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Extraction of hadronic observables at finite-momenta from Lattice QCD (LQCD) is constrained
by the well-known signal-to-noise problems afflicting all such LQCD calculations. Traditional quark
smearing algorithms are commonly used tools to improve the statistical quality of hadronic n-point
functions, provided operator momenta are small. The momentum smearing algorithm of Bali et
al. extends the range of momenta that are cleanly accessible, and has facilitated countless novel
lattice calculations. Momentum smearing has, however, not been explicitly demonstrated within
the framework of distillation. In this work we extend the momentum-smearing idea, by exploring
a few modifications to the distillation framework. Together with enhanced time slice sampling and
expanded operator bases engendered by distillation, we find ground-state nucleon energies can be
extracted reliably for |~p| . 3 GeV and matrix elements featuring a large momentum dependence
can be resolved.

I. INTRODUCTION

Lattice field theory is now a thoroughly well-
established scheme to quantitatively study strongly-
interacting theories, such as Quantum Chromodynam-
ics (QCD), from first-principles. With the exception of
the lightest pseudoscalar mesons at rest, lattice QCD
(LQCD) calculations of the spectrum and properties of
hadrons are afflicted by exponentially worsening signal-
to-noise ratios as the Euclidean time extent between op-
erators grows. It is thus a key demand of lattice cal-
culations that the hadron of interest saturate correla-
tion functions at as short a Euclidean time separation
as possible. Key to satisfying this demand is identify-
ing an operator whose overlap with the hadron of in-
terest is maximized relative to those with other states:
〈0| Ô (~p) |h (~p)〉 � 〈0| Ô (~p) |h′ (~p)〉.

The most widely used means of accomplishing this is
through quark spatial smearing schemes, such as Wup-
pertal [1] or Jacobi [2] smearing, which act as low-energy
filters of hadronic correlation functions, leading to a more
rapid relaxation to low-energy eigenmodes. It is thus
standard practice to compute hadronic observables where
at least one interpolating operator of an N-point func-
tion possesses a non-trivial spatial extent. However, as
pointed out in ref. [3], spatial smearing of hadronic oper-
ators is less than optimal and even detrimental for all but
interpolators projected to zero momentum. The authors
proposed a remedy, now known as momentum smear-
ing, that involves the introduction of appropriately tuned
phase factors onto the underlying gauge links, prior to the
subsequent spatial smearing of the quark fields. In effect,
a tunable momentum space distribution is constructed
by creating an oscillatory spatial profile. The remark-
able effectiveness of this procedure was established in [3],
wherein the pion and nucleon energies were reliably ex-
tracted up to ∼ 2 GeV and ∼ 3 GeV, respectively, and
the dispersion relations reasonably satisfied.

This robust momentum-smearing technique is now

ubiquitous in lattice studies that demand a wide range
of momenta, such as the mapping of nucleon electro-
magnetic form factors (FFs) [4], generalized FFs [5],
and semi-leptonic decay FFs needed to quantify elements
of the Cabibbo-Kobayashi-Maskawa matrix [6, 7]. Per-
haps the greatest usage has been seen in LQCD calcula-
tions of matrix elements of certain non-local space-like-
separated operators, which when computed over a range
of momenta can be related to various light-cone distri-
butions fundamental to hadron structure. Such matrix
elements, analyzed in the context of Large Momentum
Effective Field Theory (LaMET) [8, 9], have proven use-
ful in understanding the (un)polarized partonic content
of the pion and nucleon [10–15]. Quark bilinears can
be related via coordinate space factorization schemes to
lightcone distribution amplitudes [16–18], and to quark
parton distribution functions (PDFs) [19–21] within the
pseudo-PDF framework [22]. Whilst the “Lattice Cross
Sections” approach [23, 24] generalizes this paradigm to
spatially separated gauge-invariant current-current ma-
trix elements, recently employed in [21, 25] to determine
the valence quark content of the pion.

Although momentum smearing, in concert with Wup-
pertal or Jacobi smearing, does indeed enhance the over-
lap of the interpolating operators onto the lowest lying
states in the spectrum, there are additional challenges
that it does little to ameliorate. Firstly, energy eigen-
states contributing to a correlator become dense as the
spatial momentum of the correlators increases. Secondly,
the reduced lattice symmetries for correlators at non-
zero spatial momentum, together with the contribution
of two- and higher-particle states, further increases the
density of the higher energies. Distillation [26] when em-
ployed with an extended basis of operators that it fa-
cilitates, provides a powerful means of addressing these
issues, as well as permitting a better sampling of a gauge
configuration through explicit momentum projections
performed at both source and sink in a two-point correla-
tion function. The use of the variational method within
a given lattice symmetry channel, using an extended ba-



sis of operators implemented through distillation, has
proven essential in mapping the low-lying baryon spec-
trum of QCD [27, 28] and exotic hadrons [29–32], as well
as exploring the glueball content in the isoscalar sector of
QCD [33]. Recently, the power of this approach has been
demonstrated in the calculation of the various nucleon
isovector charges[34]. Calculational programs employing
distillation have generically limited the spatial momenta
to within the shell |as~p|2 . 4(2π/Ls)

2, where as is the
spatial lattice spacing, and Ls is the number of time slices
in the spatial directions. Here the resultant correlation
functions have sufficient momentum-space overlap that
the distillation framework does not necessitate modifica-
tions. The goal of this work is to supplement distillation
with a realization of momentum smearing, thereby in-
creasing the range of hadron momenta accessible, and in
so doing demonstrate the efficacy of this approach both
for the nucleon energies at higher spatial momenta and
for the nucleon charges derived at these high momenta.

The remainder of this paper is organized as follows.
We proceed in Section II with a brief summary of the
distillation framework, and the modifications needed to
incorporate momentum smearing within that framework.
In Section III, we describe its computational implemen-
tation, and then proceed to a comparison of the nucleon
energies with and without momentum smearing on a lat-
tice at the larger of our two pion masses, and identify an
optimal procedure for its implementation. In Section IV,
we extend the investigation to a lighter pion mass, and in
particular highlight the efficacy of this approach by de-
termining the renormalized isovector charges of the nu-
cleon in both stationary and boosted-frames, with and
without the momentum-smearing modifications. In Sec-
tion V we discuss our results for the resultant matrix el-
ements, and their interpretation in terms of both the ex-
pected discretization effects, and the possible excited-to-
ground-state transitions. Concluding remarks are given
in Section VI.

