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Lattice QCD constraints on the parton distribution functions of 3He
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The fraction of the longitudinal momentum of 3He that is carried by the isovector combination
of u and d quarks is determined using lattice QCD for the first time. The ratio of this combination
to that in the constituent nucleons is found to be consistent with unity at the few-percent level
from calculations with quark masses corresponding to mπ ∼ 800 MeV, extrapolated to the physical
quark masses. This constraint is consistent with, and significantly more precise than, determinations
from global nuclear parton distribution function fits. Including the lattice QCD determination of
the momentum fraction in the nNNPDF global fitting framework results in the uncertainty on the
isovector momentum fraction ratio being reduced by a factor of 2.5, and thereby enables a more
precise extraction of the u and d parton distributions in 3He.

A central pillar of our understanding of the internal
structure of strongly interacting hadronic and nuclear
systems is knowledge of their partonic structure as ac-
cessed in deep-inelastic scattering (DIS) experiments and
other hard processes. Since the 1960s, such experiments
have revealed the longitudinal momentum distributions
of quarks and gluons in a fast moving proton, known col-
lectively as parton distribution functions (PDFs). The
simplest PDFs, q(x, µ) (and g(x, µ)), describe the prob-
ability of a quark of flavor q (or gluon g) carrying a frac-
tion x of the longitudinal momentum of the struck pro-
ton at a renormalization scale µ. In 1983, the European
Muon Collaboration (EMC) [1] observed that the par-
tonic structure of nuclei differs substantially from that
of the constituent protons and neutrons, a landmark in
the development of nuclear physics [2–6]. Since the DIS
processes observed in the EMC experiments were at very
high energy, and the binding energy of a nucleus is small
in comparison to its mass, the appearance and size of the
EMC effect was surprising at the time. Interest in the
EMC effect has been rekindled by recent data from SLAC
and JLab [7–11] on EMC ratios for light nuclei. Not only
have these data provided precise determinations of the
EMC effect for nuclei with small atomic number A, but
they have revealed a correlation between the strength of
the EMC effect and so called “short range correlations”
[12, 13].

In addition to experimental investigations, theoretical
calculations of the partonic structure of hadrons and nu-
clei from the Standard Model can have important im-
pact on our understanding of the structure of matter.

For example, Standard Model calculations of nuclear par-
tonic structure would reveal the QCD origin of the EMC
effect as well as aid in the flavor-separation of proton
PDFs. Parton distributions are inherently rooted in the
strong interaction dynamics of QCD and cannot be de-
termined using perturbative methods. Since the seminal
works of Refs. [14, 15], lattice Quantum Chromodynam-
ics (LQCD) calculations have addressed the simplest as-
pects of the parton distributions of the proton, notably
determining the first few Mellin moments of the unpo-
larized, polarized, and transversity quark distributions
[16], as well as their gluonic analogues [17–21]. Recently,
efforts have been made to extend these studies to the
full x-dependence of the proton PDFs [16, 22–24]. More
complicated extensions of partonic structure, such as
generalized parton distribution functions and transverse-
momentum dependent parton distribution functions of
the proton, have also been studied using LQCD [25–30].

In this letter, the partonic structure of light nuclei is
studied in LQCD for the first time through an investiga-
tion of the isovector quark momentum fractions (the first
moments of the corresponding isovector PDFs) of the
proton, diproton, and 3He. At the heavier-than-physical
quark masses used in this LQCD study, percent-level nu-
clear effects are resolved in the momentum fraction of
3He. After an extrapolation to the physical quark masses,
these calculations provide a constraint on the isovector
momentum fraction that is used as an additional input
into the nNNPDF2.0 [31] global nuclear PDF analysis
framework. Since the isovector combination of nuclear
PDFs is poorly determined from experiment, this LQCD
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constraint significantly reduces the uncertainties on the
3He PDFs and thereby improves knowledge of nuclear
structure.

LQCD methodology — The existence of strong in-
teractions between quarks and gluons necessitates the use
of LQCD for calculations of the partonic structure of nu-
clei. The calculations presented here are performed us-
ing a single ensemble of gauge-field configurations gener-
ated with a Lüscher-Weisz gauge action [32] with Nf = 3
degenerate light-quark flavors with the clover-improved
Wilson fermion action [33], and quark masses tuned to
produce a pion mass of mπ = 806 MeV. The lattice ge-
ometry is L3 × T = 323 × 48, and the lattice spacing is
determined to be a ∼ 0.145 fm from Υ spectroscopy [34].
This ensemble, and two others with different spacetime
volumes have previously been used to study the spectrum
[34, 35] and properties [36–46] of light nuclei up to atomic
number A = 4. The multi-volume spectroscopy studies
show that the pp and 3He states that are investigated
here are bound systems with infinite volume energies be-
low threshold. Consequently, matrix elements in these
states are expected to receive only exponentially small
finite volume effects, O(e−κL, e−mπL), that will be ne-
glected in this work [47–53].

