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Abstract of the Dissertation

F2 extraction from Inclusive Cross Section Data at

Large Bjorken x

by

Fernando Araiza Gonzalez

Doctor of Philosophy

in

Physics

Stony Brook University

2020

While we have made significant progress in probing nuclear structure at low

Bjorken x and high Q2, we still have gaps in our knowledge regarding the high

Bjorken x and intermediate Q2 kinematic region. This is not an accident, but

instead due to the difficulty in assessing the non-perturbative region of nuclear

physics. For this reason, the E12-10-002 experiment measured the H(e,e’) and

D(e,e’) inclusive cross section in the resonance region. This will allow us to

study both perturbative and non-perturbative physics in a kinematic region

that lacks precision measurements. Measurements were made up to a Bjorken

x of 0.99 and Q2 up to 17 GeV2. These measurements are made using the

independent HMS and SHMS spectrometers at the upgraded beam energy of

11 GeV in Hall C at Jefferson Lab. Further, we extract F2 structure functions

from the measured data and study the effect of their inclusion in a global

Parton Distribution Function analysis.
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Chapter 1
Introduction

The motivation for the E12-10-002 experiment follows in the footsteps established

predominantly at SLAC in the 1960s – we still don’t have a satisfactory understanding

about the inner dynamics of the proton and neutron. Indeed, some 60 years later, we still

have yet to answer fundamental questions about the nature of nuclear matter. Questions

like, "How is the momentum and position of the quarks and gluons distributed inside

of the nucleons?", "How is the spin of the quarks and gluons tied to the spin of the

nucleons?", and "How do the nucleons acquire their mass from quarks and gluons?". It

is emphasized that these questions are extremely simple. They are simple in the sense

that one does not even have to be a scientist to understand what the question is asking.

This exemplifies the sorts of challenges that the field of nuclear physics faces. On these

fundamental questions, the E12-10-002 experiment, taken together with the whole of the

JLab experimental data set, is expected to make some contribution.

Regarding the momentum distribution of the partons in the nucleons, special interest is

taken in behavior of d
u
, where d refers to the momentum distribution of the down quark and

u refers to the momentum distribution of the up quark. As one approaches a kinematic

region where valence effects dominate, that is, where nucleons can be appropriately

described by a model consisting of three quarks, the behavior of d
u
can change depending

on the choice of model used to describe the mechanism that breaks spin-flavor symmetry.

Spin-flavor is a symmetry whose conclusion suggests the up (down) quarks in the proton

can simply be mapped to the down (up) quarks in the nucleon. This is a symmetry

that nature does not hold itself to, but the way in which this symmetry is broken is

1



fundamentally related to the quantity d
u
in the valence region; a kinematic region where a

valence model is valid.

The question regarding the source of the nucleons spin and how it is related to the

spin of the partons is another interesting puzzle. It came as a surprise in the 80’s when

experiments at CERN showed that the quarks carried only about 12±17% of the nucleon’s

total spin. This was in clear contradiction to models at the time that suggested quarks

carried about 75% of the nucleon’s spin, with the remaining 25% accounted for by the

orbital angular momentum of the quarks. Current estimates have the quark contribution

to the nucleon’s spin at about 20− 30%, with remaining spin contributions presumably

coming fromsea quark and gluons, where sea quarks constitute quark-antiquark pairs

that are present in the structure of nucleons as one moves away from the valence region.

But the valence region is precisely where E12-10-002 is situated kinematically. Here, sea

quarks and gluons are scarce, and therefore, one need not worry about the complications

they represent elsewhere. There are three additional JLab experiments, E12-06-109,

E12-06-111, and E12-06-122, that are attempting to study spin dynamics in the valence

region. And while E12-10-002 involved an unpolarized electron beam and unpolarized

target, the machinery needed to study the distribution of quarks in the nucleons remains

very similar, and could provide assistance in this endeavor.

Another large motivation for performing the E12-10-002 experiment deals with the

attempt to elucidate fundamental properties about the theory that we use to describe

quarks and gluons, namely, Quantum Chromodynamics (QCD). This theory has the

interesting property that at high energy scales, or small distance scales, the quarks and

gluons can be treated as unbound quasi-free particles. More concretely, the coupling of

QCD becomes small at small distance scales. This property is called asymptotic freedom

and can be explicitly demonstrated as a feature of QCD within the QCD framework.

However, at large distance scale the opposite is true. As the distance between quarks

increases, the QCD coupling also increases, enhancing the attraction between them. At

a large enough distance scale, it becomes energetically favorable to produce a quark-

2



antiquark pair, producing now two quark bound states. In essence, by trying to isolate two

pairs of quarks, we have simply produced a second pair. This observation that we cannot

isolate quarks and gluons is referred to as confinement. Clearly, asymptotic freedom and

confinement represent two extremes of the strength of the QCD coupling, and the study

of the transition from one extreme to the other is referred to as Quark Hadron Duality

(QHD). QHD was a phenomenon first observed in the 70’s, but it has been revitalized in

the present day by the ability to perform precision experiments in this transition region,

of which E12-10-002 is a prime candidate.

These questions and the role of E12-10-002 in addressing them will form the basis of

this thesis. An in-depth discussion of QCD and it’s history from the 1900’s to present

day is presented in Chapter 2, where ideas about what quarks are and how they behave

will be explored. Chapter 3 will go through the necessary step of explaining how the

E12-10-002 made it’s measurement. We will discuss the Hall C spectrometers in detail

and give special attention to the detectors that make up the detector package. Chapter 4

discusses primarily the analysis of the E12-10-002 data. This includes the calibrations of

the spectrometer detectors as well as their associated efficiencies. Additionally, we cover

the major sources of backgrounds and systematics associated with E12-10-002 and how

they are addressed. Finally, Chapter 5 will explore how the cross section measurements

were utilized to extract information about the parton distribution functions of the up

quarks, down quarks, and gluons, as well a perspective for the future of nuclear physics at

the Electron Ion Collider (EIC).

To begin, we present some information about the E12-10-002 experiment. E12-10-002

used an unpolarized electron beam at 10.6 GeV on hydrogen and deuterium cryogenic

targets. E12-10-002 took measurements ranging in scattering angle from 21− 39 degrees

and for scattering energies ranging from 1.6−5.1 GeV . Measurements were taken with the

new Super High Momentum Spectrometer (SHMS) and the High Momentum Spectrometer

(HMS). The SHMS and HMS did not take measurements at identical kinematic settings,

but the measurements do overlap kinematically. This allows for a cross-check for the

3



Figure 1.1: Kinematics plot of data measured for the Hydrogen target in the SHMS. The
color scale indicates the relative uncertainty of the data point. The blue curve indicates
the data at greater than and less than W 2 = 3 GeV 2. It is noted that the highest x values
for E12-10-002 were achieved by the HMS, therefore, the range in x for the SHMS do not
reach x ≈ 0.99

new SHMS spectrometer. Figure 1.1 shows the kinematic coverage of the data taken on

the hydrogen target for the SHMS spectrometer. It should be noted that the anaylsis

presented in this thesis was performed only on the data acquired by the SHMS.
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Chapter 2
Theoretical Overview

2.1 Kinematics

E12-10-002 is an inclusive electron-proton and electron-deuteron experiment that

measures the inelastic cross section of hydrogen and deuterium at relatively high Bjorken

x – up to 0.99.

Figure 2.1: Inelastic scattering of an electron from a proton.

Figure 2.1 shows the single photon exchange Feynman diagram of an unpolarized
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electron with momentum k, interacting with a proton via exchange of a photon with

momentum q. The interaction is inelastic, so the final state of the proton is represented

by the invariant mass W , and the electron is scattered with momentum k′ at angle θ.

Of course, in the case of deuterium, the interacting nucleon can be either a proton or a

neutron.

A standard base of kinematic variables are used in the analysis of the interaction.

Firstly, the incoming and outgoing four-momentum of the electron in the lab-frame are

given respectively by

k = (E,
−→
k ) (2.1)

k′ = (E ′,
−→
k′ ) (2.2)

Thus, the momentum transfer of the exchange photon is given by

qu = (E − E ′,
−→
k −
−→
k′ ) (2.3)

And the energy of the photon is

ν = E − E ′ (2.4)

Because this is a fixed target experiment, the four-momentum of the nucleon is simply

P u = (M, 0) (2.5)

Where M is the mass of the nucleon. The above quantities can be used to calculate

the kinematic variables most commonly used to characterize a nuclear system, namely

the square of the momentum transfer, Q2 and Bjorken x. The momentum transfer of

the exchange photon determines the resolution to which the nucleon is probed, and
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goes approximately as the inverse of Q. Bjorken x is the ratio of the momentum of the

interacting parton divided by the momentum of the entire nucleon. In terms of the above

quantities, these variables are given by

Q2 = −q2 = 4EE ′sin2(
θ

2
) (2.6)

x =
Q2

2Mν
(2.7)

Finally, the invariant mass W can be written as

W 2 = M2 −Q2 + 2Mν (2.8)

2.2 Unpolarized Cross Sections and Structure Func-

tions

The cross section for lepton-nucleon scattering at leading order can be written as

d2σ

dΩdE ′
=
α2

Q4

E ′

E
LµνW

µν , (2.9)

where Lµν is the leptonic tensor, readily calculable from QED. The leptonic part of

the cross section is given by

Lµν = 2(kµk
′
ν + k′µkν − gµνkk′) (2.10)

The hadronic part of the cross section is represented by Wµν . In fact, the hadronic

tensor is the part of the cross section that represents our ignorance about the structure of

the nucleon. Within a broad field theory formalism, the hadronic tensor can be written as

7



Wµν =
1

2

∑
n

〈p|[J+
µ Jν ]|p〉(2π)3δ4(p+ q − pn). (2.11)

It is precisely our inability to analytically write down the states of the nucleon |p〉

that represents the difficulty of understanding the structure of the nucleon. Instead, if we

impose gauge and Lorentz invariance on the hadronic tensor we can a priori write down

its functional form as

W µν = W1(ν, q2)(−gµν +
qµqν

q2
) +

W2(ν, q2)

M2
(pµ − p · q

q2
pµ)(pν − p · q

q2
pν). (2.12)

We can substitute this into the expression for the differential cross section and write it

as

d2σ

dΩdE ′
=

4α2E ′2

Q4

[
2W1(ν,Q2) sin2(

θ

2
) +W2(ν,Q2) cos2(

θ

2
)

]
. (2.13)

Further, we can introduce dimensionless quantities called structure functions, defined

as

F2 = νW2 (2.14)

F1 = MW1; (2.15)

thus, the cross section is now

d2σ

dΩdE ′
=

4α2E ′2

Q4

[
2

M
F1(ν,Q2)sin2(

θ

2
) +

1

ν
F2(ν,Q2)cos2(

θ

2
)

]
. (2.16)

Finally, the cross section is sometimes written a function of x = Q2

2Mν
and y = 1− E′

E
as
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d2σ

dxdQ2
=

4α2

Q4

[
(1− y)

F2(x,Q2)

x
+

1

2
y2F1(x,Q2)

y

]
. (2.17)

However, for our purpose it is most useful to express the differential cross section in

terms of the longitudinal and transverse cross sections. This will facilitate an intuitive and

simple extraction of the F 2 structure function from the cross section through a technique

called Rosenbluth separationRos50. To begin, we consider the helicity of the photon in 2.1.

For a given energy ν and squared transfer momentum Q2 traveling in the z-direction, the

photon can have a transverse helicity given by it’s polarization vector

ε(±1) =
1√
2

(0,±1,−i, 0) (2.18)

Because this is a virtual photon, it may also have a longitudinal momentum, with a

polarization given by

ε(0) =
1

Q2
(
√
Q2 + ν2, 0, 0, ν) (2.19)

Then, the so-called photo-absorption cross section can be decomposed in terms of its

transverse and longitudinal components as

σ±,0 =
4πα√
Q2 + ν2

εµ±,0Wµνε
ν
±,0. (2.20)

Likewise, the functions W1 and W2 can also be expressed in terms of the transverse

and longitudinal photo-absorption cross section as

W1 =

√
Q2 + ν2

4π2α
σT (2.21)

W2 =
1

4π2α
(σT + σL)

Q2√
Q2 + ν2

(2.22)

These can be substituted into the differential cross section to give
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d2σ

dΩdE ′
= Γ(σT + εσL) (2.23)

Where Γ is the flux of incident virtual photon given by

Γ =

√
Q2 + ν2

2π2Q2

E ′

E

1

1− ε
(2.24)

and ε is the relative flux of longitudinally polarized photons

ε = (1 + 2
Q2 + ν2

Q2
tan2(

θ

2
))−1 (2.25)

It is then useful to introduce the reduced cross section, defined as

σR =
1

Γ

d2σ

dΩdE ′
= σT + εσL (2.26)

Thus, one can measure the cross section and plot it as a function of ε. The result is

linear relationship where σT is the y-intercept and the slope is given by σL.

2.3 Development of Quantum Chromodynamics

The motivation for the E12-10-002 experiment rests upon the simple question first

proposed in the late 1940s when the field of nuclear physics was in its infancy – what

is the nature of nuclear structure? It is perhaps surprising that such a question still

weighs so heavy after 70 years, but this only speaks to the perplexing nature of the strong

interaction.

2.3.1 The Strong Interaction

In a sense, the existence of the strong nuclear force was first implied after Rutherford’s

discovery of the proton in 1917 and the discovery of the neutron by James Chadwick

in 1932Rut19 Cha32. These results prompted Chadwick to construct a model which saw
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protons and neutrons tightly bound together in the center of atoms – the birth of the

nuclei. However, this immediately posed a problem. The electrostatic repulsion between

protons at such close proximity should make all atoms unstable. Therefore, there must be

a "strong" enough force to keep the nuclei intact. One of the first attempts at a solution

came from Hideki Yukawa in 1935Yuk35. He proposed the existence of a new particle that

would communicate the force of attraction between protons and neutrons. Based on the

length scale of this interaction, the new particle would have to have a mass of about

100 MeV. Indeed, the pion was discovered in 1947 by use of nuclear emulsion plates and

cosmic raysGPSO47.

With this, the era of particle physics had begun, and the use of bubble chambers

and emulsion plates saw the discovery of a growing list of new particles. This was seen

as troubling by many, as it had been taken for granted that these new particles were

elementary. George Zweig, independent creator of the quark/ace model, credits a 1939

paper by Fermi and Yang as a natural starting point for the conceptual existence of quarks.

In this paper, Fermi and Yang make the bold claim that the pion is not fundamental, but

instead a composite particle of a nucleon and anti-nucleon – ultimately incorrect, but a

step in the right directionEF49.

2.3.2 The Quark Model

With the advent of the first particle accelerators, the 1950s saw an explosion of new

particles and it became necessary to construct a formalism to make sense of these new

particles’ properties. It was noticed by Murray Gell-Mann and others that these newly

discovered baryons and mesons had suggestive symmetries. In particular, Gell-Mann and

Nishijima independently noticed that these particles’ electromagnetic charge would be

given by the following relation

Q = I3 +
1

2
Y
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where I3 is the isospin and is the third component of the hadron’s spin and Y is the

hyperchage, an additional quantum number of the hadron that is conserved by the strong

interaction. This led Gell-Mann to formulate a more robust organizational scheme called

the Eightfold WayGM61. This phenomenological scheme was based on the observation that

baryons and mesons could be grouped in a way that explained their masses, isospin, and

charges if one assumed the existence of three "flavors" of constituent particles. The model

was presented by Gell-Mann at Caltech in 1961, where the baryons are expressed in terms

of the SU(3) generators λi in figure 2.2 and shown schematically in figure 2.3.

Figure 2.2: Table from Gell-Mann’s Caltech Synchotron Report, "The Eightfold Way:
A Theory of Strong Interaction Symmetry", showing baryons represented by an SU(3)
isospin symmetry.
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It worked surprisingly well, and even led to the prediction of the omega baryon Ω−

made up of three strange quarksFow64. It was discovered in 1964 at Brookhaven – Gell-

Mann subsequently won the Nobel Prize in Physics in 1969. The success of this scheme

naturally led to the search for an SU(3) symmetry on more stable ground. Gell-Mann

realized that if one presumed the existence of objects called "quarks" that came in three

"flavors" – up, down, and strange, one could impose an SU(3) flavor symmetry.

Figure 2.3: A schematic figure showing Gell-Mann’s quark model in which the eight
baryons are grouped according to their charge Q and strangeness S, a quantity related to
the hyperchage Y .

However, it is important to make clear that Gell-Mann saw quarks merely as a useful

mathematical concept rather than as physical particles. Gell-Mann was not alone in this

estimation, perhaps due to the fact that within the great number of particles discovered,

none appeared with the properties assigned to quarks. While the consensus that quarks

were not physical would remain throughout the 1960s, others were beginning to see the

benefit of considering quarks as real particles described by a field theory.
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2.3.3 The Parton Model & Bjorken Scaling

In the late 1960s, experimental particle physics had matured to the point that exploring

the structure of nucleons was within reach. In particular, this time saw a major program

of Deep Inelastic Scattering in experimental laboratories, primarily at the Stanford Linear

Accelerator (SLAC). However, this abundance of experimental data was still waiting for

a qualitative explanation. While Gell-Mann’s quark model worked well to explain the

static properties of nucleons, such as their mass and isospin, it was not well suited for

application in high energy scattering experiments. Looking for a way to interpret this

data, Richard Feynman postulated that nucleons were instead made up of "partons". At

SLAC, Bjorken and Pachos considered how Feynman’s Parton Model could be applied to

inelastic electron-proton scatteringJDB69.

Figure 2.4: Inelastic electron-proton scattering being studied by Bjorken and Pachos.

The key insight to the parton model in DIS processes, shown schematically in figure 2.4,

is to realize that in the infinite momentum frame, time dilation implies that the partons

are essentially free – only one of the partons interacts with the lepton while the others

remain spectators. Carrying out the calculation, Bjorken and Pachos realized that the

parton model predicted the structure functions were a function of a single dimensionless

variable, now called bjorken x. They started with the electron–proton inelastic scattering

cross section
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dσ

dΩdE ′
=

α2

4E ′2sin4( θ
2
)
[W2(v,Q2)cos2(

θ

2
) + 2W1(v,Q2)sin2(

θ

2
)] (2.27)

Using a small angle approximation,

dσ

dΩdE ′
' α2

4E ′2sin4( θ
2
)
W2(v,Q2)[1 + (

σt
σt + σl

)
v2

2EE ′
], (2.28)

where σt and σl are the transverse and longitudinal photo–absorption cross section

respectively. Four assumptions based around the parton model are then presented. First,

it is assumed that the proton is made of N partons that are free, with probability P (N).

Second, the partons have a longitudinal momentum that is a fraction of the proton given

by

pi = xiP, (2.29)

where the index i refers to the ith parton. Third, the mass of the parton is assumed to

be small. Finally, the transverse momentum of the partons is small, so that the following

relation is true

pµi = xiP
µ (2.30)

With these assumptions, Bjorken and Pachos derived

W2(v,Q2) =
∑
N

P (N)〈
∑
i

Q2
i 〉
∫ 1

0

dxFN(x)δ(v − Q2

2xM
) ≡ F (x) (2.31)

Where P(N) is the probability of finding the N partons at some configuration and

<
∑

i e
2
i > is the average charge of the partons. Thus, the final result demonstrates

that the structure function of the proton depends only on the dimensionless variable

x. This suggests that increasing Q2 does not resolve any more structure in the proton.

The conclusion is that the partons have no further structure, and are therefore point-like
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particles. Figure 2.5 demonstrates one of the first experimental observations by SLAC-MIT

of what is now called Bjorken scaling and it is representative of the strong interaction

being described by a field theory with a property called asymptotic freedom.

Figure 2.5: One of the first hints of Bjorken scaling from DIS data from the SLAC-MIT
experiment.

2.3.4 Asymptotic Freedom

With the experimental observation of Bjorken scaling, people began to explore field

theories which could accommodate the strong force becoming asymptotically weak at high

energies. Another reason to pursue a new theory was the realization that a spin-statistics

paradox had to be addressed. It was known that spin-1
2
particles had to obey Fermi

statistics; under a permutation of identical quarks, the wavefunction must change sign.

Baryons, being fermions must also be described by antisymmetric wavefunctions. This was

in contradiction to a relatively successful model by Gursey and Radicati in 1964FG64. This

model saw an extension of the SU(3)flavor to an SU(6) symmetry by combining it with an

SU(2) spin symmetry. This model was able to organize the hadrons into a totally symmetric

56-dimensional representation with 8 spin-1
2
particles and 40 spin-3

2
particlesGre15. This

paradox inspired Greenberg to propose a hidden quark quantum number called color. This
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new quantum number would have three values – or colors, to generate a new SU(3)color

symmetry that would be antisymmetric under quark permutationGre64; this would make

the baryonic and mesonic wavefunctions antisymmetric in accordance with Fermi statistics.

At this point, quarks were still believed to be nothing more than a mathematical

construct. Thus, Greenberg’s insight to imbue them with a color charge was a bold move

towards our modern understanding of the strong interaction as an SU(3), non-abelian

gauge theory. Greenberg gave QCD it’s color, but it’s non-abelian character would be

explored only a year later in 1965 by Han and NambuMYH65. Han and Nambu were

incorrectly guided to an SU(3) theory with 9 quarks because it could allow for integer

electric charges. But more importantly, they showed that their theory for the strong

interaction included an octet of force-carrying bosons. Indeed, a general gauge group will

have a number of gauge bosons equal to the dimension of the adjoint representation – in

the case of an SU(3) theory, eight gauge bosons. Here, nuclear physics is on the precipice

of QCD, and Gross and Wilczek pushed it over the edge.

Gross and Wilczek demonstrated the high energy limit behavior of the coupling for a

Yang-Mills (non-Abelian) theoryDJG73. Starting with the renormalization group equations

[m
∂

∂m
+ β(g)

∂

∂g
− nγ(g)]Γ(n)

asy(g;P1, ..., Pn) = 0, (2.32)

where ΓAsy is the asymptotic part of the renormalized n-particle Green’s function, and

where the invariant coupling determined by the solution to

dḡ

d lnλ
= β(ḡ) ḡ(g, 0) = 0 (2.33)

where λ is an arbitrary energy scale. The Yang-Mills theory they considered is given

by the Lagrangian
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L = −1

4
F a
µνF

µν
a

F a
µν = ∂µA

a
ν − ∂νAaµ − gCabcAbµAcν

(2.34)

Solving for ḡ, they find

ḡ2(lnλ) =
g2

1− 2βV g−1 lnλ
(2.35)

Thus, ḡ → 0 as lnλ→∞ and the theory is asymptotically free; that is, the coupling

goes to zero as the energy scale λ is increased. While non-Abelian gauge theories had been

studied for some time, Gross and Wilczek showed explicitly that one could construct an

SU(3)color non-Abelian gauge theory that was asymptotically free, and therefore, describe

Bjorken scaling in a natural way.

Only a year later the J/ψ particle, a charm quark meson, was discovered simultaneously

at Brookhaven and SLACTin74. After a decade from it’s first proposal and the confirmation

of the existence of a fourth quark through the discovery of J/ψ, physics could no longer

deny the reality of quarks. And in 1979, the PLUTO collaboration found the first

instance of jets, hadrons following a narrow cone of production, from electron–positron

scatteringCol79. A year later, a Monte Carlo analysis demonstrated that the observation

and measurements of the jets could be attributed to the formation of hadrons along the

trajectories of the struck quarks and gluons. The process by which hadrons are formed

can be briefly explained by considering two quarks as their distance is increased. Indeed,

we know that at large distances the coupling between quarks and gluon also increases.

Thus, if the distance is sufficiently increased, it becomes energetically favorable to simply

produce a quark and anti-quark pair in order to keep the system color-neutral. This

process is referred to as hadronization. Although confinement, the idea that quarks and

gluons may not be measured in isolation but rather as constituents in color-neutral objects,

meant that the quarks and gluons could not be directly measured, the observation of jets
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served as the strongest evidence for their existence.

2.4 Parton Distribution Functions

With the establishment of QCD as the theory of the strong interaction firmly on

solid ground, the consequences of its fundamental properties needed to be addressed.

