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Abstract

The elastic electron-proton (e−p) scattering and the spectroscopy of hydrogen atoms

are the two traditional methods to determine the proton charge radius (rp). In 2010,

a new method using muonic hydrogen (µH)1 spectroscopy reported a rp result that

was nearly ten times more precise but significantly smaller than the values from the

compilation of all previous rp measurements. This discrepancy is often referred to

as the “proton charge radius puzzle”. In order to investigate the puzzle, the PRad

experiment (E12-11-1062) was first proposed in 2011 and performed in 2016 in Hall

B at the Thomas Jefferson National Accelerator Facility, with both 1.1 and 2.2 GeV

electron beams. The experiment measured the e− p elastic scattering cross sections

in an unprecedented low values of momentum transfer squared region (Q2 = 2.1 ×

10−4−0.06 (GeV/c)2), with a sub-percent precision. The PRad experiment utilized a

calorimetric method that was magnetic-spectrometer-free. Its detector setup included

a large acceptance and high resolution calorimeter (HyCal), and two large-area, high-

spatial-resolution Gas Electron Multiplier (GEM) detectors. To have a better control

over the systematic uncertainties, the absolute e−p elastic scattering cross section was

normalized to that of the well-known Møller scattering process, which was measured

simultaneously during the experiment. For each beam energy, all data with different

Q2 were collected simultaneously with the same detector setup, therefore sharing

the same integrated luminosity. The windowless H2 gas-flow target utilized in the

experiment largely removed a typical background source, the target cell windows. The

proton charge radius was determined as rp = 0.831±0.007stat.±0.012syst. fm, which is

smaller than the average rp from previous e−p elastic scattering experiments, but in

agreement with the µH spectroscopic results within the experimental uncertainties.

1A muonic hydrogen has its orbiting electron replaced by a muon.

2Spokespersons: A. Gasparian (contact), H. Gao, M. Khandaker, D. Dutta
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Chapter 1

Introduction

Nucleons (protons and neutrons) are primary building blocks of the visible universe,

and they make up over 99.9% of visible matter. It is important to understand the

basic properties of a proton, such as its root-mean-square (RMS) charge radius1 rp.

It is related to the spacial distribution of the proton’s charge, which is carried by

the quarks. A precise knowledge of rp is certainly important to our understanding

about how Quantum Chromodynamics (QCD) - the theory of the strong interaction

- works in the non-perturbative region. This quantity is also an important input to

the bound state Quantum Electrodynamics (QED) calculations of atomic hydrogen

energy levels. For instance, for a muonic hydrogen (µH) atom, the proton charge

radius affects the Lamb shift between 2S1/2 and 2P1/2 energy levels by as much as

2% [1]. It also impacts the determination of the Rydberg constant (R∞), which is one

of the most precisely measured quantities in physics. A high precision measurement

of the Rydberg constant comes from the exact same type of experiments where the

proton charge radius can be determined, so that they are highly correlated.

There are two well-established methods to measure the proton charge radius.

The more traditional method is the electron-proton (e− p) elastic scattering exper-

iment [2], in which one measures the elastic e − p scattering cross section and then

extracts the proton electric form factor Gp
E. The proton charge radius can be de-

termined from the slope of Gp
E as the four-momentum transfer squared Q2 goes to

1It is often referred to as the proton charge radius in this dissertation
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zero [2]:

〈r2
p〉 ≡ −6

dGp
E(Q2)

dQ2

∣∣∣∣
Q2=0

(1.1)

The second method is hydrogen spectroscopy [3], in which one measures the transition

frequency between two energy levels of a hydrogen atom. These energy levels are

affected by the proton charge distribution, and one can determine the proton charge

radius from the measured transition frequency, combined with the state-of-the-art

bound state QED calculations. The hydrogen Lamb shift has been the transition

often adopted for this purpose. The physics background and various techniques used

in these two types of methods will be discussed in the next chapter.

Results of rp obtained with these two methods generally agreed with each other

prior to 2010. Based on CODATA-2010 [4], the rp results are 0.8758(77) fm and

0.895(18) fm, obtained from the compilations of previous hydrogen spectroscopy and

e − p elastic scattering experiments, respectively. This agreement was further rein-

forced in the same year by the result from the high precision e− p elastic scattering

experiment at Mainz Microtron (MAMI) [5]. It measured about 1400 cross section

data points, covering Q2 from 0.004 to 1 (GeV/c)2. The extracted rp from the Mainz

experiment is 0.8791(79) fm. Combining these results, CODATA-2010 gave the rec-

ommended value for rp as

rp = 0.8775± 0.0051 fm. (1.2)

However, also in 2010, a new rp result was reported based on a novel method using

the muonic hydrogen (µH) spectroscopy [1]. A µH atom has its orbiting electron

replaced by a muon, which is about 200 times heavier than an electron. As a result,

the muon orbits much closer to the proton and is more sensitive to the proton charge

2
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Figure 1.1: Proton charge radius results from recent experiments [1, 5, 6, 18, 19,
20, 22] and world data compilations [4, 7].

radius. The reported result from this experiment is

rp = 0.84184± 0.00067 fm, (1.3)

with an unprecedented precision of better than 0.1%. However, this value is 7σ

smaller than the CODATA -2010 recommended value (see Fig. 1.1), and it was con-

firmed by a second µH result reported in 2013 [6], which gave

rp = 0.84087± 0.00039 fm. (1.4)

This discrepancy between the electronic and muonic measurements was unexpected,

as the µ− p and e− p interactions were expected to be the same as described by the

Standard Model. The discrepancy is often referred to as the “proton charge radius

puzzle”, and has triggered intensive experimental and theoretical efforts to resolve

this puzzle.
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The bound state QED calculations for muonic hydrogen have been scrutinized

and refined after the puzzle, yet no convincing evidence could be found to explain

the discrepancy [8]. New physics related to lepton2 universality violation has been

proposed [9], which suggests that new particles that couple stronger to the muon

and proton can possibly resolve the puzzle. Constraints from other physics such

as the muon (g − 2)µ, Kaon decay and the hyper-fine structure measurement in

the muonic hydrogen [9], put unusual requirements on the properties of these new

particles, though not denying their existence. The definition of the proton charge

radius (Eq. 1.1) has been examined rigorously in both the spectroscopic and scattering

theories [10]. The same Gp
E slope at Q2 = 0, measured by the elastic scattering

experiments, is shown to be responsible for the finite proton size effect in the hydrogen

spectroscopy. However, as pointed out also in Ref. [10], the rp defined in Eq. 1.1 is

not strictly related to the second moment of the proton charge density distribution.

Meanwhile, for e− p scattering, the proper Q2 range of the form factor data and

the proper functional forms used in the fit were intensively studied and discussed

recently [11, 12]. Numerous re-analyses of the existing e − p scattering data were

carried out in order to provide more inputs to the puzzle [13, 14]. However, no

conclusive argument can be made at this point. In particular, studies [15, 16] have

shown that when using a reduced Q2 range and lower order fit functions, one can

obtain rp results that are in agreement with the muonic spectroscopic measurements,

while others [17] emphasize the need of including data points with higher values of

Q2 and using higher order fit functions for a reliable radius extraction.

From the experimental side, multiple new hydrogen spectroscopic results were

published since 2010. These include the 2S-4P transition frequency measurement [18],

which published rp = 0.8335(95) fm in 2017; the 1S-3S transition frequency measure-

2Leptons include electrons, muons and taus, and their anti-particles.
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ment [19], which gave rp = 0.877(13) fm in 2018; and the most recent 2S-2P Lamb

shift measurement [20], which determined rp = 0.833(10) fm in 2019. The 2017 and

2019 measurements are very close to each other and both agree with the µH measure-

ments, while the 2018 measurement is in agreement with the CODATA-2010 value.

For lepton-proton scattering experiments, the initial state radiation (ISR) experiment

at MAMI measured the proton electric form factor in a very low Q2 region (0.001 to

0.016 (GeV/c)2) [21]. Their latest extracted rp is 0.870(28) fm [22], which was pub-

lished in 2019. The results from these experiments are summarized in Fig. 1.1. For

future experiments, The MUSE collaboration [23] aims to extract rp using 4 different

leptons, e+, e−, µ+ and µ−, and the Q2 range is from 0.002 to 0.07 (GeV/c)2. This

experiment is the first µ − p elastic scattering experiment in history and provides

unique opportunities for testing the electron-muon universality and the determina-

tion of the Two-Photon Exchange (TPE) effect in the lepton-proton scattering. This

experiment is currently taking data, and is expected to have results in the next few

years. The ProRad experiment [24] at Institut de Physique Nucléaire d’Orsay plans

to measure the proton electric form factor in a very low Q2 region from 10−6 to 10−4

(GeV/c)2, using a laminar liquid hydrogen jet target. This experiment is foreseen to

take data in the second half of 2020. The ULQ2 collaboration [25] at Tohoku Univer-

sity plans to measure both the proton electric and magnetic form factors in the Q2

range from 3× 10−4 to 8× 10−3 (GeV/c)2. It will use a 20 to 60 MeV electron beam

and high resolution spectrometers to cover the electron scattering angles from 30◦

to 150◦. Another µ− p elastic scattering experiment is proposed at COMPASS [26].

They plan to use a high pressure Time Projection Chamber (TPC), filled with hy-

drogen gas, for both an active target and recoil proton detector. The Q2 coverage is

expected to be from 10−4 to 1 (GeV/c)2. The same TPC detector will be used at

MAMI to extract the proton charge radius using the e− p elastic scattering [27]. In
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addition, a number of new experiments are planed at MAMI, including a new ISR

experiment [21], with a point-like jet target and an improved spectrometer entrance

flange to further reduce the systematic uncertainties.

At this point, we wish to discuss the PRad experiment (E12-11-106) [28] at the

Thomas Jefferson National Accelerator Facility (Jefferson Lab or JLab), which is an

elastic e−p scattering experiment. Compared to the previous e−p elastic scattering

experiments, it used a magnetic-spectrometer-free and calorimeter based technique,

which enabled a number of improvements. First of all, data points at differentQ2 were

recorded with the same detector setting during the experiment, with all the elements

in the experimental setup fixed in space. This eliminated the need of having a

large number of normalization parameters, which are typical for spectrometer-based

experiments and may introduce additional systematic uncertainties to the result.

Second, the PRad experimental setup covered a minimum scattering angle of 0.7◦,

which corresponds to a minimum Q2 close to 2× 10−4 (GeV/c)2. This is the lowest

value ever measured for all the e−p elastic scattering experiments. Together with the

maximum angular coverage of 7.0◦, the PRad setup covered two orders of magnitude

in the low Q2 region (2× 10−4 to 6× 10−2 (GeV/c)2), which provided a large enough

leverage that was necessary for a precise rp extraction. The combination of the low Q2

and the extreme forward angular coverage also minimized the proton magnetic form

factor Gp
M contribution to the cross section, which reduced the systematic uncertainty

in the Gp
E extraction. Third, the absolute e − p elastic scattering cross section was

normalized to that of the Møller scattering process (e− e scattering), which is a well

known QED process and was simultaneously measured during the experiment with

the same experimental setup. By taking the e − p to e − e ratio, the luminosity is

cancelled out, and this ratio can also enable a cancellation of the energy-independent

part of the acceptance and detector efficiency, which is important for the control
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of systematic uncertainties. Lastly, the experiment used a windowless, cryogenic-

cooled, hydrogen gas-flow target. It removed most of the backgrounds generated

from the target cell windows, which was one of the dominant background sources for

the previous e− p scattering experiments.

This dissertation presents the analysis and results of the PRad experiment. Chap-

ter 2 provides a general introduction to the physics background and various exper-

imental methods for the rp measurements. The PRad experimental setup will be

introduced in Chapter 3. Details of the analysis, and the e − p elastic scattering

cross section results and their systematic uncertainties will be presented in Chap-

ter 4, followed by the rp extraction in Chapter 5. Lastly, a discussion about possible

future improvements on the PRad results will be given in Chapter 6, followed by the

conclusion of the PRad project in Chapter 7.
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Chapter 2

Physics Background

2.1 Unpolarized electron-proton scattering

The derivation described in this section follows Ref. [29]. At Born level (one photon

exchange), an incident electron (with 4-momentum ` = (El, ~̀)) can scatter elastically

off a proton (p = (Ep, ~p )) by exchanging a virtual photon. The process is described

by the Feynman diagram in Fig 2.1. The 4-momenta of the scattered electron and

proton are denoted as `′ = (E`′ , ~̀′ ) and p′ = (Ep′ , ~p′ ), respectively. For a fixed target

experiment with an incident electron beam, typically, the target proton is considered

at rest in the lab frame. The z-axis can be chosen to be aligned with the momentum

direction of the incident electron, and the x− z plane is defined by the momenta of

the incident and scattered electrons (the lepton scattering plane) (see Fig. 2.2). In

such a coordinate system, the kinematic variables can be expressed as

` = (E`, 0, 0, |~̀|),

p = (M, 0, 0, 0),

`′ = (E`′ , |~̀′|sin θ, 0, |~̀′|cos θ),

p′ = `+ p− `′, (2.1)

where M is the mass of the proton, θ is the scattering (polar) angle of the scattered

electron. The 4-momentum of the virtual photon is denoted as q = (ν, ~q ), and the
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Figure 2.1: The Born level (one photon exchange) Feynman diagram for the e− p
elastic scattering.

