112 π[100] π[100] ππ
[000]A+

1
π[110]

1 2

6 112 π[100] π[100] ππ[110]A1
π[110]

7 112 π[100] π[100] ππ[200]A1
π[110]

8 112 π[100] π[100] ππ[000]E+ π[110]

1 2

TABLE IX. As Table VII but for the A2 irrep with overall momentum P = [011] (continued in Table X). Operators 1 to 11 are
used on the 203 volume and operators 1 to 20 are used on the 243 volume.
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d2
1 d

2
2 d

2
3 πk1 πk2 ππk12Λ12 (I = 2) πk3 momentum configurations

9 015 π[100] π[000] ππ[100]A1
π[210]

10 024 π[110] π[000] ππ[110]A1
π[200]

11 114 π[200] π[100] ππ[210]A1
π[100]

12 123 π[111] π[100] ππ[211]A1
π[110]

13 123 π[111] π[100] ππ[110]A1
π[110]

1 2

14 123 π[111] π[100] ππ[110]B2
π[110]

1 2

15 222 π[110] π[110] ππ
[000]A+

1
π[110]

1 2 3

16 222 π[110] π[110] ππ[211]A1
π[110]

1

17 222 π[110] π[110] ππ[110]A1
π[110]

1 4

18 222 π[110] π[110] ππ[200]A1
π[110]

4 3

19 026 π[110] π[000] ππ[110]A1
π[211]

20 035 π[111] π[000] ππ[111]A1
π[210]

TABLE X. Continuation of Table IX.
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d2
1 d

2
2 d

2
3 πk1 πk2 ππk12Λ12 (I = 2) πk3 momentum configurations

1 003 π[000] π[000] ππ
[000]A+

1
π[111]

2 012 π[110] π[000] ππ[110]A1
π[100]

3 111 π[100] π[100] ππ[110]A1
π[100]

4 113 π[100] π[100] ππ
[000]A+

1
π[111]

5 113 π[100] π[100] ππ[200]A1
π[111]

6 122 π[110] π[100] ππ[100]A1
π[110]

1 2

7 122 π[110] π[110] ππ[110]A1
π[100]

2

TABLE XI. As Table VII but for the A2 irrep with overall momentum P = [111]. Operators 1 to 7 are used on both the 203

and 243 volumes.
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