Confinement and asymptotic freedom are the defining properties of QCD. They describe

the long-distance and short-distance behavior of QCD respectively. Confinement dictates

that as the distance between quarks increases, the force between them increases as well.

At a distance around the size of the nucleon, the energy content of the gluon field between

the quarks is enough to spontaneously create a new quark-antiquark pair, thereby keeping

the system color-neutral. On the other hand, asymptotic freedom means that at short

distances the force between quarks goes to zero, and quarks behave as free particles.

Much progress has been made in studying nuclear processes at higher energy when the

QCD coupling is small. Indeed, DIS experiments have been stunningly corroborated by

QCD. However, at lower energies, where the coupling is large, QCD remains less explored.

At this cross roads, we rely more heavily on experimental results to lead the way. In

attempting to characterize the dynamic structure of nucleons, we make use of the idea

of Parton Distribution Functions (PDF). Here, the parton model is useful in gaining an

intuitive understanding of PDFs. In the parton model, the structure functions are simply

given by the sum of the PDFs in the nucleon

F1(x) =
1

2

∑
i

Q2
1fi(x)

F2(x) =
∑
i

xQ2
1fi(x)

(2.36)

Where Qi is the charge of the parton and fi(x) is the PDF, which represents the

probability to find the ith parton with momentum fraction x. Thus, PDFs are probability
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densities that characterize the momentum distribution of partons inside nucleons. An

additional benefit of PDFs is that they are universal. That is, PDFs are independent of the

specific process, and the x and Q2 dependence of a given PDF is an inherent description of

the parton. However, as mentioned previously, the parton model has a limited window of

applicability. In fact, due to the strong coupling behavior of QCD, it is still not currently

possible to analytically calculate PDFs. But hope is not completely lost. In the 1970s,

efforts were made to extend PDFs to arbitrary energy scales, culminating in the DGLAP

equationsDok77. A few years later, Gribov, Lipatov, and independently Altarelli, and Parisi

presented similar results in 1977VG72. Their work showed that one could "evolve" the

Q2 dependence of the quark and gluon PDFs. Unfortunately, the Bjorken x dependence

cannot be analytically determined.

dqi(x, t)

dt
=
α(t)

2π

∫ 1

x

dy

y
[

2f∑
j

qj(y, t)Pqq(
x

y
) +G(y, t)PqG(

x

y
)]

dG(x, t)

dt
=
α(t)

2π

∫ 1

x

dy

y
[

2f∑
j

qj(y, t)PGq(
x

y
) +G(y, t)PGG(

x

y
)]

(2.37)

Where t = ln Q2

Q2
0
, and Q0 is the renormalization scale. The function P (x

y
) is called

a splitting function and represents the probability of emitting a gluon with fractional

momentum x
y
. The indices i and j run over quarks and anti-quarks of every flavorGA77.

The DGLAP evolution equations allows one to take PDFs at some known energy scale,

Q2
0 and evolve them to an arbitrary energy scale Q2.

However, even with the DGLAP equations, one still needs a way to relate observable

quantities, such as cross sections, to PDFs. In general, cross sections include both

short-distance and long-distance behavior. Work carried out by Collins, Soper, and

Sterman showed that the cross section could be factorized into precisely these two type of

behaviorsJC89. For DIS, the structure functions are written as,
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F1(x,Q2) =
∑
a

dξ

ξ
f a
A

(ξ, µ)H1a(
x

ξ
,
Q

µ
, αs(µ)) + remainder (2.38)

1

x
F2(x,Q2) =

∑
a

dξ

ξ
f a
A

(ξ, µ)
ξ

x
H1a(

x

ξ
,
Q

µ
, αs(µ)) + remainder, (2.39)

where f a
A
is the PDF of a parton a from a hadron of type A, µ is called the factorization

scale, typically taken to be Q, and Ha is called the hard scattering coefficient. This result

is referred to as the factorization theorem, and it says that short-range behavior is

contained within f a
A
, while long-range behavior is described by Ha. However, as previously

mentioned, the evolution equations do not give us the functional dependence of the PDFs

on Bjorken x. Thus, we rely on experimental data to determine the x dependence of PDFs.

For this, software is used to parameterize and fit the form of f(x) to a variety of data.

And with that, we now have a systematic procedure for characterizing PDFs. First,

we acquire a data set of cross sections across a large as possible kinematic range. Then, a

Q2 = Q2
0 value is chosen to be low, but still large enough that perturbation methods are

available, and the PDF behavior is evolved to higher Q2 through the DGLAP equations

– this determines their Q2 dependence. Of course, fitting the functional dependence of

f(x) is not trivial and there are a multitude of groups around the world dedicated to this

kind of PDF analysis program, each with their own methodology and data sets chosen

to constrain their fit. Figure 2.6 demonstrates the choice and kinematic coverage of one

such group fitting PDFs with a multitude of data sets. Such an analysis is referred to

as a global PDF analysis, named for the data sets accumulated from a wide array of

independent experiments.
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Figure 2.6: An example of the kinematic coverage of the data sets used in the PDF fit
called NNPDF2.3. In fact, almost every PDF fitting group relies on data largely from
SLAC and the Tevatron to reach the large x region, and so it is a representative example
of lack of precision data here.

And while global data sets are heavily populated at with precision data sets at low x,

there remains a gap in our knowledge regarding high precision data sets at large x. And

here we emphasize that even though there exists data at large x, primarily from SLAC

and the Tevatron, as seen in figure 2.6, the uncertainty for these data points is insufficient

to properly constrain certain PDFs, such as for the down quark and the gluon. This is

shown in figures 2.7 and 2.8, where PDF fits from different groups are compared to the fit

called CJ15, to be discussed in depth in Chapter 5AA16. The differences between the PDF

fits is made more clear by plotting the ratio of the PDF to CJ15, and it is noted that as x

becomes large the uncertainty band begins to grow, signifying that these PDFs remain

relatively unconstrained in this region.
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Figure 2.7: Plot of the down quark PDF ratio to CJ15 with, MMHT14, HERAPDF1.5,
NNPDF3.0. The red bands on CJ15 indicate a 68% confidence level and the yellow bands
indicate a 90% confidence level.

Figure 2.8: Plot of the gluon PDF ratio to CJ15 with, MMHT14, HERAPDF1.5,
NNPDF3.0. The red bands on CJ15 indicate a 68% confidence level and the yellow bands
indicate a 90% confidence level.

Here, the E12-10-002 experiment at Jefferson Lab is well suited to make an important

contribution, providing precision measurements on hydrogen and deuterium cross sections.

For that reason, CTEQ-JLab, commonly referred to as CJ, was created as a collaboration

between the global PDF analysis efforts of CTEQ and Jefferson Lab experiments at large

x to provide a unique addition to the world data set in this large x region.
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Chapter 3
Experimental Setup

3.1 Overview

The heart of Jefferson Lab is the Continuous Electron Beam Accelerator Facility

(CEBAF) shown in figure 3.1. It was proposed in the mid 1980s and motivated by the

need to explore the still-mysterious region of QCD where interactions are described by

quarks and gluons on one hand, and by strongly interacting hadrons on the other. An

accelerator that could be capable of exploring these fundamental questions about the

structure of matter would have to meet a few critical criteria. First, the accelerator would

need to deliver multiple-GeV beam energy for high spatial resolution. It would also need

high beam intensity to attain the necessary precision on the small cross sections being

measured. Finally, the accelerator would need to be flexible enough to allow coincident

experiments, each focused on independent, but important aspects of this region of QCD.

Unless alternately cited, figures and information about the detailed operations of CEBAF

may be assumed to be referenced from the "Jefferson Lab Hall C Standard Equipment

Manual",SW16.
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Figure 3.1: Aerial view of the CEBAF accelerator facility.

To begin, the accelerator was designed using superconducting radiofrequency (SRF)

cavity technology in mind, shown in figure 3.2. As their name implies, SRF cavities use

radio frequencies within a resonant superconducting structure in order to transfer energy

to a beam of charged particles; this is done by creating an accumulation of negative

charges in the conductor behind the beam electrons and positive charges in front of them.

The electric field produced by the charge distribution serves to accelerate the beam. Its

superconducting nature both allows a larger amount of the RF energy to go into the

acceleration of the beam as well as eliminating the need to employ a water cooling system.

Of course, the niobium superconducting cavities must be super cooled to a temperature

of 2 kelvin, which is achieved by 400 gallons of liquid helium.
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Figure 3.2: SRF cavity pair in the CEBAF.

The CEBAF accelerator operates by first producing electrons from a photocathode

and introduces the electrons into the beam line by using a 100kV electron gun. From here,

the electrons encounter two linacs made up of 25 cryomodules; each of these cryomodules

subsequently contain 8 RF cavities each. Recirculation arcs transport the beam between

the two linacsCL01. Depending on the requested beam energy, the beam may make five

passes through the accelerator, for a total beam energy of 11 GeV for Halls A, B, and

C, and Hall D capable of receiving 12 GeV, with operation currents up to 200µA. A

schematic of the CEBAF design is presented in figure 3.3.

Figure 3.3: CEBAF showig 12 GeV upgrade.

In 2005, the first proposals were made to update both the technical capabilities of
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Jefferson Lab’s accelerator facility, called CEBAF, and also it’s physics program. Originally,

CEBAF was commissioned to provide a 4 GeV beam to its experimental halls, however,

it outperformed it’s original design specifications and was capable of providing up to 6

GeV. But, the need for higher beam energies soon became apparent. Indeed, increasing

the accelerator beam energy opens the door to experiments at new kinematics with the

same high luminosity as before.

After more than 10 years of commissioning, work on the CEBAF upgrade began in

2017. The upgrade installed 10 additional cryomodules into the accelerator track. These

cryomodules are responsible for the acceleration of the electrons of the beam, and with

the additional cryomodules, CEBAF is now able to achieve beam energies up to 12 GeV.

Along with these cryomodules, stronger magnets were necessary to keep the beam in the

recirculation arc. In order to make full use of the 12 GeV upgrade, the Hall C experimental

hall also underwent some upgrades. Most prominently, a new spectrometer was added

to the hall to account for the increased beam energy. In particular, the Super High

Momentum Spectrometer (SHMS) is able to reach very forward scattering angles – down

to 5.5 degrees. It’s momentum acceptance was also increased above it’s predecessor, the

High Momentum Spectrometer (HMS).

During the E12-10-002 run time, data was taken simultaneously using the independent

SHMS and HMS spectrometers. The kinematic ranges covered by the two spectrometers

are both complimentary and overlapping. This allows for an independent cross check for

the first time use of the SHMS, as well as providing improved statistics for the experiment.
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3.2 Hall C

3.2.1 Beam Line

Beam Position Monitors

In order to precisely determine the position of the beam in Hall C, various diagnostic

elements are used. Three beam position monitors are used in total, called IPM3H07A,

IPM3H07B, and IPM3H07C. The BPMs are located 3.71 meters, 2.25 meters, and 1.23

meters upstream respectively from the beam target. The BPMs are of a stripline design,

shown schematically in figure 3.4, and consist of an array of four antennas tuned to the

fundamental RF frequency of the 1.497 GHz beam.

Figure 3.4: Stripline beam position monitor.

As the beam passes through the BPM, a current and voltage is induced in the thin

wire striplines, given by

j3(φ) =
Ibeam
2πa

a2 − r2

a2 + r2 − 2ar · cos(φ− θ)
(3.1)
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I3 =

∫ +α
2

−α
2

a · j3(φ)dφ (3.2)

and

V1(t) =
1

2

α

2π
R1(Ibeam(t)− Ibeam(t− 2l

c
)) (3.3)

where the geometric variables are defined in figure 3.5.

Figure 3.5: Figure demonstrating the geometric variables of the BPM design.

The resolution of the BPM is determined through a difference-over-sum resolution

analysis, explained below. The beam position in the x-direction is expressed in terms of

the voltage as

x =
a

2

VL − VR
VL + VR

(3.4)

where the resolution is given by
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σx =
a

(VR + VL)2

√
V 2
L δV

2
R + V 2

RδV
2
L (3.5)

and finally in terms of the signal-to-noise ratio.

σx =
a

2
√

2

1√
SNR

(3.6)

With these beam position monitors, a resolution of σ = 100µm can be reached for

beam currents above 100nA. However, measurements from the stripline style BPMs are

relative, and they must first be calibrated by the use of another type of beam position

diagnostic called superharps, shown in figure 3.6. There are two superharps located

adjacent to the further two downstream BPMs.

Figure 3.6: CEBAF harp design showing three Tungsten Rhenium wires stretched across
a fork.

Mechanically, harps consist of Tungsten Rhenium wires that are passed through the

electron beam. This is controlled through a computer automated measurement and

control (CAMAC) system that operates stepper motors to move the harps in a precise

and controlled manner through the beam. As the beam interacts with the wire, charge is
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accumulated and the signal is recorded. A harp is fitted with several such wires onto a

rigid frame called a fork, and from the charge measurements the beam position may be

determined. Harp measurements are inherently destructive to the beam, thus, they are

used primarily for calibration of the standard BPMsSW16.

Beam Current Monitors

Hall C also utilizes several beam current monitors that are used for analysis purposes

but also for beam operation needs. The main beam current monitor (BCM) consists

of a parametric current transformer, an unser monitor and two rf cavities. A triplet of

rf cavities are also optionally used downstream of the main BCM unit. This is shown

schematically in figure 3.7.

Figure 3.7: Schematic of the beam current monitors used in Hall C.

In particular, the unser monitor is a toroidal transformer coupled into a feedback loop

of an operational amplifier. The drawbacks of such a system are that it is extremely

sensitive to external magnetic fields and temperature and it is susceptible signal drifts. To

minimize the unser monitor is magnetically shielded from the outside environment. Due

to the signal drift of the unser, it’s not possible to make current measurements over a long

time scale (minutes). For this reason, the BCM also utilizes two additional rf cavities.

The cavities are cylindrical, high Q-factor waveguides tuned to the beam frequency. As

the beam passes through the cavities, a voltage is induced which is proportional to the

current of the beam. The unser monitor and rf cavities are thus used in tandem – when

the beam is off the zero-current signal drift is measured in the unser monitor and removed

in the BCM cavity calibrationUns91.
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Beam Raster

Due to the high current, high luminosity beam in Hall C the use of a beam raster is

necessary. Additionally, an unrasterd beam has a profile of less than 200µm. Leaving the

beam unrastered would deposit a large amount of power into the target, causing it to boil.

As will be discussed in a Chapter four, boiling of the target is an undesired systematic

effect that must by determined and accounted for. Additionally, an unrastered beam is

possibly dangerous and damaging to the Hall C equipment. Thus, two air-core magnets

are used to raster the beam vertically and horizontally into a 2mmx2mm Lissajous raster

patternYan03. Figure 3.8 shows a diagnostic screenshot of a properly rastered beam.

Figure 3.8: Raster diagnostics used by accelerator operators.
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3.3 Target

The targets used in E12-10-002 are housed in a vacuum pumped target chamber

specifically designed for Hall C. The vacuum in the chamber is created by a Leybold 1000

Hz turbomolecular pump and the held vacuum ranges from 10−6 Torr to 10−7 Torr when

a cryotarget is used. The target chamber was designed to accommodate the acceptance of

both the SHMS and HMS spectrometers, shown schematically in figure 3.9. Indeed, on

the HMS side the horizontal angular range of the chamber is 3.2 to 77.0 degrees and on

the SHMS side the horizontal range is 3.2 to 47.0 degrees. This allows for the specified

range of the HMS of 10.5 to 80.0 degrees for the HMS and 5.5 to 40.0 degrees for the

SHMS.

Figure 3.9: CAD schematic of the target chamber designed in 2006.

The primary targets used in E12-10-002 are liquid hydrogen (H2) and liquid deuterium

(D2). Additional solid targets are used, such as the carbon hole target used for beam

centering purposes. An aluminum dummy target is also used to account for the portion

of the electron yield coming from the aluminum walls of the cryotarget cells. Cryogenic

targets are used to increase the density of the target, and therefore the yield of the

experiment. This presents additional challenges, as the temperature and pressure of the

cryotargets must be monitored to ensure changes in density can be accounted for. The
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ideal thermal state for the targets is presented in table 3.1.

Target Temperature Pressure Freezing T Boiling T

H2 19± 0.1 24± 2 13.86 22.24

D2 22± 0.1 24± 2 18.73 25.13

Table 3.1: Operating temperature and pressure of cryotargets.

The cryogenic targets are supplied with a set flow of liquid helium supplied from

the end station refrigerator (ESR). This supply is determined by the demand of the

several Halls in the CEBAF. Thus, the temperature of the cryotargets is regulated by a

Proportional-Integral-Differential (PID) feedback loop coupled to a heating system. The

PID system monitors the output temperature of the cryotargets and adjusts the heating

power accordingly to keep the temperature constant. During production running, a target

operator is necessary to monitor the inlet and outlet temperature of the cryotargets, as

well as adjust the power feeding the heating system.

As previously mentioned, the target cells are made of aluminum. The target cells used

in E12-10-002 utilize the "cigar" target cell design as opposed to previous "tuna can"

designs, shown in figure 3.10. The cells are 10cm long, with the outer wall measuring

0.006in thick and the exit window measuring 0.004in
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Figure 3.10: Schematic of the H2 and D2 aluminum "cigar" cryotarget cells.

3.4 Super High Momentum Spectrometer

The SHMS spectrometer was built between 2009 and 2016 in order to accommodate

the 12 GeV update, and its design parameters are presented in table 3.2. It was designed

to be used in conjunction with the existing HMS spectrometer. For the F2 experiment,

both spectrometers were set to measure primarily electrons, and for the charge symmetric

background systematic, positrons.
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Parameter SHMS Design

Range of Central Momentum 2 to 11 GeV/c

Momentum Acceptance δ -10% to +22%

Scattering Angle Range 5.5 to 40 degrees

Solid Angle Acceptance > 4.0 millisteridians

Horizontal Angle Resolution 0.5 - 1.2 mrad

Vertical Angle Resolution 0.3 - 1.1 mrad

Vertex Length Resolution 0.1 - 0.3 cm

Tracking Rate Capability 5 MHz

Beam Capability Up to 90µA

Table 3.2: SHMS design specifications.

As shown in figure 3.11, as the electron beam approaches the SHMS detector package it

is first bent by a horizontal-bending (HB) magnet. The HB allows the SHMS to reach it’s

most forward scattering angles. Next, the beam is focused by three separate quadrupole

magnets. The quadrupole magnets ensure the beam is properly focused at the focal plane

of the detector package. Finally, a dipole magnet is tuned to select primary electrons of a

given momentum.

Figure 3.11: CAD of the SHMS design.
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3.5 High Momentum Spectrometer

The High Momentum Spectrometer (HMS) has a detector package that is very similar

to the SHMS detector package, and its design parameters are presented in table 3.3.

Like the SHMS, the HMS uses a drift chamber to track primary events, a hodoscope to

determine the TOF of events and create triggers, a gas Cerenkov detector to identify and

separate electrons from pions, and a calorimeter to determine energy deposition as well as

particle identification. There are minor differences between the SHMS and HMS detector

package which will be addressed, but the detectors fundamentally function on the same

principles.

Parameter HMS Design

Range of Central Momentum 0.4 to 7.3 GeV/c

Scattering Angle Range 10.5 to 90 degrees

Solid Angle Acceptance > 8.0 millisteridians

Table 3.3: HMS design specifications.

3.5.1 Spectrometer Detector Packages

Drift Chamber

The drift chambers in the SHMS detector package are used to determine the position

and angle of the electron beam within the detector package, shown in figure 3.12. From this

information, it is possible to reconstruct the trajectory of primary electrons. Combined

with knowledge of the spectrometer magnets, it is possible to infer their momenta. The

drift chamber is composed of two identical gas chambers, connected by a rigid aluminum

support structure.

An individual chamber is constructed from a printed circuit board 1/8 in thick,

sandwiched between two aluminum plates to provide structure. The chamber is further

bisected by a fiberglass board, and a vacuum is held in the chamber. Each chamber
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encloses 6 planes of wires, consisting of alternating 20µm gold tungsten anode wires and

80µm copper plated beryllium field wires. The planes in first chamber are labeled and

ordered as (U, U’, X, X’, V, V’), where the X and X’ planes consist of horizontally oriented

wires, the U and U’ planes are rotated +60◦ relative to the X plane, and the V and V’

planes are rotated −60◦ relative to the X plane. The second chamber is identical to the

first, however, it is rotated +180◦ relative to the first around the vertical axis; this flips

the orientation to (V’, V, X’, X, U’, U). Additionally, the rotation introduces a half-cell

shift in the wires, allowing for cross-checking left/right differences.

Figure 3.12: Drift chamber package in the SHMS.
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The operational principle of the drift chambers is quit simple. The gas chambers are

filled with a 50/50 mixture of ethane and argon; this acts as a ionizing gas. As the electron

beam passes through the gas chamber, the gas becomes ionized and is drawn toward the

sensing wires directed by the field wires. The wires collect and measure the charge and

the readout is sent to preamplifier and discriminator cards. The readout values are in fact

TDC values, and the drift distance must be calculated using the relation,

tdrift =

∫ anode

track

ds

v(t)
(3.7)

However, if the field wires are such that the electric field within the volume of the drift

chamber is near constant, the drift velocity of the ions will not be time-dependent and

the relationship between drift time and drift distance is simple. A schematic of the wires

is shown in figure 3.13.

Figure 3.13: Diagram demonstrating operation of a general principle drift chamber.

Like the SHMS, the HMS uses two, 6 wire plane gas chambers. The two chambers are

rotated about the vertical axis with respect to each other, and the planes are represented

by (U, U’, X, X’, V, V’) and (V, V’, X’, X, U’, U). The use of the drift chamber is identical

to the SHMS; field wires are operated at high voltage and are used to direct the ions to

sensing wires. A 50/50 mixture of ethane and argon is used as the ionizing gas.
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Hodoscopes

The hodoscope detectors, shown in figure 3.14, are used to keep time for the experiment.

There are a total of four hodoscope planes; the first two, called S1X and S1Y, consist of

13 paddles of RP-408 scintillating material each. Each paddle is attached to XP2262 and

ET9214B PMTs to collect the scintillation signal. These hodoscope planes are located

directly after the drift chamber. The second two hodoscope planes, called S2X and S2Y,

are comprised of 13 and 21 paddles respectively. While S2X is of the same design as the

first two hodoscope planes, S2Y uses a quartz bar paddle design. The S2Y plane uses 21

Corning HPFS 7980 Fused Silica measuring 125 x 5.5 x 2.5 cm.

The last hodoscope was designed to use quartz bars to address the sensitivity of the

first three scintillating planes to low energy backgrounds due to knock-on electrons. The

quartz bar, however, will only emit light through Cerenkov radiation, and therefore it is

much less sensitive to low energy backgrounds.

Figure 3.14: The S2Y quartz hodoscope detector with PMTs attached at each end of a
quartz block.

In general, hodoscopes operate through the scintillation of a material as the beam
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passes through it. A signal is measured and a start time is recorded. A second set of

scintillating material is placed downstream and a second time value is recorded. From this

information, a time of flight is derived. The SHMS hodoscope detector uses two planes

for each stage, one in the x-direction and one in the y-direction. This is done to remove

the position dependence from the efficiency of the detector. Indeed, the detector achieves

a greater than 99% efficiency with about 100 ps of time resolution.

In addition, the hodoscope is responsible for the creating of the triggers used by the

DAQ systems of the rest of the detectors in the detector package of the SHMS. Some of

the basic triggers utilized by the DAQ system is the 3/4 SCIN trigger, the CER trigger,

the STOF trigger, and the PSh_Hi and PSh_Lo triggers. These triggers are derived

from their corresponding detectors and are used to construct final physics triggers. The

3/4 scintillator trigger requires 3 out of the 4 S1X, S1Y, S2X, or S2Y scintillator planes

to record a signal, and similarly for the rest of the detector triggers. From these basic

triggers, EL_HI and EL_LO are derived. They are

EL_HI = SCIN&PSh_Hi (3.8)

EL_LO = 2/3{SCIN ∧ STOF ∧ PSh_Lo} ∧ CER (3.9)

The final physics triggers are EL_CLEAN and EL_REAL; these triggers are derived

as

EL_CLEAN = EL_HI ∧ EL_LO (3.10)

EL_REAL = EL_HI&EL_LO (3.11)

The hodoscope provides a trigger for the HMS DAQ system as well as determining the

TOF for events, allowing for particle identification. The general design is similar to the
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SHMS hodoscope; it uses four total hodoscope planes, grouped together in sets of two. The

first two, S1X and S1Y are placed before the dirft chamber and S2X and S2Y are placed

after the drift chamber. The hodoscope plane utilizes BC404 Plyvinyltoluene scintillating

material for the paddles, and two Philips XP2282B 8-stage PMTs are attached to each

paddle to read out the scintillating signal.