!

"

ℓ

ℓ′

%

&′

Figure 2.2: Diagram for the e − p elastic scattering. The two lepton momentum
vectors define the lepton scattering plane.
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minus of this quantity squared defines the 4-momentum transfer squared Q2,

Q2 = −q2 = −(`− `′)2 = 2(E`E`′ − ~̀ · ~̀′)− 2m2

≈ 4E`E`′ sin
2 θ

2
= 2E`E`′(1− cos θ),

(2.2)

where the approximation is true if the electron mass (m) squared is negligible. In

the case of elastic scattering, the Q2 can also be expressed as

Q2 = 2Mν = 2M(E` − E`′), (2.3)

in the lab frame.

For the e− p elastic scattering, the differential cross section in the lab frame can

be expressed as

dσ =
1

F

|M|2
4π2

d3~̀′

2E`′

d3~p′

2Ep′
δ(4)(`+ p− `′ − p′), (2.4)

where F = 4
√

(` · p)2 −m2M2 ≈ 4E`M is the incident flux factor (the approximation

is true if the electron mass squared is neglected). M is the invariant amplitude that

contains the physics about the electron-proton interaction. It can be expressed as

M = jµ
1

q2
Jµ, (2.5)

where jµ (Jµ) is the 4-vector transition current density for the electron (proton),

and the Einstein summation convention is applied. The electron transition current

density can be completely described by Quantum Electrodynamics as

jµ = −e u(`′) γµ u(`) ei(`
′−`)·x, (2.6)

where e is the charge of the electron. γµ consists of four 4×4 Dirac γ-matrices. They

10



satisfy the anti-commutation relation:

{γµ, γν} = γµγν + γνγµ = 2gµν , (2.7)

where gµν is the metric tensor with g00 = 1, g11 = g22 = g33 = −1, and all the other

components are 0. In the Dirac-Pauli representation, these matrices can be expressed

as

γ0 =

I 0

0 −I

 , ~γ =

 0 ~σ

−~σ 0

 , (2.8)

where ~σ are the Pauli matrices:

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 , (2.9)

u(`) e−i`·x is the positive-energy solution to the Dirac equation (iγµ∂µ−m)ψ = 0 for

a free particle; u(`) ≡ u(`)†γ0 by definition, and u(`) is a 4-component Dirac spinor:

u(s) =
√
E +m

 χ(s)

~σ·~p
E+m

χ(s)

 , χ(1) =

1

0

 , χ(2) =

0

1

 . (2.10)

On the other hand, if the proton is also a structureless particle, its transition

current density can be constructed exactly as in Eq. 2.6, with a positive sign stand-

ing for the positive charge of the proton. However, as we know, the proton is an

extended object, and the most general form of its transition current density, under
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the requirement of Lorentz invariance and parity conservation, can be written as

Jµ = e u(p′)
[
F1(q2)γµ +

κ

2M
F2(q2)iσµνqν

]
u(p) ei(p

′−p)·x, (2.11)

where F1(q2) and F2(q2) are the Dirac and Pauli form factors, respectively. They are

related to the internal structure of the proton. κ is the proton anomalous magnetic

moment and σµν is the antisymmetric tensor:

σµν =
i

2
[γµ, γν ] =

i

2
(γµγν − γνγµ) . (2.12)

Combining with Eq. 2.4 and Eq. 2.5, one can derive the differential cross section for

the e− p elastic scattering in the lab frame:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

×[
((F1(q2))2 − κ2q2

4M2
(F2(q2))2)− q2

2M2
(F1(q2) + κF2(q2))2tan2 θ

2

]
,

(2.13)

where (dσ/dΩ)Mott is the Mott cross section that describes the scattering off the

structure-less and spin-less proton:

(
dσ

dΩ

)
Mott

=
α2cos2 θ

2

4E2
` sin

4 θ
2

E`′

E`
. (2.14)

It is common to use the Sachs form factors [30], which are linear combinations of

F1(q2) and F2(q2):

Gp
E(Q2) ≡ F1(q2) +

κq2

4M2
F2(q2),

Gp
M(Q2) ≡ F1(q2) + κF2(q2), (2.15)
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such that no interference term of the form factors will appear in the cross section,

and Eq. 2.13 can be re-written in a much simpler form:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

1

1 + τ

[
(Gp

E(Q2))2 +
τ

ε
(Gp

M(Q2))2
]
, (2.16)

with τ = Q2/(4M2) and ε = [1 + 2(1 + τ) tan2 (θ/2)]−1. Eq. 2.16 is often referred to

as the Rosenbluth formula [30].

It is worth noticing that in the Q2 → 0 limit, the wavelength of the virtual photon

becomes significantly larger than the size of the proton. Effectively it will “see” the

proton as a point target with charge e and magnetic moment (1 + κ)e/2M . This

requires that F1(0) = 1 and F2(0) = 1, and the Sachs form factors become

Gp
E(0) = 1,

Gp
M(0) = 1 + κ = µp. (2.17)

In the case that the electron mass is not neglected, as shown in Ref. [31], the

Rosenbluth formula is still applicable, provided that one uses the following two ex-

pressions for ε and the Mott cross section:

ε =

[
1− 2(1 + τ)

2m2 −Q2

4E`E`′ −Q2

]−1

, (2.18)

(
dσ

dΩ

)
Mott

=
α2

4E2
`

1−Q2/(4E`E`′)

Q4/(4E`E`′)

E`|~̀′|
E`′|~̀|

M(E2
`′ −m2)

ME`E`′ +m2(E`′ − E` −M)
. (2.19)
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Figure 2.3: The e− p elastic scattering in the Breit frame.

2.2 Proton Form Factors

In the classical literature [29], the proton electric and magnetic form factors are

interpreted as the Fourier transforms of the proton charge and magnetic moment

distributions in the non-relativistic limit:

Gp
E,M(Q2) =

∫
ρpE,M(~x) ei~q·~xd3x. (2.20)

This can be achieved in the Breit frame (or the brick wall frame), as shown in Fig. 2.3.

In this frame, the proton bounces back as if it is hitting a brick wall, after absorbing

the virtual photon. The proton has the same energy and momentum magnitude after

the scattering but the direction is flipped. With the z-axis pointing in the direction

of the incident proton, it is straightforward to write down the following formulae for

the kinematic variables in this frame:

Ep = Ep′ ,

ν = 0,

~p = −~p′ = 1

2
~q,

Q2 = |~q|2. (2.21)
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Assuming the density distributions are spherically symmetric and if one takes the

Taylor expansion at the Q2 → 0 limit, then:

Gp
E,M(Q2) =

∫ (
1 + i~q · ~x− (~q · ~x)2

2
+ . . .

)
ρpE,M(~x)d3x

= 1− 1

6
〈rpE,M

2〉Q2 + . . . (2.22)

The mean square charge and magnetic radii can then be identified as1:

〈rpE
2〉 ≡ −6

dGp
E(Q2)

dQ2

∣∣∣∣
Q2=0

, (2.23)

〈rpM
2〉 ≡ − 6

µp

dGp
M(Q2)

dQ2

∣∣∣∣
Q2=0

. (2.24)

These two quantities are in general close to each other, but do not have to be the

same. The charge radius is related to the charge density distribution, while the

magnetic radius is related to the current density distribution. It would be interesting

to see what lattice QCD calculations [32] will predict for the relationship between

the two in the future.

This Fourier transform interpretation of the form factors (Eq. 2.22) was first

proved by Sachs in 1962 [33]. Note that after using the Gordon decomposition

u(p′)γµu(p) = u(p′)

[
(p+ p′)µ

2M
+ iσµν

(p′ − p)ν
2M

]
u(p), (2.25)

to replace the tensor term in Eq. 2.11, it is easy to show that the proton 4-vector

1As the work of this dissertation focuses only on the proton charge radius, we will use rp ≡ rpE for
simplicity.
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transition current can be written as

Jµ = e u(p′)

[
γµ(F1 + κF2)− (p+ p′)µ

2M
κF2

]
u(p) ei(p

′−p)·x. (2.26)

Using Eq. 2.8 and Eq. 2.10, it is straightforward to show that in the Breit frame, the

proton transition current becomes:

Jµ = 2Meχ′
†
(
Gp
E(Q2), i

~σ × ~q
2M

Gp
M(Q2)

)
χ, (2.27)

where the time-like component Gp
E(Q2) is clearly related to the charge density of the

proton while Gp
M(Q2) is related to the space-like components and thus related to the

magnetization density of the proton. To obtain the Fourier transform interpretation

as in Eq. 2.20, one can compute the moments of density distributions and take the

non-relativistic (Q2 → 0) limit, as shown in Appendix II of [33].

In the modern physics context, it is more appropriate to define a two-dimensional

charge density distribution in the transverse space [10]. In fact, a three-dimensional

charge density distribution cannot be defined properly because the longitudinal com-

ponent is clearly frame-dependent due to Lorentz contraction. A transverse charge

density distribution can be defined in the infinite-momentum frame [10]:

ρ(b) ≡
∑
q

eq

∫
dx q(x,~b) =

∫
d2q

(2π)2
F1(Q2 = ~q 2)e−i~q·

~b, (2.28)

where b is the transverse distance from the z−axis (along the longitudinal direction),

F1 is the Dirac form factor as appeared in Eq. 2.13, and the summation is performed

over all quark flavors. In this case, the mean square charge radius can be determined

as:

〈b2〉 =

∫
d2b b2 ρ(b) = −4F ′1(0). (2.29)
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In other words, the quantity defined in Eq. 2.23 is not strictly related to the second

moment of the three-dimensional proton charge density distribution. In Chapter 1,

we mentioned that the proton charge radius can also be measured using hydrogen

spectroscopy. Thus, it is important to examine whether these two different experi-

mental methods are measuring the same quantity. This consistency is presented in

Ref. [10], which shows that the quantity defined in Eq. 2.23 is indeed responsible for

the shift in the transition frequency of atomic energy levels due to the proton finite

size effect:

∆E = −4παG′
p
E(0)|ψn0(0)|2δl0

= 4πα
r2
p

6
|ψn0(0)|2δl0. (2.30)

where |ψn0(0)| is the electron wave function at the origin in coordinate space and the

term is non-vanishing only for a S-state (l = 0). However, it is worth noticing that in

the spectroscopic case, the measurement is done at Q2 = 0 while for the scattering

experiments, the quantity is accessed through an extrapolation from low Q2 form

factor measurements down to Q2 = 0.

2.3 Proton Form Factors from e− p Scattering Experiments

The cross section for the e − p elastic scattering is shown in Eq. 2.16, which con-

tains the contributions from both the electric and magnetic form factors. In order

to separate them, in principle, one would need to have at least two independent

measurements at the same Q2. Some techniques for the unpolarized e − p elastic

scattering will be introduced in Sub-section 2.3.1, including the most commonly ap-

plied Rosenbluth separation method [34], which requires multiple measurements of
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the unpolarized cross section at the same Q2. Another method is to use the polarized

e − p elastic scattering, which is sensitive directly to the form factor ratio Gp
E/G

p
M .

In this case, the two form factors can be de-coupled by combining the ratio measure-

ment with the unpolarized cross section measurement. The polarized e − p elastic

scattering will be discussed in Sub-section 2.3.2 and Sub-section 2.3.3.

