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We calculate the low-lying spectra for the positive-parity ∆ and N at two pion masses of 358
and 278 MeV using an isotropic clover action with two degenerate light-quark and one strange-
quark flavors through the application of the generalized variational method within the distillation
framework. The spectrum exhibits the general feature observed in previous calculations using an
anistropic clover lattice, with a counting of states at least as rich as the quark model. Furthermore,
we identify states that are hybrid in nature, where gluonic degrees of freedom play a structural
role, indicating that such states appear a feature of the excited baryon spectrum, irrespective of the
lattice action, or the precise details of the smearing of the lattice interpolating operators used to
identify such states.
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I. INTRODUCTION

Lattice QCD (LQCD) provides a powerful numerical approach to solve QCD from the first principles, and has
been successfully applied to address a range of key quantities in high-energy and nuclear physics, from the calculation
of the ground-state spectrum, to nuclear charges and measure of hadron structure. The calculation of the excited-
state spectrum of QCD presented a particular challenge, in that the formulation of lattice QCD in Euclidean
space precluded the direct calculation of scattering amplitudes. However, the realization that the energy shifts at
finite volume could be related to infinite-volume scattering amplitudes [1], has transformed our ability to study
the resonance spectrum and the interaction of hadrons from lattice QCD. There has been impressive progress at
applying these methods to our understanding of the meson spectrum [2–6], but their application to the study of the
baryon spectrum [7], where both the theoretical and computational challenges are more demanding, is somewhat
limited.

Most studies of the excited-baryon spectrum have interpreted the extracted energy levels as those of single-particle,
stable states, with only a few attempts at extracting the momentum-dependent scattering amplitude [8–10] and
thereby correctly treating the resonance spectrum. However, accepting this important limitation, considerable
insight into the excited baryon spectrum of QCD has been obtained. Most notably, the extracted spectrum is found
to be at least as rich as the quark model, and exhibits a counting of energy levels commensurate with SU(6)⊗O(3)
spin-flavor symmetry [11]. Moreover, the positive-parity excited baryon spectrum reveals suggestions of “hybrid”
states, that is those in which the gluonic degrees of freedom play an essential, structural role, beyond those of the
quark model, with a common mechanism with comparable states in the meson section [12]. For the case of mesons,
there can exist “exotic” states that have quantum numbers JPC not available within a regular qq̄ valence structure.
Such states may have a dominant qqq̄q̄ component, so-called tetraquarks [13, 14], or be predominantly “hybrid”
qq̄g states [15–19], with a manifest gluonic valence component. Thus it is straightforward to separate an “exotic”
meson state from a regular one. But for baryons, the regular qqq states can have all the JP values. So, hybrid or
so-called pentaquark states will always have to ”share” quantum numbers with regular states, thus making them
very difficult to study.

There has been a number of models proposed to calculate the spectrum of hybrid baryons. There is the bag
model [20] where quark and gluon fields are confined within a cavity with the fields satisfying appropriate boundary
conditions at the wall of the cavity. In the flux-tube model [21, 22], the quarks sit at the ends of a string-like
structure. A meson contains a single flux tube between the quark and the anti-quark; in a hybrid meson, this
string is excited by a transverse oscillation. For the case of a baryon, there are three tubes which either meet at a
junction or form a triangle. There are also QCD sum-rule methods [23] and quark potential models [24] that make
predictions about hybrid baryons.

For the case of the so-called ”hybrid” baryons, and indeed for the non-exotic hybrids catalogued from lattice
calculations in the meson sector [25], their identification has proceeded through observing that the dominant inter-
polating operators are ”hybrid” in nature, in the sense that the operators vanish for trivial unit gauge configurations.
Such an identification, by its nature introduces a degree of model dependence, and therefore it is important to study
the robustness of such an identification. The aim of this paper is precisely to test such robustness by performing
a calculation of the low-lying positive-parity baryon spectrum at pion masses lower than those of ref. [12], using
different gauge and fermion actions at a finer spatial lattice spacing.

The remainder of the paper is organized as follows. In section II, we describe the baryon interpolation operators
used in our calculation, and briefly outline the distillation methodology used to construct the correlation functions
and our implementation of the variational method. Section III contains our results, beginning with the parameters
of the ensembles used in the calculation, a description of our fitting procedure, the stability of the fits under the
variation of the parameters of distillation process and the robustness of the spin identification on our lattices,
before presenting our analysis of the low-lying positive-parity ∆ and N spectrum together with the quark-gluon
assignment of the states, followed by the identification of the hybrid baryons for both the ∆ and N . In section IV,
we summarize our work and outline some implications.