Gas Cerenkov Detectors

The SHMS detector package includes two threshold gas Cerenkov detectors – primarily

a noble gas Cerenkov is used, but a heavy gas Cerenkov was also installed during the

running of E12-10-002. Due to the fact that the SHMS can cover a large kinematic

range; 5.5 degrees to 40.0 degrees, and scattering momenta up to 11 GeV/c, the noble

gas Cerenkov detector must be able to separate electrons from pion in kinematic regions

where pion production dominates electron production 1000:1.

Both gas Cerenkov detectors work under the principle of Cerenkov radiation. When a

charged particle passes through a gas medium with index of refraction n with a speed

greater than that of light, a cone of radiation is produced with an opening angle, θ, given

by

cos(θ) =
1

βn
(3.12)

Thus, Cerenkov radiation is produced only if

n >
1

β
(3.13)

However, we only want electrons to primarily produce radiation instead of pions. For

this condition to be met, a gas with index of refraction n must be chosen so that

n <
1

βπ,max
(3.14)
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and

n >
1

βe−,min
(3.15)

The first condition ensures that pions up to their highest possible speed will not radiate.

The second condition ensures that electrons down to their lowest possible speed will still

radiate. Since

1

βe−,min
<

1

βπ,max
(3.16)

only one gas with index of refraction n can be chosen to separate pions and electrons

over the entire kinematic range of the experiment. For a gas Cerenkov detector filled

with Argon at 1 ATM, pions with momenta less than 6 GeV/c will not produce Cerenkov

radiation. In fact, the gas mixture used in the experiment is a 50/50 mixture between

Argon and Neon. Figure 3.15 shows the Cerenkov threshold for a variety of charged

particles and different gasses.

Figure 3.15: Plot demonstrating particle identification with a threshold Cerenkov
detector. Dotted lines indicate the value (n − 1) of gasses at 1 ATM. Only when
(1− β)>(n− 1) will Cerenkov radiation be produced.
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The noble gas Cerenkov detector consists of a tank with an internal aluminum frame.

The detector measures 2m along the beam direction and 90 cm in the perpendicular

direction. The gas Cerenkov detector was designed so that the PMTs used to measure the

Cerenkov detector would be out of the way of the active area of the beam. Thus, four

135 cm radius spherical glass mirrors are used to collect, focus, and reflect the produce

Cerenkov radiation into four 9823QKB04 quartz window PMTs. A schematic of the noble

gas Cerenkov detector is presented in figure 3.16

Figure 3.16: CAD and photograph of the noble gas Cerenkov detector showing the four
PMTs and four spherical glass mirrors.

It should be mentioned that the lower left glass mirror of the noble gas Cerenkov

detector was found to be damaged during the running of E12-10-002. The damaged mirror

needs to be accounted for as a systematic uncertainty, and will be discussed in a later

chapter.

As mentioned previously, a heavy gas Cerenkov detector was used in conjunction with

the noble gas Cerenkov. Of course, the heavy gas Cerenkov detector operates under the

same fundamental principles as the noble gas Cerenkov detector. However, it’s overall

design differs significantly to the noble gas Cerenkov detector. In particular, four spherical

mirrors are used to direct Cerenkov radiation to four independent R1584 Hamamatsu

PMTs. As it’s name suggests, the heavy gas Cerenkov detector is filled with a C4F8 gas.

It can also be filled with C4F10.

The HMS gas Cerenkov detector is a threshold Cerenkov detector and so it operates
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on the same basis as the SHMS Cerenkov detector. It differs from the SHMS detector in

its desgin. While the SHMS detector had four spherical glass mirrors and four PMTs, the

HMS Cerenkov detector uses only two mirrors that direct Cerenkov radiation into two

5 inch Burle 8854 PMTs. The HMS Cerenkov detector is filled with C4F10 gas and was

used as a eπ discriminator.

Calorimeter

The calorimeter used in the SHMS spectrometer is a lead glass calorimeter consisting

of two parts. Along the beam direction, the first section is the preshower. The preshower

is constructed from 28 TF-1 lead glass blocks measuring 10 x 10 x 70 cm arranged as

two columns and 14 rows – these two columns constitude the "negative" and "positive"

side of the preshower. After the preshower is the shower, or fly’s eye array. The fly’s eye

array consists of 224 F-101 blocks measuring 9 x 9x 50 cm stacked in a 14 column by

16 row arrangement, shown schematically in figure 3.17. As the beam traverses through

the lead glass blocks the electrons radiate photons primarily through bremmshtralung.

These photons are measured by Photonis XP3462B PMTs in the preshower and XP3461

PMTs in the shower. The lead blocks in the preshower are individually wrapped in 50µm

aluminum Mylar and 50µm Tedlar in order to optically isolate them. The lead glass

blocks are optically coupled to the PMTs by use of a thin layer of Bicron ND-703 optical

grease. In the shower, the blocks are wrapped in 50µm of Mylar and 125µm of Tedlar.

The redesign of the SHMS calorimeter compared to the HMS calorimeter was primarily

motivated by the fact that the SHMS was built to take advantage of the 12 GeV beam

upgrade and forward scattering kinematics. For this reason, the SHMS is capable of

accepting higher momenta electrons, and it must be ensured that these high energy

electrons will deposit all of their momenta into the calorimeter. Thus, the fly’s eye array

is arranged so that the long side of the lead glass blocks is along the beam direction. In

this way, the shower is 18 radiation lengths long, increasing the effective volume of the

shower substantially.
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Figure 3.17: CAD of the SHMS calorimeter. The negative and positive sides of the
preshower are shown, with the fly’s eye shower array placed behind it.

The HMS calorimeter is a lead-glass calorimeter comprised of TF-1 blocks arranged

in a 4x13 layout for a total of 52 modules; the lead block measure 10 x 10 x 70 cm and

attach to a XP3462B PMT as shown in figure 4.6.
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Figure 3.18: Design of the HMS calorimeter detector.

3.6 Electronics & Data Acquisition

All of the electronics and data acquisition in Hall C is handled by a system called

CODA (CEBAF Online Data Acqusition) developed by the data acquisition group. CODA

handles the ADC signals, primarily from PMTs, from all of the detectors of the specrometer

in Hall C, as well as the TDCs signals from the hodoscopes and drift chambers. A trigger

diagram for the SHMS and HMS hodoscope is shown in figure 3.19. The TDCs are CAEN

V1190A TDC modules, with 128 channels each with a 100 ps time resolution. The ADC

signals are treated by FADC250 modules that digitize the trigger signals read into it.

The electronics themselves are housed in an electronics house in the counting room as

well as an electronics bunker attached to the spectrometers themselves. These electronics

are housed in 5 VXS and VME64X crates. Indeed, the HMS detector hut houses a VXS

create that runs the CAEN1190 TDC for the HMS dfift chamber detector. The SHMS

detector hut contains one VMXE64X crate to hold another CAEN1190 module for the

SHMS dirft chamber as well as a VXS create with FADC250 modules that handle the
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SHMS pre-shower and shower counter PMT signals. In the counting house, a VXS crate

houses a FADC250 and CAEN1190 modules for the HMS hodoscope, shower counter,

and Cerenkov detector. Also, a separate VXS crate houses another set of FADC250 and

CAEN1190 modules for the SHMS hodoscope and Cerenkov detector.

The ADCs and TDCs from the various detectors turn their respective analogue signals

into digital signals, which are then fed into CODA read out controllers (ROCs). The

ROCs are responsible for converting trigger signals into a format usable by the CODA

event builder (EB). In addition to trigger event information, scaler and EPICS information

is built into the DAQ data structure. Scalers record raw PMT counts, as well as charge

and trigger type. Approximately every 30 seconds, EPICS data is recorded, including

beam position and current, as well as magnet settings in the spectrometer.

The ADC and TDC modules are also used to create the trigger logic for the detectors.

The trigger logic for both spectrometers is presented below in figures 3.19 through 3.22.

Figure 3.19: Trigger diagram for the SHMS scintillator and quartz hodoscopes as well
as the HMS hodoscope.
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Figure 3.20: Trigger diagram for the HMS shower counter. The final logic triggers are
PSh_HI, PSh_LO, and Sh_LO; these triggers can be used to create addtional event
triggers by the user.

Figure 3.21: Trigger diagram for the SHMS pre-shower.
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Figure 3.22: Trigger diagram for the SHMS and HMS gas Cerenkov and aerogel detectors.
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Chapter 4
Data Analysis

4.1 Analysis Software

The analysis software used for event reconstruction is called HCANA. HCANA is

an object-oriented software package based on CERN’s ROOT programming framework.

ROOT was built for large scale data analysis, allowing for efficient data manipulation,

statistical analysis, and data visualization. More specifically, HCANA is a C++ software

package built upon previous FORTRAN based codes used in Hall A. Raw data recorded

by CODA is accessible to HCANA where it is decoded and interfaced with the underlying

HCANA framework. This framework relies on three major class types: Apparatuses,

Detectors, and Physics Modules. The spectrometers (SHMS, HMS) are defined by an

Apparatus type, and drift chambers, hodoscopes, Cerenkov detectors, and calorimeters

will each be determined by classes of their detector type. The Physics Modules type

generally handle vertex and kinematic determinations of physics events.

Of particular importance is the determination of focal plane variables that are used

to determine the momentum of events, as well as acting as a direct cross check with

monte carlo simulations. These variables are xfp, yfp, x′fp, and y′fp, and they represent

the position and slope of a given track respectively; this slope is with respect to the

z-direction, so that

x′fp =
dxfp
dz

(4.1)
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y′fp =
dyfp
dz

(4.2)

Information about the focal plane variables are extracted from the drift chambers, and

from this target variables can be reconstructed through a so-called reconstruction matrix

transformation

Ttar =
∑
i,j,k,l

Ry
i,j,k,l(xfp)

i(yfp)
j(x′fp)

k(y′fp)
l (4.3)

and the reconstructed target variables are ytar, x′tar, y′tar, and
δp
p
, where

δp

p
=
precon − p0

p0

(4.4)

and precon is the reconstructed momentum. An apparatus class, THcHallCSpectrometer,

is responsible for determining the focal plane variables from the CODA data files, at which

point tracks can be reconstructed via the reconstruction matrix. Likewise, detector classes

read from raw CODA files and can perform pedestal subtraction, cluster reconstruction,

and gain multiplication in the case of the shower class, or event counting for the Cerenkov

detector class.

4.2 Detector Calibrations

In addition to HCANA, there is also a collection of codes used for the calibration of

the detectors. The purpose of the codes is to produce parameter files that are used by

HCANA to produce a ROOTfile suitable for analysis. This becomes an iterative process

– HCANA is used to produce a ROOTfile, and the ROOTfile serves as an input to the

calibration codes which produces parameter files. The new parameter files are used in

HCANA and an updated ROOTfile is produced. The procedure continues until all of

the spectrometer detectors behave as expected. In the following sections, the calibration
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codes will be discussed and calibration results presented.

4.2.1 Electromagnetic Calorimeter Calibration

The calorimeter calibration code function identically for the SHMS and HMS, and it’s

purpose is to calculate gain calibration constants for each of the PMTs in the calorimeter

shower and pre-shower. The file containing these calibration constants constitutes the

parameter file produced by the calibration code.

The calibration constants are calculated by minimizing the difference between the

reconstructed energy deposition ER and the known energy deposition E, given by

f(−→c ) = (ER − E)2 (4.5)

where −→c represents a vector of the calibration constants. This minimization is subject

to the constraint that the calibration constants can properly reconstruct the mean energy

deposition e0, such that

g(−→c ) = c(
−→
T )−→q0 = e0 (4.6)

where −→q0 is the mean PMT signal. The function f(−→c ) may also be expressed as

N∑
n

(
∑
i

CiA
n
i − En)2 (4.7)

thus, the system of equations may be solved using the method of Lagrange multipliers.

Therefore, the Lagrangian is

L(−→c , λ) = f(−→c )− λ · g(−→c ) (4.8)

From ∂L
∂(cj ,λj)

= 0, one can solve for −→c and λ,
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λ =
e0 −Q−1−→qe−→q0
−→q0Q−1−→q0

(4.9)

−→c =
e−−→cU−→q0
−→q0Q−1−→q0

Q−1−→q0 +−→aU (4.10)

where
−→
CU is the unconstrained calibration constants derived from the condition

that df
dCj

= 0, and Q is the calorimeter PMT signal, determined by Qij = AiAj. The

unconstrained calibration may be solved from,

−→cU = Q−1−→qe (4.11)

thus, the the values for −→c is fully determined.

Of utmost importance for the calibration to be done properly, electron events should

be selected to the exclusion of everything else. In practice, this is difficult to achieve

and therefore several selection cuts are made to attempt select only electrons. This is

done by requiring that events to be calibrated also have at least two photo-electrons were

produced and measured by the noble gas Cerenkov detector for the SHMS, and four photo-

electrons for the HMS. Additionally, a −10% < δp < 22% cut is placed for the SHMS and

−10% < δp < 10% for HMS. After calibration, four diagnostic plots are produced. The

first shows a one-dimensional distribution of the momentum normalized energy deposition

of events. Because electrons carry most of their energy in their momentum, electron events

will be found near unity. Pions, however, will be distributed closer to zero.

54



Figure 4.1: Uncalibrated momentum normalized energy deposition.

The example in figure 4.1 shows the events to be calibrated shaded in green, and it is

clear that the electron events and pion events are separated. Of course, the distribution is

uncalibrated, and therefore the mean electron peak does not sit exactly at one.

Figure 4.2: Calibrated momentum normalized energy deposition.

As shown in figure 4.2, after calibration, the electron peak is fit as a Gaussian

distribution around one – this suggests the calibration was successful. Additionally, two
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other plots are used for diagnostics. One such plot is the energy deposited in the shower

versus the energy deposited in the pre-shower, shown in figure 4.3.

Figure 4.3: Energy deposited in the shower versus the energy deposited in the pre-shower.

This plot ensures that all of a particle’s energy is deposited somewhere in the calorime-

ter, either in the shower or in the pre-shower. The fourth plot produced, is shown in figure

4.4, and is used to make sure there is no δp dependence on the momentum normalized

energy deposition.
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Figure 4.4: δp versus Edep
p

.

Of course, pion and electron production is dependent on the scattering angle and final

momentum, and therefore, the calculated calibration constants in the parameter files

also carry this dependence. For this reason, calibrations need to be done for all of the

kinematic settings of the experimental run. In this way, each run can be replayed with

HCANA with a parameter file corresponding to it’s angle and momentum setting. Thus,

we can compile the mean peak of the momentum normalized energy deposition for all

kinematic settings taken during the experimental run as a sanity check for the parameter

files.

Figure 4.5: Mean of the momentum normalized energy deposition Gaussian distribution
for all unique SHMS kinematic settings. Several runs in a given setting are considered.

It should be noted in figure 4.5 that a few runs show large error bars; this is due to
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small statistics in the run. This can be mitigated by combining runs in a given kinematic

setting into a single "run". Similarly, we check the means for all unique kinematic settings

in the HMS in figure 4.6.

Figure 4.6: Mean of the momentum normalized energy deposition Gaussian distribution
for all unique HMS kinematic settings. Several runs in a given setting are considered.

In our calibration study, we also investigate the δp dependence on the mean peak of
Edep
p

. To do this, we divide the −10%,+22% δp region into four equal regions, and see how

the mean peak changes with respect to electron events in different regions. The results

are presented in figure 4.7.

Figure 4.7: Mean of the momentum normalized energy deposition Gaussian distribution
for events in four distinct δp regions. Generally, we see that the mean peak has little δp
dependence.

Apart from the mean peak of the Gaussian distribution of Edep
p

, the RMS of the

Gaussian distribution is an important figure of merit. In particular, the RMS as a function

of E ′ determines the resolution of the calorimeter detector. In ideal detector, where all

of a particle’s energy is deposited into the detector, the resolution of the calorimeter
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is limited by fluctuations in the track length, and so the development of the shower is

stochastic. Thus, one expects sigma to be proportional to the square of the track length,

which is in turn proportional to the energy. Thus, we expect the calorimeter resolution to

be proportional to the inverse of the square root of the energy. First, we plot the RMS

across all of the runs taken, as shown by figure 4.8.

Figure 4.8: RMS of the momentum normalized energy deposition Gaussian distribution
for the SHMS.

And likewise for the HMS, as shown in figure 4.9.

Figure 4.9: RMS of the momentum normalized energy deposition Gaussian distribution
for the HMS.

As stated previously, plotting the RMS as a function of E ′ gives the resolution of the

calorimeter, demonstrated by figure 4.10.
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Figure 4.10: The resolution of the SHMS is plotted as a function of E ′. The resolution
of the calorimeter is found to be 7.4%.

The same can be done for the HMS and is presented in figure 4.11.

Figure 4.11: The resolution of the HMS is plotted as a function of E ′.

Here, the stochastic term is not enough to fit, thus a noise term and a constant term

are added to fully fit the data.

Finally, it is necessary to address a concerning observation made during calibration of

the calorimeter. During calibration, it is necessary to use both the gas Cerenkov detector

as well as the calorimeter for particle identification as well as separating electron and pion

events. Indeed, requiring that an event triggers a certain number of photo-electrons in

the Cerenkov, one can select electrons or pions. Typically, electron events trigger around

twenty-two photo-electrons while pions will trigger less than five, as shown in figure 4.12.
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Figure 4.12: Distribution of number of photo-electrons in the gas Cerenkov detector.

However, it was found that for events with greater than twenty photo-electrons, many

of these events recorded a momentum normalized energy deposition close to, and equal to,

zero, as shown in figure 4.13. This, of course, shouldn’t be true and suggests a number of

issues that could be the cause.
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Figure 4.13: Distribution of momentum normalized energy deposition. Here, events are
associated with greater twenty photo-electrons in the Cerenkov gas detector, i.e., electrons
– even still, there are events with zero energy.

First, it could be possible that events are being re-scattered by the dipole and finding

their way into the calorimeter. This is addressed by requiring that a track’s angle and

x-position adhere to the following relation

Tr_th > −0.045 + 0.0025 · Tr_x (4.12)

where, Tr_th is the theta value of the track and Tr_x is the x-position of the track.
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Figure 4.14: The effect of adding the "scattcut" condition. A 2D histogram of events at
the calorimeter – on the right, no scattering cut is applied, on the left the scattering cut
is applied.

In particular for the SHMS, there is an additional concern that events aren’t affect by

its octagonal collimator. This is confirmed in figure 4.15. As for the scattering condition,

the collimator is accounted for through a set of geometric relations on a track’s position,

angle, and δp, shown in figure 4.14.
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Figure 4.15: 2D histogram of events at the collimator demonstrating the collimator
condition on the left, and events at the calorimeter with the same collimator condition on
the right.

We must also consider the fiducial volume of the calorimeter in order to address the

zero energy events. This accounts for the possibility that an electron event hits an edge

block with a large angle. For these cases, its possible the event does not deposit all of its

energy before it exits the calorimeter. Thus, we apply a fiducial cut such that the edge

blocks the calorimeter are not considered, as shown in figure 4.16.
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Figure 4.16: 2D histogram of events at the calorimeter with and without fiducial cuts
applied.

Considering re-scattered events, the SHMS collimator, and the fiducial volume, it is

possible to mitigate the zero energy events in the calorimeter, however, it cannot remove

them entirely. During this study, it was found that the zero energy events have a peculiar

ADC/TDC time behavior. Each PMT in the calorimeters has an associated time window

within which events are considered; events that sit outside of this time window do not

contribute to the summed energy deposition for the associated block. In particular, it

was observed that the zero energy events always sit outside of the time window without

exception. This suggests the origin of the issue may not be due to unaccounted physics

reasons. However, this method of removing the zero energy events is not satisfactory, as

it requires placing a condition on the timing distribution of events. As of the writing of

this thesis, this issue has yet to be fully resolved. We do not find a dependence on E ′ for

the zero energy events in the calorimeter, demonstrated by figure 4.17.
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Figure 4.17: The ratio of zero energy events in the calorimeter over good events as a
function of the final event energy E ′.

4.2.2 Drift Chamber Calibration

As previously stated, the drift chambers serves to reconstruct event tracks for the

spectrometers. Briefly, they consist of six planes of wires within a cavity of ionizing gas,

namely, C4F8O. As the electron beam passes through the drift chamber, the gas is ionized.

The ions are then attracted to the sensing wires that make up the planes within the drift

chamber. In fact, it is TDC values that are output to the preamplifier and discriminator.

These time values are used to determine the drift distance, but first it must be ensured

that each event, all six planes of the drift chambers agree on the so-called "t_zero" TDC

value; this is essentially the start time of the event. The calibration code for the drift

chamber serves to mainly to offset the timing distribution of each plane relative to each

other so that the drift distance can be correctly calculated.

Calibration first begins by setting the time distribution of each plane to be zero. This

constitutes an uncorrected timing distribution for the planes, shown in figure 4.18.
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Figure 4.18: Uncorrected timing distribution of the V’ plane in the drift chamber.

Next, the timing distribution is fitted over a bin range for which the bin content of the

range is equal to 20% of the maximum bin content of the distribution. This portion of

the distribution is fitted linearly and the x-intercept of the resulting fit is set as the new

t0. This procedure is done for all of the sensing wires for each of the planes in the two

drift chambers for the spectrometers. For each plane, a weighted average is calculated

from each of the wires in the plane, and the plane inherits the weighted t0 offset. The

corrected timing distribution is shown in figure 4.19
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Figure 4.19: Corrected timing distribution of the V’ plane in the drift chamber.

Finally, using the t0 offset for each plane, a lookup table is created for each wire in

the plane. It is here that the drift time TDC values are converted into drift distances

that are used to reconstruct event tracks. The calibration can be checked by plotting the

distribution of drift distance for a given plane. If the calibration was successful, the drift

distance distribution is relatively flat, as is characteristic of a drift chamber of this design.

An example of such a drift distance is presented in figure 4.20.
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Figure 4.20: Comparison between corrected and uncorrected t0 offset of the drift distance
distribution for a given plane.

As with the calorimeter calibration, we must check that the drift distance distribution

is well calibrated over the entire experimental run. To this end, a useful value is the

ratio of the minimum to maximum bin content of the drift distance distribution. If the

distribution is sufficiently flat, this ratio should be close to one. Also, it is necessary the

timing distributions – this is done by plotting the residuals of these distributions for runs

across the entire experimental run. The results are shown in figure 4.21 and 4.22.
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Figure 4.21: Result of drift chamber calibration over experimental run. Plotted is the
ratio of the minimum to maximum bin content of the the drift distance distribution as a
function of run number.
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Figure 4.22: Plot of residuals of timing distribution as a function of run number.

4.2.3 Hodoscope Calibration

As mentioned previously, the hodoscope is used to create the triggers for the DAQ

system. As the electron beam travels through the scintillating material of the hodoscope

photons are produced and measured as TDC time values when the signal crosses a voltage

threshold as determined by discriminators. Because the hodoscope determines the timing

and triggers for the rest of the detectors in the detector package, it is absolutely necessary

that any systematics be accounted for in the TDC value recorded. Indeed, there are four

sources of systematic error that must be addressed to extract the true time values. The

corrected time value is given by,
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tcorr = tuncorr − tTW − tcable − tprop − tλ (4.13)

However, the use of leading edge discriminator introduces a time shift in the measured

signals, referred to as a "timewalk" effect, shown in figure 4.23.

Figure 4.23: Figure demonstrating the timewalk effect introduced by leading edge
discriminators.