II. DISTILLATION

Distillation [26] is a low-rank approximation to
a gauge-covariant smearing kernel, conventionally
taken to be the Jacobi-smearing kernel Jσ,nσ (t) =(

1 + σ∇2(t)
nσ

)nσ
[2]. The tunable parameters {σ, nσ} al-

low for variable source “widths” and applications, respec-
tively, such that in the large iteration limit, the kernel ap-
proaches that of a spherically-symmetric Gaussian. The
low-rank approximation is formed by isolating eigenvec-
tors of the discretized three-dimensional gauge-covariant
Laplacian

−∇2(t)ξ(k) (t) = λ(k)(t)ξ(k) (t)

and ordering solutions according to the eigenvalue mag-
nitudes λk (t). The outer product of equal-time eigenvec-

tors defines the distillation smearing kernel

� (~x, ~y; t)ab =

RD∑
k=1

ξ(k)
a (~x, t) ξ

(k)†
b (~y, t) , (1)

where RD is the chosen rank of the distillation space and
color indices a, b are made explicit. Correlation functions
formed by Wick-contracting quark fields smeared via (1)
can be factorized into distinct reusable components, the
elementals and the perambulators. The elementals

Φ
(i,j,k)
αβγ (t) = εabc

(
D1ξ

(i)
)a (
D2ξ

(j)
)b (
D3ξ

(k)
)c

(t)Sαβγ ,

(2)
shown here for the case of baryons, encode the oper-
ator construction, where Di are covariant derivatives,
and Sαβγ are subduction coefficients encoding how an
interpolator with Dirac indices {α, β, γ} constructed in
the continuum will mix across irreducible representations
(irreps) of a hypercubic lattice and its associated little
groups. The perambulators

τ
(l,k)
αβ (t′, t) = ξ(l)† (t′)M−1

αβ (t′, t) ξ(k) (t) (3)

encode the propagation of the quarks between elements
of the distillation space, where M is the Dirac operator.
It is this factorization of the quark propagation from the
construction of the interpolating operators that enables
the computationally efficient implementation of the vari-
ational method with an extended basis of operators.

A. Momentum Smeared Distillation

Distillation is quite costly initially both in computa-
tional storage and the construction of its components.
Moreover, the rank RD is expected to scale with the lat-
tice spatial volume in order to maintain the same resolu-
tion in correlation functions on different ensembles [26].
This is particularly significant for the construction of
the correlation functions, where the needed Wick con-
tractions for meson and baryon two-point functions scale
as R3

D and R4
D, respectively. Thus an implementation

of momentum smearing within distillation must seek to
minimize the number of additional distillation vectors in-
cluded in the basis, and in particular avoid the use of a
distinct eigenvector basis for each momentum of the cor-
relation functions.

With such a scenario in mind, one might consider mod-
ifying a set of eigenvectors according to:

1. Single Phase

ξ̃(k)
a (~z, t) = ei

~ζ·~zξ(k)
a (~z, t)

2. Opposing Phases

ξ̃(k)
a (~z, t) = 2 cos

(
~ζ · ~z

)
ξ(k)
a (~z, t)
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3. Identity and Opposing Phases

ξ̃(k)
a (~z, t) =

[
1 + 2 cos

(
~ζ · ~z

)]
ξ(k)
a (~z, t)

4. Multiple Unidirectional Phases

ξ̃(k)
a (~z, t) =

[
ei
~ζ1·~z + ei

~ζ2·~z
]
ζ1 6=ζ2

ξ(k)
a (~z, t) ,

such that overlaps for several, potentially opposing,
hadron momenta could be simultaneously improved. A
schematic qualitative picture of these candidate imple-
mentations is depicted in Fig. 1.

An important requirement of any modification of distil-
lation is the preservation of translational invariance, since
that is essential for the projection to states to definite mo-
mentum. It is straightforward to show that the perambu-
lators with the type-1 modification are indeed invariant

under the translation of the phase through ~x→ ~x+ ~d:

τ̃ ijµν (t′, t) = ξ(i)† (~x, t′)e−i
~ζ·(~x+~d)M−1

µν (~x, t′; ~y, t)

× ei~ζ·(~y+~d)ξ(j) (~y, t)

= ξ(i)† (~x, t′)e−i
~ζ·~xM−1

µν (~x, t′; ~y, t) ei
~ζ·~yξ(j) (~y, t) .

Such translation invariance fails for the other implemen-
tations of momentum smearing, as we show below for
phasing of Type 4:

τ̃ ijµν (t′, t) = ξ(i)† (~x, t′) {e−i ~ζ2·(~x+~d) + e−i
~ζ1·(~x+~d)}

×M−1
µν (~x, t′; ~y, t) {ei ~ζ1·(~y+~d) + ei

~ζ2·(~y+~d)}ξ(j) (~y, t)

= ξ(i)† (~x, t′) e−i
~ζ2·~xei(

~ζ1−~ζ2)·~dM−1
µν (~x, t′; ~y, t)

× ei~ζ1·~yξ(j) (~y, t) + {~ζ1 ↔ ~ζ2}+ T .I.

where we find a combination of translationally invariant

(T .I.) and variant pieces for ~ζ1 6= ~ζ2. Thus in the remain-

[1] [2]

[3] [4]

FIG. 1. Qualitative momentum space overlaps following mod-
ification of a computed eigenvector basis. Panels 2-4 expressly
violate translation invariance, but would dramatically reduce
computational cost were translational symmetry preserved.

ID a (fm) mπ (MeV) L3 ×Nt Ncfg Nsrcs RD

a094m358 0.094(1) 358(3) 323 × 64 100 4 64

a094m278 0.094(1) 278(4) 323 × 64 259 4 64

TABLE I. Lattice ensembles utilized throughout this work.
The number of distillation eigenvectors RD and distinct
source positions Nsrcs per configuration are also indicated.

der of this paper, we consider only phasing of type 1, and
refer to the modified eigenvector basis as “phased”.

The momentum smearing scheme of ref. [3] reweights
gauge fields Uµ [x] in a boost direction zµ with weight
ζ = 2π

L r according to

Ũµ [x] = ei
2π
L rzµUµ [x] (4)

prior to quark source creation, where r ∈ R. As phases
are applied to the underlying gauge configurations prior
to determination of the eigenvectors, the configurations
can safely be smeared with unallowed lattice momenta
as highlighted in [3]. Thus it is sufficient to modify the
previously computed eigenvectors, limiting phases to al-
lowed lattice momenta. In particular we consider the
phase factors

~ζ =
2π

L
ẑ, (5)

~ζ = 2 · 2π

L
ẑ, (6)

corresponding to one and two units of the allowed lattice
momenta. We remark that phases applied in the −ẑ-
direction improve momentum space overlaps for apz < 0
but are not presented herein for brevity.

III. DEMONSTRATION OF EFFICACY

We employ two isotropic clover ensembles, with 2 ⊕ 1
flavors, of extent 323 × 64, an inverse coupling β = 6.3,
corresponding to a lattice spacing a ' 0.094 fm, and with
pion masses of 358 and 278 MeV, respectively. These
are cataloged in Table I; further details of the ensem-
bles are contained in ref. [35, 36]. To first establish the
feasibility of our candidate implementation, we employ
the ensemble at the heavier pion mass, herein denoted
by a094m358. The figure of merit we use is to extract
the ground-state nucleon dispersion relation for as large
a range of momentum as possible.

Calculations were performed for four distinct (random-
ized) source temporal origins on 100 configurations of the
a094m358 ensemble, with each configuration separated
by 10 HMC trajectories; this small number of configura-
tions was found sufficient to quantitatively demonstrate
the effectiveness of distillation for the nucleon energies
and dispersion relation. We employed RD = 64 eigen-
vectors, where the gauge fields in the Laplacian were
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smoothed via 10 iterations of stout smearing [37] with
smearing parameter ρij = 0.08 and ρµ4 = ρ4µ = 0.