II. COMPUTATIONAL STRATEGY

Since the focus of our calculation is the low-lying positive-parity spectrum, we employ a basis of interpolating
operators that have been found to have dominant overlaps with those states. The construction of the interpolating
operators, and the identification of the operators that couple primarily to the low-lying spectrum, has been described
in detail in refs. [11] and [12], so we only summarize the salient elements here. The interpolating operators follow
a continuum construction, and are expressed as a product of terms describing the flavor structure, Dirac spin and
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J irrep. (dimension) No. of Ops (∆) No. of Ops (N)

1
2 G1(2) 3 (1) 7 (2)

3
2 H(4) 5 (1) 7 (2)

5
2 G2(2)⊕H(4) 2 + 2 4 + 4 (1 + 1)

7
2 G1(2)⊕G2(2)⊕H(4) 1 + 1 + 1 1 + 1 + 1

TABLE I. The numbers of ∆ and N interpolating operators used in the calculation, together with their subductions onto
the irreps. of the cubic group. The number of hybrid operators used in each irrep. is included within bracket.

orbital angular momentum implemented through derivatives:(
BΣF ⊗

(
SPS
)n

ΣS
⊗ D

[d]
L, ΣD

)J

where B, S and D denote the flavor, Dirac spin and orbital angular momentum, L, components respectively, and
ΣF ,ΣS ,ΣD are the corresponding permutation symmetries. The resulting operators are projected through suitable
Clebsch-Gordon coefficients to total spin J ; the label n distinguishes different combinations that have the same spin
structure, while the d is the order of the gauge-covariant derivative.

For this work, our basis comprises the non-relativistic operators constructed from the upper components, in a
suitable γ representation of the Dirac spinors, with up to two covariant derivatives, allowing the operators with
up to two units of orbital angular momenta. We also include additional operators containing the commutator of
two covariant derivatives acting on the same quark field, corresponding to the chromomagetic components of the
gluonic field-strength tensor; it is these operators, which vanish for a unit gauge configuration, that are referred to
as “hybrid” operators, and for which a dominant overlap with a given state, we treat as the signature of the hybrid
nature of that state, as we discuss below. Finally, as the calculations are done on a discretized lattice, the operators
are subduced from the continuous Hilbert space onto the different lattice irreps. As a consequence, for total angular
momentum J = 5

2 and higher, the continuum operators are subduced onto multiple irreps, as detailed in Table I.

The operators created directly from the fields of the lattice Lagrangian couple to states at all scales, thus making
the extraction of the lightest states in the spectrum difficult. In order to solve this problem, a linear operator is
applied on the quark fields on appropriate time-slices and operators are built from those ”smeared” fields. In this
work, the smearing method used is known as Distillation [26]. The distillation operator is defined as:

�xy(t) =

ND∑
k=1

ν(k)
x (t) ν(k)†

y (t) ⇒ �(t) ≡ VD(t) V †D(t) (1)

where VD(t) is a M × ND matrix, M = Nc × Nx × Ny × Nz, Nc is the number of colors, Nx, Ny, Nz are the

extents of the lattice in the three spatial directions. The kth column of VD(t), ν
(k)
x (t) is the kth eigenvector

of the second-order three-dimensional differential operator 52 evaluated on the background of the spatial gauge
fields of time-slice t, once the eigenvectors have been sorted by the ascending order of the eigenvalues; ND is the
dimension of the distillation space. The reasons for adopting distillation in our calculation are, firstly, that the
computationally demanding parallel transporters of the theory, the perambulators, depend only on the gauge field,
and not on the interpolating operators. So, we can calculate the perambulators on an ensemble of gauge field once,
and then reuse them for an arbitrary basis of operators at both the source and the sink, and indeed for a range
of calculations. Secondly, the low-energy component of the spectrum is faithfully captured with a relatively small
number of distillation vectors, as we investigate in the next section.