The scintillation photon signal must be carried from the PMT to the TDC discriminator

via a cable, which takes a non-negligible amount of time. This systematic, tcable, amounts

to an offset of a few hundred nanoseconds. The value tprop simply refers to the amount of

time it takes for the scintillation photons to reach the PMT after they are produced. And

finally, the tλ term accounts for the time difference between two hodoscope planes as event

passes through them. These corrections are determined by the hodoscope calibration code,

and from the time information of events, the velocity of a particle can be calculated. As

we are primarily interested in electron events, the value β = v
c
should be close to one, as

shown in figure 4.24.
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Figure 4.24: β distribution comparing a calibration accounting for the timewalk effect,
and one without.

This value is used to sanity check the calibrations over the experimental run, and the

results are presented in figure 4.25.

Figure 4.25: Plot of the peak mean and sigma value of the beta distribution for runs
over the entire experimental run. Image: Simona Malace.
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4.2.4 Cerenkov Detector Calibration

The Cerenkov detector is used to identify and separate pion and electron events. The

design of the gas Cerenkov detector differ between the SHMS and HMS spectrometers, but

their function and operation is identical. The separation between pion and electron events

is achieved by considering the number of photo-electrons produced in the Cerenkov detector

and subsequently measured by its PMTs; electrons will produce more photo-electrons than

pions. However, the raw ADC signal measured by the PMTs must first be understood

and properly calibrated before it can be interpreted as photo-electrons. This requires that

one determine the minimum ADC signal and the crosses the voltage threshold; indeed,

this should correspond to the magnitude of the signal for one photo-electron. Because the

amplitude of the ADC signal is proportional to the number of photo-electron, we can use

this conversion factor to scale the ADC amplitude distribution, shown in figure 4.26, to

convert it to a distribution of number of photo-electrons.

Figure 4.26: Raw ADC signal of a Cerenkov detector PMT. The one, two, and three
photo-electron peak are somewhat visible.

The raw signal can be cleaned up by removing the Poisson background in the signal.

This is shown in figure 4.27.
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Figure 4.27: Cleaned signal distribution with number of photo-electrons (npe) on the
x-axis, showing the one, two, and three photo-electron peak. The calibration is verified
by fitting the mean of the peaks versus number of photo-electrons.

Typically, the Cerenkov detector does not need to be calibrated per kinematic setting.

It suffices to calibrate the detector before the experimental run.

4.2.5 Beam Current Monitor Calibration

The beam current monitors are responsible for determining the current placed on the

target, from which the charge on the target can be calculated by integrating the current

over the time. As mentioned in the previous section about the unser and BCMs, while the

unser has a fixed gain, its reading can drift over short periods of time. On the other hand,

while BCMs typically do not experience a drift offsets, their gain can change over time.

For this reason, one usually takes dedicated current calibration runs throughout the run

of the experiment. The unser and BCMs are used in conjunction to extract the necessary

BCM parameters in order calculate the current and charge on the target. In particular,

the unser is used to subtract the gain bias from the BCMs. The BCM response is then

plotted as a function of the unser current and a linear fit is applied. The slope of this fit

corresponds to the gain of the BCMs.
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For the E12-10-002 experiment, it was deemed sufficient to take only one current

calibration run. However, it was found that there was a significant systematic shift in

response of BCM4A and BCM4B over the course of the experimental run. For this reason,

it was necessary to divide the experimental run into six regions, where a "local" calibration

could be derived from a chosen run within each region, demonstrated in figure 4.28.

Figure 4.28: The experimental run is divided into six periods that will be individually
calibrated.

In this way, it was possible to extract consistent gain and offset values for the required

BCMs, shown in tables 4.1 and 4.2.

BCM4A Gain ∆Gain Offset ∆Offset

P1 13000.0 111.1 2528 4025

P2 13370.0 310.5 -20940 16290

P3 12930.0 125.1 -48.96 5424

P4 12770 189.8 10210 10120

P5 13210 277 -2481 13070

P6 13150 262.2 -2974 13810

Table 4.1: Parameters for BCM4A.
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BCM4C Gain ∆Gain Offset ∆Offset

P1 6182 54.8 1504 1941

P2 6388 153.1 -823.6 8047

P3 6222 62.52 499.8 2696

P4 6145 95.02 7451 5054

P5 6435 134.9 -1078 6364

P6 6248 124.5 -765.7 6540

Table 4.2: Parameters for BCM4C.

4.3 PID Cut Efficiency

A large part of the experimental analysis depends on characterizing the particle identi-

fication detectors. Indeed, the particle identification detectors are essential in separating

background events, typically pions for E12-10-002, from electron events. However, one

must consider the possibility that an electron event is cut out along with the background

events. This amounts to the so-called "cut efficiency" of the detector. Ultimately, these

efficiencies must be folded into the cross sections. The procedure for the determination of

the calorimeter and Cerenkov detector will be discussed briefly and results presented.

4.3.1 Calorimeter

The general procedure used to calculate the cut efficiency for the calorimeter first

necessitates creating a clean electron sample. It is important that we create a clean

sample of electrons because we want to know how likely it is that an electron event will be

removed by placing a calorimeter cut on the selected sample. Thus, we must be sure the

events we have selected are indeed electrons. However, several methods by which a clean

sample is chosen may be employed. During this study, we compared three such methods.

Because it is necessary to remove as many background events from the clean sample

as possible, the first method involves a pion to electron ratio extrapolation. First, a cut
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efficiency is calculated for several target types. This is because different target types will

have different characteristic pi:e ratios. Then, these efficiencies are plotted as a function

of pi:e ratio, and the efficiency is extrapolated to zero pi:e ration. In this way we hope to

remove as many pion contaminating events in our clean sample. Finally, the extrapolated

efficiency is plotted as a function of E ′. The first efficiency calculation is done by requiring

selected events have a large number of photo-electrons associated with the gas Cerenkov

detector, as well as making sure events are within the δp acceptance of the spectrometer.

ε =
ELLO > 100&&ngcer > 20&&− 10 < δp < 22&&etottracknorm.7

ELLO > 100&&ngcer > 20&&− 10 < δp < 22
(4.14)

A visual example of these cuts is presented in figure 4.29, where the red distribution

corresponds to the denominator and the blue distribution corresponds to the numerator.

Here, "ELLO" corresponds to a specific event triggers that does not use any calorimeter

information; we need to use a trigger that does not bias the calorimeter cut efficiency

calculation. The "ngcer" condition corresponds to the number of photo-electrons in

the noble gas Cerenkov detector, and "etottracknorm" is the momentum normalized

energy deposition in the calorimeter. The efficiency contains an explicit calorimeter cut

in the numerator, so the denominator corresponds to our clean electron sample. If any

electron events are removed from the numerator cut conditions they will be reflected in

the efficiency.
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Figure 4.29: Plot demonstrating the initial calorimeter cut efficiency. The blue distribu-
tion corresponds to the numerator in the efficiency calculation and the red distribution
corresponds to the denominator.

As mentioned, this procedure is carried out for a variety of target types, and the

efficiency is plotted as a function of pi:e efficiency, as shown in figure 4.30.

Figure 4.30: Plot of calculated efficiency as a function of pi:e ratio for different target
types, at 5GeV . The efficiency is extrapolated to zero pi:e ratio.

This method appeared to work reasonably well for most values of E ′, however, it was
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found that for certain values, the pi:e extrapolation introduced possible systematics that

drastically changed the efficiency values.

Another method to ensure to the removal of background events is to place an explicitly

calorimeter cut in the denominator. This efficiency is calculated as follows,

ε =
ELLO > 100&ngcer > 20&− 10 < δp < 22&etottracknorm.7

ELLO > 100&ngcer > 20&− 10 < δp < 22&(etottracknorm > .2 ∧ etottracknorm > .5)

(4.15)

The additional condition in the denominator serves to remove events at low Edep; as

explained before, this corresponds primarily to pion events. Two cuts are chosen – greater

than 0.2 and greater than 0.5. Ultimately, the average of the resulting two efficiency

calculations is taken, and this average is the final efficiency. Thus, we do not take a pi:e

ratio extrapolation.

The third method for creating a clean electron sample involved including a calorimeter

time distribution cut. As mentioned in the calorimeter calibration section, it was found

that there were an abnormal amount of events at low and zero energy in the calorimeter.

These events could be removed by placing a cut on the ADC/TDC timing distribution of

events in the calorimeter, but this procedure was hard to justify from physics principles.

Nevertheless, these issues at zero energy continued in the analysis of the calorimeter

cut efficiency, and so such a timing cut was explored in this context. This efficiency is

expressed as,

ε =
AdcTdc! = kBig&ELLO > 100&&ngcer > 20&&− 10 < δp < 22&&etottracknorm > .7

AdcTdc! = kBig&ELLO > 100&&ngcer > 20&&− 10 < δp < 22

(4.16)

where "kBig" is simply a value in HCANA corresponding to the numerical value

10e+ 38.

The three methods for calculating the calorimeter cut efficiencies are shown in figure
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4.31.

Figure 4.31: Comparison between the three methods for the calculation of the calorimeter
cut efficiency.

We find that the second method, the calorimeter bias method, provides the best fit for

the cut efficiency as a function of E ′. Thus, the final fit is presented in figure 4.32.

Figure 4.32: The final calorimeter cut efficiency as a function of E ′.

81



4.3.2 Cerenkov Detector

Similar to the calorimeter detector, we must account for the fact that using the gas

Cerenkov detector to select electron events carries with it the possibility that we may

accidentally be cutting out electrons with abnormally low associated number of photo-

electrons. Likewise, the method employed to calculate the cut efficiency rests on the

condition that the starting sample of events is as clean as possible; that is, electron events

with minimal pion contamination. To this end, pi:e ratio extrapolation is also used. In

particular, for the Cerenkov detector, four different methods for extrapolation are carried

out. To begin, the Cerenkov cut efficiency is calculated as,

ε =
ELHI > 100&− 10 < δp < 22&etottracknorm > 1.0&eprtracknorm > 0.3&ngcer > 2

ELHI > 100&− 10 < δp < 22&etottracknorm > 1.0&eprtracknorm > 0.3

(4.17)

where "ELHI" is an event trigger that does not use the Cerenkov detector, and

"eprtracknorm" is the momentum normalized energy deposition in the preshower. As

before, the cuts in the denominator are supposed to serve as the clean electron sample.

The numerator uses the same set of cuts, but adds an additional cut on the gas Cerenkov

detector. Thus, the efficiency is sensitive to the accidental removal of electrons by the

detector. Both methods to be discussed use a pi:e extrapolation to find the efficiency at

zero pi:e ratio. The first method calculates the pi:e ratio using only the Cerenkov detector.

A pion distribution is created by requiring that the number of photo-electrons associated

with the events is zero. An electron distribution is created by requiring that the number

of photo-electron events is greater than 21. The ratio of the number of these distributions

is the pi:e ratio. As with the calorimeter, we calculate the efficiency and pi:e ratio for

different target types and plot the relationship, shown in figure 4.33.
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Figure 4.33: Calculated efficiency as a function of pi:e ratio. The function is extrapolated
to zero pi:e ratio, and the extrapolated efficiency is determined.

For the second method, the pi:e ratio is calculated using only the calorimeter. Here,

pions are selected by requiring etottracknorm < 1.0&eprtracknorm < 0.3, and electrons

are selected by requiring etottracknorm > 1.0&eprtracknorm > 0.3. Likewise, the

efficiency and pi:e ratio are calculated and plotted in figure 4.34.
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Figure 4.34: Calculated efficiency as a function of pi:e ratio. The function is extrapolated
to zero pi:e ratio, and the extrapolated efficiency is determined.

For the third method, both the calorimeter and Cerenkov detectors are used in order

to calculate the pi:e ratio. The results are presented in figure 4.35

Figure 4.35: Calculated efficiency as a function of pi:e ratio. The function is extrapolated
to zero pi:e ratio, and the extrapolated efficiency is determined.
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A fourth method eschews the pi:e ratio extrapolation, as extrapolated efficiencies carry

the same issues encountered with the calorimeter. The fourth method instead employs

a pion contamination analysis in order to subtract pion events from the clean electron

sample. As of the writing of this thesis, the preferred method has yet to be determined.

In addition to characterizing the Cerenkov efficiencies as a function of E ′, it is also

necessary to characterize the efficiencies as a function the x-position at the Cerenkov

detector itself. This is due to the known, systematic effect of the design of the Cerenkov

detector having a gap between its mirrors. At these gaps, photo-electrons are not recorded,

and therefore the efficiencies are systematically lowered, shown in figure 4.36. Figure 4.37

demonstrates the effect for correcting the efficiency due to the gaps.

Figure 4.36: Efficiency as a function of the x-position at the Cerenkov detector. The
characteristic dip around x=0 indicates the gap in the mirrors in the Cerenkov detector.
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Figure 4.37: Efficiency as a function of E ′, one set with the x-dependence accounted for
and one without.

It should be mentioned that one additional step in the Cerenkov cut efficiency must

be accounted for in the HMS Cerenkov detector. As mentioned in an earlier section, the

bottom left mirror in the HMS Cerenkov detector sustained damage and was broken.

This was discovered after the experimental run of E12-10-002, thus, it is believed and

corroborated through analysis that the mirror was broken throughout the experiment.

This can be seen in figure 4.38, where we can see a decrease in the efficiency at the

lower-left corner of the Cerenkov detector. It is planned to account for this systematic

by dividing the face of the Cerenkov detector into bins and to calculate the efficiency for

each bin for each kinematic setting. In this way, a lookup table can be created and the

efficiencies may be corrected for each individual bin. This study is still ongoing.
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Figure 4.38: Efficiency at each bin at the face of the Cerenkov detector at E ′ = 5.1GeV .
The effect of the broken mirror is shown in the lower left bins.

4.4 Background Subtractions

In addition to the inefficiencies in the particle identification detectors, measures

must also be taken to remove unwanted backgrounds in the final electron yield. These

backgrounds can take two forms. First, as mentioned in previous sections, pions constitute

a dynamic background for the E12-10-002 experiment; at high E ′ and smaller scattering

angles, the pion background can be relatively small. But at lower energies and higher

scattering angles, the pion background is quite significant. Another source of backgrounds

are electrons that are not produced from the primary interaction. These electrons can be

produced in two ways. The first type of electrons are produced when the electron beam

scatters off of the aluminum cryogenic target rather than the liquid hydrogen or deuterium.
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The second type of electrons can be produced through either photo-production, γ → e−e+,

or through neutral pion decay, π0 → 2γ → e−e+.

4.4.1 Target Wall Subtraction

Electron events that were scattered from the walls of the cryogenic target constitute

a source of background that must be subtracted from the final electron yield. In order

to account for these extra events, so-called "Dummy" runs are taken at every kinematic

setting. These Dummy runs use empty aluminum targets. In this way, one can correct for

the target scattered electrons by subtracting them from the yield of a cryo-target run. As

an example, for an LH2 target, the corrected yield is given by,

YCorr = YLH2 − YDummy
TWalls

TDummy

RCDummy
RCWalls

(4.18)

where TWalls and TDummy are the target thickness of the cyro-target walls and Dummy

target walls respectively, and RCDummy and RCWalls are the radiative corrections for the

Dummy and cryo-target respectively. Typically, this subtraction is done within the Monte

Carlo simulation. Focal plane variables xtar, ytar, y′tar, and δp, are checked against the

Monte Carlo results before and after the target wall yield correction, as shown in figure

4.39.
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Figure 4.39: An example of yields corrected for the target walls and compared to Monte
Carlo simulations.

4.4.2 Pion Contamination

The Cerenkov and calorimeter detectors are not sufficient to remove all unwanted pion

background events, even when their cut efficiencies are accounted for. Indeed, the cut

efficiencies are sensitive to occasions when the particle identification detectors remove

electron events. Here, we are concerned that applying stringent requirements on the

momentum normalized energy deposition and the number of associated photo-electrons

will not entirely remove pions from our final yield. As demonstrated in the calorimeter

calibration section, when a distribution is plotted in Edep, the pion events and electron

events are clearly separated. However, the pion distribution has a visible tail that extends

to large values of Edep; it is these events that we wish to remove.

The procedure for the removal of these events is to create two different distributions.

We create one distribution of events that are mostly electron events; this is done by

requiring that the number of photo-electrons is greater than 6. A second distribution of

mostly pion events in created by requiring that the number of photo-electrons is less than
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6.

Figure 4.40: Electron distribution in blue and pion distribution in red. The scaled pion
distribution is in black.

With these two distributions the pion distribution peak is determined in the electron

distribution. At this determined bin, a scaling factor is formed by taking the ratio of the

bin content between the blue and the red distributions. This scaling factor is applied to

the entire pion distribution to produce a scaled pion distribution; this corresponds to the

black distribution in figure 4.40. Typically, the calorimeter cut is chosen for Edep > 0.7,

thus, the events in the black distribution that extend beyond this threshold constitute

the pion contamination in the electron sample. As mentioned, pion production is highly

dependent on the kinematics, therefore, the pion contamination must be characterized as

a function of E ′, and the results are presented in figure 4.41 for the SHMS and figure 4.42

for the HMS.
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Figure 4.41: Pion contamination in percentage, as a function E ′ for the LH2 and LD2
targets for the SHMS.

For the HMS, there are less kinematic settings and making the fit may take further

work.

Figure 4.42: Pion contamination in percentage, as a function E ′ for the LH2 and LD2
targets for the HMS.

4.4.3 Charge Symmetric Background

The charge symmetric background are unwanted electron events that are produced

outside of the primary interaction. Two major sources are the spontaneous creation of

a e+ and e− pair, γ → e+e−. Another source of production is from neutral pion decay,

π0 → e+e−. This poses the specific issue that our particle identification detectors cannot

separate electrons that were produced from the primary interaction and those produced

through secondary means. However, we can take advantage of the fact that these unwanted

electron events are produced in equal number to the positron e+. Thus, we need only
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measure positrons for a given kinematic setting, and we can be sure that the yield number

from these events will be equivalent to the yield of unwanted electron events. This was

achieved by changing the polarity of the spectrometers to measure positrons instead of

electrons. Accounting for the charge symmetric background requires that we extract the

cross section for the positron events. Extracting the positron cross section requires all of

the same considerations that we make for the final electron cross section. This includes

detector efficiencies, pion contamination, target wall backgrounds, etc. However, the

magnitude of the charge symmetric background is dependent on the kinematic setting;

it increases for increasing scattering angle and decreasing E ′. For this reason, it is also

necessary to parameterize the positron cross sections, as well as using a positron cross

section model in conjunction with a Monte Carlo simulation. As of the writing of this

thesis, the charge symmetric background has yet to be determined, and therefore this

systematic is not accounted for in the results.

4.5 Target Density Correction

We must also take into account the effect that beam heating has on the density of

the liquid cryogenic targets. As the electron beam passes through the targets, heat can

accumulate and change the local density of the target. Of course, this has the immediate

effect that the nominal yield is reduced. This effect is non-negligible and the final yield

must be corrected. To systematically study the density correction, for two kinematic

settings in the SHMS and HMS, dedicated density correction runs were taken. This

involved taking runs at different beam currents, from low current to high current. For

both the SHMS and HMS, density correction runs were taken at θ = 20, E ′ = 2.0GeV

and theta = 25, E ′ = 4.4GeV .

To study the target density correction, we calculate the charge normalized yield, given

by,
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Ynorm =

∫
currentHist · ps

Qibcm4b · EtrackEff · CompLt
(4.19)

where, "currentHist" is a distribution of events, as shown in figure 4.43, at a given

current setting, "ps" is a scaling factor for event rates, "Qibcm4b" is the charge of events

as recorded by BCM4B, "EtrackEff" is the tracking efficiency of electron events, and

"CompLt" is the computer live-time. Thus, for a given current setting, events that are

above a current threshold are accumulated and scaled by an appropriate factor.

Figure 4.43: Current selection for target density correction.

This number is then normalized by the charge of these events, and the yield is corrected

for tracking efficiency and computer live-time. This calculation is carried out for several

current settings and the charge normalized yield is plotted as a function of current. In

particular, this procedure is done for the two cryogenic targets, LH2 and LD2, and also

the carbon target, shown in figures 4.44 through 4.47. All other yields are normalized to
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the carbon target yield. Additionally, the carbon target is used in order to verify that

density corrections have been appropriately applied; if this is the case, the carbon target

should not display a correlation with current.

Figure 4.44: Target density correction for the SHMS, for scattering angle 15 and E ′ = 2.0
GeV.

Figure 4.45: Target density correction for the SHMS, for scattering angle 25 and E ′ = 4.4
GeV.
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Figure 4.46: Target density correction for the HMS, for scattering angle 15 and E ′ = 2.0
GeV.

Figure 4.47: Target density correction for the HMS, for scattering angle 25 and E ′ = 4.4
GeV.

Broadly, this study suggests that for θ = 25, E ′ = 4.4GeV , target boiling as been

accounted for, as the carbon target does not see a strong dependence on the current.

However, it may be that the remaining kinematic setting requires more analysis.

4.6 Cross Section and F2 Extraction

In order to extract cross sections from the E12-10-002 experimental data we employ a

method called the Monte Carlo ratio method. First, we may express the electron yield as
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Y (E ′, θ) =
N e− −BG
εTotal

= L · σData · (∆E ′ ·∆Ω) · A(E ′, θ) (4.20)

where N e− is the number of measured electron events, BG are background events,

and εTotal is the total efficiency of the spectrometer. Further, L is the total luminosity,

σData is the cross section coming from experimental data, ∆E ′ and ∆Ω are the energy

and angle binning at which the yield is calculated, and A(E ′, θ) is the acceptance of the

spectrometer. This yield can be additionally calculated via a Monte Carlo simulation, as

Y MC(E ′, θ) = L · σModel · (∆E ′ ·∆Ω) · AMC(E ′, θ) (4.21)

where here, σModel is the cross section as given by a model using a fitting code

developed by E. Christy and Bosted. Likewise, the acceptance is modeled in the Monte

Carlo. Assuming the acceptance can be accurately modeled, we take the ratio of the two

yields.

Y (E ′, θ)

Y MC(E ′, θ)
=

L · σData · (∆E ′ ·∆Ω) · A(E ′, θ)

L · σModel · (∆E ′ ·∆Ω) · AMC(E ′, θ)
(4.22)

We solve for σData and find,

σData = σModel
Y (E ′, θ)

Y MC(E ′, θ)
(4.23)

Thus, the final data cross sections depend on modeled cross sections, measured yields,

and modeled yields.
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Figure 4.48: Data and Monte Carlo cross section comparison as a function of x for LH2
in the SHMS, for 21 degree scattering angle.

Figure 4.49: Data and Monte Carlo cross section comparison as a function of x for LD2
in the SHMS, for 21 degree scattering angle.
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Figure 4.50: Data and Monte Carlo cross section comparison as a function of x for LH2
in the HMS, for 21 degree scattering angle.

Figure 4.51: Data and Monte Carlo cross section comparison as a function of x for LD2
in the HMS, for 21 degree scattering angle.

The cross section is extract by using the fitting code from Christy and Bosted and the

esults are shown in figures 4.48 through 4.51PB08. This cross section is modeled by fitting

to precision empirical data on inclusive electron proton scattering data, in particular in

the resonance regions. In particular, their methodology involves fitting the transverse
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and longitudinal photo-absorption cross sections components discussed in section 2.2. T

reduced cross section can be written in terms of the transverse and longitudinal cross

section,

σR =
1

Γ

dσ

dΩdE ′
= σT (W 2, Q2) + εσL(W 2, Q2), (4.24)

where Γ is the flux of virtual photons and ε is relative flux of longitudinal photons.

The data sets used to produce this model are listed in table 4.3.

Data Set Q2
Min GeV

2 Q2
Max GeV

2 # Data Points

E94-110 0.18 5 1259

E00-116 3.6 7.5 256

E00-002 0.06 2.1 1346

SLAC DIS 0.6 9.5 296

Photoproduction (Old) 0 0 242

Photoproduction (DAPHNE) 0 0 57

Table 4.3: Data sets used to model cross sections.

When such fits were done in the past, they did not have sufficient data to constrain

both σT and σL, and therefore the determination of the ratio R = σL/σT was extrapolated.