A. Interpolator Construction

The regularization of QCD through lattice discretiza-
tion explicitly breaks continuum rotational symmetry,
and consequently baryons at rest are now cataloged ac-
cording to the double-cover irreps of the octahedral group
ODh . Thus mass eigenstates once cataloged by JP must
now be isolated according to their patterns of subduction
across the finite number of irreps Λ of ODh . The con-
struction of the nucleon operators follows the procedure
introduced in refs. [27, 28], which we summarize now,
and are expressed in terms of the baryon elementals in-
troduced in Eq. 2. These operators are projections onto
the lattice irreps of discretized continuum-like operators,
which we classify according to the spectroscopic nota-
tion N (2S+1)LPJ

P , where S represents the Dirac spin,
L the angular momentum introduced via derivatives, P
the permutational symmetry of such derivatives, and JP

the total angular momentum and parity of the nucleon
interpolator N .

To best capture the ground-state JP = 1
2

+
nucleon at

rest, which trivially subduces into the G1g irrep of ODh ,
we use a basis of non-relativistic interpolators [27, 28]:

B~p=~0 = {N2SS
1
2

+
, N2SM

1
2

+
, N2S′S

1
2

+
, N2PA

1
2

+
,

N2PM
1
2

+
, N4PM

1
2

+
, N4DM

1
2

+} (7)

that admit a flexible description of the radial/orbital nu-

cleon structure - we note N2PM
1
2

+
and N4PM

1
2

+
are of

hybrid construction.

Projection of the lattice interpolating fields to non-zero
spatial momenta (~p 6= ~0) further breaks the ODh symme-
try group to little groups dependent on the * (~p)[38], and
furthermore mixes states of different parities. Here we
consider only boosts along a spatial axis, which are espe-
cially important for PDF calculations in the LaMET and
pseudo-PDF frameworks. In this case, the little group is
the order-16 dicyclic group or Dic4. The framework for
the construction of the operators, specialized to the case
of mesons, is given in ref. [39]. The genesis is the classi-
fication of operators of definite helicity, and therefore we
extend our basis both to include those of higher spins,
and of negative parity, which are then subduced to the
little group. In particular, our basis is extended as fol-
lows, based on the study of the nucleon spectrum and

the dominant operators in ref. [28]:1

B~p6=~0 = {N2SS
1
2

+
, N2SM

1
2

+
, N2PA

1
2

+
, N2PM

1
2

+
,

N4PM
1
2

+
, N4DM

1
2

+
, N4SM

3
2

+
, N2DS

5
2

+
,

N2PM
1
2

−
, N4PM

1
2

−
, N2PM

3
2

−
, N4PM

3
2

−
,

N4PM
5
2

−
, N2DS

3
2

+
, N4DM

3
2

+
, N2DM

3
2

+}.
(8)

We emphasize that the density of the (discrete) energy
spectrum for the nucleon is expected to be considerably
greater for states in motion compared with those at rest
for the following reasons. Firstly, as the spatial momen-
tum is increased the separation between the energies of
a given state is compressed. Secondly, through the re-
duced symmetries, even in the continuum, that enables
more states to contribute within a given symmetry chan-
nel.

B. Variational Analysis

The factorization of a correlation function intrinsic to
distillation facilitates the use of an extended basis of in-
terpolators at source and sink, without re-computation
of quark propagators as in standard smearing schemes.
We are then able to perform a variational analysis in the
nucleon G1g channel at rest (Eq. 7), and for all boosted
frames in the Dic4 little group (Eq. 8). We start with a
matrix of correlation functions

Cij(T, ~p) = 〈0| Oi(T,−~p)O†j(0, ~p) |0〉 , (9)

where ~p is the momentum projection, and O† selected
from some interpolator basis B; we reiterate that distil-
lation enables momentum projections at both source and
sink time slices, respectively. The variational method
corresponds to solution of a generalized eigenvalue prob-
lem (GEVP) of the form

C(T, ~p)vn (T, T0) = λn (T, T0)C(T0, ~p)vn (T, T0) . (10)

Optimal operators, in the variational sense, for the en-

ergy eigenstates |n〉 are defined by
∑
i v
i
nO†i . Associated

with each eigenvector is a principal correlator λn (T, T0).
We will obtain the energy associated with each state |n〉
by fitting its principal correlator according to

λn (T, T0) = (1−An) e−En(T−T0) +Ane
−E′

n(T−T0). (11)

The inclusion of a second exponential serves to quantify
the extent to which a principal correlator is dominated
by a single state, for which any deviation is encapsulated
by the amplitude An and “excited” energy E′n. Further
details, and in particular regarding the selection of t0 and
the conditions used to enforce orthogonality of eigenvec-
tors vn (T, T0), are contained in refs. [30, 34].

1 Note N2S′S
1
2

+
is removed from our interpolator basis
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(a) (b)

FIG. 2. The left-hand (a) and right-hand (b) plots show the effective energies for the nucleon, obtained on the a094m358

ensemble, using a single, local interpolating operator N2SS
1
2

+
, subduced to the relevant little group, constructed with unphased

(a) and phased (b) distillation eigenvectors, respectively. Data are shown for points where the signal-noise ratios are ≥ 1.35
(a) and ≥ 2 (b), and are shifted for legibility. The bands show the two-state fits to the correlators, as described in the text,
where the dark region indicates data included in the fits. The dashed lines represent the energies expected from the continuum
dispersion relation using the nucleon mass obtained from the fit to the ~p = 0 correlator.

C. Efficacy of Phased Distillation & Nucleon
Dispersions

We benchmark the standard distillation implementa-
tion, without phasing, by first computing ground-state
nucleon energies using the single, local interpolating op-

erator N2SS
1
2

+
, the analog to standard nucleon interpo-

lators, for apz ≤ 4 (2π/L). We fit the two-point functions
to the two-exponential form

C2pt
fit (T, ~p) = e−E(~p)T

(
a+ be−∆ET

)
, (12)

where ∆E is the gap between the ground and excited-
state energies, and priors are introduced to ensure the
positivity of the overlap parameters {a, b}. To avoid pos-
sible contact terms arising from the use of the Wilson-
clover action, only temporal separations greater than
one are included in the fit. The data and the result-
ing fits are shown in Figure 2a. For the lowest momenta
apz ≤ 2 (2π/L), the data exhibit a clear signal over the
large range of T/a, and are well described by a two-state
fit. Furthermore, the resulting ground-state energies are
in excellent agreement with the expectations from the
continuum dispersion relation E2 = m2 + p2. However,
for momenta apz = {3, 4} × (2π/L), not only does the
signal-to-noise ratio degrade rapidly, but a two-state fit
becomes insufficient to capture the contributions of ex-
cited states to the correlator signal. The latter is seen by
the tension between the fit and correlator for Euclidean
separations T/a ≤ 5. Inclusion of additional states in

the functional of (12) would undoubtedly better describe
early times in the apz = {3, 4} × (2π/L) signals, but the
lack of statistically meaningful signal beyond T/a ' 10
presents a serious limitation.