For the extraction of the spectrum and the associated overlaps, we use the variational method as implemented in
ref. [27]. Our starting point is the generalized eigenvalue equation (GEV) for the two-point correlator matrix C(t)
with elements

Cij(t) = 〈0 | Oi(t)Ōj(0) | 0〉 (2)

where without loss of generality we take the source interpolation operator to be at time slice t = 0, and where i, j
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ID a (fm) Mπ (MeV) L3 ×Nt Ncfg

a94m358 0.094(1) 358(3) 323 × 64 351

a94m278 0.094(1) 278(4) 323 × 64 259

TABLE II. The parameters of the lattices, where the scale is obtained using w0 [30], and Ncfg is the number of configurations.

label the operators in a given representation of the cubic group. The GEV equation is expressed as

C(t) uα = λα(t, t0) C(t0) uα (3)

where uα are the generalized eigenvectors satisfying the orthonormality condition u†α C(t0) uβ = δαβ , and λα(t, t0)
are the corresponding principle correlators behaving as

λα(t, t0) = e−mα(t−t0)
[
1 +O

(
e−δm(t−t0)

)]
(4)

Here mα is the energy of the state labeled by α and δm represents the contributions from other states. Our
subsequent results are derived from two-state fits to the principle correlators of this form. Furthermore, Cij(t) can
be decomposed into the form,

Cij(t) =
∑
α

Zα
∗

i Zαj
2mα

e−mαt (5)

where, the overlap factor, Zαi = 〈0|Oi|α〉 can be written as,

Zαi =
(
U−1

)α
i

√
2mα exp

(
mαt0

2

)
(6)

where the matrix U is formed using the generalized eigenvectors uα as its columns; it satisfies the orthonormality
condition, U†C(t0)U = I. The overlaps can, thereby be obtained from the solution of the generalized eigenvector
matrix.

III. RESULTS

A. Computational Details

Earlier calculations using this basis of operators were performed on anisotropic clover lattices, with a spatial
lattice spacing of around a ' 0.12 fm, and an anisotropy, ξ ≡ as/at ' 3.5 [28, 29] with two mass-degenerate light-
quark flavors and a strange-quark. Here we use an isotropic clover action at a smaller lattice spacing a ' 0.094 fm,
determined using w0 scale [30], and with 2 + 1 flavors. We use ensembles at two values of the light-quark masses,
corresponding to pion masses of mπ = 358 and 278 MeV respectively. Details of the parameters of our ensemble
are listed in Table II. All the gauge-links entering in the operator constructions are stout-smeared [31]. In order
to achieve the greatest sampling of the lattice, we evaluate the two-point correlators from each time-slice on the
lattice, and on each configuration, average the correlators over lattice time-slices to remove the correlations among
the temporal direction of the lattices. We compute the perambulators for ND = 64 eigenvectors. We use positive
parity operators from [12] for the ∆ (Isospin, I = 3

2 , Iz = + 3
2 ) and for the N (Isospin, I = 1

2 , Iz = + 1
2 ).

B. Fitting Procedure

The fitting procedure of the two-point correlators with respect to the lattice time to extract the mass spectra
and the overlap factors, is defined in detail in ref. [16], and we only summarize the details here. The GEV of eqn. 2
is solved over a range of t0, and for each t0, the resulting principle correlators are fit to the two-exponential form,

λα(t, t0) = (1−A)e−mα(t−t0) +Ae−m
′
α(t−t0). (7)
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We restrict the fitting range such that, for each principle correlator, we only include time-slices for which the noise-
to-signal ratio is less than 0.05; in practice, this restricts the largest value of t included in the fits to be around
8. Furthermore, in the fits, we only include the two-point correlators with source-sink separation greater than 2
lattice units in temporal direction to avoid possible contact terms. For each t0, our fit to each principle correlator
is based on an acceptable χ2/dof. We also require that the coefficient A in eqn. 7 is far less than one, such that for
a fit to an N -dimensional matrix of correlators, the matrix is largely saturated by the lowest-lying N states. As m′α
of eqn. 7 is another measure of the excited-state contribution to the fit, we require m′α to be less than 10% of the
parameter mα which we identify as the mass of the corresponding state. Finally, we compute the overlap factors of
eqn. 6 using the eigenvectors at a reference time-slice tz.