With the addition of high precision data, it is now possible to fit and parameterize

σT (W 2, Q2) and σL(W 2, Q2) independently. The parameterization constitutes 75 free

parameters: 7 parameters are attributed to the resonance mass, 7 parameters are for the

resonance widths, 25 to describe the Q2 dependence on the transverse form factors, 18

parameters for the Q2 dependence on the longitudinal form factors, 10 and 7 parameters

to account for non-resonant contribution to σT and σL respectively, and 1 dampening

parameter for the delta resonance.

Of course, because we are attempting to model data from E12-10-002 that contains

nuclear resonances, it is important to model these resonances appropriately as well. This

relies on three properties about the cross sections. First, the cross section is the incoherent
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sum of two terms; σR which accounts for contributions from resonance production, and

σNR, which accounts for a non-resonant background. Second, the resonance production

contributions are described by relativistic Breit-Wigner forms that include Q2 dependent

amplitudes coming from each resonance. Finally, the non-resonant background depends

on W 2 smoothly. Thus, we can write,

σT,L(W 2, Q2) = σRT,L(W 2, Q2) + σNRT,L(W 2, Q2) (4.25)

and, the resonant contribution can be written in terms of Breit-Wigner forms as,

σRT,L(W 2, Q2) = W
7∑
i=1

BW i
T,L(W 2) · [AiT,L(Q2)]2 (4.26)

,

where,

BW i =
KiK

cm
i

KKcm
· Γtoti Γγi

Γi[(W 2 −M2
i )2 + (MiΓtoti )2]

(4.27)

with,

K =
W 2 −M2

p

2Mp

(4.28)

Kcm =
W 2 −M2

p

2W
(4.29)

ki = Kcm|Mi (4.30)

where K and Kcm are the energies of the photon in the lab and center of mass frame

respectively, and Ki and Kcm
i are the photon energies in the lab and center of mass frame

evaluated at the ith resonance. And the total decay width Γtoti is given by,

Γtoti =
3∑
j=1

βjiΓ
j
i (4.31)
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where βij is the branching ration of the ith resonance to the jth decay mode.

In order to perform the fit for the transverse and longitudinal cross sections, seven

resonant contributions were included, however, only the pion, double-pion, and eta decay

modes were considered, whose branching ratios are shown in table 4.4.

I State β1π β2π βη

1 P33(1232) 1.0 0.0 0.0

2 S11(1535) 0.45 0.10 0.45

3 D13(1520) 0.65 0.35 0.0

4 F15(1680) 0.65 0.35 0.0

5 S15(1650) 0.4 0.5 0.1

6 P11(1440) 0.65 0.35 0.0

7 l = 3 0.5 0.5 0.0

Table 4.4: Resonances and branching ratios included in the fit.

For the transverse cross section, these resonances were fit using the following form,

AiT (Q2) =
AiT (0)

(1 +Q2/0.91)ci
· (1 +

aiQ
2

1 + biQ2
) (4.32)

and for the longitudinal cross section, the fits were given by,

AiL(Q2) = AiL(0) · Q2

1 + diQ2
e−eQ

2

(4.33)

We note that these forms are chosen such that at large Q2, AiT (Q2) reduces to a dipole

form,

AiT (Q2) =
AiT (0)

(1 +Q2/0.91)ci
· ai
bi

(4.34)

and as Q2 approaches zero, the transverse resonance transition amplitude approaches

AiT (0). As mentioned previously, a non-resonant background also contributes to the total

cross section, and these contributions must be fit as well. For the transverse cross section,
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the non-resonant contribution is fit using,

σNRT = x′
2∑
i=1

σNR,iT (0)

Q2 + aTi [bTi + cTi Q
2 + dTi Q

4]
(∆W )i+

1
2 (4.35)

where,

x′ = (1 +
W 2 − (Mp +mπ)2

Q2 +Q2
0

)−1 (4.36)

and mπ is the pion mass, Q2
0 = 0.05 GeV 2 and ∆W = W −mπ. For the longitudinal

cross section, the non-resonant background is fit by,

σNRL =
1∑
i=1

σNRL (0)
(1− x′)[aLi t+ bLi ]

(1− x)

(Q2)c
L
i

(Q2 +Q2
0)(1+cLi )

· (x′)[dLi +eLi t] (4.37)

where t is a slowly varying function of Q2 given by,

t =
log(log( [(Q2)c

L
i ]

0.332
))

log( m0

0.332
)

(4.38)

and Q2 = 0.125 GeV 2, and m0 = 4.2802 GeV 2. The different data sets constrain the

fit in different regions. For the region 0.18 < Q2 < 4.5, the fit is mostly dominated by the

E94-110 experimental data shown in figure 4.52, with an associated systematic uncertainty

of less than 2%.
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Figure 4.52: Cross section data versus W 2 for the E94-110 data. Red curve is the fit
and black triangles are the data.

In the region 4.5 < Q2 < 7.5, the fit is constrained largely by the E00-116 data set,

where the statistical uncertainty dominates over the systematic uncertainty. Additionally,

the E00-002 data set was used to constrain the fit down to 0.05 GeV 2, while data from

DAPHNE was used to constrained the fit at Q2 = 0 GeV 2, shown in figure 4.53.
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Figure 4.53: Cross section data versus W 2 for the photoproduction data. Red curve is
the fit and black triangles are the data.

From this, one now has access to the modeled cross section. These cross sections can

now be used as input for a global PDF analysis.
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Chapter 5
Results and Discussion

5.1 CTEQ-JLab Global PDF Analysis

In Chapter 2, the motivation for a global PDF analysis was briefly discussed. Here we

give a more in-depth presentation. As previously mentioned, a global PDF analysis uses a

combination of perturbative QCD and world data in order to determine the Q2 and Bjorken

x dependence of the PDFs. Perturbative QCD, in particular the DGLAP equations give

us access to the Q2 dependence but it is not able to give us the functional dependence of

the PDFs on Bjorken x. Thus, before we can evolve the PDFs from some energy scale

Q2
0 to an arbitrary Q2, we must first map out the x dependence through fitting of the

data. Most fitting groups rely on DIS data, mainly from the HERA collider from e− − p

collisions, the Tevatron, and CERN but also including data from fixed-target experiments.

As one might imagine, properly fitting a set of data sets has its challenges. One must

carefully choose which data sets to include. For example, fixed-target experiments using

nuclear targets heavier than deuterium typically are not used due to the difficulty in

accounting for the fact that the nucleons are not free and constitute a bound state subject

to nuclear effects. It is also useful to consider what sorts of results a global PDF analysis

can offer us. Firstly, we gain access to parton distribution functions over a kinematic

range that is commensurate with the kinematic range of our data, and indeed, with

uncertainty bands that are commensurate with the data. Having just the knowledge about

properly constrained PDFs is enough to make scientific progress on a number of fronts. In

particular with regards to the relatively unconstrained PDFs of the down quark and the
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gluon. Specifically, as was discussed in section 2.4 and demonstrated in figures 2.7 and

2.7, the uncertainties for these PDFs grows as x increases.

We move now from the general motivation of a global PDF analysis to discuss the

specific PDF fit used in this analysis. We made use of the latest PDF sets from the

CTEQ-JLab collaboration, CJ15. CJ15 sought to fit, among other data sets, 6GeV era

JLab experimental data, many of which include cross section measurements on deuterium

at relatively low Q2 and W 2. This made CJ15 a natural candidate to explore the impact

of the E12-10-002 experiment to a global PDF analysis, given that E12-10-002 made

measurements at large x and which also venture into the resonance region where PDFs,

such as the down quark and gluon distributions remain relatively unconstrained. This

reflects the lack of precision data in this region, which E12-10-002 seeks to alleviate, at

least with regards to the down quark. The expected impact of the E12-10-002 data set

on the gluon uncertainty is expected to be minimal, considering CJ15 fits F2 rather than

cross sections directly, and whose constraint on the gluon comes only through DGLAP

evolution. Nonetheless, in section 5.2.1 we discuss the importance of reducing the gluon

uncertainty in relation to beyond standard model physics searches and connect this to the

impact that the Electron Ion collider (EIC) may provide for the future. We also explore

how reducing the uncertainty in the down quark can lead to greater constraints in d
u
at

large x, and how its behavior as x→ 1 can allow us to explore the spin-flavor dynamics

of the nucleons.

However, issues may arise when one includes data at relatively low Q2 and W 2. In

particular at low Q2, and when the kinematic cut on W 2 is relaxed, one begins to

approach the non-perturbative resonance region discussed in section 4.6. Here, nuclear

effects introduce subleading power corrections in 1
Q2 . These corrections include target

mass corrections and nuclear off-shell corrections, which will be discussed in the following

sectionAA10.

As previously mentioned, the choice of data sets used to produce a fit is of some

importance. For this reason, it is instructive to briefly discuss the data sets used in
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the CJ15 PDF fit. To begin, the large bulk of the data sets used to produce the CJ15

fit include vector boson, jet production, charged lepton, and W-asymmetry data from

the Tevatron, and DIS data from HERA, SLAC, CERN, and JLab. Each data set is

important in its own right, and each play roles in the analysis. For example, in the case

of constraining the down quark distribution, much of the data sets from the Tevatron, D0,

CDF, and W-asymmetries, have direct access to the down quark distribution. However,

this data is at high Q2 and W 2, and constitutes a relatively small data set. On the other

hand, the JLab BoNuS experiment took measurements on a nearly model independent

neutron, but its kinematic coverage is at low Q2 and W 2. And finally, the addition of the

6 GeV JLab DIS data could form a large data set and extends the kinematic coverage

from several experiments, but requires nuclear corrections.

The CJ15 fits include two additional data sets over its previous iteration CJ12. First

we discuss the W-boson asymmetry data from the Tevatron. The W-boson asymmetry

data sets are largely responsible for constraining the d/u-quark and down quark parton

distribution functions. This is due to the fact that the W± bosons are produced with an

asymmetry in pp̄ collisions. Because the proton has two up quarks, on average, the up

quarks carry more of the proton momentum than the down quarks. This means that W+

bosons tend to be produced in the direction of the proton while W− bosons are produced

in the direction of the anti-proton. This is the source of the W-asymmetry and studying

this asymmetry can be directly related to the up and down quark distributions in the

proton. Indeed, CJ15 explored the impact of this data set particularly on the down quark

and found that its uncertainties were significantly reduced at large xAA16. Further, the

charge asymmetry of the of the produced bosons can be written as,

AW (y) =
dσ(W+)/dy − dσ(W−)/dy

dσ(W+)/dy + dσ(W−)/dy
(5.1)

which can be expressed approximately as,
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AW (y) ≈ u(x1)d(x2)− d(x1)u(x2)

u(x1)d(x2)− d(x1)u(x2)
(5.2)

and this can be further reduced to,

R(x2)−R(x1)

R(x2) +R(x1)
(5.3)

where R(x) = d(x)/u(x)GD.

Another clear example that illustrates the interplay between the constraining power of

data sets is that of measurements taken on neutrons, such as in the BONuS experiment,

and measurements on deuterium. Measurements on nearly free neutrons are able to directly

access the down quark distribution of the neutron. And if the down quark distribution

can be precisely determined, the knowledge of this PDF can be used in conjunction with

deuterium data in order to constrain the off-shell correction δfN , discussed in section

5.1.2, for some given deuteron wave function.

However, data sets may overlap in their kinematic coverage and therefore it is possible

for them to disagree, causing tension in the fit. For that reason, it is useful to look at

the χ2 value of the data set; if two data sets disagree with each other, the χ2 of one will

change depending on whether the other is included in the fit or not. In this way, we are

able to explore the impact of including a new data set into the fit. Tables 5.1 and 5.2 show

the whole set of data used to produce the CJ15 fits with the addition of the E12-10-002

data labelled as "e12dhp015".
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Data Set χ2 signd resid npts χ2pts

e12dhp015 341.0 94.7 -331.4 550 0.62

jl00106F2p 162.8 -28.2 49.7 136 1.26

jl00106F2d 119.2 -13.8 261.7 136 0.91

HerF2pCut 45.3 -10.2 0.7 37 1.12

HerF2dCut 39.3 -9.9 35.7 37 0.97

slac_p 437.0 19.0 2.9 564 0.75

slac_d 406.8 -20.8 746.5 582 0.64

BcdF2pCor 440.4 2.9 30.5 351 1.26

BcdF2dCor 287.9 0.9 41.2 254 1.15

NmcF2pCor 404.1 -15.6 -17.6 275 1.48

NmcRatCor 171.4 -6.7 563.1 189 0.92

H2_NC_em 241.6 -1.8 3.7 159 1.52

H2_NC_ep_1 580.2 35.2 42.5 402 1.45

H2_NC_ep_2 94.5 -11.1 195.3 75 1.27

H2_NC_ep_3 248.4 27.6 11.4 259 0.96

H2_NC_ep_4 227.9 -4.3 18.4 209 1.09

H2_CC_em 46.5 2.4 -133.3 42 1.09

H2_CC_ep 50.4 -1.9 44.9 39 1.29

Table 5.1: Data sets included in the CJ15 plus E12-10-002 with 1.5% systematic, as well
as the total χ2, the signed χ2, the residual, the number of data points, and the χ2 over
number of data points.
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Data Set χ2 signd resid npts χ2pts

BNS_F2nd 213.2 -1.4 -17.1 191 1.11

e866pp06xf 138.5 -22.1 5.2 121 1.15

e866pd06xf 147.1 34.5 4.5 129 1.14

cdfLasy05 12.4 8.3 -13.2 11 1.13

d0Lasy_e15 29.2 -26.0 38.3 13 2.18

d0Lasy13 17.1 0.9 -62.7 10 1.72

CDF_Wasy 16.8 -15.4 128.5 13 1.34

D0_Wasy 12.8 12.7 -343.2 14 0.79

CDF_Z 28.6 3.4 9.9 28 1.00

D0_Z 16.0 1.6 -7.3 28 0.57

d0run2cone 20.1 3.4 14.2 110 0.18

CDFrun2jet 14.7 -6.0 18.0 72 0.21

d0_gamjet1 6.7 5.8 -41.9 16 0.42

d0_gamjet2 16.4 16.3 -89.2 16 1.02

d0_gamjet3 25.0 -20.1 75.7 12 2.09

d0_gamjet4 13.0 -4.6 29.1 12 1.07

Table 5.2: Continuation of data sets included in the CJ15 fit, as well as the total χ2, the
signed χ2, the residual, the number of data points, and the χ2 over number of data points.

Now that we have established the general motivation and method of a global PDF

analysis, as well as the specialization of the CTEQ-JLab collaboration to introduce large x

data sets subject to nuclear corrections, we will next discuss the choice of parameterization

for the parton distribution functions.

5.1.1 Parton Distribution Parameterization

The parameterization for CJ15 is a five parameter function of the form

xf(x,Q2
0) = a0x

a1(1− x)a2(1 + a3

√
x+ a4x) (5.4)
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that describes the valence quarks uv = u− ū and dv = d− d̄, the light sea quark ū+ d̄,

and the gluon g. An additional modification is made to the d-quark parameterization to

allow mixture with the u-quark. There are several reasons for this modification.

First, it allows for the phenomenological control of the ratio dv
uv
. Indeed, an SU(6)

spin-flavor symmetry treats u-quarks and d-quarks identically and one would expect

d
u
→ 1

2
. Of course, this SU(6) symmetry is not exact and is in fact broken. Unfortunately,

experimental data is currently lacking in order to properly characterize the behavior of this

ratio. However, there exist phenomenological models that attempt to answer the question.

If one considers the dominant spectator quark interaction to be gluon mediated, the

d-quark distribution is suppressed and d
u
→ 0 as x→ 1. If instead one considers a model

where the interaction is helicity-dependent, then d
u
→ 1

5
as x→ 1. Additionally, allowing a

mixture for the d-quark leads to a less restrictive, less biased parameterizationAA11. This

mixture is introduced in the form

dv → adv0 (
dv

adv0

+ bxcuv) (5.5)

where two additional parameters, b and c are introduced. Consequently, dv
uv
→ adv0 b as

x→ 1 as long as adv2 > auv2 . Due to an isopsin asymmetry in the sea quarks, the ratio d̄
ū
is

parameterized independently as

d̄

ū
= a0x

a1(1− x)a2 + a3x(1− x)a4 + 1 (5.6)

and this ensures d̄
ū
→ 1 as x → 1. Lastly, the s-quark PDF is assumed to be

proportional to the light sea quark distributions through the following relation, which

imposes flavor independence in the sea quarks

(s+ s̄) = κ(ū+ d̄), (5.7)

and where κ = 0.4 is taken in accordance with previous CTEQ-JLab studies. The case
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for a asymmetric s-quark distributions can be studied through neutrino-nucleus DIS data,

however, this involves processes that are not well known theoretically, such as energy loss

of the scattered charm quarks while travelling through the nucleus. For this reason, a

more detailed analysis of sea quark flavor independence is left for future studies.

5.1.2 Nuclear Corrections

Nuclear and off-shell corrections account for the difference between structure functions

for a free nucleon, such as in hydrogen, and bound nucleons in heavier nuclei. These

corrections were extensively studied by Kulagin and Petti, who employed a phenomeno-

logical method whereby corrections to the structure functions were parameterized. The

parameters were then fit and fixed using existing nuclear data. Additionally, sum rules

can be used to link off-shell correction effects in different kinematic regions. For example.

the baryon sum rule is used to link nuclear-shadowing and off-shell corrections. Indeed,

this analysis demonstrates that the off-shell corrections are responsible for the cancellation

of nuclear-shadowing effects to the valence quark PDFs. The most recent CTEQ-JLab

analysis has made improvements in the implementation of these corrections over previous

analyses. In previous procedures the corrections were applied to extracted structure

functions, but now nuclear corrections are implemented at the partonic level. Therefore

the corrections are applicable to any interaction involving quarks and gluons.

Nuclear Smearing and Off-shell Corrections

Parton distributions relating to the deuteron are typically treated using the impulse

approximation. The approximation is given by taking a convolution of the parton’s

distribution and the distribution of the nucleons fN
d

WM94. This is expressed as

qd(x,Q2) =

∫
dz

z
dp2fN

d
(z, p2)q̃N(

x

z
, p2, Q2) (5.8)

where z is the nucleon momentum fraction in the deuteron, z = Md

M
pq̇
pdq̇

and q̃N is
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the distribution of the parton in the off-shell deuteron. The variable p2 represents the

virtuality of the off-shellness of the nucleon. Due to the fact that off-shell effects in the

deuteron are small, one can expand the distribution around the on-shell distribution

q̃N(
x

z
, p2, Q2) = q̃N(

x

z
,Q2)

[
(1− p2 −M2

M2
δfN(x,Q2))

]
(5.9)

and where

δfN(x,Q2) =
∂fN(x, p2, Q2)

∂p2

∣∣∣
p2=M2

(5.10)

is the coefficient of the off-shell term. Inserting this into the convolution equation, we

get two terms, one on-shell and one off-shell

qd(on)(x,Q2) =

∫
dz

z
f (on)(z)qN(

x

z
,Q2) (5.11)

qd(off)(x,Q2) =

∫
dz

z
f (off)(z)δfN(

x

z
,Q2)qN(

x

z
,Q2) (5.12)

where f (on) and f (off) are referred to as the smearing functions and are the same for

protons and neutronsSK95. They are given by

f (on)(z) =

∫
dp2fN

d
(z, p2) (5.13)

f (off)(z) =

∫
dp2p

2 −M2

M2
fN
d

(z, p2) (5.14)

The smearing functions can be calculated under several models of the nucleon wave

function. These wave functions are produced through fits from nucleon-nucleon scattering

data. In particular, the CTEQ-JLab analysis makes use of AV18, CD-Bonn, WJC-

1, and WJC-2 wave functions, obtained by fitting around 3,000 data pointsRW95,Mac01.

However, to make full use of the previous result, one must first attempt to fully understand
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δfN(x,Q2), which encodes the off-shell nuclear corrections.

In an attempt to reduce model dependency, the CJ analysis makes use of a phe-

nomenological fit method by Kulagin and Petti. The off-shell nuclear corrections are

parameterized as

δfN = C(x− x0)(x− x1)(1 + x0 − 1) (5.15)

and, the form of the off-shell corrections is motivated by the fact that

∫ 1

0

dxδfN(x)[q(x)− ¯q(x)] = 0 (5.16)

which suggests that δf(x) has at least one zero. Additional pion nuclear corrections

suggest there are two zeroes, and so the the functional form of δf(x) is explicitly defined

with these featuresSK06.

5.2 F2 Structure Functions

Now that nuclear corrections have been addressed, we are ready to present the F2

structure functions extracted from the E12-10-002 experimental cross section data and

compare them to structure functions produced from the CJ15 fit with the additional

E12-10-002 data set. As mentioned previously, the F2 extraction from experimental data

is done with a separate code that uses the Rosenbluth separation technique combined

with fitting from experimental data.

It is noted that CJ15 provides the option to fit experimental data given as the ratio

of the deuterium and hydrogen structure functions FD2
F p2

, rather than fitting FD
2 and F p

2

separately. There are a few reasons to fit the PDFs from the ratio of the structure functions

rather than fitting the structure functions independently. Using FD2
F p2

as input to CJ15

may circumvent the several systematics that have yet to be fully accounted for in the

cross section data, particularly pion contamination and the charge symmetric background.
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And secondly, fitting the ratio of structure functions can help to avoid fitting biases. For

these reasons, we choose to provide FD2
F p2

as the quantity to fit. Finally we present the FD2
F p2

structure function ratio for all available SHMS kinematic settings. Figures 5.1 through

5.18 show a comparison between FD2
F p2 Data

and FD2
F p2 CJ15+E12

. That is, we are comparing

the initial experimental data, F
D
2

F p2 Data
, which is extracted independently from CJ15, and

comparing this to the theory calculation produced by CJ15 when the E12-10-002 data is

included.

Figure 5.1: FD2
F p

as a function of Bjorken
x, for E ′ = 2.7 GeV/c and θ = 21. Data
refers to FD2

F p2 Data
and theory refers to the

theory calculation of FD2
F p2 CJ15+E12

Figure 5.2: FD2
F p

as a function of Bjorken
x, for E ′ = 3.3 GeV/c and θ = 21. Data
refers to FD2

F p2 Data
and theory refers to the

theory calculation of FD2
F p2 CJ15+E12
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Figure 5.3: FD2
F p

as a function of Bjorken
x, for E ′ = 4.0 GeV/c and θ = 21. Data
refers to FD2

F p2 Data
and theory refers to the

theory calculation of FD2
F p2 CJ15+E12

Figure 5.4: FD2
F p

as a function of Bjorken
x, for E ′ = 5.1 GeV/c and θ = 21. Data
refers to FD2

F p2 Data
and theory refers to the

theory calculation of FD2
F p2 CJ15+E12

We begin by discussing figures 5.1 through 5.4, which constitute the lowest angle

setting at θ = 21. This angle setting ranges in x from about x = 0.22 to x = 0.76. Largely,

we see good agreement between FD2
F p2 Data

and FD2
F p2 CJ15+E12

with some discrepancy at the

highest E ′ value, E ′ = 5.1GeV/c. We don’t expect this discrepancy to be caused either

by the pion contamination background or the charge symmetric background. This is due

to the fact that at E ′, we expect the number of pions to be suppressed relative to the

number of electrons. Secondly, the charge symmetric background is expected to be largest

at high scattering angles and low scattering energies. Given the fact that for a given

scattering angle, the Bjorken x range is advanced with increasing E ′, we might expect

resonances to play a bigger role in this large x region.
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Figure 5.5: FD2
F p

as a function of Bjorken
x, for E ′ = 2.5 GeV/c and θ = 25. Data
refers to FD2

F p2 Data
and theory refers to the

theory calculation of FD2
F p2 CJ15+E12

Figure 5.6: FD2
F p

as a function of Bjorken
x, for E ′ = 3.0 GeV/c and θ = 25. Data
refers to FD2

F p2 Data
and theory refers to the

theory calculation of FD2
F p2 CJ15+E12

Figure 5.7: FD2
F p

as a function of Bjorken
x, for E ′ = 3.5 GeV/c and θ = 25. Data
refers to FD2

F p2 Data
and theory refers to the

theory calculation of FD2
F p2 CJ15+E12

Figure 5.8: FD2
F p

as a function of Bjorken
x, for E ′ = 4.4 GeV/c and θ = 25. Data
refers to FD2

F p2 Data
and theory refers to the

theory calculation of FD2
F p2 CJ15+E12
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Figures 5.5 through 5.8 show FD2
F p2 Data

and FD2
F p2 CJ15+E12

for θ = 25, and x extends from

about x = 0.28 to x = 0.8. Here, we see the general trend that as θ increases, the highest

E ′ scan larger values of x. The comparisons at this angle largely follow the observations

of the previous angle, θ = 21. Mostly, F
D
2

F p2 Data
and FD2

F p2 CJ15+E12
agree within uncertainties,

however, we do observe that the theory calculations tend to sit just above the data points

corresponding to FD2
F p2 Data

. A possible explanation for this may be related to a normalization

error present when this study was first carried out. Recent discussions with the JLab F2

group suggest that this normalization has been corrected in the most up-to-date cross

section data.