Figure 2b features the N2SS
1
2

+
correlators where the

underlying eigenvectors are phased with one unit of mo-
mentum, as in Eq. 5. While there is only a modest im-
provement in the statistical precision of large-T/a signal
for apz = {1, 2} × (2π/L), a dramatic improvement is
seen for the apz = {3, 4}× (2π/L) signals. The improved
statistical precision with phasing also serves to expose
deviations of the energies from the expectations of the
continuum dispersion relation. These discrepancies could
arise from discretization effects, or from incomplete de-
termination of the ground state correlation function. It is
this latter possibility that we now try to control through
the use of the variational method.

We performed the variational analysis on the matrix of
correlation functions formed by interpolators in the B~p=~0
(Eq. 7) and B~p6=~0 bases (Eq. 8). We first applied the
variational method to the unphased basis to determine
the improvement this provides with respect to the single
operator used above. We then performed the same anal-
yses with distillation spaces modified according to (5)
(one unit of momentum) and (6) (two units of momen-

tum), over the momentum ranges 1 ≤ (2π/L)
−1
apz ≤ 4

and 4 ≤ (2π/L)
−1
apz ≤ 8, respectively. These mo-

mentum ranges were chosen to emphasize that, although
one would naively expect eigenvectors modified accord-
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(a) (b)

FIG. 3. The ground-state nucleon principal correlators for the a094m358 ensemble using a projected interpolator within each
momentum channel obtained from the B~p 6=~0 interpolator basis subduced into the relevant little group. The left-hand and
right-hand panels are obtained from the unphased and phased eigenvectors, with one unit of momentum, respectively. The
ground-state principal correlator for the unphased B~p=~0 basis is shown for reference (blue). In each case, data are shown for
signal-to-noise ratios ≥ 2. The bands show the two-exponential fits of Eq. 11, with data excluded from the fits in grey. Both
the data and fits are shown as λ0e

E0(T−T0), where E0 is the lowest-lying energy obtained from the fit.

ing to (5) to have optimal overlap with momenta apz =
3 (2π/L) and (6) with apz = 6 (2π/L), a broad cover-
age in momentum is possible within each modified space,
thereby obviating the need to use many distillation bases
each with its own computational cost.

The principle correlators, together with the two-state
fits of Eq. 11, are shown in the left and right-hand plots
of Figure 3 for the cases of unphased eigenvectors, and
phased eigenvectors with one unit momentum, respec-
tively. Compared to the use of phasing with the single

N2SS
1
2

+
interpolator, the gains afforded by a variational

analysis of the phased operator basis appear less dra-
matic than use of an unmodified basis. The principal
correlators in each case demonstrate a rather uniform
plateau very close to unity, indicative of single eigen-

state dominance. However, the phased principal corre-
lators are much better determined and lead to more pre-
cise determinations of the ground-state nucleon energies.
For example in the apz = 4 (2π/L) case, the extracted
nucleon energy from the phased principal correlator is
∼ 35% more precise than the unphased equivalent.

For the highest momenta 4 ≤ (2π/L)
−1
apz ≤ 8 a

comparison with the unphased principle correlators is
not possible due to expected statistical fluctuations. We
instead show in Fig. 4 principal correlators for 4 ≤
(2π/L)

−1
apz ≤ 8, where now the eigenvectors are phased

with two units of allowed lattice momenta (6). Though
the principle correlators for the higher excited states
could not be resolved in such highly boosted frames,
the resolution of the ground-state nucleon to at least
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apz = 6 (2π/L) marks a considerable improvement in the
distillation/GEVP infrastructure for the study of hadron
structure.

FIG. 4. The ground-state nucleon principal correlators for
the a094m358 ensemble using a projected interpolator within
each momentum channel obtained from the B~p6=~0 interpolator
basis subduced into the relevant little group. The eigenvec-
tors are phased with two units of momentum (6). Principal
correlator fits (11) are shown with colored bands, while ex-
cluded data are in grey. Data is shown for signal-to-noise
ratios ≥ 2.

The results for our variational analyses of the unphased
and phased bases for different momenta are summarized
in Fig. 5, where we plot the extracted nucleon energies,
together with expectations from both the continuum dis-
persion relation, and the lattice dispersion relation for
a free scalar particle. It is evident, even with the use
of an extended operator basis and the correspondingly
improved isolation of the ground state, distillation with-
out phasing is unable to cleanly resolve the ground-state
nucleon energy for apz = 4 (2π/L), where the signal is
dominated by noise whether the single or variationally
optimized operator is used.

Energies from the low-momentum phasing (5) were

~ζ =
2π
L
ẑ

~ζ
=
2 ·
2π
L
ẑ

FIG. 5. The ground-state nucleon dispersion relation for the
a094m358 ensemble, together with expectations from the con-
tinuum dispersion relation (blue), and free lattice scalar dis-
persion relation (purple). Energies without the use of phasing

are shown in magenta for a single, N2SS
1
2

+
operator, and or-

ange for the variational analysis using the bases B~p=~0,B~p 6=~0.
The energies obtained by applying the variational method on
the phased B~p=~0,B~p6=~0 bases are shown in green, and for a ba-
sis of purely local operators in red. The squares and triangles

denote the ~ζ = 2π
L
ẑ and ~ζ = 2 · 2π

L
ẑ phasing, respectively. The

ground-state nucleon energies for momentum apz = 4 (2π/L)
are shown in the inset plot, shifted for legibility.

found to be consistent with those determined from the
unphased GEVP, but are of substantially higher statis-
tical quality. Most encouraging is that we are now able
to map the ground-state nucleon dispersion relation up

to pz ' 3 GeV using the ~ζ = 2 · 2π
L ẑ phased distillation

space, even within the limited statistics. Moreover, sig-
nificant uncertainty in the nucleon energies accrues only
for the highest momenta apz = {7, 8} × (2π/L), where
for discretization effects are considerable.

Confidence in our extracted nucleon energies is bol-
stered by a separate variational analysis of an extended
operator basis containing only the spatially-local inter-

polators, in particular the N2SS
1
2

+
and seven explicitly

relativistic interpolators. These results are shown in red
of Fig. 5, and are again consistent with the (un)phased
determinations when using the B~p6=~0 operator basis. The
slightly higher values for the nucleon energies at large
momenta are not surprising, as the purely local opera-
tor basis did not include negative-parity operators nor
those of continuum spin J > 3

2 , certainly contaminat-
ing the true ground-state nucleon signal. Nonetheless,
a consistent determination of the nucleon dispersion re-
lation when using two distinct operator bases validates

7



the union of distillation with momentum smearing, and
in particular confirms that the addition of phase factors
does not spoil the group theory required to construct our
interpolating operators.