2.3.1 Unpolarized Measurements

The most commonly applied technique to extract Gp
E and Gp

M from the unpolarized

e− p elastic scattering cross section is the Rosenbluth separation method [34]. First

of all, one needs to re-write the cross section (Eq. 2.16) into a reduced form

( dσ
dΩ

)
reduced

= (1 + τ)
ε

τ

(
dσ
dΩ

)
ep(

dσ
dΩ

)
Mott

= (Gp
M(Q2))2 +

ε

τ
(Gp

E(Q2))2, (2.31)

where (dσ/dΩ)ep is the Rosenbluth formula (Eq. 2.16). And then, one can obtain

(Gp
M)2 and (Gp

E)2/τ from the intersection and slope of a linear fit to the reduced

cross sections at the same Q2 but with different values of ε. This can be achieved

by using different beam energies and scattering angles. An example is presented in

Fig. 2.4 where the data points are normalized by the standard dipole form factor:

GD =
1

(1 + Q2

0.71(GeV/c)2
)2
. (2.32)

Alternatively, one can parameterize Gp
E and Gp

M with different functions, and then

fit the unpolarized cross section directly to extract the two form factors. Such a

technique was used in the Mainz 2010 analysis [5] and a global analysis work [35].

Lastly, in a very low Q2 region and especially when the scattering angles θ are

small, the cross section is completely dominated by the electric form factor. This
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Figure 2.4: An example demonstrating the Rosenbluth separation technique. Data
points are shown for the Q2 values of 2.5 (open triangles), 5.0 (open circles) and 7.0
(filled triangles) (GeV/c)2. The straight lines are linear fits to the corresponding data
points. The figure is obtained from Ref. [34].
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is due to the kinematic factor τ/ε in front of the magnetic form factor. One can

extract Gp
E alone assuming Gp

M follows certain models or parameterizations, with an

associated systematic uncertainty taken into account. This approach was adopted in

the analysis of Simon [36], in which a simple scaling relation

Gp
E =

Gp
M

µp
(2.33)

was assumed. The Q2 coverage of this experiment was from 0.005 to 0.055 (GeV/c)2.

For the PRad experiment, the maximum Q2 is comparable to that of Ref. [36], but

the value for the minimum Q2 is one order of magnitude lower. At the same time, the

scattering angular range (0.7◦ to 7.0◦) is very small so that ε is nearly 1 (0.99243 to

0.99993), which is its maximum. One would expect a smaller systematic uncertainty

for the PRad experiment, if a similar approach is applied.

Previous unpolarized e−p elastic scattering experiments were typically done with

the magnetic spectrometer method, in which the spectrometer needed to be shifted

to different angles in order to cover the desired angular or Q2 range. A classical

example of this type of experiment is the Mainz 2010 measurement [5], which took

place at the Mainz Microtron. In this experiment, over 1400 cross section data points

were measured, covering Q2 from 0.004 to 1 (GeV/c)2, with statistical uncertainties

better than 0.2% per point. The experiment used a liquid hydrogen target system,

and three spectrometers, with one of the spectrometers in a fixed position in order

to determine the relative luminosity. The extracted Gp
E and Gp

M parameterizations,

obtained by fitting the cross section data points, are shown in Fig. 2.5, and compared

to the results obtained from a number of previous experiments. The extracted proton

charge radius from this experiment is 0.879(5)stat.(4)syst.(2)model.(4)group fm, and the

proton magnetic radius is 0.777(13)stat.(9)syst.(5)model.(2)group fm.
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Figure 2.5: The extracted proton Gp
E and Gp

M parameterizations from the Mainz
experiment [5]. The figures are obtained from Ref. [5].

21



Figure 2.6: The proton electric form factor results from the Saskatoon experiment,
obtained by measuring the recoil proton from the elastic e− p scattering. The solid
line is a least-squares fit to the data points. The figure is taken from Ref. [37].

Most of the unpolarized e − p cross section measurements, including the Mainz

2010 and the PRad experiments, were done by detecting the scattered electrons.

Equivalently, one can measure the cross section by detecting the recoil proton. In this

case, one would integrate over the electron variables in Eq. 2.4 instead of the proton

variables. One of the major advantages of this approach is that the radiative effects

are significantly smaller for the protons than for the electrons. An experiment of

this kind was performed in Saskatoon, Canada, and the results [37] were published in

1974. The proton electric form factor results, covering Q2 from 5.8×10−3 to 3.1×10−2

(GeV/c)2, are shown in Fig. 2.6. The scaling relation Eq. 2.33 was assumed in the

extraction. The proton charge radius determined from this experiment is 0.81(3) fm.
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2.3.2 Polarization Transfer Measurements

Most of -and especially early- proton from factor measurements, were obtained by

measuring the unpolarized e − p elastic scattering cross sections and by using the

Rosenbluth separation method. This method works very well in the kinematic re-

gion where both electric and magnetic form factors contribute to the cross section

significantly. However, due to the kinematic factor τ/ε appearing in front of Gp
M

(see Eq. 2.16), the electric form factor will dominate the cross section if Q2 and θ

are small, while the magnetic form factor becomes dominant at high Q2 and large

scattering angles. Thus, the electric form factor data obtained in this way typically

have large uncertainties in the high Q2 region while the magnetic form factor uncer-

tainties are larger in the low Q2 region. In addition, the Rosenbluth method may be

more sensitive to systematic uncertainties that are beam-energy-dependent. These

difficulties may be overcome by using the polarized e − p elastic scattering, which

allows one to measure directly the form factor ratio Gp
E/G

p
M at a given Q2 point, in

addition to the cross section measurement. One of the techniques is the polarization

transfer measurement. In this case, one uses a longitudinally polarized electron beam

and an unpolarized proton target, and then measures the polarization transferred to

the recoil proton. The form factor ratio can be expressed as [38]

Gp
E

Gp
M

= −Pt
Pl

E` + E`′

2M
tan

θ

2
, (2.34)

where Pt and Pl are the transverse and longitudinal components of the proton polar-

ization in the lepton scattering plane (defined by the incident and scattered leptons).

One of the very recent measurements using this technique is the Jefferson Lab E08-

007 experiment [38], performed in the experimental Hall A. The experiment was

performed using a 1.2 GeV polarized electron beam and a cryogenic hydrogen target.
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Figure 2.7: Proton form factor ratio measurements in the low Q2 region, obtained
using the polarized e− p elastic scatterings. The figure is taken from Ref. [38].

The scattered electrons were measured by the BigBite spectrometer, and the recoil

protons were measured by the High Resolution Spectrometer (HRS) where a focal

plane polarimeter was installed to measure the polarization of the recoil protons.

The form factor ratios extracted from this experiment, covering Q2 from 0.3 to 0.7

(GeV/c)2, are shown in Fig. 2.7.

These types of measurements have had a profound impact on our understanding of

the nucleon form factors. The Q2 dependency of Gp
E and Gp

M was expected to be the

same in the highQ2 region, which was also supported by the form factor data obtained

using the Rosenbluth separation method, as shown in the top plot of Fig. 2.8. The

polarization transfer measurements, on the other hand, suggest that Gp
E decreases

faster than Gp
M in this region. This discrepancy triggered intensive theoretical and

experimental efforts, and it has been found that the discrepancy could be largely

explained by the Two-Photon Exchange (TPE) effect [39, 40], which was missing in
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the earlier analyses using the Rosenbluth separation method. The TPE corrected

form factor ratios from the Rosenbluth separation method are shown in the bottom

plot of Fig. 2.8, and are compared to the polarization transfer measurements.

Individual form factors can be obtained by combining the ratio measurements

with unpolarized cross section measurements. And the proton charge and magnetic

radii can be constrained by the low Q2 ratio measurements. A number of global

analyses of this type are presented in Ref. [13, 35, 38].

2.3.3 Double Polarization Measurements

The proton form factor ratio Gp
E/G

p
M can also be extracted from a double polarization

experiment, with a longitudinally polarized electron beam and a polarized proton

target. In this case, the differential cross section for the e − p elastic scattering can

be expressed as [41]

dσ

dΩ
= Σ + h∆, (2.35)

where Σ is the unpolarized differential cross section as shown in Eq. 2.16. h is the

helicity of the incident electron (+1 for positive helicity and -1 for negative helicity),

and ∆ is the spin-dependent differential cross section:

∆ = −
(
dσ

dΩ

)
Mott

f−1
recoil[2τvT ′ cos θ∗(Gp

M)2

− 2
√

2τ(1 + τ) vTL′ sin θ
∗ cosφ∗Gp

MG
p
E],

(2.36)

where frecoil = 1+2ε sin2 (θ/2)/M, vT ′ =
√

1/(1 + τ) + tan (θ/2) tan (θ/2) and vTL′ =

−(1/
√

2)/(1 + τ) tan (θ/2). The angles θ∗ and φ∗ are the polar and azimuthal angles

of the proton polarization in the frame with the x− z plane defined by the incoming

and outgoing electrons, and with the z-axis along the direction of the virtual photon,
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Figure 2.8: Proton form factor ratios obtained using the Rosenbluth separation
method (red open circles), and polarization transfer measurements (blue solid dia-
monds). The Rosenbluth results are shown without (with) the TPE correction in the
top (bottom) plot. The figure is taken from Ref. [35]
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Figure 2.9: Born level diagram for the double polarization e− p elastic scattering.
The z-axis is along the direction of the virtual photon and the x− z plane is defined
by the incoming and outgoing electrons.

as shown in Fig. 2.9. One can then construct the spin-dependent asymmetry

A =
σ+ − σ−

σ+ + σ−
=

∆

Σ

= −
2τvT ′ cos θ∗ (Gp

M)2 − 2
√

2τ(1 + τ)vTL′ sin θ
∗ cosφ∗Gp

MG
p
E

(τ(Gp
M)2 + ε(Gp

E)2)/[ε(1 + τ)]
,

(2.37)

and extract the form factor ratio Gp
E/G

p
M by measuring cross sections with positive

(σ+) and negative (σ−) helicities.

In reality, the measured experimental spin-dependent asymmetry will be diluted

by the polarization of the electron beam Pb and the polarization of the target Pt so

that

Aexp = PbPtA. (2.38)

One can measure two experimental spin-dependent asymmetries Al and Ar, at the

same Q2 but with different proton spin orientations (θ∗1, φ∗1) and (θ∗2, φ∗2). This can

be achieved conveniently by using a detector that has two symmetric components

around the incident electron beam. It will allow one to measure simultaneously the
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two asymmetries with the same target proton spin orientation in the lab frame. And

then, one can extract the form factor ratio and the product of the two polariza-

tions simultaneously. Or one can take the super ratio between the two experimental

asymmetries in order to cancel out the polarizations [2], so that

R =
Al
Ar

=
2τvT ′ cos θ∗1 (Gp

M)2 − 2
√

2τ(1 + τ)vTL′ sin θ
∗
1 cosφ∗1G

p
MG

p
E

2τvT ′ cos θ∗2 (Gp
M)2 − 2

√
2τ(1 + τ)vTL′ sin θ∗2 cosφ∗2G

p
MG

p
E

. (2.39)

The proton electric and magnetic factors can be de-coupled by combining the form

factor ratio measurements with unpolarized e − p elastic scattering cross section

measurements, similar to the polarization transfer experiments.

This double polarization technique was pioneered by the Bates Large Acceptance

Spectrometer Toroid (BLAST) experiment at MIT-Bates [42], which measured the

form factor ratio from 0.15 to 0.65 (GeV/c)2. The experiment utilized the BLAST

detector [43] (Fig. 2.10), which was equipped with an eight-sector, toroidal, magnetic

field. The two horizontal sectors had detector components installed, which were

symmetric around the beam and simultaneously measured the two experimental spin-

dependent asymmetries, Al and Ar. The experiment also used a windowless target

tube that could be fed with polarized protons produced from either an Atomic Beam

Source or a Laser Driven Source. The extracted proton form factor ratios from this

experiment are shown in Fig. 2.10. The individual form factor can be extracted by

combining the ratio measurements with unpolarized e−p cross section measurements.