In Figure 1, we show the principal correlator fit for the Hg irrep. of the ∆. A simultaneous fit is done for all the
operators used for this irrep. Each box shows the fit results for a particular state where the continuous curve is the
reconstruction from the fitted parameters and the purple region indicates the data points which are included in the
fit. As we keep A and m′α as small as possible, the curve in each box falls exponentially for smaller lattice time-slice
and flattens out to unity for t > t0. The box at the top-left corner shows the fit for the ground state which is
determined very preciously with very small uncertainty in mass. As we go to higher and higher excited states, the
uncertainty of mass increases in general. The highest excited state for this fit is shown in the bottom-middle box
where the uncertainty of the mass is visible in the plot.

FIG. 1. Principal correlator fit for the low-lying positive-parity spectrum of Hg irrep. of the ∆ for t0 = 5 on lattice a94m358.
The plot shows λα(t, t0).emα(t−t0) data on the y-axes and the lattice time-slices on the x-axes. In each box, the mass of the
state is labelled by m.

C. Stability under variation of Distillation Space

The expectation is that rank ND of the distillation space should scale as the physical spatial volume of the lattice
in order to maintain the same low-energy physics. Previous studies of the low-lying baryon spectrum on a lattice
of 163 spatial volume at a lattice spacing a ' 0.12 fm employed ND = 56 distillation eigenvectors, suggesting that
as many as 230 eigenvectors might be needed to capture the same physics of our lattice. The cost of computing
the two-point functions of eqn 2 scales as N4

D, and thus there is a computational demand to use as small a basis of
eigenvectors as possible whilst still capturing the essential physics. In this paper, we have generated perambulators
and the baryon elementals that encode the operators for ND = 64 eigenvectors, and begin our discussion by
examining the sensitivity of the extracted spectra to the variation of ND. In Figure 2, we show the lowest energy
levels in the positive-parity Hg irreducible representation of the ∆ as we reduce the number of eigenvectors down to
ND = 24. While the ground state is indeed reliably extracted with only a minimal number of eigenvectors, it is only
when we reach ND = 56 eigenvectors that the lowest five states are obtained with acceptable uncertainties, with
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consistency between the ND = 56 and ND = 64 determinations. We will therefore use ND = 64 in the remaining
discussion.

FIG. 2. The dependence of the ∆ spectrum in the Hg irrep. on the number of distillation vectors ND for the ensemble
a94m358 of Table II. The states we identify as hybrid baryons are indicated by green asterisks, as discussed in the text.

D. Spin Identification

The breaking of rotational symmetry induced by the discretization onto the lattice renders the determination
of the spin corresponding to the different energy levels within the irreps. less than straightforward. In the case
of the glueball spectrum in pure Yang-Mills theory [32], the identification of the spins was accomplished by the
identification of degeneracies across different lattice irreps. in the approach to the continuum limit. This requires
the generation of ensembles at several lattice spacings, a formidable task once quark degrees of freedom are included,
and further requires statistical precision far beyond that attainable with reasonable computational cost to delineate
overlapping energies within the spectrum. We need a spin identification method which uses data obtained from
only a single lattice spacing, albeit one sufficiently fine that it preserves the rotational symmetry to a sufficient
degree at the hadronic scale.

Here we use the method introduced in ref. [17], and applied for the baryon spectrum in refs. [11, 12] whereby
the operator overlap factors are used to identify the spin of a state. It relies on the observation that each operator
used in the calculation carries an essence of the continuum spin of the operator from which it is subduced, and
therefore we would expect an operator subduced from, say angular momentum J , to have large overlaps only with
states of the same continuum angular momentum J . Positive-parity states corresponding to the continuum angular
momentum J = 5

2 and J = 7
2 will appear in the spectrum of the Hg and G2g irreps, and of the Hg, G1g and

G2g irreps. respectively, and we would expect overlaps to be dominated by the operators subduced from the same
continuum operators across those irreps. This is indeed what we observe, as can be seen in Figure 3 for the ∆
spectrum, where the overlaps are obtained from a variational analysis using all the operators within a given lattice
irrep. Further, we find the resulting energies are degenerate, with, for states of spin 5

2 and 7
2 , the energies obtained

in the Hg irrep. within 1% of the values obtained in the G1g and, for the case of spin 7
2 , G2g irreps.