IV. MATRIX ELEMENTS AT HIGH
MOMENTUM

Hadron structure calculations within lattice QCD pro-
ceed through calculation of matrix elements between
hadrons of interest, implemented through the calcula-
tion of three-point, or higher, correlation functions. As
emphasized in the introduction, many of the key mea-
sures of hadron structure, such as the parton distribu-
tion functions computed in the LaMET, pseudo-PDF or
lattice-cross-section frameworks, require that the result-
ing three-point functions be computed for hadrons at as
large a momentum, or over as large a range of momen-
tum, as possible in order to have the best control over sys-
tematic uncertainties in their approaches. Thus the re-
mainder of this paper is devoted the addressing this issue
through the calculation of the nucleon isovector charges,
in the forward direction, both for the nucleon at rest and
for the nucleon in a moving frame of increasing boosts.

For our study of the nucleon charges, we use an ensem-
ble at a somewhat lighter pion mass, which we denote by
a094m278, for which the relevant isovector current renor-
malization constants have been computed [36]; details of
the ensemble are contained in Table I. At the lower values
of momentum (apz = {0, 1}×(2π/L)), we use the vanilla
form of distillation, without phasing. As we demonstrate
below, at high momentum, where phasing is essential, we
use two units of phasing, as implemented in Eq. 6. For
apz = 4 (2π/L), we compare our results both with and
without phasing as a consistency check of the method.

A. Nucleon Effective Energies

We begin by presenting in Fig. 6 the nucleon effec-
tive energies computed on the a094m278 ensemble using
ground-state interpolating operators obtained from the
variational method with the B~p=~0 and B~p6=~0 bases, follow-
ing the procedure described for the a094m358 ensemble.
At all values of the momenta shown (i.e. apz ≤ 4 (2π/L))
we show the results without phasing; for apz = 4 (2π/L),
we also show the results using the phased eigenvectors,
as described above. The need for phasing at this value
of the momenta (green) and above is striking, where the
plateau in the effective energy is clear at far greater tem-
poral separations, and the resulting energy far more pre-
cisely determined. We observe that at such a lighter
pion mass, the variational method without phasing is
insufficient to extract the ground-state nucleon energy
for apz ≥ 4 (2π/L) (red), but arguably apz ≥ 3 (2π/L)
(brown). We do not expound further on nucleon ener-
gies for this ensemble, however this demonstration under-

scores the need for variational improvement of a phased
distillation space in order to study physical observables
at high-momenta.

B. Charges

We isolate forward isovector matrix elements by con-
structing nucleon three-point functions

C3pt (T, τ, ~p) =
∑
~x,~y,~z

ei~p·(~y−~x)P3pt
βα ×

〈Nα (~y, T )Ou−dΓ (~z, τ)N β (x, 0)〉, (13)

with Ou−dΓ an isovector insertion introduced at time τ be-
tween nucleon interpolators with temporal separation T ,
and P3pt

βα = P2pt (1 + iγ5γ3) a z-polarized positive-parity
projector. To study the asymptotic 0� τ � T behavior,
we parameterize our two-point and three-point (13) cor-

FIG. 6. Nucleon effective energies for the a094m278 ensem-
ble using a projected interpolator obtained from the B~p=~0
and B~p6=~0 bases subduced into the relevant little group, to-
gether with continuum expectations (dashed), and 2-state fits
(bands), where in each case the darker region denotes the time
series included in the fit. No phasing was used to extract the
ground-state nucleon energy for lattice momenta apz ∈ Z5,
while apz = 4 (2π/L) was also determined with two units of
phasing (6). In the case of apz = 4 (2π/L), the results with
and without phased eigenvectors are shown as the green and
red points respectively, clearly demonstrating the need for
phasing. Data shifted for legibility, and shown for signal-to-
noise ratios greater than 1.35.
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relation functions according to 2-state fitting functionals

C2pt
fit (T ) = e−E0T

(
a + be−∆ET

)
(14)

C3pt
fit (T, τ) = e−E0T

(
A+ Be−∆ET

+Ce−∆E T
2 cosh

[
∆E

(
τ − T

2

)])
, (15)

where ∆E is the energy gap between the ground-state
(E0) and an effective first-excited (E1) state, B and C
respectively contain excited and transition matrix ele-
ments, and A contains the desired forward matrix ele-
ment. Priors are again introduced to enforce the posi-
tivity of {a, b}. With these parametrizations, the desired
ground-state matrix element is then gΓ

00 = A/a in the
large-T limit, as shown in [34]. We perform simultaneous
correlated fits to the computed two-point and three-point
correlators according to (14) and (15) to extract these pa-
rameters. Contact terms arising from the fermion action
are excluded from the simultaneous fits by fitting in the
windows τfit/a ∈ [2, T − 2] and Tfit/a ∈ [2, Tmax

fit ], where
Tmax

fit is set by the maximal temporal range for which
the associated principal correlators have signal-to-noise
ratios exceeding unity:

� (2π/L)
−1
apz = 0: Tmax

fit = 16

� (2π/L)
−1
apz = 1: Tmax

fit = 16

� (2π/L)
−1
apz = 4 - no phase: Tmax

fit = 7

� (2π/L)
−1
apz = 4 - phased: Tmax

fit = 12.

When computing hadronic charges, the degree of
excited-state contamination present in the three-point
correlators for a given interpolator separation T is of-
ten quantified (c.f. [34, 36]) via definition of an effective
charge

gΓ
eff (T, τ) = C3pt

Γ (T, τ) /C2pt
fit (T ) ,

where the numerator is a three-point correlation function
with inserted Dirac structure Γ computed for intermedi-
ate times τ/a = [0, T − 1], and C2pt

fit (T ) is the two-point
function fit evaluated at the source-sink interpolator sep-
aration T . This ratio has the advantage of plateauing to
gΓ

00 as τ and T − τ become large, but is only useful in

so far as C2pt
fit is well-determined and sufficiently cap-

tures the ground-state. We find this ratio, particularly
in the high-momentum frames considered, to be mislead-
ing when juxtaposed with the ratio of the simultaneous
C3pt

Γ (T, τ) and C2pt
fit (T ) fit. We instead illustrate the

quality of our data by forming a direct ratio of the com-
puted correlation functions

RΓ (T, τ) = C3pt
Γ (T, τ) /C2pt (T ) . (16)

All following figures depict these ratios (16) together with
ratios of the fitted three-point and two-point functions for
each T/a, as well as the extracted renormalized isovector
charge indicated with a black line and grey errorband.
Data excluded from fits are in grey. All errors are de-
termined via a simultaneous jackknife resampling of the
data.

V. CHARGE BEHAVIOR

A. gu−dS

The isovector scalar S = q τ
3

2 q current within nucleon
states decomposes trivially as

〈N |S |N〉 =
1

2MN
uN (pf )Gu−dS

(
q2
)
uN (pi) , (17)

where Gu−dS is the isovector scalar form factor. The am-

plitude Gu−dS is Lorentz-invariant and should thus be in-
dependent of the nucleon boost, absent excited-state, dis-
cretization and finite-volume effects. In particular, in the
forward limit one should, in principle, be able to access
Gu−dS (0) = gu−dS regardless of frame. Figure 7 illustrates
the RS (T, τ) ratios needed to access the scalar charge
and associated fits within our considered nucleon frames,
demonstrating the degree to which this supposition is re-
alized. In the rest frame a clear plateau is observed in the
ratio by T/a = 10, while determinations at larger values
of T/a deviate from this trend and exhibit increased un-
certainty; the latter being consistent with the observed
variability of the nucleon effective energies at these same
times. Most notable is a reduction in value and uncer-
tainty of gu−dS when compared with standard, high statis-
tics, smearing schemes on the same a094m278 ensemble.
Namely in [36], it was found gu−dS = 0.990(89) - the use
of distillation has led to a more precise determination by
∼ 75%.