Fig 2.11 shows the improvement on Gp
E and Gp

M due to the BLAST form factor

ratio measurements, when combining with world unpolarized e − p cross section

measurements [44, 45, 46, 47, 48, 49, 50, 51, 52]. This technique will be used in an

experiment at the Mainz Energy-Recovering Superconducting Accelerator (MESA),

which will measure the ratio down to Q2 = 0.005(GeV/c)2 [53].
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Figure 2.10: Top plot: Main detector components for the BLAST detector. The fig-
ure is taken from Ref. [43]. Bottom plot: Proton form factor ratio Gp

E/G
p
M extracted

from the BLAST experiment at MIT. The figure is taken from Ref.[42].
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Figure 2.11: Compilation of the Gp
E/GD (top plot) and Gp

M/(µpGD) at BLAST
kinematics with (red square) and without (blue dot) BLAST form factor ratio mea-
surements. The figures are taken from Ref. [42].
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2.4 Hydrogen Sepctroscopy

The proton charge radius can also be extracted from hydrogen spectroscopic experi-

ments, in which the transition frequency between two different hydrogen energy levels

is measured and the proton charge radius is extracted based on high precision bound-

state QED calculations. In the non-relativistic limit and considering the proton to

be infinitely heavy, the time-independent Schrödinger equation is

[
− ~p

2

2m
+ V

]
ψ(~r) = Eψ(~r), (2.40)

where V = −Zα/r is the Coulomb potential of a point-like nucleus with charge Z

(Z = 1 for a hydrogen atom), m is the mass of the electron and α is the fine structure

constant. The energy levels can be obtained by solving the Schrödinger equation

En = −m(Zα)2

2n2
= −2πR∞

Z2

n2
, (2.41)

where n is the principal quantum number, and R∞ = α2m/(4π) is the Rydberg con-

stant. This is the well-known Bohr energy levels. Although the wave functions ob-

tained with this model depend also on the orbital angular momentum l = 0, 1, . . . , n−

1 and the projection of the orbital angular momentum mz = 0,±1, . . . ,±l, all energy

levels with the same principal quantum number share the same energy. The finite

nuclear mass correction can be easily achieved by replacing the electron mass with

the reduced mass of the system: mr = mM/(m + M), where M is the mass of the

nucleus.

Considering the relativistic energy dependency and the electron spin, a better

description for the hydrogen energy levels can be obtained from the Dirac equation.
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In the case of an infinitely heavy proton, the energy levels can be expressed as [3, 54],

Enj = mf(n, j), (2.42)

where j = 1/2, 3/2, . . . n− 1/2, is the total angular momentum and

f(n, j) =

1 +
(Zα)2(√(

j + 1
2

)2 − (Zα)2 + n− j − 1
2

)2


− 1

2

. (2.43)

Notice that in this case, the degeneracy is lifted by the total angular momentum.

However, the energy levels with the same n and j but different l = j ± 1/2 remain

degenerate, such as the 2S1/2 and 2P1/2 states. For the Dirac energy levels, the finite

nuclear mass correction can not be achieved by simply replacing the electron mass

with the reduced mass of the system. Instead, a leading relativistic correction with

an exact mass dependency can be obtained, up to the (Zα)4 order, with an effective

Hamiltonian [3],

H = H0 + VBr, (2.44)

where H0 is the non-relativistic Hamiltonian

H0 =
~p 2

2m
+

~p 2

2M
− Zα

r
, (2.45)

and VBr is the Breit potential

VBr =
πZα

2

(
1

m2
+

1

M2

)
δ3(~r)− Zα

2mMr

(
~p 2 +

~r(~r · ~p) · ~p
r2

)
+
Zα

r3

(
1

4m2
+

1

2mM

)
[~r × ~p ] · ~σ.

(2.46)
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The result for the energy level is presented in Ref. [3, 55]:

Enjl =(m+M) +mr[f(n, j)− 1]− m2
r

2(m+M)
[f(n, j)− 1]2

+
(Zα)4m3

r

2n3M2

(
1

j + 1
2

− 1

l + 1
2

)
(1− δl0),

(2.47)

where the first two terms are the rest masses, the third term takes into account

the reduced mass effect of the system, and the last two terms are recoil corrections.

Notice that the degeneracy in the Dirac energy levels, with the same n and j but

different l = j ± 1/2, is lifted by the last term in the expression.

The transition frequency between 2S1/2 and 2P1/2 states of a hydrogen atom was

measured by Willis Lamb and Robert Retherford in 1947 [56]. The 2S1/2 state was

found to be higher than the 2P1/2 state by 1 GHz. This difference is certainly not pre-

dicted by the Dirac energy level (Eq. 2.42) and it is still too large for the l-dependent

term in Eq. 2.47, which contributes about 2 kHz to the transition frequency. This

discrepancy was first explained by Bethe in the same year [57]. The main contribu-

tion to this shift is the electron self-energy radiative correction, by emitting and then

absorbing a virtual photon. This effect will smear out the position of the electron

over a certain range and its charge distribution is spread out instead of being a point

charge. This effect shifts the 2S1/2 energy level more than the 2P1/2 as the electron

is much closer to the proton in the former case. Generally speaking, the Lamb shift

includes all the contributions to the energy level, beyond the first three terms in

Eq. 2.47 and without considering the hyperfine splitting. There are four major items

considered in the Lamb shift [54]. Listing with a decreasing order on the contribution,

they include radiative corrections (such as the self-energy and vacuum polarization),

recoil corrections (due to the finite nuclear mass), radiative-recoil corrections (mixed

terms between radiative and recoil corrections) and the finite nuclear size correction.
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For a hydrogen atom and in the non-relativistic case, the leading order contribution

due to the proton finite size effect is given by Eq. 2.30. This proton finite size effect

originates from the slope of the proton electric form factor at Q2 = 0. For a muonic

hydrogen atom, the proton size contributes to roughly 2% of the Lamb shift [1] be-

tween the 2S1/2 and 2P1/2 energy levels, while for an ordinary hydrogen atom, the

contribution is only about 0.014% [54].

The basic strategy of a hydrogen spectroscopic measurement for the proton charge

radius involves measuring the transition frequency between two different energy lev-

els. The proton charge radius is extracted with all the other terms calculated within

the framework of QED. Generally speaking, there will be two unknowns for a tran-

sition frequency. One is the proton charge radius, and the other one is the Rydberg

constant R∞. There are two types of spectroscopic measurements [9]. One is the

small splitting measurement, which measures the transition frequency between two

states that have the same principal quantum number n. In addition, the proton finite

size effect is only significant if the S-state is involved, for example, the 2S-2P transi-

tion. In this case, the main contributions to the transition frequency are cancelled as

the two states share the same principal quantum number, and the Rydberg constant

is known precisely enough from external measurements. Recent experiments of this

type include the two muonic hydrogen Lamb shift measurements (2SF=1
1/2 - 2PF=2

3/2 and

2SF=0
1/2 - 2PF=1

3/2 ) [1, 6], and the 2019 ordinary hydrogen Lamb shift measurement [20]

(2SF=0
1/2 - 2PF=1

1/2 ). The other type of spectroscopic measurements is the large splitting

measurement, which measures the transition frequency between two states with dif-

ferent principal quantum numbers. In this case, the contribution due to the proton

finite size effect is much smaller relatively and the Rydberg constant is not known

precisely enough. The solution is to measure two transition frequencies at the same

time and then solve for both rp and R∞ with two equations. In fact, the high pre-
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cision Rydberg constant is determined from these types of measurements, and thus

it is highly correlated with the proton charge radius. Typically, the 1S-2S transition

is measured as one of the equations, as the transition frequency can be determined

very precisely. And again the other transition will have an S-state involved in order

to include the proton finite size effect. The 2017 [18] and 2018 [19] hydrogen spec-

troscopy results were both obtained from experiments of this type. They measured

the transition frequencies between the 2S-4P and 1S-3S states, respectively.

The most precise measurements of the proton charge radius were obtained with

the muonic hydrogen Lamb shift measurements [1, 6], performed at the Paul Scherrer

Institute. Since the muon is about 200 times heavier than the electron, they orbit

about 200 times closer to the proton and are more sensitive to the proton finite size

effect. First of all, these experiments had a low energy muon beam injected into the

target hydrogen gas in order to form muonic hydrogen. 99% of the muonic hydrogen

atoms would de-excit almost immediately to the ground state, with only 1% of them

de-exciting to the meta-stable 2S state (life time about 1 µs), and these were the

events of interest (see A in Fig. 2.12). A laser with tunable frequency was then used

to drive the muons from the 2S state towards the 2P state. Once the muons reached

the 2P state, they would de-excit immediately to the ground state, emitting a 1.9 keV

Kα X-ray (see B in Fig. 2.12), which was measured in coincidence with the incident

laser pulse and the electron from the muon decay (µ− → e−νµνe). The measured

frequency for 2SF=1
1/2 - 2PF=2

3/2 transition is shown in Fig 2.13 from the 2010 Lamb shift

experiment [1].
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Figure 2.12: A: The muonic hydrogen de-excitation after being captured by a pro-
ton. B: Laser driven 2S-2P transition and the subsequent de-excitation of the muon
into the ground state. C: 2S and 2P energy levels, with the green and blue arrows
indicating the two transitions measured by the muonic Lamb shift experiments [1, 6].
This figure is taken from Ref. [6].
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Figure 2.13: The measured frequency for 2SF=1
1/2 - 2PF=2

3/2 transition of a muonic

hydrogen atom. The figure is taken from Ref. [1].
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Chapter 3

The Experiment

3.1 Overview

The PRad experiment (E12-11-106) [28] was performed in 2016 in Hall B at Jefferson

Lab, with both 1.1 and 2.2 GeV unpolarized electron beams on a windowless H2 gas-

flow target. The experiment measured the elastic e − p scattering cross section and

the proton electric form factor Gp
E in the Q2 range 2.1 × 10−4 − 0.06 (GeV/c)2.

The luminosity was monitored by simultaneously measuring the Møller scattering

process (e − e scattering), which is a well known QED process. The absolute e − p

elastic scattering cross section was normalized to that of the Møller scattering in

order to cancel out the luminosity. The PRad experimental apparatus is shown in

Fig. 3.1. This experiment used a hybrid electromagnetic calorimeter (HyCal) to

detect both the energies and scattering angles of the electrons from both elastic e−p

and e − e scatterings. Their scattering angle measurements were further improved

by two Gas Electron Multiplier (GEM) detectors that were placed side by side in

front of the HyCal. These detectors provided a scattering angular coverage from

0.7◦ to 7.0◦ and a full azimuthal angular coverage. To have a better control over the

systematic uncertainties, a 4 cm long, windowless, cryo-cooled H2 gas-flow target was

used in order to remove the majority of the backgrounds generated from the target

cell windows. This target cell was placed inside a target chamber, which was equipped

with multiple turbo pumps in order to maintain a low pressure along the beam-line.

A 5 m long, two-stage vacuum chamber was connected to the target chamber in
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Figure 3.1: Top plot: 3D Schematic layout of the PRad experimental setup in
Jeferson Lab, Hall B. Bottom plot: 2D side view of the PRad experimental setup
with scales indicated.

order to protect the scattered electrons from other background sources. This vacuum

chamber was closed at the downstream end by a 1.6 mm thick aluminum vacuum

window. Before the production runs, the Hall B bremsstrahlung photon tagger was

used to produce high intensity photon beam, in order to calibrate the HyCal. In this

chapter, each important component of the experimental setup will be introduced.
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Data set Beam energy (MeV) Uncertainty (MeV)
1.1 GeV 1101.0 0.5
2.2 GeV 2143.0 1.5

Table 3.1: Central values and uncertainties of the beam energies for the 1.1 and
2.2 GeV data sets.

3.2 The electron beam

The electron beam of the experiment was provided by the Continuous Electron Beam

Accelerator Facility (CEBAF) at Jefferson Lab. There are in total 4 experimental

halls in this facility and the PRad experiment was performed in Hall B. This exper-

iment was one of the first experiments to run after the accelerator upgraded from

6 GeV to 12 GeV beam energy [58]. CEBAF is a recirculating linear accelerator, as

shown in Fig. 3.2. It consists of two linear sections that are connected by two recir-

culating arcs. Each linear section contains multiple cyromodules that can provide in

total about 1.1 GeV energy to the beam energy. The recirculating arcs contain sep-

arated beam lines that are equipped with different dipole and quadrupole magnets.

They can recirculate the electron beam back to the linear section for a maximum of 5

times. This will provide a maximum 11 GeV electron beam to Hall A, B and C. The

electron beam can be accelerated one more time in the north linear section, delivering

a maximum 12 GeV electron beam to Hall D. The electron beam consists of small

bunches that are separated by either 2 ns or 4 ns. The bunch length is typically less

than 100 microns in distance [59].