The Mellin moments of the unpolarized isovector

quark PDFs, q
(h)
3 (x, µ) = u(h)(x, µ) − d(h)(x, µ), in a

hadronic or nuclear state h, defined as 〈xn〉(h)u−d(µ) ≡∫ 1

−1 dx x
nq

(h)
3 (x, µ), are determined from matrix elements

of twist-two operators as

〈h|Oµ0...µn |h〉 ≡ 〈h|qτ3γ{µ0
(i
←→
D µ1

) . . . (i
←→
D µn})q|h〉

= 〈xn〉(h)u−d(µ)p{µ0
. . . pµn}, (1)

where p is the momentum of the state h, τ3 is a Pauli

matrix in flavor space,
←→
D µ = (

−→
Dµ −

←−
Dµ)/2 where Dµ

is the gauge covariant derivative, and {. . .} indicates
symmetrization and trace-subtraction of the enclosed in-
dices. The above operators are constructed to transform
irreducibly under the Lorentz group, but the hypercu-
bic spacetime lattice used in the LQCD calculations re-
duces these symmetries, in general inducing mixing be-
tween operators of different Lorentz spin. In particu-
lar, the two-index operators that determine the isovector

quark momentum fraction, 〈x〉(h)u−d, subduce to operators
in two different irreducible representations of the hyper-
cubic group. In this work, matrix elements of an Eu-

clidean operator in the τ
(3)
1 representation [54] are com-

puted, namely

T =
1√
2

(T33 − T44) , with Tµν = qτ3γ{µ
←→
D ν}q , (2)

where γν is also Euclidean. With a lattice regulator,
this operator is discretized as a covariant finite differ-
ence whose form is given in the Supplementary Material.
For both spin-zero and spin-half systems, spin-averaged

in the latter case, matrix elements in states with zero
three-momentum determine the momentum fraction as
〈h| T |h〉 = 〈x〉(h)u−dMh/

√
2.

The renormalized operator in the modified minimal
subtraction scheme (MS) is related to the bare lattice
operator in Eq. (2) as

T (MS)(µ) = RMS/RI′MOM(µ, µ0)ZRI′MOM(µ0, a)T (a),
(3)

where the renormalization coefficient ZRI′MOM(µ0, a)
is defined non-perturbatively in a regularization-
independent momentum-subtraction scheme [55] at a
scale µ0 and then matched to MS through the three-loop

perturbative coefficient RMS/RI′MOM(µ, µ0) [56, 57], as
detailed in the Supplementary Material. For µ = 2 GeV,

RMS/RI′MOM(µ, µ0)ZRI′MOM(µ0, a) = 0.89(4).
The techniques needed to compute matrix elements of

this operator are simple generalizations of those used for
calculations of isovector matrix elements of quark cur-
rents using the compound-propagator background-field
method introduced in Ref. [42] and further detailed in
Refs. [43, 44, 58] and the Supplementary Material. Quark
propagators and T -compound propagators are computed
from an average of Nsrc = 24 source points randomly
distributed on Ncfg = 2290 gauge-field configurations for
NB = 5 different background field strengths. These com-
pound propagators are then used to construct baryon
two-point correlation functions,

Gh(t;λ) =
∑
x

〈
0
∣∣∣χh(x, t)χ†h(0)

∣∣∣ 0〉
λ
, (4)

where λ is the T -background field strength, χh is an in-
terpolating field for states with the quantum numbers of
the hadron or nucleus h, and spinor indices on the in-
terpolating operators are suppressed. Correlation func-
tions are constructed from Gaussian-smeared source in-
terpolating operators [59], while the sink interpolating
operators are either smeared or point-like and the multi-
baryon contractions are performed using the techniques
of Refs. [60]. This quantity contains responses to the
field up to O(λNQ), with NQ being the number of va-
lence quarks in the state. The linear response of this
background-field two-point function, Gh(t;λ)|O(λ), is de-
termined by the matrix element of T . This term can
be extracted exactly from the computed set of fixed-
order background field correlation functions with NQ
field strengths [42, 43].

Combining the linear response of the two-point corre-
lation function with the zero-field correlation function, it
is straightforward to show that the ratio

Rh(t) =
Gh(t;λ)|O(λ)

Gh(t; 0)
−
Gh(t− a;λ)|O(λ)

Gh(t− a; 0)
(5)

is related to matrix elements of T through the spec-
tral representation of each term in Eq. (5), in particular
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FIG. 1. The effective matrix element, Eq. (5), associated
with the isovector quark momentum fractions of the proton,
pp and 3He. Blue (orange) points, labelled SS (SP), show
results for interpolating operators with smeared sources and
smeared (point-like) sinks. For each effective matrix element,
points are shown for t ≤ tmax, where tmax is the minimum t
where the signal-to-noise ratio of Gh(t+a;λ)|O(λ) is less than
0.5. Colored bands show the highest weight fit to the com-
bined dataset and the shaded gray bands show the weighted
average of all accepted fits and the total statistical plus fitting
systematic uncertainties.

asymptoting as

Rh(t)
t→∞−→ 〈h| T |h〉 , (6)

with exponentially vanishing contamination at early
times that involves excited-state overlap factors and tran-
sition matrix elements.