Considering the apz = (2π/L) frame, we observe sta-
tistical consistency with the apz = 0 determination,
with a plateau emerging for T/a ∼ 10 − 12. The ex-
pected increase of excited-state contamination is evident
in Fig. 7b, where there exists greater curvature of the
ratio data for a given T and the difference between each
RS (T, τ) plateau and the asymptotic charge is seen to in-
crease relative to the rest case. This amounts to marked
increases in B and C of Eq. 15 which capture excited-state
〈N ′|S |N ′〉 and transition 〈N ′|S |N〉matrix elements, re-
spectively.

Without introduction of appropriate momentum
phases into the distillation space, attempts to access the
scalar charge in a highly-boosted frame are utterly mean-
ingless (Fig. 7c). Isolation of the scalar charge in the
apz = 4×(2π/L) frame is however dramatically improved
when a phased distillation space is used. The statis-
tical precision of the RS (T, τ) data improves consider-
ably, provided the two-point function is well-determined.
However, the extracted charge is dubious - the phased
determination differs by 25% from the average of the
apz = {0, 1} × (2π/L) cases. The close proximity of
the RS (T, τ) plateaus for each T/a and the asymptotic
charge suggest that at the level of the 2-state fits con-
sidered herein, the first excited-state matrix element is
small. However, without performing RS (T, τ) compu-
tations for additional T/a and performing higher state
fits, this cannot be rigorously confirmed. We do point
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(a) (b)

(c) (d)

FIG. 7. Extracted renormalized RS (T, τ) and isovector scalar charges for momenta (a) apz = 0, (b) apz = (2π/L), (c)
apz = 4 × (2π/L) without phasing, and (d) apz = 4 × (2π/L) with two units of allowed lattice momentum applied to
eigenvectors. Variationally improved operators were used within each momentum channel.

out the statistical noise evident in the T/a = 10 data
is not surprising, as the phased two-point function loses
signal at T/a ∼ 10 (c.f. Fig. 6). Furthermore, deter-
minations of ZS found in [36] vary below the 2% level
and thus also cannot explain the observed discrepancy.
One may be tempted to attribute this dramatic differ-
ence to a mixing of the scalar current with the deriva-
tive of the vector current Dµ{ψγµψ (x) e−iq·x}. Given
the explicit zero 3-momentum transfer with the prob-
ing current, it is evident this derivative mixing is only
possible for q4 6= 0 or when unwanted excited-to-ground
state transitions are present. This possibility is captured
by C of (15), and is reflected in the overall curvature
of RS (T, τ) rather than vertical shifts of the computed
matrix element. We are left to attribute this puzzling
discrepancy to statistical fluctuations and the lack of ad-
ditional T/a data. As will be shown, the other charges

gΓ apz = 0 apz = 2π/L apz = 8π/L apphase
z = 8π/L

gu−dS 0.953(22) 0.916(28) 0.57(44) 0.705(35)

χ2
r 0.920 1.010 12.482 2.037

TABLE II. Renormalized isovector scalar charge determined
at rest and in boosted frames.

we explore exhibit much greater consistency in the stud-
ied momentum frames, and observed deviations can be
attributed to known systematic effects. Table. II cata-
logs the isolated scalar charges and the correlated figure
of merit for the simultaneous fits of each frame.
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B. gu−dV

Among the currents considered, the vector current

Vµ = qγµ
τ3

2 q is unique given that it is a conserved quan-
tity in the continuum. Our decision to adopt purely local
currents in this work necessarily violates this conserva-
tion. However the derived vector current renormalization
constant [36] reestablishes the desired conservation up
to quadratic corrections in the lattice spacing - namely,
ZV g

u−d
V,bare = 1 + O

(
a2
)
. Considering the vector current

Lorentz structure between the ground-state nucleon and
an arbitrary state N ′ with nucleon quantum numbers

〈N ′|Vµ |N〉 = uN ′ (pf )

[
Fu−d1

(
q2
)(

γµ −
qµ
q2 /q

)
+

σµνqν
MN ′ +MN

Fu−d2

(
q2
)]
uN (pi) ,

it is clear for ~q = 0 the temporal component of the vector
current simply yields the baryon number of the nucleon
and all its excitations. A useful sanity check then for the
phasing considered herein, is to ensure the renormalized
gu−dV is unity in the V4 = qγ4q channel for each forward
frame considered. As illustrated in Figures 8,9b & 9f,
we indeed find ZV g

u−d
V4,bare to be unity and temporally in-

FIG. 8. Extracted renormalized RV4 (T, τ) and isovector vec-
tor charges determined for momenta apz = 0. A variationally
improved operator was used in these determinations.

variant, most notably even as the nucleon momentum
is increased and phasing is employed. A highly-boosted
nucleon interpolator without phasing exhibits poor over-
lap with the ground-state nucleon (Fig. 9d) and is suffi-

ciently noisy such that ZV g
u−d
V4,bare 6= 1. The extracted

gu−dV4
are presented in Tab III, with consistent deter-

minations observed in the apz = {0, 1} × (2π/L) and
apphase
z = 4 (2π/L) momentum channels.
Non-zero nucleon momenta while still with ~q = 0,

opens the Vz = qγ3
τ3

2 q channel as an additional means

to quantify the ground-state Dirac form factor Fu−d1 (0).
However, any such attempt to isolate the ground-state
Dirac form factor Fu−d1 signal will be contaminated with

the transition form factor Fu−d2

(
q2
)

signal in propor-
tion to q4/ (MN ′ +MN ). In the ideal scenario that ex-
cited states are completely removed, the energy transfer
q4 will vanish and Fu−d1 (0) can be directly accessed with
Vz. Figure 9a illustrates RVz (T, τ), which features a clear
dependence on {T, τ} and whose asymptotic limit differs

from gu−dV4
by ∼ 8%, together indicating the presence

of excited-states. Thus absent a dedicated study and
subsequent removal of the Fu−d2 contamination, the best

we can extract here is Fu−d1

(
q2
)
− q4γ4

MN′+MN
Fu−d2

(
q2
)

- which we will denote as gu−dVz
for brevity. To the ex-

tent this pollution is unchanging in other forward frames
is bore out in Figs. 9c & 9e. As for the scalar charge,
the unphased apz = 4 (2π/L) determination is meaning-
less and is dominated by uncertainty in the unaltered
two-point function. The phased apz = 4 (2π/L) deter-

mination, although statistically consistent with gu−dV4
, is

constrained by only two values of T and is character-
ized by a curious flip in concavity of RVz (T, τ). As this
dependence is captured by C of Eq. 15, it is clear the ef-
fect of phasing has apparently identified the conjugate of
the ground-to-first-excited state transition. This behav-
ior warrants repeated calculations for additional values of
T/a with increased statistics to elucidate whether this be-
havior is merely fluctuations or a clear trend. That said,
the RVz (T, τ) appears to be trending below unity within
the well-determined values of T/a. Results of these si-
multaneous fits are cataloged in Tab. IV.