Two different beam energies were used in this experiment. Table 3.1 shows the

central values and the associated uncertainties from the offline analysis1. The energy

1The nominal beam energy for the second pass beam from the JLab linear accelerator should be
around 2.2 GeV. The actual beam energy 2143 MeV determined later on was slightly less than
the requested value of this experiment, but we will still use the 2.2 GeV as a label for the data
set taken with the second pass beam, with the understanding that the actual beam energy was
slightly lower.
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Figure 3.2: An overview of CEBAF at Jefferson Lab.

spread of the electron beam was at the level of 3 × 10−5, which was significantly

smaller than the uncertainty in the central value. The beam position and beam

current were monitored continuously during the experiment by Hall B beam position

monitors (BPM). In order to study the associated systematic uncertainties, various

beam currents were used during the data taking. For the 1.1 GeV data set, the

majority of runs were taken with 15 nA while others were taken with 10 nA. For

the 2.2 GeV data set, the designated beam current was 55 nA, with several reference

runs at 15 nA, 25 nA and 40 nA. The beam profile was also measured multiple times

in a data taking period, by various harps in Hall B. An example of the harp scan is

shown in Fig. 3.3. The typical profile could be reasonably well described by Gaussian

distributions, with their widths at the level of 20 µm.
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Figure 3.3: Example of the beam profile measured by harps during the PRad ex-
periment.
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Figure 3.4: The target cell used in the PRad experiment. The cell is a cylinder
with 4 cm length and 5 cm in diameter.

3.3 Target system

The target used in the experiment was a windowless H2 gas-flow target, in order to

remove backgrounds generated from the direct interaction between the electron beam

and target cell windows. The total length of the target was 4 cm (Fig. 3.4). The body

of the cell was made of high conductivity copper C101 and the windows were made of

kapton foils with 7.5 µm thickness. Two small orifices with diameters of 4 mm were

opened at both ends to allow the electron beam to pass through, effectively achieving

the windowless target cell.

The target cell was suspended inside the PRad target chamber (Fig. 3.5) using

a carbon fiber tube, and its position was tunable with a 5-axis motion controller.

The electron beam delivered by CEBAF typically is very sharp and narrow (see
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Fig. 3.3) but may be accompanied by a long tail that is much wider but lower in its

intensity (beam halo). Thus, the lateral position of the target cell was fine-tuned at

the beginning of each data taking period to align the target cell with the electron

beam so that the main beam could pass the orifices, and to minimize the background

generated from the beam halo hitting the kapton foils. For full target runs, the H2

target gas was cooled to approximately 20 K with a Cryomech pulse tube refrigerator

PT810, prior to be filled inside the cell at a rate of 600 sccm. This was the first time

that a gas-flow target was used on an external beam-line at CEBAF. Due to the

fact that the gas was flowing out of the cell from both orifices, and the importance

to maintain a low background pressure inside the target chamber and the beam-line

vacuum, we needed to pump away the gas flowing into the target chamber from the

target cell. Thus, the target chamber was connected to three Pfeiffer 3200 turbo

pumps and fore pumps to remove leaking H2 gas from the orifices. The chamber

was also connected to an upstream and a downstream chamber. Each of them was

connected to a Pfeiffer 1500 turbo pump and a fore pump in order to maintain low

pressure along the beam-line. With the understanding that the H2 gas inside the

target chamber could be a background source that contaminates the measurement,

empty target runs were taken every few hours. The purpose was to subtract this

background H2 gas contribution, together with contributions from other beam-line

objects like the beam halo blocker (see Fig. 3.1) and target cell windows. For these

empty target runs, the H2 gas was filled in at the same flow rate directly into the

target chamber through a second inlet, in order to mimic the residual gas distribution

far away from the target cell. All the other conditions remained the same as for the

full target runs, for which the second inlet was valved off during the data taking.

More related details will be presented in Section 4.5.1.

Various pressure gauges were used during the experiment to continuously measure
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Figure 3.5: 3D view of the PRad target system.

the pressure at different locations of the target system. For full target runs when H2

target gas was filled inside the cell, the cell pressure was measured to be about

480 mTorr, which achieved approximately an areal density of 2× 1018 H atoms/cm2.

The pressure of the target chamber was measured to be about 2.5 mTorr while the

pressure for the rest of the beamline was kept below 0.1 mTorr. For empty target

runs, the measured target chamber pressure was about 2.9 mTorr.

A 5 m long, two-stage vacuum chamber was connected to the target downstream

chamber in order to protect the scattered electrons from other background sources.

This vacuum chamber was closed at the downstream end by a 1.6 mm thick aluminum

vacuum window, immediately in front of the GEM detectors.
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3.4 Gas Electron Multiplier

The GEM detector [60] is a novel gaseous tracking device that is able to measure

the position of a charged particle, with a position resolution around 100 µm. The

working principle of the detector is illustrated in Fig. 3.6. As an ionizing charged

particle enters the chamber, its electric field strips primary ionized electrons from

the gas (mixture of 70% argon and 30% CO2 for PRad GEMs) in the drift layer.

These primary ionized electrons are accelerated toward the triple-GEM foils a few

mili-meters underneath. These GEM foils consist of a 50 µm kapton foil in the middle

with both sides coated by thin copper layers with a few microns of thickness. High

density of holes (140 µm in pitch and 70 µm in diameter) are pierced through these

GEM foils in order to create a strong electric field inside these holes when a high

voltage is applied to the two copper layers, as shown in Fig 3.7. Once the primary

ionized electrons pass through these holes, they are able to strip even more electrons,

resulting in a so-called avalanche process, which is able to amplify the initial signal.

These avalanche electrons will eventually reach the readout strips that are attached

to the readout plane near the bottom of the chamber, and lead to detectable signals

by depositing their charges. The PRad GEMs utilized two sets of readout strips,

with a 90◦ stereo-angle and a 400 µm pitch, corresponding to the (X − Y ) Cartesian

coordinate.

PRad used two rectangular GEM detectors, which were the largest GEM detectors

worldwide at the time they were assembled. The dimensions are about 55 cm in width

and 123 cm in length (see Fig. 3.8). The group at University of Virginia designed

and constructed them in 2015 and Duke graduate student Yang Zhang participated

in the assembling and testing of these detectors. The two GEM detectors were placed

side by side with a 4.4 cm × 123 cm overlapping area in front of the calorimeter, in
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Figure 3.6: Working principle of GEM. The figure is taken from [61]

Figure 3.7: The electric field produced by a GEM foil. The figure is taken from
[60]
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Figure 3.8: PRad GEM detectors in the Experimental Equipment Lab at JLab.

order to fully cover its detection region. Each GEM detector had a 4.4 cm × 4.4 cm

hole located at the center of one of the edges to allow the beam pipe to go through.

To prevent GEM foils from direct contact with each other, multiple dielectric

spacers were placed in between them. These spacers are about 3 mm in thickness

and their locations are indicated in Fig. 3.9 as the black solid lines. They can cause

about 3% loss of detection efficiency for PRad GEMs. Each GEM foil was sub-

divided into 60 high voltage sectors, separated by 100 µm gaps. These gaps may also

cause inefficiencies for the GEMs but the effect is significantly smaller compared to

that from the spacers. This effect is shown in Fig. 3.10, where the hit positions of

e − p elastic scattering events on GEMs are shown along one of the readout strip

directions. The large spikes (as indicated in the plot) are due to the GEM spacers,

the much smaller spikes are due to the gaps between the high voltage sectors. The
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Figure 3.9: Design for the PRad GEM detector. Black solid lines indicate the
location of the spacers. The plot is made by Xinzhan Bai of University of Virginia.

GEM efficiency losses due to these spacers and gaps between high voltage sectors

were measured using the data and modeled in the simulation.

The position resolutions of these GEM detectors are typically at the level of

100 µm. For PRad GEMs, the resolution is about 72 µm, which is at least 20 times

better than the position resolution of HyCal. A detected particle by the calorime-

ter will eventually have its reconstructed position replaced by that from the GEM

detectors. Thus, they are able to significantly improve the scattering angle and Q2

resolution of the PRad setup.

3.5 Hybrid Calorimeter

The calorimeter used in this experiment is a hybrid electromagnetic calorimeter [62],

constructed by the PrimEx collaboration [63] and Jefferson Lab, and used during the

PrimEx-I and PrimEx-II experiments [64, 65]. It consists of 1152 PbWO4 modules
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Figure 3.10: The hit positions of e−p elastic scattering events on GEMs are shown
along one of the strip directions. The plot is made by Xinzhan Bai of University of
Virginia.

within the central region, arranged in an array of 34 by 34 modules, and surrounded

by 4 sectors of 6 by 24 Pb-glass modules (576 Pb-glass modules in total), as shown

in Fig. 3.11. The dimensions of a PbWO4 (Pb-glass) module (Fig. 3.12) are 2.076 ×

2.076 × 18 cm3 (3.815 × 3.815 × 45 cm3), providing a total radiation length X0 of

20 (17). The lateral dimensions of a module includes the wrapping material as well.

For each PbWO4 module, it was wrapped in a 100 µm VM2000 reflective material to

improve its light collection and then in a 36 µm Tedlar for the light isolation. The

Pb-glass modules were wrapped by 25 µm aluminized mylar foils. The total lateral

dimensions of HyCal are about 116 × 116 cm2. The edges of the PbWO4 detector

region corresponded to a scattering angle of about 3.4◦, and its corners corresponded

to a scattering angle of about 4.8◦. For the Pb-glass detector region, the edges

and corners corresponded to scattering angles of about 5.7◦ and 7.9◦, respectively2.

A hole with the size of 2 by 2 PbWO4 module was opened at the center of the

2For the analysis, a cut was applied to remove particles that were hitting the edges and corners in
the Pb-glass region, so the actual angular coverage would be slightly smaller.
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Figure 3.11: Front view of the HyCal electromagnetic calorimeter. The photo is
taken from [63].

detector to allow the beam pipe to go through. A square shaped tungstate absorber

was located immediately in front of the calorimeter to cover the inner-most layer of

PbWO4 modules (12 modules in total). This absorber would partially block events

with scattering angles from 0.2◦ to 0.6◦, in order to protect these PbWO4 modules

from the ultra-high event rates.

This detector is excellent in detecting and measuring the energy of electrons and

photons. As these particles enter HyCal modules, they will initiate electromagnetic

showers that are cascades of secondary particles including electrons, positrons and

photons, with less and less energy as the showers develop. Even though both PbWO4

and Pb-glass are electromagnetic calorimeters, their working principles are slightly

different. PbWO4 is a scintillating type of calorimeter, for which charged particles

in the shower produce fluorescence light through the ionization process, while Pb-

glass is a Cherenkov type of calorimeter, for which the light is produced by the
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Figure 3.12: PbWO4 (small) and Pb-glass (large) modules of HyCal calorimeter.
The photo is taken from [63].

Cherenkov process of the charged particles in the shower [66]. In both cases, the

produced photons are collected by a photon multiplier tube (PMT) attached to the

back of each module, and the size of the signal is approximately proportional to the

energy of the initial incident electron and photon. The proportionality constants

(calibration constants) can be obtained, if one calibrates the detected signal from the

PMTs to the energy of the incident particle, which needs to be determined by some

additional sources. These constants may depend on various variables, such as the

light attenuation property of the module, the high voltage applied to the PMT and

so on.

Since calibration constants are usually determined at some specific times (calibra-

tion runs for instance) while their dependent variables may not be constant during the

entire experiment, it is necessary to have a particular system to monitor the possible

shifts for these constants. For this purpose, a light monitoring system (LMS) [67]

was adopted, based on a pulsed nitrogen laser. The light produced was delivered to

all HyCal modules by optical fibers that were attached to their front ends, as shown

52



Figure 3.13: Front view of HyCal. Each module has a LMS optical fiber attached
to its front end (1728 modules in total). The photo is taken from [63]

in Fig. 3.13. In addition, the light produced by the same source was delivered to

three additional PMTs (reference PMTs), which also had 241Am radioactive sources

and scintillators attached. The main decay channel of 241Am is α-decay, by emitting

an α particle and a photon that are almost at constant energies. This setup allows

one to calculate a gain correction factor, which can change as a function of time (t)

g(t) =
ALMS
i × Aαref

ALMS
ref

, (3.1)

where ALMS
i is the signal amplitude of the i-th HyCal module due to the LMS light

source, Aαref is the signal amplitude of a reference PMT due to the 241Am radioactive

source and ALMS
ref is the signal amplitude of the same reference PMT due to the LMS

light source. To correct for a calibration constant, one can multiply it by the factor

g(tf )/g(t0), where g(tf ) is the current gain correction factor and g(t0) is the gain

correction factor when the calibration constant was obtained.
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For the PRad experiment, HyCal served as the main detector for two major

purposes. First, the measured energy of the scattered electron was used for the event

selection, which means to select e− p and e− e elastic scattering events and to reject

backgrounds. Second, the total energy deposition in HyCal was used for triggering the

data acquisition system (DAQ) during the production runs (the full target runs and

the empty target runs). Because the performance of Pb-glass modules was expected

to be better at a slightly higher energy than that of this experiment, the total energy

deposition in Pb-glass modules was solely utilized as an additional trigger with a

lower threshold.