Ground-state matrix elements are extracted from
Rh(t), and systematic fitting uncertainties are estimated,
using a procedure for sampling from all possible fit ranges
and models analogous to the procedure described for two-
point correlation functions in Ref. [61]. In summary, in
analyzing Rh(t) to extract the momentum fractions, the
full t dependence that results from the spectral decom-
position of each term in Eq. (5) is fit, and combined fits
to two- and three-point correlation functions are used to
constrain the relevant energies, overlap factors, and ma-
trix elements. All possible choices of fit ranges and up
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FIG. 2. Left: Renormalized isovector momentum fractions
for h ∈ {p, pp, 3He} at a scale of µ = 2 GeV. Right: Ratios
of the isovector nuclear momentum fractions to that of the
constituent nucleons.

p pp 3He

〈x〉(h)u−d 0.191(1)(9) 0.194(2)(9) 0.066(1)(3)(
A

Z−N

)
〈x〉(h)u−d/〈x〉

(p)
u−d — 1.007(14) 1.028(15)

TABLE I. The isovector quark momentum fractions in p, pp
and 3He, calculated at mπ = 806 MeV in MS-scheme at µ = 2
GeV. The first uncertainty combines LQCD statistical and
systematic uncertainties and the second uncertainty is from
operator renormalization. The correlated ratios of the isovec-
tor momentum fraction in nuclei to those in the constituent
nucleons, in which the renormalization constants and their
uncertainties cancel, are also given.

to 4 states contributing to the spectral decompositions
are considered using a model selection process described
in the Supplementary Material. A weighted average over
fits from all acceptable fit ranges is used to define ground-
state energy results, including systematic uncertainties
from fit range and model variation. Results are shown in
Fig. 1 for the proton, diproton and 3He.

Results and Discussion — The extracted values of
the isovector quark momentum fractions for p, pp, 3He at
quark masses corresponding to mπ = mK = 806 MeV are
shown in Tab. I and displayed graphically in Fig. 2. The
uncertainties are separated into those from the LQCD
calculation of the bare matrix elements, and the (larger)
uncertainty from the renormalization and matching to
the MS scheme. The proton isovector momentum frac-
tion is consistent with other LQCD extractions at similar
values of the quark masses [62] given the different renor-
malization procedures and lattice spacings. The pp and
3He momentum fractions are determined with O(5%) un-
certainties and are found to be approximately consistent
with those of the constituent nucleons. The ratios of the
nuclear momentum fractions to that of the proton are
independent of operator renormalization to O(αs), and
are determined at few-percent precision even for 3He.

In Refs. [63–65], nuclear effective field theory (EFT)
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was used to study nuclear effects in PDF moments. In
particular, it was shown that the leading source of such
effects is the two-nucleon correlations that couple to the
twist-two operators defining the PDF moments. In terms
of the parameters defined in that work, nuclear effects
in the isovector momentum fraction are encapsulated in
the low energy constant (LEC) α3,2 and nuclear fac-
tor G3(3He); their product is bounded as α3,2G3(3He) =
0.0018(14) at µ = 2 GeV from the numerical calcula-
tions presented here (see the Supplementary Material for
details). While the quark momentum fractions them-
selves have nonanalytic dependence on the quark masses
[66–68], this two-body LEC is expected to be relatively
insensitive to variation of the quark masses, as seen for
the the analogous two-body contribution in the np→ dγ
[39] and pp → de+νe [42, 69] processes. This relative
mass-independence assumption allows an extrapolation
to the physical quark masses: a naive estimate is given
by taking the central value determined at mπ = 806
MeV and inflating the uncertainty by 50% to account
for possible quark-mass dependence as well as the effects
of the nonzero lattice spacing and finite volume (this un-
certainty is estimated based on the mass dependence seen
for the analogous two-body LECs in Refs. [39, 42, 69]).
This extrapolated value can be combined with the physi-

cal value of the nucleon momentum fraction, 〈x〉(p)u−d =
0.160(7) at µ = 2 GeV from the nNNPDF2.0 analy-
sis [31], to determine the isovector momentum fraction

ratio 3〈x〉(
3He)
u−d /〈x〉

(p)
u−d|LQCD = 1.035(26) at the physical

quark masses (see the Supplementary Material for more
details).

It is interesting to compare the LQCD results for the
momentum fractions and their ratios to phenomenology.
In particular, the isovector momentum fractions deter-
mined here provide valuable information that is com-
plementary to experimental constraints on the nuclear
modification of PDFs; almost all information on the nu-
clear modification of partonic structure has been ob-
tained for the ratio of isoscalar-corrected F2 structure
functions of nuclei to that of the deuteron [3, 5, 6]. Ad-
ditional constraints are especially valuable in the context
of the intriguing question as to whether there is flavor-
dependence to the EMC effect. Such flavor dependence
has been conjectured in models of QCD [70–75] and in
EFT [63–65] and is included in recent data-driven analy-
ses of experimental results [76, 77] and provides a poten-
tial explanation of the NuTeV anomaly in sin2 θW [78].