Figure 5.9: FD2
F p

as a function of Bjorken
x, for E ′ = 2.0 GeV/c and θ = 29. Data
refers to FD2

F p2 Data
and theory refers to the

theory calculation of FD2
F p2 CJ15+E12

Figure 5.10: FD2
F p

as a function of
Bjorken x, for E ′ = 2.4 GeV/c and
θ = 29. Data refers to FD2

F p2 Data
and the-

ory refers to the theory calculation of
FD2
F p2 CJ15+E12
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Figure 5.11: FD2
F p

as a function of
Bjorken x, for E ′ = 3.0 GeV/c and
θ = 29. Data refers to FD2

F p2 Data
and the-

ory refers to the theory calculation of
FD2
F p2 CJ15+E12

Figure 5.12: FD2
F p

as a function of
Bjorken x, for E ′ = 3.7 GeV/c and
θ = 29. Data refers to FD2

F p2 Data
and the-

ory refers to the theory calculation of
FD2
F p2 CJ15+E12

Figures 5.9 through 5.12 demonstrate the comparison between FD2
F p2 Data

and FD2
F p2 CJ15+E12

for θ = 29. We notice that perhaps with the exception of 5.11, the theory data points

no longer sit so far above FD2
F p2 Data

. As mentioned previously, the pion contamination and

charge symmetric background are generally expected to have a greater effect at lower

scattering energies E ′, and it appears that these contributions are beginning to grow.
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Figure 5.13: FD2
F p

as a function of
Bjorken x, for E ′ = 1.7 GeV/c and
θ = 33. Data refers to FD2

F p2 Data
and the-

ory refers to the theory calculation of
FD2
F p2 CJ15+E12

Figure 5.14: FD2
F p

as a function of
Bjorken x, for E ′ = 2.1 GeV/c and
θ = 33. Data refers to FD2

F p2 Data
and the-

ory refers to the theory calculation of
FD2
F p2 CJ15+E12

Figure 5.15: FD2
F p

as a function of
Bjorken x, for E ′ = 2.6 GeV/c and
θ = 33. Data refers to FD2

F p2 Data
and the-

ory refers to the theory calculation of
FD2
F p2 CJ15+E12

Figure 5.16: FD2
F p

as a function of
Bjorken x, for E ′ = 3.2 GeV/c and
θ = 33. Data refers to FD2

F p2 Data
and the-

ory refers to the theory calculation of
FD2
F p2 CJ15+E12
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Figures 5.13 through 5.16 show the comparison between data and theory at θ = 33.

Here, we note a reversal of the trend we were seeing before. Whereas at lower θ we

saw that FD2
F p2 Data

tended to be below FD2
F p2 CJ15+E12

, now we see at θ = 33 that it is above
FD2
F p2 CJ15+E12

. It is possible that this can be explained by the pion contamination and

charge symmetric background. As discussed previously, these backgrounds are expected

to make larger contributions at higher scattering angles θ, and we see that indeed FD2
F p2 Data

tends to overshoot FD2
F p2 CJ15+E12

. And as we will see, this effect continues up to the last

scattering angle.

Figure 5.17: FD2
F p

as a function of
Bjorken x, for E ′ = 2.0 GeV/c and
θ = 39. Data refers to FD2

F p2 Data
and the-

ory refers to the theory calculation of
FD2
F p2 CJ15+E12

Figure 5.18: FD2
F p

as a function of
Bjorken x, for E ′ = 2.5 GeV/c and
θ = 39. Data refers to FD2

F p2 Data
and the-

ory refers to the theory calculation of
FD2
F p2 CJ15+E12

For the last scattering angle θ = 39, we see notice a continuation and worsening of

the discrepancy between FD2
F p2 Data

and FD2
F p2 CJ15+E12

. Indeed, for 5.17, the discrepancy even

extends outside of the uncertainties at low x. As previously stated, this is likely caused

by the pion contamination and charge symmetric backgrounds that are most prominent

at low E ′ and high θ. Indeed, we notice in 5.18 that as we go higher in E ′, the agreement

improves relatively, but the discrepancy is still apparent.
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To conclude, we find that on the whole, F
D
2

F p2 Data
and FD2

F p2 CJ15+E12
largely agree for most

kinematic settings. And even those which suffer most from systematic backgrounds tend

to agree with FD2
F p2 CJ15+E12

within uncertainties. And finally, we emphasize again that

it was the ratio FD2
F p2

that was used as an input to the CJ fit, rather than the separate

structure functions. It is reiterated that this was done in part to try to mitigate the effects

of the systematic background that appears in the previous figures. And to verify that

this was the case, FD
2 and F p

2 were added into the CJ fit as separate inputs and it was

observed that the discrepancy was far higher – the χ2 value was about was about 3.31

and 2.43 for FD
2 and F p

2 respectively. This is in comparison to the χ2 value of 0.75 when
FD2
F p2

was used as the input.

5.2.1 Importance of Gluon Uncertainties

With the confirmation that FD2
F p2 Data

is in well agreement with the CJ calculation, we

are ready to proceed with the fit and produce a new set of PDFs. However, before we

do this, it will be useful to briefly discuss a very general but important application of

global PDF analyses with data in the large-x region. This will help give context to the

content presented in the following section, and will help us interpret their results. In

particular, we discuss the role of PDFs and specifically the gluon distribution in beyond

the standard model (BSM) physics. The importance of gluon uncertainties in BSM

physics search can be succinctly summarized by the consideration that for these studies,

QCD constitutes a background. Generally, it is absolutely necessary for any experiment

to have a good determination of its backgrounds, lest its result be lost in them. The

difficulty in this case is that QCD, with all of its unresolved uncertainties, must be better

understood than the new physics for which one is searching. Large gluon uncertainties, in

particular at large x, often plague many high energy cross sections attempting to study

BSM physics. At the moment, gluon uncertainties in many global PDF analyses are mostly

indirectly constrained by momentum sum rules. That is to say, the total momentum of

122



the partons in a nucleon must remain constant. DIS data may also constrain the gluon

uncertainty indirectly through the study of scaling violations, and directly from inclusive

jet production. However, this has not been sufficient to reduce the gluon uncertainty. It

is one of the stated goals of the E12-10-002 experiment to help remedy this problem by

contributing experimental data at large x to directly constrain the gluon distribution.

Indeed, at the LHC top quark production cross sections suffer from three main sources

of uncertainties; proton gluon uncertainties, the value of strong coupling αs, and the value

of the top quark mass mt.

Figure 5.19: Relative contribution of branching ratios at different LHC energies

Figure 5.19 demonstrates that gluon-gluon scattering dominates with increasing energy,

exactly where BSM physics could be foundMC13. Indeed, many BSM predictions are gluon-

initiated interactions, and therefore, any final states produced through gluon scattering

will benefit from a decrease in gluon uncertainties.

In particular, as briefly mentioned, studying tt̄ production is in fact intimately con-

nected to a lot of BSM physics. This is due to the fact that the mass of the top quark is

close to the mass scale of electroweak symmetry breaking, and thus, is strongly coupled

to the Higgs boson. Indeed, BSM models have been proposed to explain the mechanism

by which the Higgs mass is stabilized; the presence of the top quark radiative corrections

contributes negatively to the Higgs mass, and therefore, an explanation is required for why

the Higgs has the mass that is observed. Such mechanisms also require the existence of

supersymmetric scalar particles. Additionally, BSM models predict graviton Kaluza-Klein

resonances that couple strong to the third generation quarks, and in particular, the top

quarkRF09.
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5.2.2 Parton Distribution Functions

It is re-iterated that the final systematic uncertainty of the E12-10-002 experimental

data sets have yet to be finalized as of the writing of this thesis. For this reason, we

present the data set with three estimated systematic uncertainties; .75%, 1.5%, and 2%.

Through talks and discussion with the F2 group at JLab, the final systematic uncertainty

is expected to be below 1%, but here we present more conservative estimates. In the

following plots, we compare a ratio of the "CJ15_e12_ratio" and CJ15 fits, where the

"CJ15_e12_ratio" data have three different systematic uncertainties included. Thus, the

red line in the plot corresponds to the ratio between "CJ15" and itself, and so the line is

equal to one across x. The uncertainty bands correspond to the relative uncertainty of

the fits.

Finally, before the PDFs are presented, it is useful to have in mind the kinematic

coverage of the E12-10-002 data set. We see in figure 5.20, that E12-10-002 covers and x

range from about x = 0.2 to about x = 0.85. This will help us interpret the results of the

fit and allow us to cross-reference where any improvements are made with where in x the

data applies.

Figure 5.20: Kinematics plot of data measured for the Hydrogen target. The color scale
indicates the relative uncertainty of the data point.
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Figure 5.21: Parton distribution function ratios for d-quark over u-quark ratio as a
function of x.

Figure 5.21 shows the ratio of the central values φ
φref

, where φ refers to the PDF fit of

d
u
and φref refers to the reference PDF of d

u
, which is the fit produced by the standard

CJ15 fit. As we can see, the addition of the E12-10-002 data appears to soften d
u
at large

x, but still agrees with the CJ15 reference fit within uncertainty bands. We also note the

impact of E12-10-002 is not heavily dependent on the systematic uncertainty added to the

data set. As discussed previously, behavior of d
u
as x→ 1 is of some interest regarding a

study of the spin-flavor dynamics in nucleons, and we note the effect of E12-10-002 to

reduce this ratio at large x by about 10% compared with the CJ15 fit.
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Figure 5.22: Parton distribution function uncertainty for d-quark over u-quark ratio as
a function of x.

Figure 5.22 shows the relative uncertainty δφ
φ

for the different PDF fits of d
u
. In fact, we

are primarily interested in the uncertainty plots, as studying these will help us determine

whether or not the E12-10-002 has a positive impact in reducing the uncertainties of

the PDFs. Here, we note that unfortunately, E12-10-002 does not appear to make any

significant impact at large x. In fact, it appears to make the uncertainties larger at the

highest x of about x = 0.9. We will see this can be attributed to an increased uncertainty

in the down quark in the following figures.
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Figure 5.23: Parton distribution function ratios for the d-quark as a function of x.

Figure 5.23 again shows the central value ratio of φ
φref

, but this time for the down

quark distribution. We notice that this figure is qualitatively similar as the one for d
u
. This

is largely expected, as the up quark distribution is relatively well constrained compared

to the down quark, and therefore E12-10-002 is not expect to make a significant impact

for the up quark. Thus, the behavior of d
u
follows closely from the behavior of the down

quark.
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Figure 5.24: Parton distribution function uncertainty for the d-quark ratio as a function
of x.

Figure 5.24 shows the relative uncertainty δφ
φ

for the down quark distribution. As

before, the qualitative behavior of the down quark largely determines the behavior of d
u
,

and previous observations apply. The origin of discrepancy seen at about x = 0.9 is still

not entirely clear, but cross referencing with the kinematic coverage of E12-10-002 shown

in figure 5.20, we notice this discrepancy is just outside of the range where E12-10-002

covers. We are left to conclude that the aforementioned systematics may be playing some

role in the discrepancy, but their position in x suggests another explanation.
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Figure 5.25: Parton distribution function ratios for the u-quark as a function of x.

Figure 5.25 shows φ
φref

for the up quark distribution. As previously discussed, E12-10-

002 was not expected to provide significant constraining power on the up quark. We do

notice the inclusion of E12-10-002 induces a reduction in the distribution at low x and an

increase at large x, but these changes are well within uncertainty bands and amount to

only a few percent difference in the central value.
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Figure 5.26: Parton distribution function uncertainty for the u-quark as a function of x.

Figure 5.26 plots the relative uncertainty δφ
φ

for the up quark distribution. Here, we

are not surprised by the relatively low impact of E12-10-002.
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Figure 5.27: Parton distribution function ratios for the gluon as a function of x.

Finally, figure 5.27 corresponds to the ratio of the central value, φ
φref

, for the gluon.

We see some variation in the central value but it is all within uncertainties.
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Figure 5.28: Parton distribution function uncertainty for the gluon as a function of x.

Figure 5.28 shows the relative uncertainty δφ
φ

for the gluon. Here, we also expect

minimal impact from E12-10-002 on constraining the gluon. This is due to the fact that

we are fitting the structure functions F2 rather than the cross sections, which contains

the full nuclear information about the nucleons. Thus, the constraint on the gluon from

E12-10-002 comes only from DGLAP evolution. However, because we have fit the ratio

of structure functions FD2
F p2

it is largely expect that the QCD evolution effects will cancel

between the numerator and denominator. We do note the inclusion of the E12-10-002

data appears to increase the uncertainty in the gluon around x = 0.6. In light of the

explanation for why E12-10-002 is not expect to impact the gluon uncertainty, one possible

explanation could be that there is some tension between E12-10-002 and one or more data

sets with regards to the gluon.

We finish by concluding that the impact of the E12-10-002 data set on the up quark,

down quark, and gluon distribution is minimal. However, as will be explored in the

following section, there is an argument to be made about considering E12-10-002 as one
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of many JLab experiments that, when taken as a whole, may provide the impact we are

seeking.

5.2.3 JLab 6 GeV + 12 GeV

While we have presented only the impact of the 12 GeV E12-10-002 data on CJ15,

it is perhaps better to speak about the inclusion of this data in the greater context of

previous JLab experimental data from the 6 GeV era. Indeed, there are five additional 6

GeV data sets that have yet to be included into the CJ15 fit.

Figure 5.29: Bjorken x and Q2 coverage of additional JLab 6 GeV data sets. The
W 2 = 3 GeV line delineates the data points included in the CJ15 kinematic cuts; only
points to the left of the W 2 line are fit.

The jlcee96, e94110, e06009, e00116, and e03103 data sets constitute previously unused

data sets in the context of global PDF fitting and their combined kinematic coverage is

shown in figure 5.29. In order to assess the impact of including the JLab data into CJ15,

we plot the relative uncertainty of the two fits. It is also noted that the fits are plotted in

the x range for which the data has applicability; that is, from 0.2− 0.8 in x.
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Figure 5.30: Plot of relative gluon uncertainty comparing CJ15 with CJ15 plus the 6
GeV data sets and the 12 GeV E12-10-002 data set.

We see in figure 5.30 that the inclusion of the 6 GeV data sets along with E12-10-002

can help to reduce the systematic uncertainty in the gluon, particularly in the region

x = 0.6 to x = 0.8, by almost 20%. Additionally, it was found in a separate analysis by

the CTEQ-JLab collaboration at JLab, that the inclusion of the 6 and 12 GeV data sets

significantly reduce the uncertainties of the off-shell parameters discussed in section 5.1.2.

A tighter constraint on the off-shell parameters leads directly to a better constraint on

d
u
. Indeed, the large x behavior of d

u
is of great theoretical importance and reducing its

uncertainty can help to exclude several models that make predictions about its asymptotic

value. At large x, one may approximate F p
2 and F n

2 as,

F p
2 ≈

4

9
u+

1

9
d (5.17)

F n
2 ≈

4

9
d+

1

9
u (5.18)
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so solving for d
u
, we find

d

u
≈

4− Fn2
F p2

4
Fn2
F p2
− 1

(5.19)

For example, assuming an SU(6) symmetry, as x→ 1, one has u(x) = 2d(x). Thus,

SU(6) :
d

u
→ 1

2
(5.20)

A different model assumes a scalar diquark dominance at high-x. Since only u-quarks

couple to scalar diquarks,

F n
2

F p
2

→ 1

4
(5.21)

and thus,

Diquark :
d

u
→ 0 (5.22)

Yet another model predicts that hard gluon exchange dominates the large-x behavior

of d
u
. Here,

F n
2

F p
2

→ 3

7
(5.23)

and so,

Hard Gluon Exchange :
d

u
→ 1

5
(5.24)

The current CJ15 fit puts this ratio below these predictions, at about 0.09, and the

addition of the JLab data sets brings it down a little more, as shown as shown in figures

5.31 and 5.32. However, this is still in agreement with the previous CJ15 value within

uncertainty bands.
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Figure 5.31: Parton distribution function for d
u
for CJ15 and CJ15 plus the 6 GeV JLab

data sets and the 12 GeV E12-10-002 data set with 1.5% systematic uncertainty.

Figure 5.32: Inset of the d
u
parton distribution function to better illustrate the large x

behavior.
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In addition to the E12-10-002 data, we may also make use of preliminary results from

another 12 GeV JLab experiment called MARATHON. The MARATHON experiment ran

concurrently with E12-10-002 in Hall A. It sought to take measurements on tritium and

helium-3 targets. The choice of such targets relies on the clever observation that a ratio

of these measurements can be made in such a way to cancel out the nuclear effects that

often plague measurements on the neutron. Indeed, tritium is composed of 2 neutrons

and 1 proton, while helium-3 is composed of 1 neutron and 2 protons. Thus, we can form

the ratio,

R3H =
F 3H

2

2F n
2 + F p

2

(5.25)

and

R3He =
F 3He

2

F n
2 + 2F p

2

(5.26)

Further, if we define the so-called super-ratio as,

R∗ =
R3He

R3H

(5.27)

we may express F n
2 /F

p
2 as

F n
2

F p
2

=
2R∗ − F 3He

2 /F 3H
2

2(F 3He
2 /F 3H

2 )−R∗
(5.28)

Thus, by measuring F 3He
2 /F 3H

2 one has direct access to F n
2 /F

p
2 with relatively small

nuclear effects. Indeed, referencing figure 5.33, we can see how independently the spectral

functions of tritium and helium-3 have an imprint of large nuclear effects, while the

super-ratio is relatively flat across a large range of Bjorken x.
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Figure 5.33: Spectral functions as a function of Bjorken x. Image: Tung Su

Preliminary results for F n
2 /F

p
2 are presented in figure 5.34.

Figure 5.34: F n
2 /F

p
2 as a function of Bjorken x

These results can further be compared to the previous seminal measurements of F n
2 /F

p
2

from SLAC and the accompanying fit by Bodek et al in figure 5.35.
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Figure 5.35: Comparison of F n
2 /F

p
2 against SLAC analysis as a function of Bjorken x,

as well as BoNuS data.

Finally, while a direct comparison between the limit behavior of d
u
between E12-10-002

and MARATHON is not yet available, we are given a hint at their agreement by the

comparison of σD/σH . In figure 5.36 we see that E12-10-002 and MARATHON largely

agree. We also note that there is a discrepancy in the E12-10-002 39 degree data. This

is due to the fact that the charge symmetric background is particularly large at this

kinematic setting and has yet to be subtracted.
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Figure 5.36: Ratio of σD/σH as a function of Bjorken x for E12-10-002 and MARATHON
data.

5.2.4 A Future Perspective and the EIC

The Electron Ion Collider (EIC) represents the next generation of high-energy, high-

luminosity, polarized collider in the world. Brookhaven National Laboratory was recently

chosen as the location of the new EIC, where the infrastructure of RHIC will serve as the

backbone to the EIC. A preliminary design of the EIC is shown in figure 5.37.
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Figure 5.37: Preliminary design of the EIC at Brookhaven

Among other topics, the EIC seeks to answer fundamental questions about the spin of

the proton; both its origin and how it is connected to the spin-1
2
quarks and the spin-1

gluons. To this end, the EIC is proposed to make precision measurements of the g1

polarized structure function as proposed in figure 5.38.
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Figure 5.38: Simulated EIC data of the g1 polarized structure function for different
electron and proton beam energies respectively. Uncertainty bands correspond to a
separate analysisFlo08

For this reason, the design goals of the EIC require it to achieve polarized beams of up

to 70% polarization. In addition to a polarized electron beam, the EIC is will also make

use of polarized proton, deuteron, and helium beams. Further, the EIC will address a

wide range of phenomenon that operate at different energy scales. On one hand, the EIC

will attempt to study nuclear matter at extremely high densities; possibly where gluonic

matter saturates. On the other hand, it will also study the origin of sea quarks and gluons

in the nucleons at low Q2 – one may naively assume that only valence quarks matter in
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this regime, however, experimental data suggests that even at low resolution sea quarks

are an important part of the puzzle that is hadronic matter. In order to address these

and other questions, the EIC will be capable of accessing a large center-of-mass energy

range, from 20− 100 GeV , with the capability to reach 140 GeV .

Figure 5.39 demonstrates how the kinematic coverage of the EIC will allow for a

wider and more comprehensive study of nuclear matter. Indeed, the coverage of the EIC

spans across a large range of Q2; this allows for a direct study of model-independent Q2

evolution. It’s coverage in x is also unprecedented, allowing for simultaneous studies of

valance and low-x physics.

Figure 5.39: Kinematic coverage in x and Q2 for various polarized DIS data.

Of course, it is not sufficient to only access these energy regimes, it is important

that the measurements be precise. Thus, the EIC is proposed to reach a luminosity of

1033−34cm−2s−1 as shown in figure 5.40.
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Figure 5.40: Luminosity and center-of-mass energies of the EIC as well as past experi-
ments and proposed facilities.

The EIC is poised to address some of the most fundamental questions about nuclear

physics that still remain today. For example, it is still not completely understood how

the spin of the proton is related to the polarization and orbital angular momentum of

its partons. It has been shown that the net polarization associated with quarks and

anti-quarks can only account for about 30% of the spin of the protonHag10. Further, lattice

QCD calculations have suggested that the remaining 70% can not be attributed to the

orbital angular momentum of the quarks. In addition, results from RHIC suggest that

gluon polarization may play a large role instead. The EIC has the chance to weigh in on

this fundamental question, and simulated EIC data suggests it can lay the groundwork

towards a definitive answer. Figure 5.41 demonstrates how the uncertainties in the net
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gluon polarization, ∆g, is reduced by the inclusion of simulated EIC data, in particular,

at low-x.

Figure 5.41: Impact of EIC data on net parton polarization, and in particular, ∆g, on
top of a DSSV analysisFlo08

In addition, a global PDF fitting program has the potential to make significant

contributions to future EIC results. In order to explore what these contributions may be,

we may apply the same global PDF fitting techniques to simulated unpolarized EIC data.

First, we present the kinematic coverage of a simulated data set for the EIC in figure 5.42.
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Figure 5.42: Kinematic coverage of simulated EIC data. The y-axis is in log-scale
to better visualize the data. The plotted line denotes the W 2 = 3 GeV 2 lower-bound
kinematic cut in CJ15; only data above the line is fit. The color scale indicates the
statistical uncertainty.

As before, we plot the relative uncertainties to get a better sense of the impact of

EIC pseudo data; only the statistical uncertainty is included. But first, the procedure for

producing the pseudo data will be briefly explained.

The pseudo data in its raw form is given as the number of expected physics events

binned in Bjorken x. The statistical uncertainty is given simply by 1√
N
, where N is

the number of events. Then, the CJ code is used to calculate the relevant quantities of

interest. In this case, we calculate the F2 structure function from proton as well as neutron

interactions, F p
2 and F n

2 . Finally, these quantities are assigned a statistical uncertainty

given by 1√
N
. We note that when including pseudo data into a global PDF fit, the most

important quantity becomes the uncertainty associated with the structure function, rather

than the central value of the structure function itself. For this reason, it is permissible

to use a CJ calculation of F p
2 and F n

2 , as we are attempting to explore the affect of an

ideal measurement with realistic experimental uncertainties. It is worth noting that the

EIC is in a position to implement neutron tagging. In particular, the possible extraction

of F n
2 will make significant impact to the uncertainty reduction in the d

u
and d parton

distribution functions. This is due to the fact that there is a lack of F n
2 measurements
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historically, given the difficulty in designing an experiment with this kind of capability.