3.6 Hall B Photon Tagger

The bremsstrahlung photon tagger [68] in Hall B at Jefferson Lab was used to cali-

brate the HyCal (calibration runs) prior to the data taking of the production runs.

First of all, the electron beam was incident onto a thin wire radiator, and a por-

tion of the electrons would radiate photons through the bremsstrahlung process. As

shown in Fig. 3.14, the electrons would be banded by a dipole magnet placed im-

mediately downstream of the radiator while the radiated photon would move along

the initial electron beam direction and eventually injected into the HyCal. After

the bremsstrahlung radiation, the electrons with different energies will have different

curvatures inside the magnetic field. Their energies and timing information are mea-

sured by 384 partially overlapping E-counters and 61 T-counters, respectively. The

energy of the radiated photon can be determined from the difference between the

electron beam energy and the energy determined by the E-counters,

Eγ = Eb − Ee. (3.2)
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Figure 3.14: The bremsstrahlung photon tagger in Hall B at Jefferson Lab. The
Figure is taken from Ref. [68]

This photon tagger is capable of measuring the energy of the radiated photon from

20% to 95% of the electron beam energy (Eb), up to Eb = 6.1 GeV, and with an energy

resolution of 10−3Eb [68]. The timing resolution of this tagger is about 110 ps [68].

3.7 Triggers and Data Acquisition

This experiment used the CEBAF Online Data Acquisition (CODA) system, which

recorded the data from front-end electronics and wrote into binary data files (evio).

The electronics for HyCal were mostly inherited from the PrimEx experiments [63, 64,

65]. The complete PRad DAQ system for production runs is illustrated by Fig. 3.15.

The signals from the PMTs of HyCal modules were divided into anode and dynode

signals. The anode signals from all 1728 HyCal modules were recorded using 30

ADC1881M modules contained in 3 FastBus crates. The integrated charge within a

280 ns time window from the PMT of each HyCal module was converted into digital
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signals and written into the data stream. These 1728 modules were grouped into 52

Time-to-Digital Convertor (TDC) groups, with about 36 modules in each group. The

dynode signals from all modules within a TDC group were first summed linearly by

using 52 homemade modules (UVA120A) from University of Virginia. A copy of the

produced signals would be sent to the JLab discriminators located in a VME crate.

They were recorded by the CAEN v1990 TDC modules in the data stream as the

timing information for the TDC groups. Signals from the other copy were summed

using 5 NIM modules into a total sum signal, which was then converted into ECL

signal (see Fig. 3.16) and sent to the Trigger Interface (TI) master located in the same

VME crate. The TI master would then distribute the signal to the TI slaves, which

were synchronized to the TI master. The TI slaves would then send signals to all the

controlled crates for recording the triggered events. In addition to the triggers from

the HyCal, the TI master also received triggers from a pulser of the LMS system of

HyCal, and triggers from the 241Am sources attached on the reference PMTs. These

triggers were used to monitor the gain of the HyCal at the beginning of each run of

the data taking.

The total sum signal was also used to trigger the readout system for the GEM

detectors, which was a APV25 [69] based Scalable Readout System (SRS) [70]. 72

APVs, each with 128 channels, were used to record the data from in total 9216

channels from the two GEM detectors. These APV25s are analogue pipe-line readout

chips, which measure the signal amplitudes from the GEM readout strips every 25 ns

and store the information in a 192-cell analogue pipeline. They were connected,

through HDMI connectors, to ADC boards, which were then connected to the Front-

End Concentrator cards (FEC) located in the SRS crate. These FECs are FPGA

based cards and are capable of managing the outputs from the ADC boards and

receiving the triggers. As multiple FECs were used in the PRad experiment, they
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Figure 3.15: The configuration of the PRad DAQ system for the production runs.
This plot is made by Chao Peng of Duke University.

PbWO4

Figure 3.16: Summing all 52 signals from the UVA120A modules, using NIM mod-
ules. The final total sum signal is converted into ECL signal in order to be accepted
by the TI master. This plot is made by Chao Peng of Duke University.
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were connected to a higher level board called Scalable Readout Unit (SRU), which

was connected to the DAQ computer using fibers. The HyCal total sum trigger would

be sent to this DAQ computer, which would forward this signal to a NIM module to

convert it from ECL signal to a NIM signal. This NIM signal would be eventually

sent to the SRU, which would distribute it to the hosted FECs. The output data

consisted of three consecutive samples from each strip in GEMs, measured by the

APV25s, and were transferred to the data stream using a 10 Gb Ethernet.

For the calibration runs, the DAQ configuration was very similar to that of the

production runs, with the exception that the trigger was produced by the Hall B

photon tagger instead of HyCal, and there was an additional data stream to data files,

including the photon energy and timing measured by the tagger. A separated VME

crate (tagger crate) was integrated into the DAQ system, which had an additional

TI master that received the trigger from the tagger and controlled all the TI slaves

shown in Fig. 3.15.

In addition to the data from GEMs and HyCal, the output data also included in-

formation from the Experimental Physics and Industrial Control System (EPICS) and

the scaler events. The EPICS events were taken every few seconds, which included

pressure measurements at various locations along the beam-line, beam positions mea-

sured by various Beam Position Monitors (BPM), the target related gas flow rate,

pressure, temperature, and so on. The scaler events, which were taken every 20 to

50 seconds, contained the information to calculate the dead time of the DAQ system

and the total beam charge. Once the DAQ system received a trigger, it would start

recording the current event, which would take about 20 µs. The system would be in

a “busy mode” and would not be able to response to additional triggers during this

period. This would lead to a “dead time” (tdead) of the system. To measure this, a

pulser with a constant frequency of 2.0 MHz was used and tdead could be calculated

58



as

tdead =
Ngated

Ntotal

, (3.3)

where Ntotal is the total counts from the pulser and Ngated is the total counts while the

DAQ system is in “busy mode”. The live time (tlive) of the system can be obtained

as

tlive = 1− tdead. (3.4)

Apparently, the live time of the DAQ system depends on the event rate. The typical

live time for a full target run is about 80% to 90% and the live time for an empty

target run is about 95%. Another piece of important information recorded in the

scaler events is the total charge deposition in the Hall B Faraday cup [71], which

measures the beam charge (qb) to a precision of 0.1%. This information allows one

to calculate the live charge,

qlive = tlive·qb, (3.5)

which needs to be used for subtracting backgrounds measured from empty target

runs.

There were 6 different triggers used in this experiment. Their descriptions are

listed in Table 3.2. The first two types of triggers were used for recording the physics

events from the production runs. As mentioned in the previous section, the purpose

of T1 trigger was to enhance the performance of Pb-glass detectors. For each run

of data taking, the first 10,000 events were triggered by T3 and the next 10,000

events were triggered by T4. They were for the purpose of monitoring the calibration

constants. The last two triggers were used only during the calibration runs, which

were taken before the production runs. During these runs, the HyCal was calibrated
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Trigger name Description
T1 Total energy deposition in Pb-glass part of HyCal
T2 Total energy deposition in HyCal
T3 LMS light source
T4 241Am radioactive source
T5 Hall B tagger counter
T6 Scintillator

Table 3.2: PRad trigger type description.

by high intensity photon beams that were tagged by the Hall B photon tagger, which

also provided triggers for these runs. During this period, two scintillators were placed

on the beam line and right in front of the GEM detectors. These scintillators could

convert a small portion of the photons into electron-positron pairs, so that one could

calibrate the efficiency of the GEM detectors, which are only sensitive to charged

particles.
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Chapter 4

Data Analysis

4.1 Overview

In general, the experimental differential cross section for the e− p elastic scattering,

in a particular scattering-angle bin or Q2 bin can be obtained as

〈 dσ
dΩ
〉e,rep (θi) =

N e,r
ep (θi)

L·f e
ep(θi)·εe

ep(θi)
, (4.1)

where N e,r
e−p(θi) is the total count for the e − p elastic scattering events in the i-

th scattering-angle bin. The superscript “e” indicates that the events are from the

experiment and the superscript “r” indicates that they contain the radiative effects.

L is the integrated luminosity L = N e−

beam · NH
tar, which is the product of the total

incident electron number and the number of H atoms/cm2 (areal density). f e
ep(θi)

stands for the geometric acceptance for the e − p elastic scattering events in this

angular bin and εe
ep(θi) represents the detector efficiency for the same angular bin.

On the other hand, a similar expression for the differential cross section of e− e

scattering, in an angular bin j, could be written as

〈 dσ
dΩ
〉e,ree (θj) =

N e,r
ee (θj)

L·f e
ee(θj)·εe

ee(θj)
. (4.2)

Since both e− p and e− e events were taken simultaneously during the experiment,

with the same electron beam and the same target areal density, the integrated lumi-

nosity L can be cancelled out if one takes the ratio between the two differential cross
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sections,

〈 dσ
dΩ
〉e,rep (θi) =

N e,r
ep (θi)

N e,r
ee (θj)

· f
e
ee(θj)·εe

ee(θj)

f e
ep(θi)·εe

ep(θi)
· 〈 dσ
dΩ
〉e,ree (θj). (4.3)

In addition, the energy-independent part of the geometric acceptance and detector

efficiency can be cancelled out if one takes this ratio using the counts from the same

angular bin such that i = j (the bin-by-bin method). Alternatively, one can fix j for

the Møller and apply it as a common normalization factor for all the bins for e − p

(the integrated Møller method). There will be no cancellation for any acceptance and

efficiency in the latter case. Typically, the detector efficiencies are measured with ref-

erence detectors and the geometric acceptance effect can be obtained using a realistic

simulation for the experiment. However, one also needs to note that the experimental

differential cross section cannot be used directly for the form factor extraction, as

it contains the radiative effects. Furthermore, the cross sections mentioned above

are averaged values over angular bins. They are not necessarily equal to the cross

section values at the bin centers. So in order to obtain the Born level differential

cross section at a particular θ value, one needs to apply a radiative correction and a

bin center correction [72],

( dσ
dΩ

)e,b

ep
(θi) =

Rbcc

Rrc

· 〈 dσ
dΩ
〉e,rep (θi), (4.4)

where Rrc is the radiative correction factor and Rbcc is the bin center correction factor.

If one has a realistic simulation that includes all the important internal and ex-

ternal radiative effects, one can obtain the radiative correction factor for a particular

angular bin as

Rrc =
〈 dσ
dΩ
〉s,rep(θi)

〈 dσ
dΩ
〉s,bep (θi)

. (4.5)

The superscript “s” indicates that the values are obtained from the simulation and
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the superscript “b” indicates that the events are at Born level.

The bin center correction also relies on a realistic simulation. In particular, it

requires that the cross section model used in the simulation describes the actual

cross section well enough. This can be achieved by tuning the cross section model in

the simulation iteratively such that the simulation result converges to the data. The

bin center correction factor for a particular angular bin can be obtained as

Rbcc =
( dσ
dΩ

)s,b
ep (θi)

〈 dσ
dΩ
〉s,bep (θi)

. (4.6)

Combining with Eq. 4.3, one obtains:

( dσ
dΩ

)e,b

ep
(θi) =

N e,r
ep (θi)

N e,r
ee (θj)

· f
e
ee(θj)·εe

ee(θj)

f e
ep(θi)·εe

ep(θi)
·
〈 dσ
dΩ
〉e,ree (θj)

〈 dσ
dΩ
〉s,rep(θi)

·
( dσ
dΩ

)s,b

ep
(θi). (4.7)

Since the e − e elastic scattering is a pure QED process, and its radiated cross

section can be calculated exactly (at least at the next-to-leading order), one can

assume that

〈 dσ
dΩ
〉e,ree (θi) = 〈 dσ

dΩ
〉s,ree (θi), (4.8)

so that one can replace the averaged e− e cross section from the experiment by that

from the simulation. And the ratio,

〈 dσ
dΩ
〉s,ree (θj)

〈 dσ
dΩ
〉s,rep(θi)

=
N s,r
ee (θj)

N s,r
ep (θi)

·
f s
ep(θi)·εs

ep(θi)

f s
ee(θj)·εs

ee(θj)
, (4.9)

can be obtained from the e−p and e−e counts by using the simulation that includes

the radiative effects for both e − p and e − e elastic scatterings, normalized at the

same integrated luminosity.

The acceptance correction is obtained with a simulation that contains accurate
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geometric information about the experimental setup and precise models for the actual

detector responses. The geometric information of the setup was surveyed prior to

the experiment by the JLab survey group, using a high precision laser technique.