Fig. 3 shows the constraint on the isovector momen-
tum fraction ratio for 3He obtained from the results
presented here, compared with the constraints on the
isovector and isoscalar momentum fraction ratios from
the recent nNNPDF2.0 [31] global nuclear PDF fits. The
nNNPDF2.0 ellipse is generated by combining the Monte
Carlo replica sets for the bound proton PDFs in 4He
appropriately to form the PDFs of 3He (under the as-
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FIG. 3. The ratio of the isovector momentum fractions of
3He and p determined in this work compared to constraints on
the isovector and isoscalar momentum fraction ratios from the
nNNPDF2.0 [31] global analysis before and after the LQCD
constraint is imposed. Both axes are normalized to unity in
the absence of nuclear effects. The LQCD constraint on the
isovector ratio at mπ = 806 MeV is also displayed. In all
cases, 68% confidence intervals are shown.

sumption that the nuclear effects vary slowly with A). In
this way, correlations between the 3He and proton PDFs
are accounted for. For the isovector combination, the

68% confidence interval is 3〈x〉(
3He)
u−d /〈x〉

(p)
u−d|nNNPDF2.0 =

1.007(63). In the nNNPDF approach, it is also straight-
forward to impose the LQCD constraint on the nuclear
PDFs by reweighting the Monte Carlo replicas as dis-
cussed in Ref. [79]; the combined confidence region is
shown in Fig. 3. The 68% confidence interval reduces to

3〈x〉(
3He)
u−d /〈x〉

(p)
u−d|nNNPDF2.0+LQCD = 1.028(25). Fig. 4

compares the ratio of the isovector PDF for 3He to that
of the constituent nucleons, with and without the impo-
sition of the LQCD constraint. As can be seen from the
reduced uncertainties in Figs. 3 and 4, LQCD calcula-
tions such as those presented here, as well as new experi-
mental constraints [80, 81], can significantly improve our
knowledge of the flavor dependence of nuclear PDFs.

Summary — In this work, the isovector momentum
fractions of the proton, diproton and 3He systems have
been determined using LQCD, complementing a previ-
ous study of the gluon momentum fraction on the same
ensemble [45]. These calculations were performed at a
single set of unphysical SU(3)-symmetric values for the
quark masses corresponding to mπ = 806 MeV, and in
a single lattice volume and at a single lattice spacing.
Bearing these caveats in mind, the isovector nuclear mo-
mentum fractions were calculated precisely and found to
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FIG. 4. The ratio R(3He)(x) = 3q
(3He)
3 (x)/q

(p)
3 (x) of the

nNNPDF2.0 isovector PDF in 3He to that in the proton [31],
as well as the same distribution with the LQCD moment con-
straint imposed into the global analysis as described in the
text. 68% confidence intervals are shown.

be similar to that of the proton. In particular, the ra-

tios 〈x〉(pp)u−d/〈x〉
(p)
u−d = 1.010(14) and 3〈x〉(

3He)
u−d /〈x〉

(p)
u−d =

1.029(15) were determined and nuclear EFT arguments
were used to connect the 3He result to global analyses
of nuclear PDFs, providing important constraints on the
flavor decomposition of nuclear PDFs that are comple-
mentary to those obtained from experiment.

While in its early stages, this work emphasizes the util-
ity of LQCD in constraining less well-measured aspects
of partonic structure in an analogous way to how LQCD
inputs have been used to constrain the proton transver-
sity PDFs [82]. Future calculations at the physical quark
masses will consider higher moments of nuclear PDFs
(or even directly study their x dependence) for a wider
range of nuclei and provide a complete flavor decompo-
sition. Calculations will also quantitatively address the
full set of systematic uncertainties.
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with additional European FEDER funds under the con-
tract FIS2017-87534-P. KO was supported in part by
U.S. DOE grant DE-FG02-04ER41302 and in part by
the Jefferson Science Associates, LLC under U.S. DOE
Contract DE-AC05-06OR23177. This manuscript has
been authored by Fermi Research Alliance, LLC under
Contract No. DE-AC02-07CH11359 with the U.S. De-
partment of Energy, Office of Science, Office of High En-
ergy Physics. The authors thank Robert Edwards, Bálint
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Supplementary Material

MATRIX ELEMENT CALCULATION

The Euclidean finite difference form of the twist-two operator that determines the quark momentum fraction is

T (�)
µν (x) =

1

4a

(
q(x)τ3γ{ν [Uµ}(x)q(x+ µ̂)− U†µ}(x− µ̂)q(x− µ̂)]− [q(x+ µ̂)U†{µ(x)− q(x− µ̂)U{µ(x− µ̂)]τ3γν}q(x)

)
.