C. gu−dA

The axial charge of the nucleon is perhaps the most
enigmatic of the isovector charges given its long history
as a benchmark in LQCD, and only recent efforts falling
to within 1% of experiment [40–42]. At zero-momentum
the nucleon expectation of the axial current is vanishing
except for components along the direction of polarization.
Thus for our z-polarized nucleons, we must use γ3γ5 at
rest to access gu−dA - which we denote as gu−dAz

. Together
with a Lorentz decomposition of the axial current

〈N |Aµ |N〉 = uN (pf )
[
γµγ5G

u−d
A

(
q2
)
−

i
qµ

2MN
γ5G̃

u−d
P

(
q2
)]
uN (pi) (18)

gΓ apz = 0 apz = 2π/L apz = 8π/L apphase
z = 8π/L

gu−dV4
1.001(5) 1.003(4) 0.84(9) 0.982(18)

χ2
r 0.901 1.767 12.317 1.902

TABLE III. Renormalized isovector vector charges deter-
mined via γ4 at rest and in boosted frames.
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(a) (b)

(c) (d)

(e) (f)

FIG. 9. Extracted renormalized RVµ (T, τ) and isovector vector charges determined from γ3 (left panel) and γ4 (right panel)
insertions. External nucleon momentum according to (a),(b) apz = (2π/L), (c),(d) apz = 4 (2π/L) without phasing, (e),(f)
apz = 4 (2π/L) with two units of allowed lattice momenta applied to eigenvectors. Variationally improved operators were used
within each momentum channel.
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gΓ apz = 0 apz = 2π/L apz = 8π/L apphase
z = 8π/L

gu−dVz
– 0.915(15) 0.63(8) 0.995(23)

χ2
r – 1.216 12.544 2.150

TABLE IV. Renormalized gu−dVz
determined via γ3 in boosted

frames. By definition, gu−dVz
= 0 at rest.

and ~q = 0, it is evident the axial matrix element at rest
receives contributions only from the axial form factor and
not the induced pseudoscalar form factor. We plot in
Fig. 10 the renormalized Rγ3γ5 (T, τ) and gu−dAz

isolated
at rest from our simultaneous fits. We observe notice-
able contamination from excited-states for T/a = {6, 8},
but broad consistency for the remaining T/a values. The
observed ∼ 7% deviation from the experimental value
of 1.2756(13) [43] is not the focus of this work, but
is conventionally attributed to finite-volume effects and
excited-states. In fact, it has been observed [44] that the
γ3γ5 channel is particularly sensitive to closely-spaced
excited states, which when incorrectly identified leads to
not only a discrepancy of gu−dAz

with experiment but also
a violation of the operator derived PCAC relation. Our
deviation of gu−dAz

from experiment is, however, consistent
with [36], where with standard smearing schemes on the

same a094m278 ensemble it was found gu−dAz
= 1.208(33).

We emphasize the use of distillation has led to a 3-fold
reduction in uncertainty.

Other potential systematic errors in computations of
gu−dAz

have long been explored, such as use of O (a)-
improved currents [45]. In that work, however, it was
found use of an O (a)-improved axial current only mildly
improved the experiment-lattice discrepancy, bolstering
the presumed preponderance of excited-state and finite-
volume effects. These same authors explored the degree
to which gu−dAz

= gu−dA4
could be satisfied, just as we now

explore based on Eq. 18.
Figure 11 illustrates the Rγ3γ5 (T, τ) and Rγ4γ5 (T, τ)

ratios isolated in the boosted frames we have considered.
As with the scalar and vector charges, the lack of phas-
ing at high-momentum degrades the two-point correlator
such that the resulting matrix element signals contain
essentially no information (Figs. 11c & 11d). Compared

to the rest frame, we observe ∼ 3% difference in gu−dAz
when computed in the apz = (2π/L) frame. This differ-
ence is indicative of q2 6= 0, despite ~q = 0, and hence
mild radiative transitions with excited-states affecting

gΓ apz = 0 apz = 2π/L apz = 8π/L apphase
z = 8π/L

gu−dAz
1.18(1) 1.145(9) 0.8(1) 1.275(29)

χ2
r 1.255 1.421 12.301 2.761

TABLE V. Renormalized isovector axial charge determined
via γ3γ5 at rest and in boosted frames.

FIG. 10. Extracted renormalized Rγ3γ5 (T, τ) and isovector
axial charge determined via γ3γ5 at rest. A variationally op-
timized operator was used in these determinations.

this determination. Furthermore, we do observe a dra-
matic difference of ∼ 15% between the determination of
gu−dAz

and gu−dA4
in the apz = (2π/L) frame. This is un-

surprising given the observation of q2 6= 0 in the moving
γ3γ5 channel, all but ensuring the outsized influence of

G̃u−dP [46, 47]. The increased separation between each
Rγ4γ5 (T, τ) in Fig. 11b again points to this increased
excited-state contamination. We do remark that despite
the different vertical scales chosen in Figs. 11a & 11b,
the fitted energy gap ∆E is consistent within error. The
momentum smeared apz = 4 (2π/L) charges (Figs. 11e
& 11f) again exhibit improved statistical quality, yet su-
perficially appear to agree with each other and oddly
with experiment. Each determination does not however
seem to indicate a plateau in RΓ (T, τ) has been found,
especially in light of the noisy RΓ (T = 10, τ) determina-
tions. Moreover, the Rγ3γ5 (T, τ) and Rγ4γ5 (T, τ) ratios
are clearly trending away from each other within the il-
lustrated data, and suggests the extracted charges in this
phased frame would indeed be distinct were calculations
performed with improved statistics and, especially, finer
T/a. The results for our simultaneous fits for the gu−dAz

and gu−dA4
axial charges are presented in Tab. V & VI,

respectively.

gΓ apz = 0 apz = 2π/L apz = 8π/L apphase
z = 8π/L

gu−dA4
– 0.970(14) 0.71(9) 1.302(24)

χ2
r – 1.148 12.353 1.990

TABLE VI. Renormalized isovector axial charges determined
via γ4γ5 in boosted frames. By definition, gu−dA4

= 0 at rest.
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(a) (b)

(c) (d)

(e) (f)

FIG. 11. Extracted renormalized RAµ (T, τ) and isovector axial charges using γ3γ5 (left) and γ4γ5 (right). External nucleon
momentum according to (a),(b) apz = (2π/L), (c),(d) apz = 4 (2π/L) without phasing, (e),(f) apz = 4 (2π/L) with two units
of allowed lattice momentum applied to eigenvectors. Variationally improved operators were used within each momentum
channel.
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gΓ apz = 0 apz = 2π/L apz = 8π/L apphase
z = 8π/L

gu−dTxy
1.049(7) 1.048(8) 0.99(14) 1.06(3)

χ2
r 1.267 1.064 12.603 1.999

TABLE VII. Renormalized isovector tensor charges deter-
mined via T12 at rest and in boosted frames.