Figure 5.43: Plot of relative d
u
uncertainty comparing CJ15 with CJ15 plus the simulated

EIC F p
2 and F n

2 data. One data set was generated with a 10 GeV electron on a 100 GeV
proton; the other was generated with a 18 GeV electron on a 275 GeV proton.
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Figure 5.44: Plot of relative d-quark uncertainty comparing CJ15 with CJ15 plus the
simulated EIC F p

2 and F n
2 data. One data set was generated with a 10 GeV electron on a

100 GeV proton; the other was generated with a 18 GeV electron on a 275 GeV proton.

Figure 5.45: Plot of relative u-quark uncertainty comparing CJ15 with CJ15 plus the
simulated F p

2 and F n
2 EIC data. One data set was generated with a 10 GeV electron on a

100 GeV proton; the other was generated with a 18 GeV electron on a 275 GeV proton.
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Figure 5.46: Plot of relative gluon uncertainty comparing CJ15 with CJ15 plus the
simulated EIC F p

2 and F n
2 data. One data set was generated with a 10 GeV electron on a

100 GeV proton; the other was generated with a 18 GeV electron on a 275 GeV proton.

From figure 5.42, we can see that most of the pseudo data is at low Bjorken x. This is

reflected in the relative ratio plots, figures 5.43 through 5.45, where the biggest impact

in the uncertainty reduction is at low x. Indeed, this analysis suggests that the EIC

may provide near 90% uncertainty reduction at low x for d
u
, d, and u parton distribution

function, while the gluon uncertainty is reduced by about 70% across a broad range in x.

5.2.5 Discussion

There remains much more analysis to be done in order to confidently present a full

result of the E12-10-002 data set. As was evident in the presentation of the F2 structure

function figures, the data at low E
′ and high θ demonstrated a visible discrepancy between

the CJ15 theoretical predictions. As mentioned, this is largely due to the presence of the

charge symmetric background in the data. Further, the results presented are derived only

from the SHMS spectrometer. The analysis for HMS lagged behind and was not suitable
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for a global PDF study. However, despite the preliminary nature of these results, one may

still draw some conclusions about the impact of E12-10-002. In particular, the CJ15 global

PDF analysis demonstrated that by itself, E12-10-002 unfortunately does not significantly

reduce the uncertainties in the down quark or the gluon – two parton distributions that

remain relatively unconstrained at large Bjorken x. However, it was emphasized that the

E12-10-002 experiment represents only one in many experiments at JLab with the express

goal of populating the large x kinematic range with precision measurements. Indeed, even

the spirit of a global PDF analysis depends on the appropriate inclusion of a wide variety

of data sets, each with their own kinematic coverage and parton constraints. To this end,

the formerly excluded 6 GeV JLab experiments together with E12-10-002 show about

an 8% reduction in the gluon uncertainty in the Bjorken x range spanning x = 0.5 to

x = 0.8. Further, together with MARATHON, we are provided with a foothold towards

the resolution of the limit behavior of d
u
. Here, MARATHON is in position to make a more

definitive statement, while E12-10-002 may serve as a possible cross-check via a global

PDF analysis. Nevertheless, preliminary results of σD/σH confirm that MARATHON and

E12-10-002 are in relative agreement. This result bodes well for the promise of unraveling

the spin-flavor dynamics of the nucleons that the d
u
PDF provides. Finally, we conclude

with a look towards the future, in the already approved EIC/eRHIC at Brookhaven.

This facility will greatly extend both the scope of the fundamental questions one can ask

about nuclear matter as well as the precision of the answers it can provide. Questions

about the origin of the proton’s spin, its mass, and the interface between partonic and

hadronic degrees of freedom are all on the table. But not only will the EIC be able to

elucidate questions that have remained since the beginning of the field of nuclear physics,

its precision will also facilitate a possible next step in the standard model. Indeed, the

gluon represents a large stumbling block for many BSM models, and the EIC is a facility

largely dedicated to solving this mystery. The potential for the EIC to provide insight

into the most simple and fundamental questions about nuclear matter is unprecedented,

but it should not be forgotten that this hope for the future is owed to every result, big or
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small, that came before it.
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Appendix A
Appendix

We present the raw cross section data accumulated for the E12-10-002 experiment. As

mentioned previously, the complete systematic uncertainty has yet to be determined for

the data sets, therefore, only the statistical uncertainty is shown.

x Q2 σD
σH

E (GeV) Stat E’ θ

0.219809 3.38283 0.874257 10.602 0.021828 2.40196 21

0.22296 3.42021 0.871757 10.602 0.022025 2.4285 21

0.226131 3.45759 0.854983 10.602 0.021179 2.45505 21

0.229322 3.49496 0.864641 10.602 0.021892 2.48158 21

0.232535 3.53234 0.874314 10.602 0.022188 2.50812 21

0.235769 3.56972 0.890579 10.602 0.02272 2.53466 21

0.239024 3.6071 0.871888 10.602 0.022284 2.5612 21

0.242301 3.64448 0.839148 10.602 0.021682 2.58775 21

0.245599 3.68186 0.867214 10.602 0.02251 2.61429 21

0.24892 3.71924 0.88162 10.602 0.023002 2.64083 21
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0.252262 3.75662 0.865612 10.602 0.022827 2.66737 21

0.255628 3.794 0.850802 10.602 0.022629 2.69391 21

0.259015 3.83138 0.889282 10.602 0.023704 2.72045 21

0.262426 3.86876 0.863715 10.602 0.023318 2.747 21

0.26586 3.90614 0.833849 10.602 0.02285 2.77354 21

0.269317 3.94352 0.874197 10.602 0.023987 2.80008 21

0.272798 3.9809 0.85345 10.602 0.023707 2.82662 21

0.276302 4.01827 0.882069 10.602 0.024649 2.85315 21

0.279831 4.05565 0.845516 10.602 0.024157 2.8797 21

0.283384 4.09303 0.844051 10.602 0.024455 2.90624 21

0.286962 4.13041 0.837209 10.602 0.024486 2.93278 21

0.290564 4.16779 0.845081 10.602 0.025256 2.95932 21

0.294192 4.20517 0.843881 10.602 0.025277 2.98586 21

0.297845 4.24255 0.852376 10.602 0.025767 3.0124 21

0.301524 4.27993 0.828384 10.602 0.025434 3.03894 21

0.305228 4.31731 0.839305 10.602 0.025929 3.06549 21

0.308959 4.35469 0.826714 10.602 0.02583 3.09203 21

0.312716 4.39207 0.799069 10.602 0.025605 3.11857 21
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0.3165 4.42945 0.827172 10.602 0.02674 3.14511 21

0.320311 4.46683 0.807159 10.602 0.026252 3.17165 21

0.324149 4.50421 0.814795 10.602 0.026657 3.19819 21

0.328015 4.54158 0.796297 10.602 0.026316 3.22473 21

0.328015 4.54158 0.796297 10.602 0.026316 3.22473 21

0.287361 4.13457 0.862299 10.602 0.019944 2.93573 21

0.291771 4.18025 0.852055 10.602 0.019992 2.96817 21

0.296218 4.22594 0.855054 10.602 0.01968 3.00061 21

0.300704 4.27162 0.857097 10.602 0.020263 3.03304 21

0.305228 4.31731 0.844569 10.602 0.020006 3.06549 21

0.309792 4.36299 0.851543 10.602 0.020119 3.09792 21

0.314394 4.40868 0.851056 10.602 0.020369 3.13036 21

0.319038 4.45437 0.845617 10.602 0.020171 3.1628 21

0.323721 4.50005 0.84542 10.602 0.02029 3.19524 21

0.328446 4.54574 0.838465 10.602 0.020124 3.22768 21

0.333213 4.59142 0.829997 10.602 0.02019 3.26012 21

0.338022 4.63711 0.830653 10.602 0.020309 3.29256 21

0.342874 4.6828 0.828466 10.602 0.020343 3.325 21
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0.347769 4.72848 0.816438 10.602 0.020293 3.35744 21

0.352709 4.77417 0.833913 10.602 0.020901 3.38988 21

0.357693 4.81985 0.823808 10.602 0.020769 3.42231 21

0.362722 4.86554 0.825414 10.602 0.020973 3.45475 21

0.367797 4.91122 0.800389 10.602 0.020486 3.48719 21

0.372919 4.95691 0.828443 10.602 0.02162 3.51963 21

0.378088 5.0026 0.808835 10.602 0.02149 3.55207 21

0.383304 5.04828 0.812893 10.602 0.021719 3.58451 21

0.388569 5.09397 0.800797 10.602 0.021877 3.61695 21

0.393884 5.13965 0.809747 10.602 0.022411 3.64938 21

0.399247 5.18534 0.814099 10.602 0.022588 3.68183 21

0.404662 5.23103 0.800302 10.602 0.02252 3.71427 21

0.410128 5.27671 0.799336 10.602 0.022438 3.7467 21

0.415645 5.3224 0.790673 10.602 0.022364 3.77915 21

0.421216 5.36808 0.781143 10.602 0.022831 3.81158 21

0.42684 5.41377 0.794574 10.602 0.023323 3.84402 21

0.432518 5.45945 0.77954 10.602 0.023074 3.87646 21

0.438251 5.50514 0.767762 10.602 0.023001 3.9089 21
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0.44404 5.55083 0.789154 10.602 0.023765 3.94134 21

0.44404 5.55083 0.789154 10.602 0.023765 3.94134 21

0.379112 5.01159 0.80443 10.602 0.018061 3.55846 21

0.385452 5.06697 0.806454 10.602 0.018265 3.59778 21

0.391865 5.12235 0.80356 10.602 0.0178 3.6371 21

0.39835 5.17773 0.802926 10.602 0.018281 3.67642 21

0.404909 5.2331 0.791933 10.602 0.018176 3.71574 21

0.411544 5.28848 0.785941 10.602 0.017833 3.75506 21

0.418255 5.34386 0.797177 10.602 0.018384 3.79438 21

0.425044 5.39923 0.790761 10.602 0.018231 3.8337 21

0.431913 5.45461 0.792237 10.602 0.018308 3.87302 21

0.438862 5.50999 0.78757 10.602 0.018228 3.91234 21

0.445894 5.56536 0.775279 10.602 0.018193 3.95166 21

0.453009 5.62074 0.779656 10.602 0.018333 3.99098 21

0.460209 5.67612 0.783822 10.602 0.018596 4.0303 21

0.467496 5.73149 0.778725 10.602 0.018606 4.06962 21

0.474872 5.78687 0.781294 10.602 0.018761 4.10894 21

0.482337 5.84225 0.782737 10.602 0.018922 4.14826 21
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0.489893 5.89762 0.765015 10.602 0.018686 4.18758 21

0.497543 5.953 0.756943 10.602 0.018604 4.2269 21

0.505288 6.00838 0.756048 10.602 0.018955 4.26622 21

0.51313 6.06375 0.765407 10.602 0.019526 4.30554 21

0.52107 6.11913 0.760806 10.602 0.019603 4.34486 21

0.52911 6.17451 0.747579 10.602 0.019654 4.38418 21

0.537253 6.22988 0.747962 10.602 0.01993 4.4235 21

0.5455 6.28526 0.755581 10.602 0.0202 4.46282 21

0.553854 6.34064 0.727275 10.602 0.019782 4.50214 21

0.562315 6.39601 0.742011 10.602 0.020182 4.54146 21

0.570888 6.45139 0.757501 10.602 0.020918 4.58078 21

0.579573 6.50677 0.741167 10.602 0.021059 4.6201 21

0.588373 6.56214 0.756017 10.602 0.021636 4.65942 21

0.59729 6.61752 0.736504 10.602 0.02128 4.69874 21

0.606327 6.6729 0.72741 10.602 0.021446 4.73806 21

0.615486 6.72827 0.742859 10.602 0.022183 4.77738 21

0.615486 6.72827 0.742859 10.602 0.022183 4.77738 21

0.561358 6.38978 0.751109 10.602 0.01643 4.53703 21
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0.572291 6.46039 0.750826 10.602 0.016511 4.58717 21

0.583409 6.53099 0.738177 10.602 0.016019 4.6373 21

0.594714 6.6016 0.739543 10.602 0.016429 4.68744 21

0.606213 6.6722 0.741572 10.602 0.016515 4.73756 21

0.617911 6.74281 0.742778 10.602 0.016428 4.7877 21

0.629811 6.81342 0.735767 10.602 0.016504 4.83784 21

0.641921 6.88402 0.73607 10.602 0.016548 4.88797 21

0.654245 6.95463 0.729798 10.602 0.016374 4.9381 21

0.666789 7.02523 0.729299 10.602 0.016501 4.98823 21

0.679559 7.09584 0.730638 10.602 0.016657 5.03837 21

0.692561 7.16644 0.728802 10.602 0.016722 5.0885 21

0.705802 7.23705 0.740344 10.602 0.017183 5.13863 21

0.719288 7.30765 0.733445 10.602 0.017027 5.18876 21

0.733027 7.37826 0.73707 10.602 0.017384 5.2389 21

0.747024 7.44886 0.75632 10.602 0.01795 5.28903 21

0.761289 7.51947 0.75641 10.602 0.018219 5.33917 21

0.775827 7.59007 0.670743 10.602 0.016366 5.38929 21

0.790648 7.66068 0.611594 10.602 0.015244 5.43943 21
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0.80576 7.73128 0.721603 10.602 0.018427 5.48956 21

0.821171 7.80189 0.817321 10.602 0.021281 5.5397 21

0.83689 7.8725 0.739343 10.602 0.020297 5.58983 21

0.852927 7.9431 0.623073 10.602 0.017944 5.63996 21

0.869292 8.01371 0.875974 10.602 0.026542 5.6901 21

0.885993 8.08431 1.05579 10.602 0.034908 5.74023 21

0.281 4.41838 0.861224 10.602 0.020791 2.22404 25

0.284941 4.46721 0.867539 10.602 0.021438 2.24861 25

0.288905 4.51603 0.834335 10.602 0.019953 2.27319 25

0.292893 4.56485 0.829651 10.602 0.020375 2.29776 25

0.296904 4.61367 0.842208 10.602 0.020756 2.32234 25

0.300939 4.66249 0.847647 10.602 0.020937 2.34691 25

0.304998 4.71131 0.828499 10.602 0.020576 2.37149 25

0.309082 4.76014 0.830251 10.602 0.020814 2.39606 25

0.31319 4.80896 0.855517 10.602 0.021556 2.42064 25

0.317322 4.85778 0.849282 10.602 0.0214 2.44521 25

0.32148 4.9066 0.826806 10.602 0.021069 2.46979 25

0.325663 4.95542 0.822948 10.602 0.021183 2.49436 25
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0.329871 5.00425 0.820195 10.602 0.021209 2.51894 25

0.334105 5.05307 0.820463 10.602 0.021469 2.54351 25

0.338365 5.10189 0.813044 10.602 0.021489 2.56809 25

0.342652 5.15071 0.83148 10.602 0.022035 2.59266 25

0.346964 5.19953 0.803691 10.602 0.021458 2.61724 25

0.351303 5.24836 0.823068 10.602 0.022331 2.64181 25

0.355669 5.29718 0.835586 10.602 0.023266 2.66639 25

0.360062 5.346 0.794085 10.602 0.022274 2.69096 25

0.364483 5.39482 0.832637 10.602 0.023736 2.71554 25

0.368931 5.44364 0.836328 10.602 0.024178 2.74011 25

0.373407 5.49247 0.811343 10.602 0.023523 2.76469 25

0.377911 5.54129 0.810835 10.602 0.023817 2.78926 25

0.382444 5.59011 0.788122 10.602 0.023566 2.81384 25

0.387005 5.63893 0.824408 10.602 0.024846 2.83841 25

0.391595 5.68775 0.795563 10.602 0.024161 2.86299 25

0.396215 5.73657 0.821739 10.602 0.025484 2.88756 25

0.400864 5.7854 0.774339 10.602 0.024443 2.91214 25

0.405542 5.83422 0.794404 10.602 0.025144 2.93671 25
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0.410251 5.88304 0.762999 10.602 0.024326 2.96129 25

0.414991 5.93186 0.769036 10.602 0.025056 2.98586 25

0.414991 5.93186 0.769036 10.602 0.025056 2.98586 25

0.356107 5.30206 0.822693 10.602 0.018835 2.66884 25

0.361385 5.36065 0.811202 10.602 0.018982 2.69834 25

0.366703 5.41923 0.805345 10.602 0.018283 2.72782 25

0.372061 5.47782 0.807474 10.602 0.018848 2.75732 25

0.377459 5.53641 0.816794 10.602 0.019068 2.78681 25

0.382898 5.59499 0.787476 10.602 0.018409 2.81629 25

0.388379 5.65358 0.799195 10.602 0.018831 2.84579 25

0.393901 5.71216 0.803184 10.602 0.018959 2.87527 25

0.399466 5.77075 0.801223 10.602 0.019015 2.90476 25

0.405073 5.82934 0.804254 10.602 0.019169 2.93426 25

0.410724 5.88792 0.800312 10.602 0.019246 2.96374 25

0.416418 5.94651 0.798634 10.602 0.019324 2.99324 25

0.422157 6.0051 0.789367 10.602 0.019094 3.02273 25

0.427941 6.06368 0.783466 10.602 0.019288 3.05221 25

0.43377 6.12227 0.79178 10.602 0.019634 3.08171 25
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0.439645 6.18085 0.799594 10.602 0.019992 3.11119 25

0.445566 6.23944 0.785428 10.602 0.019719 3.14068 25

0.451535 6.29803 0.75998 10.602 0.019344 3.17018 25

0.457551 6.35661 0.781878 10.602 0.0203 3.19966 25

0.463615 6.4152 0.752807 10.602 0.019826 3.22916 25

0.469727 6.47379 0.775563 10.602 0.020651 3.25865 25

0.475889 6.53237 0.770582 10.602 0.02093 3.28813 25

0.482101 6.59096 0.78324 10.602 0.021401 3.31763 25

0.488364 6.64954 0.760779 10.602 0.020988 3.34711 25

0.494677 6.70813 0.764581 10.602 0.02142 3.3766 25

0.501043 6.76672 0.753848 10.602 0.021266 3.4061 25

0.50746 6.8253 0.760414 10.602 0.021691 3.43558 25

0.513931 6.88389 0.762461 10.602 0.02248 3.46507 25

0.520455 6.94248 0.754378 10.602 0.022344 3.49457 25

0.527034 7.00106 0.756597 10.602 0.022522 3.52405 25

0.533668 7.05965 0.728745 10.602 0.02208 3.55355 25

0.540358 7.11824 0.761057 10.602 0.023296 3.58304 25

0.540358 7.11824 0.761057 10.602 0.023296 3.58304 25
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0.440137 6.18574 0.781838 10.602 0.01735 3.11365 25

0.447054 6.25409 0.779815 10.602 0.017705 3.14806 25

0.454035 6.32244 0.778685 10.602 0.017033 3.18246 25

0.461082 6.39079 0.779928 10.602 0.01764 3.21687 25

0.468195 6.45914 0.771841 10.602 0.017442 3.25127 25

0.475374 6.52749 0.768624 10.602 0.017383 3.28568 25

0.482621 6.59584 0.769919 10.602 0.017567 3.32008 25

0.489937 6.66419 0.760574 10.602 0.017299 3.35449 25

0.497323 6.73254 0.770324 10.602 0.017653 3.38889 25

0.50478 6.80089 0.764561 10.602 0.01758 3.4233 25

0.512308 6.86924 0.763221 10.602 0.017618 3.4577 25

0.51991 6.93759 0.755486 10.602 0.017524 3.49211 25

0.527585 7.00594 0.756691 10.602 0.017717 3.52651 25

0.535335 7.0743 0.751684 10.602 0.017747 3.56092 25

0.543162 7.14265 0.750687 10.602 0.017975 3.59532 25

0.551065 7.211 0.757601 10.602 0.018087 3.62973 25

0.559047 7.27935 0.734893 10.602 0.017765 3.66413 25

0.567109 7.3477 0.735224 10.602 0.017928 3.69854 25
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0.575251 7.41605 0.730746 10.602 0.018172 3.73294 25

0.583475 7.4844 0.736476 10.602 0.018661 3.76735 25

0.591783 7.55275 0.73461 10.602 0.018736 3.80175 25

0.600175 7.6211 0.736766 10.602 0.019151 3.83616 25

0.608653 7.68945 0.729576 10.602 0.019264 3.87056 25

0.617218 7.7578 0.730029 10.602 0.019372 3.90497 25

0.625871 7.82615 0.724765 10.602 0.019558 3.93937 25

0.634614 7.8945 0.715468 10.602 0.01938 3.97378 25

0.643449 7.96285 0.731276 10.602 0.020054 4.00818 25

0.652376 8.0312 0.716888 10.602 0.020442 4.04258 25

0.661397 8.09956 0.735196 10.602 0.020945 4.07699 25

0.670514 8.16791 0.695985 10.602 0.020139 4.1114 25

0.679728 8.23626 0.736593 10.602 0.021762 4.1458 25

0.689041 8.30461 0.719589 10.602 0.021461 4.18021 25

0.689041 8.30461 0.719589 10.602 0.021461 4.18021 25

0.619558 7.77635 0.727248 10.602 0.016212 3.9143 25

0.630481 7.86228 0.730105 10.602 0.016414 3.95756 25

0.641548 7.94821 0.714903 10.602 0.015527 4.00081 25
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0.65276 8.03413 0.719002 10.602 0.016154 4.04406 25

0.664122 8.12006 0.723201 10.602 0.016317 4.08731 25

0.675635 8.20599 0.71693 10.602 0.016186 4.13057 25

0.687304 8.29191 0.717613 10.602 0.016364 4.17382 25

0.69913 8.37784 0.720742 10.602 0.016334 4.21707 25

0.711118 8.46377 0.719444 10.602 0.016461 4.26032 25

0.72327 8.54969 0.728088 10.602 0.016786 4.30357 25

0.735591 8.63562 0.722612 10.602 0.016774 4.34683 25

0.748083 8.72155 0.735131 10.602 0.017211 4.39008 25

0.76075 8.80747 0.72925 10.602 0.017381 4.43333 25

0.773596 8.8934 0.738006 10.602 0.017806 4.47658 25

0.786625 8.97933 0.750749 10.602 0.018489 4.51984 25

0.79984 9.06525 0.717693 10.602 0.017763 4.56308 25

0.813246 9.15118 0.622553 10.602 0.015837 4.60634 25

0.826847 9.23711 0.674334 10.602 0.017452 4.64959 25

0.840647 9.32303 0.799974 10.602 0.021389 4.69284 25

0.85465 9.40896 0.825582 10.602 0.023 4.73609 25

0.868862 9.49489 0.665584 10.602 0.019478 4.77935 25
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0.883286 9.58081 0.834622 10.602 0.026035 4.8226 25

0.897928 9.66674 1.05199 10.602 0.035648 4.86585 25

0.285664 4.7302 0.872034 10.602 0.021229 1.77923 29

0.289466 4.78246 0.860802 10.602 0.021435 1.79889 29

0.293285 4.83473 0.866127 10.602 0.020897 1.81855 29

0.29712 4.887 0.858666 10.602 0.021415 1.83821 29

0.300973 4.93927 0.850336 10.602 0.021305 1.85787 29

0.304843 4.99153 0.849056 10.602 0.021225 1.87753 29

0.308731 5.0438 0.866439 10.602 0.02173 1.89719 29

0.312637 5.09607 0.835419 10.602 0.021113 1.91685 29

0.31656 5.14834 0.85291 10.602 0.021553 1.93651 29

0.320501 5.2006 0.830856 10.602 0.021228 1.95617 29

0.32446 5.25287 0.832676 10.602 0.021388 1.97583 29

0.328437 5.30514 0.822931 10.602 0.021262 1.99549 29

0.332432 5.3574 0.814599 10.602 0.021452 2.01515 29

0.336445 5.40967 0.823703 10.602 0.021778 2.03481 29

0.340477 5.46194 0.822886 10.602 0.021899 2.05447 29

0.344528 5.51421 0.818053 10.602 0.022279 2.07413 29
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0.348597 5.56647 0.828136 10.602 0.022527 2.09379 29