(S1)

The combination T (�) = 1√
2
(T (�)

33 − T (�)
44 ), which belongs to the τ

(3)
1 irreducible representation of the hypercubic

group [54], is used in this work. To compute matrix elements of this operator, the compound propagator technique
is generalized from that previously used in Refs. [42, 46]. The operator insertion point is used as a sequential
source, and three-point correlation functions are formed by first calculating a (smeared) point-to-all quark propagator
extending from the hadronic/nuclear source to the operator insertion point and subsequently calculating additional
quark propagators from the operator insertion point to the sink. Since the finite difference form of the operator contains
shifts, three different sequential inversions are utilized. Taking the appropriate linear combinations of displaced sources
to implement T (�) results in fixed-order background-field compound propagators that include the operator insertions
throughout spacetime. These compound propagators are used to construct the two-point correlation functions in
Eq. (4). The background-field two-point correlation functions Gh(t;λ) have a spectral representation as a sum of
exponentials. This, in turn, determines the full t-dependent form of the ratio of two-point correlation functions in
zero and non-zero background fields, Rh(t) (defined in Eq. (5)) in terms of the eigenenergies, interpolating operator
overlap factors, and ground- and excited-state matrix elements of the lattice operator in Eq. (S1). The ground-state
matrix elements of interest for each nuclear system can thus be extracted by fitting LQCD results for Rh(t) to the
form arising from the spectral representations.

Zero background field two-point correlation function have the spectral representation

Gss
′

h (t;λ = 0) =
∑
n

Zsn(Zs
′

n )∗e−Ent, (S2)

where {s, s′} ∈ {S, P} specifies the source and sink smearing, En is the energy of the n-th energy eigenstate, and Zsn
is an overlap factor defined by Zsn =

√
V 〈n|χsh(0) |0〉, where V = a4

∏
µ Lµ is the (dimensionful) lattice volume and

Lµ is the extent of the lattice geometry in the µ direction. The corresponding background-field two-point functions
at O(λ) have the spectral representation

Gss
′

h (t;λ)
∣∣∣
O(λ)

= a

t∑
τ=0

∑
n,m

Zsn(Zs
′

m)∗e−Enτ
〈
n
∣∣∣ T̃ (�)

∣∣∣m〉
=
∑
n

Zsn(Zs
′

n )∗t e−Ent
〈
n
∣∣∣ T̃ (�)

∣∣∣n〉
+
∑
n

∑
m 6=n

Zsn(Zs
′

m)∗a

(
e−Ent

1− e(En−Em)a
+

e−Emt

1− e(Em−En)a

)〈
n
∣∣∣ T̃ (�)

∣∣∣m〉
(S3)

where T̃ (�) =
∑

x T
(�)(x, 0) and thermal effects from the finite temporal extent of the lattice have been neglected,

see Refs. [42, 43, 58] for further discussions. The spectral representation for Rss′h (t) follows from inserting Eqs. (S2)
and (S3) into Eq. (5) and can be expressed as

Rss
′

h (t) =
∑
n

〈
n
∣∣∣T (�)

∣∣∣n〉Zsn(Zs
′

n )∗
(

(t+ a)e−En(t+a)∑
k Z

s
k(Zs

′
k )∗e−Ek(t+a)

− t e−Ent∑
k Z

s
k(Zs

′
k )∗e−Ekt

)
+
∑
n

N ss′

n

(
e−En(t+a)∑

k Z
s
k(Zs

′
k )∗e−Ek(t+a)

− e−Ent∑
k Z

s
k(Zs

′
k )∗e−Ekt

) (S4)

where N ss′

n = a
∑
m 6=n

〈
n
∣∣T (�)

∣∣m〉Zsn(Zs
′

m)∗/(1 − e(En−Em)a) +
〈
m
∣∣T (�)

∣∣n〉Zsm(Zs
′

n )∗/(1 − e(Em−En)a) involves
excited-state transition matrix elements as well as combinations of overlap factors not determined from fits to Eq. (S2).
In order to extract the ground-state matrix elements of interest in this work, combined fits to Gss

′

h (t; 0) and Rss′h (t)
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FIG. S1. Left: Effective matrix elements (Eq. (6) of the main text), with best fit result (dark grey band) and final fit result
(light grey band). Right: The results of all fits included in the weighted average to obtain the systematic and statistical
uncertainties of the corresponding matrix element.

are used to fix the free parameters {
〈
n
∣∣T (�)

∣∣n〉 , En, Zsn(Zs
′

n )∗,N ss′

n }, for ss′ ∈ {SS,SP}. It is noteworthy that if

this spectral representation is truncated at Nstates = 1, then the second sum in Eq. (S4) vanishes and Rss′h (t) is

independent of N ss′

0 . For Nstates > 1, Rss′h (t) is similarly independent from a linear combination of the N ss′

n that

can be used to eliminate one redundant parameter, chosen here to be N ss′

0 . Further, if the sums and finite-difference
derivatives in Eq. (S3) and Eq. (S4) were replaced by continuum integrals and derivatives, then Rss′h (t) would be

independent of N ss′

n , suggesting that fits might not be sensitive to N ss′

n in practice if lattice artifacts are small. In
this work, fits are performed both using Eq. (S4) and also neglecting these lattice artifacts by setting N ss′

n = 0 in
Eq. (S4). The Aikiake Information Criterion (AIC) is used to select whether fits with or without these lattice artifacts
are preferred for each choice of Nstates and fit range that is considered. In all cases, fits without these lattice artifacts
are preferred by the AIC and used for subsequent analysis.