The detector positions would be further refined by the Møller events taken during

the experiment. The detector responses, such as those for the position and energy

reconstruction, are included in the simulation and fine-tuned to match those from

the actual detectors. With all the realistic acceptance effects incorporated in the

simulation, the acceptance factors for the data and the simulation can be cancelled.

The imperfection for the acceptance description in the simulation will be taken into

account in the associated systematic uncertainties. For the detector efficiencies, they

can be extracted from the experimental data and simulation separately. The e − p

and e− e counts from the experiment can be corrected by these efficiencies so that

Ñ e,r
ep (θi) =

N e,r
ep (θi)

εe
ep

, (4.10)

Ñ e,r
ee (θi) =

N e,r
ee (θi)

εe
ep

, (4.11)

and similar corrections will be performed for those obtained from the simulation.

Eventually, the Born level e−p elastic scattering cross section can be extracted using

( dσ
dΩ

)e,b

ep
(θi) =

Ñ e,r
ep (θi)/Ñ

e,r
ee (θj)

Ñ s,r
ep (θi)/Ñ

s,r
ee (θj)

·
( dσ
dΩ

)s,b

ep
(θi). (4.12)

A flow chart for the data analysis procedure is shown in Fig. 4.1. In this chapter,

details of each item in the flow chart will be discussed except for the radius fitting,

which will be discussed in the next chapter. It starts with the event reconstructions,

for both the GEMs and HyCal, and then the detector calibrations, including the

energy calibration for HyCal and position calibrations for both GEMs and HyCal.
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Calibration
Position calibrations for GEMs and HyCal

Energy calibration for HyCal

Event Selection
e-p event selection

e-e event selection

Background subtraction
Beam background subtraction using 

empty target runs

Estimation of other backgrounds using 
models and simulation

e-p/e-e ratio
Detector efficiency corrections for data 

and simulation

Acceptance correction (simulation)

Elastic e-p cross section
Radiative correction (simulation)

Bin center correction (simulation)

Proton electric form factor

Proton charge radius 
extraction

Event Reconstruction
GEM Reconstruction

HyCal Reconstruction

Figure 4.1: The flow chart for the data analysis procedure.
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The energy calibration is essential for the e − p and e − e event selections as they

are primarily distinguished by the energies of the scattered electrons. The position

calibration is important for the scattering angle reconstruction, which will affect the

Q2 determination. The event reconstructions and detector calibrations need to be

performed iteratively in order to obtain the energy calibration constants for all the

HyCal modules. The event selection will be presented next, with the details about

the event selection cuts for both e − p and e − e scatterings. Typically, not all the

events satisfying the selection cuts are coming from the reactions of interest. Some

of them may come from backgrounds generated from objects near the beam-line or

from other reaction channels such as inelastic e− p scatterings. So one will need to

perform a background subtraction before forming the e− p to e− e ratio. The cross

section and its radiative correction will be presented next. This is another iterative

procedure, which involves fine tuning the form factors used in the simulation so

that eventually the e − p to e − e ratios in the data and the simulation agree with

each other. After the cross section is obtained, the proton electric form factor Gp
E

can be extracted by assuming Gp
M with certain models, as the contribution to the

cross section is dominated by Gp
E in the PRad kinematic range. This aspect will be

discussed in the last part of this chapter.

4.2 Event Reconstruction

The direct information obtained from the experiment is the Analog-to-Digital Con-

vertor (ADC) signals from all the readout channels of the GEMs and HyCal. The

event reconstruction involves analyzing these ADC signals, and extract information

that contains physical meanings about the scattered electrons, such as the hit posi-

tions as they penetrate the GEM detectors and the energy depositions in the HyCal.
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The ADC signal from each channel is superimposed on the pedestal noise, which was

measured at the beginning of each run, triggered by the radioactive sources attached

to the reference PMTs (see Section. 3.5). These triggers are completely uncorrelated

with the signals from the e − p and e − e events, so they can be used to measured

the pedestal noise. These noises can be reasonably well described by Gaussian dis-

tributions for both the GEMs and HyCal. Only when the ADC signal of a channel

exceeds 5σ of its pedestal noise, then the channel is considered fired, and the ADC

signal will be analyzed to extract physical information.

Usually, when an electron enters the GEMs and HyCal, they will fire multiple

consecutive channels in these detectors, for example, 2 to 3 consecutive channels

for the GEMs on each set of readout strips, and over 10 consecutive modules for the

HyCal. These consecutive fired channels are called clusters. The event reconstruction

thus involves with identifying the clusters and reconstruct the kinematic information

from them.

The clustering algorithm for GEMs is a simple peak-valley splitting algorithm.

That is, it first groups all the consecutive strips that have signals above the threshold

into a cluster, and then searches for peak-valley patterns. If two peaks are identified

with a valley in between, the cluster is split at the valley with half of the ADC signal

on the valley strip distributed into each cluster. The position of a cluster is then

reconstructed using the center of gravity method, with the ADC amplitude of a strip

as the weight

xrecon =

∑N
i (Aixi)∑N
i Ai

, (4.13)

where xrecon is the reconstructed x-coordinate of a hit, index i runs through all the

strips of a cluster, xi is the center position of the strip, and Ai is the ADC signal of

the strip. The same algorithm is applied to reconstruct the y-coordinate of a hit as
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Figure 4.2: Examples of HyCal cluster reconstruction for an event that has two
maxima in the same group. The two clusters are separated by finding a best match
with the simulated cluster profiles. Reconstructed energy is obtained by taking the
total sum of from all the modules that belong to a cluster. The reconstructed position
is evaluated using the center of gravity method in these modules.

well.

There are two cluster reconstruction algorithms implemented for the HyCal. The

first one is a 5× 5 algorithm. It firstly identifies all the modules with local maximum

energy deposition (higher ADC values than all of their neighbors), and then groups

their surrounding 5× 5 modules. This algorithm is excellent in the execution speed,

but is expected to perform less accurately in separating the scattered electron and

radiated photons. The second method is called the “island” algorithm, which is used

in the analysis. Firstly, the algorithm will group all the neighboring modules with

the signals above a certain threshold. Then it identifies the local maxima within each

group. If two or more local maxima were found in one group, the algorithm will sub-

divide the group iteratively until a best match is achieved with the simulated cluster

profiles (see Fig. 4.2). For a module that is shared by multiple clusters, its energy

distribution among the clusters is determined to achieve a maximum accordance
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with the simulated cluster profiles. In this case, the likelihood function of a double

exponential distribution was used as the estimator. After the clustering is finished,

the reconstructed energy can be obtained from the sum of the energy depositions

from all the modules in the same cluster. The reconstructed position is obtained

from the center of gravity of the cluster with logarithmic weights, which correspond

to the exponential decay of the signal strength as a function of the distance from the

center

xrecon =

∑N
i (wixi)∑N
i wi

. (4.14)

xrecon is the reconstructed x-coordinate of a hit, index i runs through all the modules

of a cluster, xi is the center position of a module, and wi is the weighting factor of a

module

wi = Max[0, a + log(Ei/Etotal)], (4.15)

where Ei is the energy deposition in this module, Etotal is the total energy deposition

of a cluster and a is a free parameter, which when set to 3.6, gives the best position

resolution for HyCal1. This calculation is repeated to reconstruct the y-coordinate

of a hit as well.

4.3 Calibration

4.3.1 Energy Calibration

The HyCal was calibrated during the calibration runs using a photon beam, generated

by a 1.1 GeV electron beam incident on a thin wire target. The energy of the photon

beam was measured by the Hall B photon tagger [68]. There were three major

purposes for this calibration. First, the photons with tagged energies could be used

1The notation Max[a,b] means it returns the larger value between a and b.
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Figure 4.3: The HyCal movement during the calibration runs. The photon beam
was fixed in the space, while HyCal was suspended on a transporter to move in a way
such that the beam would hit each module one at a time in a snake-like pattern, as
indicated by the red arrow.

to obtain the energy calibration constants for the HyCal modules. Second, the photon

beam energy ranged from 220 MeV to 1050 MeV (0.2 to 0.95 of the incident electron

beam energy, limited by the measurement range of the Hall B photon tagger), which

could be used to study the non-linearity properties of the HyCal modules. Third, the

events recorded in the calibration runs were triggered by the Hall B photon tagger

so that one could study the trigger efficiency of the calorimeter.

During these calibration runs, the HyCal was suspended on a transporter so that

the photon beam could be injected on each HyCal module, one at a time, in a snake-

like pattern as shown in Fig. 4.3. Once a photon enters the calorimeter, it will

generate a shower, which results in detectable signals in several consecutive modules.

A calibration constant was assigned to each module to convert the measured ADC

values into the deposited energies. A HyCal reconstruction algorithm was applied to

identify and group these modules into a cluster, and obtain the reconstructed energy

by summing the energy depositions in all the modules of the cluster. The energy
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Figure 4.4: The ratio between the reconstructed energy Erec and the beam energy
Eγ, for beam energy around 550 MeV. The black histogram comes from the data of
the calibration runs, the red curve is a Gaussian fit to the data. The width (sigma) of
the Gaussian fit is 3.96%. The figure is made by Li Ye of Mississippi State University.

calibration of the calorimeter was done iteratively, by fine tuning the calibration

constant of each module such that eventually, the reconstructed energy converged to

the energy of the incident photon. An example for the ratio between the reconstructed

energy Erec and the incident photon energy Eγ, for Eγ around 550 MeV, is shown in

Fig 4.4.

Typically, due to reasons such as the light attenuation property of a module and

the pedestal noise in the electronics, the calibration constants obtained at a particular

incident photon energy are not necessarily applicable if the incident photon is at a

different energy. The calorimeter is linear if the calibration constants can correctly

reconstruct the energy of a photon, regardless of its incident energy, otherwise, the

calorimeter is non-linear. The photon beam could be used to study this property

conveniently, as it was generated through the bremsstrahlung process and the tagged
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Figure 4.5: The non-linearity behavior of (a) a PbWO4 module W213 and (b) a
Pb-glass module G507. Red lines are linear fits to the data points, for which only
statistical uncertainties are shown as the error bars.

photon energy range was from 220 MeV to 1050 MeV. The nonlinear effect can be

studied by plotting the ratio Erec/Eγ as a function of Erec, and then fit the data with

a polynomial such as

Erec

Eγ
= 1 +

i=N∑
i=1

αi(Erec − Ecali)
i, (4.16)

with αi as the free parameters, up to some maximum power of N . Ecali is the energy

where the calibration constants were obtained from, so that around this energy, one

has Ecali ≈ Erec. For a perfectly linear calorimeter, one would obtain zero for all values

of αi. For HyCal, usually this ratio was rather linear as a function of Erec −Ecali, so

that only the first term was kept in the fit, and the nonlinear effect was corrected by

Ecorr =
Erec

1 + α1(Erec − Ecali)
. (4.17)

Examples of the nonlinear behavior for two HyCal modules and their fits are shown

in Fig. 4.5.

The reconstructed energy was then corrected for the nonlinear effect using the

above correction. The resolution for the PbWO4 part of the detector is shown in
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Figure 4.6: The energy resolution of the PbWO4 detector. This figure is made by
Maxime Lavilain of North Carolina A&T State University.

Fig. 4.6. The resolution is about 2.5%, which is the nominal value for this detector,

based on the PrimEx measurements [63, 64, 65]. The energy resolution of Pb-glass

is much worse, at about 6%.

The third purpose of the calibration runs was to obtain the trigger efficiency

of the HyCal. During these runs, the events were recorded based on the triggers

from the photon tagger. One could then search for a trigger signal from HyCal.

The trigger efficiency was determined as the number of events that produced HyCal

triggers over the total number of events. A number of cuts were applied to suppress

the accidental backgrounds from the photon beam, including the coincidence time

between the tagger TDC and HyCal TDC signals, the HyCal energy deposition and

so on. The measured HyCal trigger efficiency is shown in Fig 4.7, for some PbWO4

and Pb-glass detectors. Typically, the efficiency reaches a plateau at about 99.9%

once the incident photon energy exceeds 400 MeV. A few low efficiency modules were

73



Figure 4.7: The trigger efficiency for PbWO4 and Pb-glass detectors, as a function
of the incident photon beam energy.

identified and removed during the analysis.