0.352685 5.61874 0.816186 10.602 0.022369 2.11345 29

0.356793 5.67101 0.829928 10.602 0.023435 2.13311 29

0.360919 5.72328 0.822296 10.602 0.023608 2.15277 29

0.365064 5.77554 0.833517 10.602 0.024017 2.17243 29

0.369229 5.82781 0.836319 10.602 0.024675 2.19209 29

0.373414 5.88008 0.786311 10.602 0.023307 2.21175 29

0.377618 5.93235 0.794173 10.602 0.023676 2.23141 29

0.381842 5.98461 0.791426 10.602 0.024029 2.25107 29

0.386085 6.03688 0.784598 10.602 0.02398 2.27073 29

0.390349 6.08915 0.763298 10.602 0.023929 2.29039 29

0.394633 6.14141 0.824364 10.602 0.02622 2.31005 29

0.398938 6.19368 0.784678 10.602 0.025046 2.32971 29

0.403263 6.24595 0.80254 10.602 0.026026 2.34937 29

0.407608 6.29822 0.791988 10.602 0.025921 2.36903 29

0.411975 6.35048 0.793668 10.602 0.026362 2.38869 29

0.411975 6.35048 0.793668 10.602 0.026362 2.38869 29

0.357204 5.67624 0.815416 10.602 0.019082 2.13508 29
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0.36216 5.73896 0.827562 10.602 0.019606 2.15867 29

0.367144 5.80168 0.828882 10.602 0.018978 2.18226 29

0.372156 5.8644 0.819669 10.602 0.019443 2.20585 29

0.377196 5.92712 0.831189 10.602 0.019634 2.22944 29

0.382265 5.98984 0.819593 10.602 0.019495 2.25304 29

0.387362 6.05256 0.785736 10.602 0.018754 2.27663 29

0.392489 6.11528 0.818826 10.602 0.019607 2.30022 29

0.397644 6.178 0.800584 10.602 0.019212 2.32381 29

0.402829 6.24072 0.812558 10.602 0.019721 2.3474 29

0.408044 6.30344 0.800427 10.602 0.019534 2.37099 29

0.413289 6.36616 0.797262 10.602 0.019474 2.39459 29

0.418564 6.42889 0.801454 10.602 0.020012 2.41818 29

0.423869 6.49161 0.797883 10.602 0.020073 2.44177 29

0.429205 6.55433 0.787982 10.602 0.019933 2.46537 29

0.434573 6.61705 0.783244 10.602 0.019975 2.48896 29

0.439971 6.67977 0.788156 10.602 0.020123 2.51255 29

0.445401 6.74249 0.77086 10.602 0.019917 2.53614 29

0.450863 6.80521 0.787333 10.602 0.020865 2.55973 29
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0.456358 6.86793 0.795514 10.602 0.021465 2.58332 29

0.461884 6.93065 0.774828 10.602 0.021099 2.60692 29

0.467443 6.99337 0.787489 10.602 0.02172 2.63051 29

0.473036 7.05609 0.77853 10.602 0.021754 2.6541 29

0.478661 7.11881 0.768756 10.602 0.02151 2.67769 29

0.484321 7.18154 0.755814 10.602 0.021677 2.70129 29

0.490014 7.24426 0.76645 10.602 0.021912 2.72488 29

0.495741 7.30698 0.754062 10.602 0.022115 2.74847 29

0.501503 7.3697 0.770207 10.602 0.023044 2.77206 29

0.507299 7.43242 0.740076 10.602 0.022471 2.79565 29

0.513131 7.49514 0.753427 10.602 0.022966 2.81924 29

0.518998 7.55786 0.741997 10.602 0.023057 2.84284 29

0.524901 7.62058 0.733084 10.602 0.023055 2.86643 29

0.524901 7.62058 0.733084 10.602 0.023055 2.86643 29

0.476548 7.09529 0.770655 10.602 0.017172 2.66884 29

0.483611 7.1737 0.767583 10.602 0.017204 2.69834 29

0.490728 7.2521 0.767891 10.602 0.016893 2.72783 29

0.497897 7.3305 0.761165 10.602 0.017228 2.75732 29
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0.505121 7.4089 0.757926 10.602 0.017117 2.78681 29

0.5124 7.4873 0.761871 10.602 0.017177 2.8163 29

0.519734 7.5657 0.757835 10.602 0.017185 2.84578 29

0.527124 7.6441 0.752017 10.602 0.017002 2.87527 29

0.534571 7.7225 0.752689 10.602 0.017164 2.90476 29

0.542075 7.8009 0.753933 10.602 0.017358 2.93425 29

0.549637 7.8793 0.739431 10.602 0.01705 2.96374 29

0.557257 7.95771 0.744087 10.602 0.017177 2.99324 29

0.564937 8.03611 0.736864 10.602 0.017281 3.02273 29

0.572677 8.11451 0.754238 10.602 0.017824 3.05222 29

0.580477 8.19291 0.741118 10.602 0.017741 3.08171 29

0.588339 8.27131 0.731931 10.602 0.017392 3.11119 29

0.596263 8.34971 0.73628 10.602 0.017764 3.14068 29

0.60425 8.42811 0.72545 10.602 0.017761 3.17017 29

0.612301 8.50651 0.733728 10.602 0.018221 3.19966 29

0.620416 8.58491 0.740288 10.602 0.018853 3.22915 29

0.628596 8.66332 0.716006 10.602 0.018363 3.25865 29

0.636842 8.74172 0.719625 10.602 0.018605 3.28814 29
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0.645155 8.82012 0.74399 10.602 0.019436 3.31763 29

0.653535 8.89852 0.719814 10.602 0.019022 3.34712 29

0.661984 8.97692 0.722095 10.602 0.019365 3.37661 29

0.670503 9.05532 0.697774 10.602 0.018907 3.40609 29

0.679091 9.13372 0.701379 10.602 0.019291 3.43558 29

0.68775 9.21212 0.716217 10.602 0.020233 3.46507 29

0.696481 9.29052 0.715952 10.602 0.020653 3.49456 29

0.705285 9.36892 0.720463 10.602 0.020991 3.52405 29

0.714162 9.44733 0.714815 10.602 0.021097 3.55355 29

0.723114 9.52573 0.725638 10.602 0.022 3.58304 29

0.723114 9.52573 0.725638 10.602 0.022 3.58304 29

0.637808 8.75086 0.722972 10.602 0.01636 3.29157 29

0.64808 8.84756 0.72461 10.602 0.016508 3.32795 29

0.658456 8.94425 0.712121 10.602 0.015887 3.36432 29

0.668936 9.04095 0.729701 10.602 0.016763 3.40069 29

0.679522 9.13764 0.713517 10.602 0.01648 3.43706 29

0.690216 9.23434 0.709881 10.602 0.016501 3.47343 29

0.701021 9.33103 0.716987 10.602 0.016695 3.5098 29
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0.711936 9.42773 0.711174 10.602 0.016621 3.54617 29

0.722965 9.52442 0.707714 10.602 0.016761 3.58254 29

0.734108 9.62111 0.717986 10.602 0.017256 3.61891 29

0.745368 9.71781 0.720619 10.602 0.017543 3.65529 29

0.756747 9.8145 0.74042 10.602 0.01827 3.69165 29

0.768246 9.9112 0.724759 10.602 0.018266 3.72803 29

0.779868 10.0079 0.752552 10.602 0.01926 3.7644 29

0.791613 10.1046 0.754263 10.602 0.019831 3.80077 29

0.803485 10.2013 0.768225 10.602 0.020419 3.83715 29

0.815486 10.298 0.765733 10.602 0.021056 3.87352 29

0.827617 10.3947 0.644817 10.602 0.018344 3.90989 29

0.83988 10.4914 0.63649 10.602 0.018859 3.94627 29

0.852278 10.5881 0.764119 10.602 0.023804 3.98264 29

0.864813 10.6848 0.826991 10.602 0.026954 4.01901 29

0.877488 10.7814 0.767568 10.602 0.026615 4.05535 29

0.890304 10.8781 0.734169 10.602 0.027199 4.09172 29

0.303261 5.17348 0.855958 10.602 0.020533 1.51235 33

0.307177 5.23064 0.862648 10.602 0.020878 1.52906 33
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0.311107 5.28781 0.854814 10.602 0.020565 1.54577 33

0.315052 5.34497 0.838949 10.602 0.020328 1.56248 33

0.319011 5.40214 0.846391 10.602 0.020747 1.57919 33

0.322985 5.4593 0.863097 10.602 0.021213 1.5959 33

0.326974 5.51647 0.852118 10.602 0.02107 1.61261 33

0.330977 5.57363 0.867406 10.602 0.021643 1.62932 33

0.334996 5.6308 0.833654 10.602 0.020789 1.64603 33

0.33903 5.68796 0.84863 10.602 0.021593 1.66274 33

0.343078 5.74513 0.825935 10.602 0.020959 1.67946 33

0.347142 5.8023 0.833882 10.602 0.021266 1.69617 33

0.351221 5.85946 0.836458 10.602 0.021799 1.71288 33

0.355316 5.91663 0.83337 10.602 0.021777 1.72959 33

0.359426 5.97379 0.823897 10.602 0.021647 1.7463 33

0.363551 6.03096 0.838493 10.602 0.022532 1.76301 33

0.367692 6.08812 0.830005 10.602 0.02237 1.77972 33

0.371849 6.14529 0.815359 10.602 0.022247 1.79643 33

0.376022 6.20245 0.812529 10.602 0.022662 1.81314 33

0.380211 6.25962 0.827193 10.602 0.023631 1.82985 33
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0.384415 6.31679 0.813059 10.602 0.023121 1.84657 33

0.388636 6.37395 0.809366 10.602 0.023465 1.86328 33

0.392873 6.43112 0.809844 10.602 0.02388 1.87999 33

0.397126 6.48828 0.798066 10.602 0.023562 1.8967 33

0.401395 6.54545 0.79633 10.602 0.023898 1.91341 33

0.405681 6.60261 0.80849 10.602 0.024291 1.93012 33

0.409983 6.65978 0.814875 10.602 0.025413 1.94683 33

0.414302 6.71694 0.811085 10.602 0.025479 1.96354 33

0.418638 6.77411 0.788698 10.602 0.02497 1.98025 33

0.422991 6.83127 0.806353 10.602 0.025861 1.99696 33

0.427361 6.88844 0.772044 10.602 0.024967 2.01368 33

0.431747 6.94561 0.76828 10.602 0.025283 2.03039 33

0.431747 6.94561 0.76828 10.602 0.025283 2.03039 33

0.38988 6.39076 0.828128 10.602 0.019215 1.86819 33

0.395122 6.46138 0.818716 10.602 0.019078 1.88883 33

0.400389 6.532 0.821229 10.602 0.018993 1.90948 33

0.405681 6.60261 0.794666 10.602 0.018735 1.93012 33

0.410998 6.67323 0.803732 10.602 0.019011 1.95076 33
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0.416341 6.74384 0.79615 10.602 0.018921 1.97141 33

0.421709 6.81446 0.793451 10.602 0.018911 1.99205 33

0.427103 6.88508 0.797627 10.602 0.019096 2.01269 33

0.432523 6.95569 0.820539 10.602 0.019702 2.03333 33

0.437969 7.02631 0.790181 10.602 0.019185 2.05398 33

0.443442 7.09693 0.793288 10.602 0.019295 2.07462 33

0.448941 7.16754 0.801239 10.602 0.019738 2.09526 33

0.454467 7.23816 0.791653 10.602 0.019694 2.11591 33

0.46002 7.30877 0.815395 10.602 0.020367 2.13655 33

0.4656 7.37939 0.779304 10.602 0.019759 2.15719 33

0.471207 7.45001 0.772909 10.602 0.019932 2.17784 33

0.476842 7.52062 0.800251 10.602 0.020598 2.19848 33

0.482505 7.59124 0.768113 10.602 0.020069 2.21912 33

0.488195 7.66186 0.769247 10.602 0.02055 2.23977 33

0.493914 7.73247 0.770019 10.602 0.021058 2.26041 33

0.499661 7.80309 0.756917 10.602 0.020616 2.28105 33

0.505437 7.8737 0.744033 10.602 0.020668 2.30169 33

0.511241 7.94432 0.757882 10.602 0.021351 2.32234 33
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0.517075 8.01494 0.751639 10.602 0.021334 2.34298 33

0.522938 8.08555 0.772241 10.602 0.022241 2.36362 33

0.52883 8.15617 0.745807 10.602 0.021506 2.38427 33

0.534752 8.22678 0.747918 10.602 0.022225 2.40491 33

0.540704 8.2974 0.749695 10.602 0.022662 2.42555 33

0.546686 8.36802 0.744992 10.602 0.02292 2.4462 33

0.552698 8.43863 0.73617 10.602 0.022721 2.46684 33

0.558741 8.50925 0.754997 10.602 0.023709 2.48748 33

0.564815 8.57987 0.748432 10.602 0.023978 2.50813 33

0.564815 8.57987 0.748432 10.602 0.023978 2.50813 33

0.508612 7.91237 0.773931 10.602 0.017348 2.313 33

0.515823 7.9998 0.769184 10.602 0.017196 2.33856 33

0.523078 8.08723 0.769792 10.602 0.016813 2.36411 33

0.530378 8.17466 0.776355 10.602 0.017284 2.38967 33

0.537724 8.26209 0.763043 10.602 0.017194 2.41523 33

0.545116 8.34952 0.761478 10.602 0.017252 2.44079 33

0.552555 8.43695 0.76018 10.602 0.017211 2.46635 33

0.56004 8.52438 0.756059 10.602 0.017046 2.4919 33
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0.567572 8.61181 0.75074 10.602 0.017158 2.51746 33

0.575153 8.69924 0.751688 10.602 0.017226 2.54302 33

0.582782 8.78667 0.751751 10.602 0.017352 2.56858 33

0.590459 8.8741 0.749218 10.602 0.017431 2.59414 33

0.598185 8.96153 0.749688 10.602 0.017571 2.6197 33

0.605962 9.04896 0.739308 10.602 0.017401 2.64525 33

0.613788 9.13639 0.743458 10.602 0.017742 2.67081 33

0.621665 9.22382 0.741506 10.602 0.01786 2.69637 33

0.629593 9.31125 0.737285 10.602 0.017825 2.72193 33

0.637572 9.39868 0.739898 10.602 0.018123 2.74749 33

0.645604 9.48611 0.742872 10.602 0.01863 2.77304 33

0.653688 9.57354 0.736346 10.602 0.018844 2.7986 33

0.661825 9.66097 0.728124 10.602 0.01864 2.82416 33

0.670017 9.7484 0.721622 10.602 0.018736 2.84972 33

0.678262 9.83582 0.717261 10.602 0.01905 2.87527 33

0.686562 9.92325 0.722693 10.602 0.01913 2.90083 33

0.694917 10.0107 0.723355 10.602 0.019452 2.9264 33

0.703328 10.0981 0.714397 10.602 0.019523 2.95195 33
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0.711795 10.1855 0.721436 10.602 0.020077 2.97749 33

0.72032 10.273 0.733479 10.602 0.020938 3.00307 33

0.728902 10.3604 0.728048 10.602 0.021179 3.02862 33

0.737542 10.4478 0.719839 10.602 0.021273 3.05417 33

0.746241 10.5353 0.712747 10.602 0.021326 3.07975 33

0.754999 10.6227 0.733153 10.602 0.022499 3.1053 33

0.754999 10.6227 0.733153 10.602 0.022499 3.1053 33

0.669069 9.73831 0.737106 10.602 0.016906 2.84677 33

0.679217 9.84591 0.725356 10.602 0.016575 2.87822 33

0.689448 9.95352 0.724581 10.602 0.016231 2.90968 33

0.699763 10.0611 0.728453 10.602 0.016689 2.94113 33

0.710163 10.1687 0.731363 10.602 0.017039 2.97258 33

0.720649 10.2763 0.726377 10.602 0.017174 3.00404 33

0.731222 10.3839 0.723597 10.602 0.017093 3.03549 33

0.741884 10.4915 0.737941 10.602 0.017585 3.06695 33

0.752635 10.5992 0.733031 10.602 0.017788 3.09843 33

0.763476 10.7068 0.752803 10.602 0.018391 3.12988 33

0.77441 10.8144 0.743037 10.602 0.018601 3.16134 33
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0.785436 10.922 0.743375 10.602 0.018989 3.19279 33

0.796556 11.0296 0.737921 10.602 0.019308 3.22425 33

0.807771 11.1372 0.763334 10.602 0.020427 3.2557 33

0.819083 11.2448 0.793439 10.602 0.021828 3.28716 33

0.830492 11.3524 0.762051 10.602 0.021647 3.31861 33

0.842001 11.46 0.667673 10.602 0.019689 3.35006 33

0.85361 11.5676 0.661844 10.602 0.020264 3.38152 33

0.86532 11.6752 0.817803 10.602 0.026316 3.41297 33

0.877133 11.7828 0.892121 10.602 0.030305 3.44443 33

0.889051 11.8904 0.797599 10.602 0.029207 3.47588 33

0.39045 6.72605 0.864823 10.602 0.020001 1.42338 39

0.395442 6.80038 0.858143 10.602 0.020302 1.43911 39

0.400451 6.8747 0.850676 10.602 0.019839 1.45484 39

0.405477 6.94902 0.854767 10.602 0.020114 1.47057 39

0.410521 7.02334 0.845433 10.602 0.020046 1.4863 39

0.415582 7.09766 0.828653 10.602 0.019794 1.50202 39

0.420661 7.17198 0.827805 10.602 0.019754 1.51775 39

0.425757 7.2463 0.842643 10.602 0.020474 1.53348 39
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0.430871 7.32062 0.821524 10.602 0.019697 1.54921 39

0.436003 7.39494 0.834636 10.602 0.020511 1.56494 39

0.430871 7.32062 0.821524 10.602 0.019697 1.54921 39

0.436003 7.39494 0.834636 10.602 0.020511 1.56494 39

0.441153 7.46926 0.823022 10.602 0.0202 1.58066 39

0.44632 7.54359 0.822778 10.602 0.020553 1.59639 39

0.451506 7.61791 0.815749 10.602 0.020652 1.61212 39

0.45671 7.69223 0.803312 10.602 0.020313 1.62785 39

0.461932 7.76655 0.816542 10.602 0.020888 1.64358 39

0.467173 7.84087 0.821453 10.602 0.021537 1.6593 39

0.472432 7.91519 0.810955 10.602 0.021392 1.67503 39

0.47771 7.98951 0.789501 10.602 0.021005 1.69076 39

0.483006 8.06383 0.786521 10.602 0.021362 1.70649 39

0.488321 8.13815 0.790341 10.602 0.021676 1.72222 39

0.493655 8.21248 0.796517 10.602 0.022028 1.73794 39

0.499008 8.2868 0.789591 10.602 0.022474 1.75367 39

0.50438 8.36112 0.799857 10.602 0.023144 1.7694 39

0.509771 8.43544 0.76659 10.602 0.02219 1.78513 39
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0.515181 8.50976 0.778916 10.602 0.02286 1.80086 39

0.520611 8.58408 0.788785 10.602 0.023399 1.81658 39

0.52606 8.6584 0.773392 10.602 0.023615 1.83231 39

0.531529 8.73272 0.782148 10.602 0.024195 1.84804 39

0.537018 8.80704 0.770235 10.602 0.02414 1.86377 39

0.542526 8.88136 0.770535 10.602 0.02468 1.87949 39

0.548054 8.95569 0.766051 10.602 0.024952 1.89522 39

0.553602 9.03001 0.761778 10.602 0.025185 1.91095 39

0.553602 9.03001 0.761778 10.602 0.025185 1.91095 39

0.507747 8.40757 0.787645 10.602 0.017536 1.77923 39

0.514504 8.50047 0.787996 10.602 0.017969 1.79889 39

0.521291 8.59337 0.780737 10.602 0.017314 1.81855 39

0.528109 8.68627 0.773779 10.602 0.01738 1.83821 39

0.534957 8.77917 0.774433 10.602 0.01745 1.85787 39

0.541836 8.87207 0.770293 10.602 0.017485 1.87753 39

0.548747 8.96498 0.764739 10.602 0.017259 1.89719 39

0.555688 9.05788 0.761915 10.602 0.01752 1.91685 39

0.562661 9.15078 0.770785 10.602 0.017465 1.93651 39

181



0.569666 9.24368 0.753453 10.602 0.017614 1.95617 39

0.576703 9.33658 0.74997 10.602 0.017416 1.97583 39

0.583771 9.42948 0.749384 10.602 0.017779 1.99549 39

0.590873 9.52238 0.746372 10.602 0.01759 2.01515 39

0.598006 9.61528 0.755094 10.602 0.017962 2.03481 39

0.605173 9.70819 0.757379 10.602 0.01811 2.05447 39

0.612373 9.80109 0.743647 10.602 0.018266 2.07413 39

0.619605 9.89399 0.75493 10.602 0.018464 2.09379 39

0.626872 9.98689 0.739459 10.602 0.018124 2.11345 39

0.634172 10.0798 0.738467 10.602 0.018734 2.13311 39

0.641506 10.1727 0.740463 10.602 0.019035 2.15277 39

0.648874 10.2656 0.7283 10.602 0.01889 2.17243 39

0.656277 10.3585 0.733239 10.602 0.019488 2.19209 39

0.663715 10.4514 0.741549 10.602 0.019908 2.21175 39

0.671187 10.5443 0.735116 10.602 0.019734 2.23141 39

0.678695 10.6372 0.716944 10.602 0.019719 2.25107 39

0.686238 10.7301 0.72665 10.602 0.020002 2.27073 39

0.693816 10.823 0.714849 10.602 0.020217 2.29039 39
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0.701431 10.9159 0.745106 10.602 0.021384 2.31005 39

0.709082 11.0088 0.750635 10.602 0.021885 2.32971 39

0.716769 11.1017 0.715492 10.602 0.021348 2.34937 39

0.724493 11.1946 0.737015 10.602 0.022333 2.36903 39

0.732254 11.2875 0.726374 10.602 0.02272 2.38869 39

0.732254 11.2875 0.726374 10.602 0.02272 2.38869 39

0.668381 10.5095 0.733588 10.602 0.016727 2.22405 39

0.677754 10.6256 0.733456 10.602 0.016947 2.24862 39

0.687183 10.7417 0.738776 10.602 0.016675 2.27318 39

0.696668 10.8578 0.727265 10.602 0.016805 2.29775 39

0.706209 10.974 0.726538 10.602 0.016823 2.32234 39

0.715806 11.0901 0.719772 10.602 0.016894 2.34691 39

0.725461 11.2062 0.727403 10.602 0.017059 2.37148 39

0.735174 11.3223 0.722417 10.602 0.017205 2.39605 39

0.744945 11.4385 0.733776 10.602 0.017585 2.42064 39

0.754775 11.5546 0.7387 10.602 0.018267 2.44521 39

0.764665 11.6707 0.750611 10.602 0.01867 2.46978 39

0.774614 11.7869 0.750365 10.602 0.019042 2.49437 39

183



0.784624 11.903 0.745674 10.602 0.019164 2.51894 39

0.794695 12.0191 0.733301 10.602 0.019264 2.54351 39

0.804828 12.1352 0.770989 10.602 0.020769 2.56808 39

0.815023 12.2514 0.787074 10.602 0.022113 2.59267 39

0.82528 12.3675 0.798124 10.602 0.022863 2.61724 39

0.835601 12.4836 0.793655 10.602 0.023486 2.64181 39

0.845986 12.5997 0.761724 10.602 0.023705 2.66638 39

0.856435 12.7159 0.665312 10.602 0.02181 2.69097 39

0.86695 12.832 0.717505 10.602 0.024602 2.71554 39

0.87753 12.9481 0.83034 10.602 0.030022 2.74011 39

0.888176 13.0642 0.952609 10.602 0.037128 2.76468 39

0.89889 13.1804 0.835378 10.602 0.035039 2.78927 39

Table A.1: Table of E12-10-002 cross section ratio data. Only the statistical uncertainty
is available at the time of this writing.
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