Care must be taken in order to account for systematic uncertainties associated with the fit-range choice and
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FIG. S2. The ratios of effective matrix elements, Eq. (S5), for pp and 3He to that in the proton. The gray bands show the
reconstructed value of the matrix element ratio from the fits to the individual nuclear states.

the model selection (i.e., the number of states to retain in truncated approximations to the infinite sums of states in
Eqs. (S2)-(S4)). In this work, an automated fitting procedure analogous to the procedure described in Ref. [61] is used
to assess these systematic fitting uncertainties. Results for SS and SP interpolating operators are fit simultaneously and
maximum source-sink separations {tSSmax, t

SP
max} are chosen so that the signal-to-noise ratio of each correlation function

is always greater than a tolerance of 0.5. A minimum separation tmin
min = 4 is required for the spectral representation

to be well-defined for three-point correlation functions for the action and operator considered here. Within these
constraints, Nmax = 200 choices of minimum separations for both sources (tSSmin, t

SP
min) are chosen randomly. For each

fit range, a one-state fit is performed simultaneously for both sources. A two-state fit is subsequently performed,
and if the two-state fit results in an AIC score of ∆AIC≤ −0.5, then the two-state fit is accepted. This procedure is
repeated until an Nstate-state fit is rejected, at which point an (Nstate−1)-state fit is used. For the correlation functions
analyzed in this work, this procedure results in accepted fits with Nstate ∈ {1, 2, 3}. Correlated χ2-minimization is
used for all fits with covariance matrices regularized using optimal shrinkage [89, 90]. The χ2 depends linearly on the
overlap factors, so these parameters are solved for using variable-projection methods [91, 92]. The excited-state energy
gaps are then determined using nonlinear optimization (Nelder-Mead and gradient-based Newton solvers from the
Julia package Optim are used and verified to reproduce the same minimum energy gaps within an absolute tolerance
of 10−5). The fit is then repeated for Nboot = 200 bootstrap samples, and the marginalized parameter uncertainty on
the ground-state matrix element is determined using rank-based bootstrap confidence interval estimation [93] to add
robustness to outlier bootstrap samples. Various checks on the fit result are then performed: an uncorrelated fit must
reproduce the result within a tolerance of 5-sigma, the bootstrap median must reproduce the mean within a tolerance
of 2-sigma, and the goodness-of-fit must be below a tolerance of χ2/Ndof < 2. All fit results passing these criteria are
included in an ensemble of acceptable fits. A weighted average of these acceptable fits is used to determine the final
central value and total systematic uncertainty, where the (in principle arbitrary - see Ref. [94] for a discussion of this
in a Bayesian framework) weights are taken to be the ratio of the p-value to the variance of each fit as in Ref. [90].
Final uncertainties are obtained by adding in quadrature the statistical uncertainty of the highest weight fit with the
systematic uncertainty obtained from the weighted average. The fitting procedure is fully specified by the parameters
and tolerance values above, as well as by a random seed for bootstrap resampling that is fixed to allow correlated
ratios of matrix elements for different hadrons to be formed.

Fig. S1 shows summaries of the fits of R3pt
h for each state studied in this work using the approach described above.

It is also convenient to define the further ratio for a nuclear state h:

Rh(t) = Rh(t)/Rp(t) (S5)

which determines the ratio of the nuclear momentum fractions to that of the proton. Fig. S2 shows results for Rh(t)
including results obtained by fitting Rh(t) and Rp(t) independently as described above, using correlated bootstrap
resampling to determine ratios of the ground-state matrix elements from all successful pairs of fit ranges, and taking
a weighted average of the results.
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NONPERTURBATIVE RENORMALIZATION

An ensemble of Nmeas = 101 field configurations is used to compute the nonperturbative renormalization of the
operator studied in this work. The parameters of the ensemble match those used for the nuclear matrix element
calculations in the main text, except they have a smaller volume of L3 × T = 243 × 24.

The renormalization coefficient of the local operator Tµν in Eq. (2) is computed in the RI′MOM scheme [55] by
equating the Landau-gauge dressed vertex function

Γµν(p) ≡ 1

NC
TrC

[
S−1(p)Gµν(p)S−1(p)

]
(S6)

with its tree level value at a fixed momentum p. Here, S is the quark propagator and Gµν is the quark three-point

correlation function for the zero-momentum projected operator T̃ (�)
µν , and the trace is over color degrees of freedom.