7

FIG. 3. Histogram plot of the operator overlaps Z for the ∆ on the a94m358 ensemble, normalized such that, for a given
operator, the largest overlap across all states is unity. The overlaps are obtained from a variational analysis across all
operators within a given lattice irrep, irrespective of the continuum spins from which they are derived.

E. Delta & Nucleon Spectra

Having established the effectiveness of our spin-identification procedure, and the empirical decoupling of operators
derived from different continuum spins, we now proceed as follows. Rather than applying the variational method
to a basis comprising all the operators within a lattice irrep, we instead apply the method to a more restricted
basis of operators comprising those operators within an irrep. derived from a given continuum J . In figure 4, the
∆ spectrum obtained by analysing all the operators within a given lattice irrep. is compared with that where we
apply the varational method in each lattice irrep. to only those operators derived from a given continuum spin.
The comparison reveals that there are no significant differences between these two spectra, prompting us to analyse
the operators of each angular momentum separately as this requires calculating the two-point correlators using a
smaller basis of operators at one time; since the computational cost of computing the full correlation matrix goes
as the square of the operator basis, this reduces the computational cost significantly.

The low-lying positive-parity spectra of the ∆ and N for both the a94m278 and a94m358 ensembles using this
fitting procedure are shown in Figures 5 and 6, respectively. For the spin 5

2 and spin 7
2 energy levels, the splittings

between the values obtained in the Hg and G2g, and in the Hg, G2g and G1g irreps, respectively, are remarkably
small, reflecting the partial O(a2) breaking of rotational symmetry, and the smaller spatial lattice spacing than
that used in comparable studies using an anisotropic lattice. As expected, the quality of the spectrum is somewhat
worse at the lighter value of the quark mass, and the spin identification procedure less convincing at the highest
energies for the N particle. We emphasise that the qualitative properties of the spectrum, and in particular the
counting of states, is consistent with that obtained on the anisotropic lattices at a coarse value of the spatial lattice
spacing, but a considerably finer temporal lattice spacing.
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FIG. 4. Comparison of low-lying ∆ spectra on the a94m358 ensemble between fitting with the operators subduced from
the same angular momentum separately (left), and fitting with all the operators within a lattice irrep, irrespective of their
continuum antecedents. For the states identified as spin 5

2
and 7

2
, the boxes contain the energy levels obtained after the

subduction onto the different lattice irreps. Energy levels identified as those of hybrid states are denoted by the green
asterisks.

1. Hybrid States

As we noted in the introduction, in contrast to the case of the meson spectrum, ”exotic” baryons cannot be
distinguished through their quantum numbers. Therefore, the identification of baryons as ”hybrid” in nature
inevitably involves a degree of model dependence. Here we identify the hybrid states as those whose overlap,
defined through eqn. 6, is predominantly with hybrid-type operators, that is those that would vanish for the case
of a trivial gauge configuration [12]. For the case of the ∆, this identification is very apparent, as can be seen in
Figure 3 for the ensemble at heavier pion mass, where we find one hybrid state in the J = 1

2 channel and one in

J = 3
2 channel. For the N spectrum on the heavier ensemble a94m358, we likewise find clear evidence for hybrid-

baryon states through the nature of their overlaps, where we identify two states in the J = 1
2 channel, two states

in the J = 3
2 channel and one state in the J = 5

2 channel. On the lighter a94m278 ensemble, the identification and

multiplicities of hybrid baryons for the channels J = 3
2 & J = 5

2 follows those on the heavier ensemble. However,

for the J = 1
2 channel, there is no obvious candidate for a hybrid baryon using the criterion of the operator overlap.

In spite of this, the multiplicity in both the ∆ and N spectrum confirm the findings in the earlier studies using
the anisotropic lattice [12], with a multiplicity of states at least as rich as the quark model, and the presence of
additional states that appear to be hybrid in nature.

IV. CONCLUSIONS

In this work, we have computed the positive-parity ∆ and N spectra using an isotropic clover action. Our
results support the observations in earlier works at heavier pion masses, and using the anisotropic clover action at
a coarser spatial lattice spacing, but finer temporal lattice spacing. In particular, we find that rotational symmetry
is largely observed at the hadronic scale, enabling us to reliably identify the spins of the states through their
predominant overlap onto operators derived from continuum operators of definite spin. Furthermore, we find that
the low-lying spectrum can be determined using a somewhat modest number of eigenvectors without the use of a
stochastic variant, indicating that distillation does indeed form an effective framework for the study of baryons.
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FIG. 5. The low-lying positive-parity ∆ spectrum in lattice units on the a94m278 (left) and a94m358 (right) ensembles,
using the fitting procedure described in the text. For the states identified as spin 5

2
and 7

2
, the boxes contain the energy

levels obtained after the subduction onto the different lattice irreps. Energy levels identified as those of hybrid states are
denoted by the green asterisks.