D. gu−dT

The isovector tensor current within nucleon states in-
duces the following form factor decomposition:

〈N |Tµν |N〉 = uN (pf )
[
iσµνA

u−d
10

(
q2
)

+

[γµ, qν ]

2MN
Bu−d10

(
q2
)

+

[Pµ, qν ]

2M2
N

Ãu−d10

(
q2
)]
uN (pi) ,

where Tµν = qiσµν
τ3

2 q and P = pf + pi. At rest

only the T12 = qσ12
τ3

2 q matrix element is non-vanishing;
apart from kinematic factors, this particular tensor cur-
rent continues to be non-vanishing within the nucleon
in motion. This has the fortunate consequence that
all form factors outside the desired Au−d10

(
q2
)
, where

gu−dTxy
≡ Au−d10 (0), do not contribute to the matrix element

signal. We indeed find gu−dTxy
determined in each momen-

tum frame to be statistically consistent across the boosts
considered, and in the case of apz = {0, 1} × (2π/L)
the charge is especially well determined and in fantastic
mutual agreement (see Figs. 12a & 12b). The lack of a

clean signal for gu−dTxy
for apz = 4 (2π/L) (Fig. 12c) is by

now expected, and underscores the need for phasing at
high-momentum (Fig. 12d). We note the slightly larger,

though no less consistent, value found for gu−dTxy
in the

phased apz = 4 (2π/L) frame appears to be a result of
the noisy T/a = 10 data. We anticipate future calcula-
tions with improved statistics will help to bring down this
value. The ratios RTxy (T, τ) and simultaneous fit results
are compared in Fig. 12 and the extracted tensor charges
are gathered in Tab. VII. In the interest of completeness,
we note our best determined gu−dTxy

is ∼ 8% larger than

gu−dTxy
= 0.973(36) determined in [36], yet several times

more precise.
Summarizing, repeated calculations on lattice ensem-

bles of varying lattice spacings and fixed physical vol-
umes are necessary to rigorously pin down the size of
discretization effects on these results. A dedicated study
of contributing form factors is underway and will fur-
ther facilitate the conclusions herein. Of course a further
source of discrepancy of all computed charges are finite-
volume effects. One would expect finite-volume effects
to be minor for these charges, given that the a094m278
ensemble is characterized by mπL ' 4.24. Nonetheless,

calculations at different physical volumes required to con-
firm this expectation are planned.

VI. CONCLUSIONS

We have expounded upon the seminal Gaussian mo-
mentum smearing scheme developed by Bali et al.,
demonstrating momentum space overlaps of distilled in-
terpolators can likewise be improved by introducing ap-
propriate spatial phase factors onto eigenvectors of the
gauge-covariant Laplacian. We elected to introduce
phases onto a pre-computed eigenvector basis, rather
than rotating the underlying gauge transporters. Con-
sequently, the introduced phase factors were limited to
allowed lattice momenta in the numerical investigations
herein. Regardless of when the phase factors are in-
troduced, all components forming the scaffolding of a
distillation-smeared correlation function (e.g. elementals
and perambulators) must be recomputed. This moti-
vated our choice to smear pre-computed eigenvectors.

We established the efficacy of this approach by isolat-
ing the ground-state nucleon dispersion relation using a
standard eigenvector basis, and two modified bases; mod-
ified with one and two units of allowed lattice momenta,
respectively. Despite variational optimization of unmod-

ified interpolators within the Jλ = 1
2

λ=±1/2
channel, the

nucleon dispersion relation was only meaningfully satis-
fied up to ' 1.75 GeV. Variational analyses within the
phase modified distillation spaces yielded agreement with
the nucleon dispersion relation in excess of 3 GeV.

The determination of several renormalized isovector
charges of the nucleon was used as further evidence for
the utility of merging distillation with momentum smear-
ing. Matrix elements at rest and for apz = (2π/L) were
computed without phasing. These were then compared
to identical matrix elements computed in a boosted frame
(apz = 4 (2π/L)) with and without momentum phases.
Our aim was to demonstrate consistency between charges
computed in different (forward) frames. This is an espe-
cially nuanced venture, as numerous form factors begin
to compete as the momentum frame is varied. Further-
more, the momentum smearing procedure certainly im-
proves overlap onto unwanted single- and multi-particle
excited states. A proper treatment of this consistency re-
quires dedicated calculations of nucleon form factors at
several lattice spacings/volumes, and pion masses. These
encouraging results nevertheless establish the feasibility
of future calculational paradigms requiring distillation at
high-momenta. Our attention is now turned to such stud-
ies.
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jar, R. H. Rödl, A. Schäfer, R. W. Schiel, W. Søldner,
and A. Sternbeck, Phys. Rev. D91, 054501 (2015),
arXiv:1412.7336 [hep-lat].

[42] R. Horsley, Y. Nakamura, A. Nobile, P. E. L. Rakow,
G. Schierholz, and J. M. Zanotti, Phys. Lett. B732, 41

18



(2014), arXiv:1302.2233 [hep-lat].
[43] P.A. Zyla et al. (Particle Data Group), to be published

in Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[44] Y.-C. Jang, R. Gupta, B. Yoon, and T. Bhattacharya,

Phys. Rev. Lett. 124, 072002 (2020), arXiv:1905.06470
[hep-lat].

[45] J. Liang, Y.-B. Yang, K.-F. Liu, A. Alexandru,
T. Draper, and R. S. Sufian, Phys. Rev. D96, 034519
(2017), arXiv:1612.04388 [hep-lat].

[46] K.-I. Ishikawa, Y. Kuramashi, S. Sasaki, N. Tsukamoto,
A. Ukawa, and T. Yamazaki (PACS), Phys. Rev. D 98,
074510 (2018), arXiv:1807.03974 [hep-lat].

[47] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou,
K. Jansen, C. Kallidonis, G. Koutsou, and A. Va-
quero Aviles-Casco, Phys. Rev. D 96, 054507 (2017),
arXiv:1705.03399 [hep-lat].

[48] J. Towns et al., XSEDE: Accelerating Scientific Discov-
ery, Computing in Science and Engineering, vol.16, no.
5, pp. 62-74, Sept.-Oct. 2014.

[49] R. G. Edwards and B. Joo (SciDAC, LHPC, UKQCD),
Lattice field theory. Proceedings, 22nd International Sym-

posium, Lattice 2004, Batavia, USA, June 21-26, 2004,
Nucl. Phys. Proc. Suppl. 140, 832 (2005), [,832(2004)],
arXiv:hep-lat/0409003 [hep-lat].

[50] M. Clark, R. Babich, K. Barros, R. Brower, and
C. Rebbi, Comput. Phys. Commun. 181, 1517 (2010),
arXiv:0911.3191 [hep-lat].

[51] R. Babich, M. A. Clark, and B. Joo, in SC 10 (Super-
computing 2010) (2010) arXiv:1011.0024 [hep-lat].

[52] F. Winter, M. Clark, R. Edwards, and B. Joó, in 28th
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