Defining T̃ (�)
µν =

∑
z T

(�)
µν (z) =

∑
z,z′ q(z) J

(�)
µν (z, z′) q(z′), this zero-momentum-projected three-point correlation

function is

Gµν(p) =
1

V

∑
x,y,z,z′

eip(x−y)S(x, z)J (�)
µν (z, z′)S(z′, y), (S7)

which is computed with the sequential source technique applied through the operator [15]. At tree-level, the vertex
function is proportional to two tensor structures [56]:

iΛ1
µν(p) ≡ 1

2
(p̃µγν + p̃νγµ)− 1

4
/̃pδµν , iΛ2

µν(p) ≡ p̃µp̃ν
p̃2

/̃p−
1

4
/̃pδµν , (S8)

where p̃µ ≡ 2
a sin

(
a
2pµ
)

is the lattice momentum corresponding to pµ. In the continuum, only Λ1
µν appears, however

Λ2
µν enters as an O(a) correction [56]. Expressing Γµν in the space spanned by {Λ(1),Λ(2)} amounts to imposing the

renormalization condition:

Γµν(p)|p2=µ2
0

= Zq(p)
[
Z−11 (p)Λ1

µν(p) + Z−12 (p)Λ2
µν(p)

]∣∣
p2=µ2

0

, (S9)

where Z−1a (p) for a ∈ {1, 2} are operator renormalization coefficients and the quark field renormalization Zq is defined
as:

Zq(p)|p2=µ2
0

=
i

12p̃2
Tr
[
S−1(p)/̃p

] ∣∣∣∣
p2=µ2

0

. (S10)

The renormalization coefficient of primary interest is ZRI′MOM(µ0, a) ≡ Z1(p)
∣∣
p2=µ2

0
.

Eq. (S9) is solved by constructing a linear functional on the space of Dirac and Lorentz matrices. A bilinear form
〈·, ·〉 is defined whose action is:

〈λ1, λ2〉 ≡
∑
i∈τ(3)

1

TrD
{
λ1iλ

2
i

}
, (S11)

where λ1, λ2 are objects with two Dirac and two Lorentz indices and the sum runs over elements of a basis for the
irreducible representation of the hypercubic group that contains T , as defined in Eq. (2). The functionals 〈Λ1, ·〉 and
〈Λ2, ·〉 are applied to Eq. (S9) to yield a system of equations:

Zq(p)
∑

b∈{1,2}

〈Λa(p),Λb(p)〉Z−1b (p) = 〈Λa(p),Γ(p)〉, (S12)

which can be solved for Z1,2(p).
An MS renormalization factor can be constructed from the RI′MOM factor computed as described above as

ZMS(µ) = RMS/RI′MOM(µ, µ0)ZRI′MOM(µ0, a), (S13)

where the matching factorRMS/RI′MOM(µ, µ0) has been computed to 3-loop order in lattice perturbation theory [56, 57]

(using the two-loop value produces a statistically indistinguishable result). While ZMS(µ) defined in Eq. (S13) is
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FIG. S3. Renormalization coefficients in the MS scheme, color-coded by the amount of hypercubic breaking at each point. ZMS

is computed on each ensemble for each mode pµ with 0.5 ≤ (ap)2 ≤ 10, and averaged over hypercubic orbits.

in principle independent of the matching scale p2 = µ2
0, in practice there are discretization artifacts which arise as

contamination in the form of dependence on the hypercubic invariants p[2n] ≡
∑
µ p

2n
µ , resulting in the classic jellyfish-

bone structure shown in Fig. S3. p̃µ can be expanded in a Taylor series in p[2n], so either p[2n] or p̃[2n] may be used
to perform the fit; p[2n] is used for this analysis, but consistent results are obtained by fitting to p̃[2n].

To obtain the renormalization factor, the hypercubic artifacts which depend on p[2n] for n > 1 are fit using the
one-window-fit approach, detailed in Ref. [95]. Running terms and remaining artifacts which depend only on p2

are then fit separately. To allow a quantification of systematic uncertainties, the fits are performed over a range of
windows, with a range of functional forms. In particular, artifacts of the form

{H1, H2, H3} =

{
c1
a2p[4]

p2
+ c2

a2p[6]

(p2)2
, c3

a2p[4]

p2
log(a2p2), c4a

4p[4] + c5
a4p[6]

p2
+ c6a

4

(
p[4]

p2

)2
}

(S14)

{R1, R2, R3, R4} =

{
d1a

2p2,
d2
a2p2

, d3 a
2p2 log(a2p2), d4

(
a2p2

)2}
, (S15)

are considered, where the Hi denote hypercubic terms and the Ri are contributions from running. Terms are grouped
by their order in a2 and by whether or not they contain logarithmic corrections. The full functional form is truncated
at order a4. Adding further logarithmic terms into the functional form does not increase the fit quality. A fit form
F , constructed from these components, is chosen for a specific data window to maximize the goodness of fit while
preventing overfitting using the following procedure. Given a window of momenta, the first fit form is initialized to
be F (1) = 0. Given a fit form F (n), the subsequent form F (n+1) is determined by considering all possible forms