FIG. 6. The low-lying positive-parity N spectrum in lattice units on the a94m278 (left) and a94m358 (right) ensembles,
using the fitting procedure described in the text. For the states identified as spin 5

2
and 7

2
, the boxes contain the energy

levels obtained after the subduction onto the different lattice irreps. Energy levels identified as those of hybrid states are
denoted by the green asterisks.



10

However, the most significant outcome of this work is that we find that the spectra exhibit a counting of states in
line with that of the quark model, but with additional states that we can identify as ”hybrid” in nature, with the
gluonic degrees of freedom playing a structural role. This work has important limitations in each use of ”single-
hadron” operators, and the treatment of states as discrete energies in the spectrum with no attempt to extract
the momentum-dependent phase shifts. However, the observations are significant since the means to identify such
hybrids through the predominant overlap of a class of ”hybrid” operators, pioneered in ref. [12], must inevitably
raise the issue of the operator-dependence of such an identification. Here we use a different action, with a different
lattice spacing and essentially different interpolating operators implemented through the variation of the number of
distillation eigenvectors. Thus the identification of hybrid-type states in the spectrum is indeed robust. Ultimately,
a determination of the quark and gluon content of such resonances through the probing of their structure will be
desired, and the theoretical framework for such studies is an area of rapid development [33–35].

V. ACKNOWLEDGMENTS

We thank Jozef Dudek, Robert Edwards, Archana Radhakrishnan and Christopher Johnson for useful discussions,
and for the use of the reconfit fitting package. This work is supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. Computations for this work were
carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the
U.S. Department of Energy. This work was performed in part using computing facilities at The College of William
and Mary which were provided by contributions from the National Science Foundation (MRI grant PHY-1626177),
and the Commonwealth of Virginia Equipment Trust Fund. This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.
Specifically, it used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh
Supercomputing Center (PSC) [36, 37]. In addition, this work used resources at NERSC, a DOE Office of Science
User Facility supported by the Office of Science of the U.S. Department of Energy under Contract #DE-AC02-
05CH11231, as well as resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
#DE-AC05-00OR22725. The software codes Chroma [38], QUDA [39, 40] and QPhiX [41] were used in our work. The
authors acknowledge support from the U.S. Department of Energy, Office of Science, Office of Advanced Scientific
Computing Research and Office of Nuclear Physics, Scientific Discovery through Advanced Computing (SciDAC)
program, and of the U.S. Department of Energy Exascale Computing Project. TK was support in part by the
Center for Nuclear Femtography grants C2-2020-FEMT-006, C2019-FEMT-002-05.

[1] M. Luscher, Commun. Math. Phys. 104, 177 (1986).
[2] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D 92, 094502 (2015),

arXiv:1507.02599 [hep-ph].
[3] D. J. Wilson, J. J. Dudek, R. G. Edwards, and C. E. Thomas, Phys. Rev. D 91, 054008 (2015), arXiv:1411.2004

[hep-ph].
[4] J. J. Dudek, R. G. Edwards, C. E. Thomas, and D. J. Wilson (for the Hadron Spectrum Collaboration), Phys. Rev.

Lett. 113, 182001 (2014).
[5] R. Brett, J. Bulava, J. Fallica, A. Hanlon, B. Hörz, and C. Morningstar, Nuclear Physics B 932, 29 (2018).
[6] J. Bulava, B. Fahy, B. Hörz, K. J. Juge, C. Morningstar, and C. H. Wong, Nuclear Physics B 910, 842 (2016).
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[41] B. Joó, D. D. Kalamkar, T. Kurth, K. Vaidyanathan, and A. Walden, in

High Performance Computing: ISC High Performance 2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, P 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19–23, 2016, Revised Selected Papers,
edited by M. Taufer, B. Mohr, and J. M. Kunkel (Springer International Publishing, Cham, 2016) pp. 415–427.