F
(n+1)
j = F (n) +Xj , (S16)

which can be built from F (n) using only the terms Xj which are not currently present in F (n), and X ∈ {H,R}
is as appropriate for the fit to the hypercubic or running artifacts. A fit form F

(n+1)
j is accepted if and only if

A(F
(n+1)
j ) < A(Fnj ), where A(F ) ≡ 2Nparam(F ) +χ2(F ) is the value of the AIC of the fit F . If no forms are accepted

or there are no fit forms left, iteration stops and F ≡ F (n). The subsequent fit form F (n+1) is chosen out of the

accepted fit forms {F (n+1)
j }j by maximizing the p-value of the fit.

This procedure is applied to a range of fitting windows. Windows are chosen with (ap)2 ∈ [(ap)2min, (ap)
2
max] and

p[4]/(p2)2 ≤ h0 by independently adjusting (ap)2min and (ap)2max between 0.5 and 10 in increments of 0.5, always
keeping a window size (ap)2max − (ap)2min ≥ 5, and taking h0 ∈ {0.5, 0.6, ..., 1.0}. For each fit window f , the optimal
fit form as defined above is accepted if and only if its p value pf ≥ 0.01, and each accepted fit is given a weight:

wf ≡ pf (δZMS
f )−2, (S17)

where δZMS
f denotes the statistical uncertainty on ZMS

f , which is the fit result for ZMS that is obtained in fit f . The
weights are normalized so that the maximum weight is 1. Given the large number of accepted fits, the Nw ≡ 100
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FIG. S4. Nw = 100 highest-weight accepted fits, Zf , plotted as a function of their fit weight, wf . Individual fits are color-coded
by the maximum amount of hypercubic breaking in the window, and the gray band shows the final weighted average.

highest-weight fits are combined in a weighted average, with the result:

ZMS(µ = 2 GeV) = 0.885(42). (S18)

The final result and uncertainties are consistent under variation of Nw, with larger systematic uncertainties when
additional fits with lower weights are included (e.g., with Nw = 200, the result is 0.895(55)). As a consistency check,
the computation was also performed on an ensemble with identical action and parameters with lattice dimensions

163 × 48. A result of ZMS(µ = 2 GeV) = 0.910(57) is obtained, indicating finite volume effects are negligible within
uncertainties.

CONNECTION TO PHENOMENOLOGY: MOMENTUM FRACTION EXTRAPOLATION

In order to connect to phenomenology, the lattice result for 〈x〉(
3He)
u−d at quark masses corresponding to mπ = 806

MeV is extrapolated to the physical masses using the assumption of weak mass dependence of the short-distance
two-body counterterms in nuclear EFT. The isovector twist-two operators in Eq. (1) match on to hadronic operators
in nuclear EFT as [63]

Oµ1...µn → 〈xn〉
(p)
u−dvµ1

. . . vµnN
†τ3N(1 + α3,nN

†N) + . . . (S19)

where N is a nucleon field, v is the nuclear velocity, and the ellipsis denotes higher order nucleonic and pionic operators.
Defining the nuclear factor G3(N,Z) = 〈N,Z|N†τ3NN†N |N,Z〉, the two-nucleon counterterm α3,2 relates the nuclear
and proton momentum fractions as [63]

α3,2G3(N,Z) ≡ 〈x〉(N,Z)
u−d −

Z −N
A
〈x〉(p)u−d. (S20)

This LEC can be determined from the LQCD results for 3He most precisely by re-expressing it in terms of the
quantities in Table I as

α3,2G3(3He) =
1

3

3
〈x〉(

3He)
u−d

〈x〉(p)u−d
− 1

 〈x〉(p)u−d. (S21)

Since renormalization effects cancel in the ratio, it is more precisely determined than the individual momentum
fractions themselves and, with a naive error propagation, computing α3,2G3(3He) via Eq. (S21) rather than Eq. (S20)
achieves smaller uncertainties.

The matching of the LEC, and extrapolation to physical quark masses proceeds in the following steps:
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1. Determine the counterterm α3,2G3(3He) at mπ = 806 MeV via Eq. (S21), using the LQCD calculations of the

ratio of 〈x〉(
3He)
u−d /〈x〉

(p)
u−d, and 〈x〉(p)u−d itself.

2. While the momentum fractions themselves have nonanalytic quark mass dependence, the counterterms α3,2 and
nuclear factors G3(N,Z) are expected to have only mild quark mass dependence and so their their combination
is extrapolated to the physical quark masses by assuming the same central value and increasing the uncertainty
by 50%.

3. The extrapolated value of α3,2G3(3He) is combined with the value of 〈x〉(p)u−d from phenomenology to produce a

physical-point value of 〈x〉(
3He)
u−d /〈x〉

(p)
u−d.
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