Even though for the HyCal, signals produced by electrons are highly similar to

those produced by photons, there could be some small differences [73]. In addition,

certain experimental conditions could be slightly shifted relative to those from the

calibration runs. In order to resolve these issues, the scattered electrons from the e−p

and e− e events during the production runs (the full target and empty target runs)

were also used for various purposes, such as fine tuning the calibration constants,

extracting certain fine-corrections for the HyCal reconstruction, and also fine tuning

the nonlinearity constants extracted from the photon beam calibration data. In the

first case, one would calibrate the calorimeter to the expected energies of the scattered

electrons from these reaction channels. For the e− p elastic scattering, the expected

74



exp/ErecE
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

c
o

u
n

ts

0

100

200

300

400

500
a

exp/ErecE
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

c
o

u
n

ts

0

500

1000

1500

2000

2500

3000

3500 b

Figure 4.8: The reconstructed energy Erec over the expected energy Eexp for (a) the
e− p elastic scattering and (b) the e− e elastic scattering.

energy for a scattered electron (given as equation (2.27) in Ref. [31]) is

Eexp =
(Eb +M)(MEb +m2) +

√
M2 −m2 sin2 θ| ~̀ |2 cos θ

(Eb +M)2 − | ~̀ |2 cos2 θ
, (4.18)

where ~̀ is the 3-momentum of the incident electron. This formula does not neglect

the mass of an electron. If one replaces the proton mass M with the electron mass

m, one obtains the expected energy for a scattered electron from the e − e elastic

scattering,

Eexp = m
Eb +m+ (Eb −m) cos2 θ

Eb +m− (Eb −m) cos2 θ
. (4.19)

The ratio between the reconstructed energy and the expected energy Erec/Eexp from

both e− p and e− e elastic scatterings are shown in Fig 4.8.

Secondly, certain fine-corrections for the HyCal reconstruction cannot be obtained

from the calibration runs as the incident photon beam was very narrow and it could

not cover the entire area of HyCal. These corrections are better to be obtained from

the production runs, from the e − p and e − e events. An important correction is

for the non-uniformity in the reconstructed energy from HyCal. Fig. 4.9 shows the
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Erec/Eexp ratio for the e−p events in a PbWO4 module W5212 and a Pb-glass module

G238, as a function of the normalized reconstructed position, which is the difference

between the reconstructed position and the module center position, normalized by

the size of the module:

tx =
xrec − xc

S
, (4.20)

ty =
yrec − yc

S
, (4.21)

where the size S of a PbWO4 module is about 20.76 mm, and the size of a Pb-glass

module is about 38.15 mm. The reconstructed energy tends to be slightly larger when

the electron is hitting the edges and corners. The reason is that for the purpose of

mechanical supports, the front end of HyCal modules are covered by bronze flanges

with 2 mm thickness and a 13 mm diameter hole in the middle (see Fig. 3.11). These

flanges can behave like pre-showers, and change the shower depths of the incident

electrons. This effect is a few times larger for the Pb-glass detectors as they are more

sensitive to various shower position effects, as shown in (c) of Fig. 4.9. A detailed

description about how to correct this effect is provided in Ref. [74]. (b) and (d) of

Fig. 4.9 show the results after this correction.

Lastly, providing that the energy of the incident electron from the Møller scatter-

ing is large enough (at least 20% of the beam energy) for a particular HyCal module,

the e− p and e− e events from the production runs can also be used to fine tune the

non-linearity correction of this module, since from the calibration runs the measured

non-linearity could be well described by a linear function over the measured range.

However, the Møller electrons appearing in the Pb-glass region often have energy be-

low 200 MeV for both 1.1 and 2.2 GeV energy settings. And this linear description is

expected to break down if the energy of the incident particle is too low, which is due

2Pb-glass channel ID start with the letter ”G”, PbWO4 channels start with ”W”
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Figure 4.9: The non-uniformity in the HyCal reconstructed energy for e− p events
in a PbWO4 module W521, as shown in (a), and in a Pb-glass module G238, as
shown in (c). tx and ty are defined in Eq. 4.20 and Eq. 4.21. The z-axis shows
the ratio between the reconstructed energy and the expected energy, obtained using
equation Eq. 4.18. (b) and (d) show the ratio after the correction, for W521 and
G238 respectively.
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Figure 4.10: The non-linearity correction function of a Pb-glass module from the
PrimEx-II experiment. The correction is very linear if the energy of the incident
particle is high, but drops rapidly if the energy is low, which is expected due to
reasons such as the pedestal cuts and the light attenuation property of the module.

to reasons such as the pedestal cuts and the light attenuation property of a module.

This effect is expected to be more significant for the Pb-glass modules. This turning

point could not be determined with the PRad photon calibration data due to the

limited photon energy range, but was measured by the PrimEx-II experiment [65].

An example of the PrimEx-II non-linearity correction function for a Pb-glass module

is shown in Fig 4.10. For this reason, a conservatively estimated systematic uncer-

tainty was assigned for the Pb-glass non-linearity correction, which will be discussed

in section 4.10.

As introduced in Section 3.5 and 3.7, the gain of each HyCal module was moni-

tored by the HyCal light monitoring system during the experiment and was measured

at the beginning of every run. The gain factors, obtained from Eq. 3.1, fluctuated

78



run number
1200 1250 1300 1350 1400 1450 1500 1550

g
ai

n
 f

ac
to

r

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

  shower detector4W103 PbWO
 a

1.1 GeV runs

2.2 GeV runs

run number
1200 1250 1300 1350 1400 1450 1500 1550

g
ai

n
 f

ac
to

r

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

 All shower detectors
 b

1.1 GeV runs

2.2 GeV runs

Figure 4.11: The HyCal gain factors for (a) the module W103 and (b) the average
of all HyCal modules are shown as a function of run number.

mostly within 5% during the production runs, as shown in Fig. 4.11 as a function of

the run number. These gain factors were used to correct the calibration constants of

all HyCal modules for all the runs, and after the correction, the fluctuations in the

elastic peaks for both e−p and e−e events were less than 0.5% during the production

run period. These fluctuations were much smaller than the energy resolution of the

calorimeter, as shown in Fig. 4.12.
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Figure 4.12: The reconstructed elastic peak positions from each run over the aver-
aged peak position from all the runs for, (a): 1.1 GeV e − p from 5.0◦ to 7.0◦, (b):
1.1 GeV e−e from 1.6◦ to 1.8◦, (c): 2.2 GeV e−p from 2.5◦ to 3.5◦, and (d): 2.2 GeV
e− e from 0.8◦ to 0.9◦. The fluctuation is mostly within 0.5%, and it is significantly
smaller than the detector resolution, as marked by the dash lines on each plot.
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Detector type Energy resolution (%) Position resolution (mm)

PbWO4 2.4/
√
E(GeV) 2.4/

√
E(GeV)

Pb-glass 6.2/
√
E(GeV) 6.5/

√
E(GeV)

Table 4.1: The energy and position resolutions for the PbWO4 and Pb-glass shower
detectors of HyCal. E is the energy of the incident electron in unit of GeV.

The energy and position resolutions of the HyCal for the electrons from the pro-

duction runs are shown in Table 4.1. These values were used during the analysis to

determine the size of various event selection cuts.

4.3.2 Position Calibration

It is critically important to know precisely the position of the detectors as they

will directly affect the reconstructed scattering angle and Q2. The position of the

detectors and also various important components of the PRad setup (PRad target,

vacuum box window...) were surveyed by the Jefferson Lab survey group before

the experiment using their laser technique, with a precision better than 1 mm. In

addition, the e− e elastic scattering events can also be used to refine this knowledge.

For this purpose, both scattered electrons must be detected in coincidence (double-

arm Møller events). First of all, the transverse momentum conservation requires that

the transverse position of the electron beam must fall in the same plane determined by

the two scattered electrons (co-planarity). One should expect to obtain a distribution

centered at 0◦ if one computes the variable

∆φ = φe1 − φe2 − π, (4.22)

where φe1 and φe2 are the reconstructed azimuthal angles of the scattered electrons

from the e−e scattering, as indicated in Fig 4.13. The distributions of the co-planarity

from the data and simulation are shown in the top plot of Fig. 4.14.
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Figure 4.13: A diagram that indicates the azimuthal angles (φe1 and φe2) of the
scattered electrons from the e− e scattering process.

This information is used to determine the transverse coordinates of the detectors,

relative to the beam position. After this correction, the longitudinal distance between

the target center and the detectors can be determined from the energy and momentum

conservation laws for the e− e elastic scattering, which leads to

z =

√
(m+ E`)R1R2

2m
, (4.23)

where m is the electron mass, E` is the energy of the incident electron, R1 and

R2 are the transverse distance between the hit positions and the beam-line. One

can determine z using both the 1.1 GeV or the 2.2 GeV data. As an example, the

difference between the reconstructed vertex z (zrec) and the z distance between the

target center and the GEM detectors (ztarget), using the 2.2 GeV e − e events, is

shown in the bottom plot of Fig. 4.14.

The determined z positions for both GEMs and HyCal, using both 1.1 and 2.2 GeV

data sets, are shown in Table 4.2. The determined values differ by no more than

1 mm (0.02% of the distance). They are well consistent with each other given the

uncertainties in the beam energy, and also agree with the surveyed results at 1 mm
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Figure 4.14: Top plot: the co-planarity distributions for the 2.2 GeV data and
simulation. Bottom plot: the difference between the reconstructed vertex z and the
distance between the target center and the GEM detectors for the 2.2 GeV data and
simulation. Only the double arm Møller events with two hits on the GEMs were
used for these computations, and the distributions were obtained based on the GEM
reconstructed coordinates.
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HyCal z (mm) GEM-I z (mm) GEM-II z (mm)
1.1 GeV data 5646.56 5226.44 5186.46
2.2 GeV data 5645.68 5225.87 5186.43

Average 5646.12 5226.16 5186.45

Table 4.2: The longitudinal z distance between target center and detectors. GEM-I
refers to the one on beam left (looking downstream).

level. This result can be considered as a validation for the beam energy measurement

from our offline analysis, and the results were listed in Table 3.1. The averaged

positions from the two beam energy settings were used in the later analysis.

4.4 Event Selection

The event selection cuts will be discussed in this section. For all the electrons detected

by HyCal, it is required that a matching hit must be found on the GEM detectors.

First of all, all the reconstructed hits from the GEMs and HyCal are projected onto a

common transverse plane located at the surface of the PbWO4 modules, assuming the

track is produced at the center of the target cell. For each HyCal hit, the matching

GEM hits must fall inside a circle that is centered at the HyCal hit position and

with its radius determined by the position resolution of HyCal. If multiple GEM

hits satisfy this condition, then the closest one to the HyCal hit will be chosen as its

matching hit. The detectors were well aligned after the position calibration, so that

the difference of the projected coordinates from these detectors form Gaussian peaks

that are centered at 0, as shown in Fig 4.15. The size of the matching radius was

chosen to be 6 times larger than the position resolution of HyCal in order to minimize

the effects due to the non-uniformity in the HyCal coordinate reconstruction.

The second common cut applied for all the events is the dead module removal cut.

As mentioned in the previous section, a number of HyCal modules had low trigger
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Figure 4.15: ∆R distributions between the HyCal and GEM reconstructed hits, for
(a) the elastic e − p and (b) e − e scattered electrons, after being projected to the
same plane located at the surface of PbWO4 modules. Similar distributions can be
obtained for both ∆X and ∆Y distributions.
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efficiencies during the experiment. These included channels G486, G732 and W230.

In addition, there were also a few modules, including G775, G900, W835 and W891,

that had no ADC readout. To remove possible errors due to the trigger efficiency

correction and mis-calibration, a module removal cut was applied, using circles that

were centered at the centers of these modules and with radii as 1.5 times the size of

the modules3. The events with their reconstructed positions falling inside these circles

would be removed from the analysis. In addition, the events with their reconstructed

positions falling on the inner most and outer most layer of HyCal modules were also

removed from the analysis. These events might suffer significantly from the energy

leakage issue, as part of their showers could leak out of the calorimeter through the

edges.

The scattered electrons from the elastic e − p and e − e scatterings can be well

distinguished by their energy deposition in the calorimeter. Fig 4.16 shows the re-

constructed energy from HyCal as a function of the reconstructed scattering angle

determined by the GEMs. It also shows the angle-dependent kinematic cuts that

were applied to select the events near the expected energies for the scattered elec-

trons from these two channels, as given in Eq. 4.18 and Eq. 4.19. These cuts are

usually symmetric around the expected energy such that

|Erec − Eexp| < Nσdet, (4.24)

where σdet is the detector energy resolution as shown in Table 4.1, N is usually

between 3.0 to 4.5. However, due to the fact that the inelastic e − p scattering

events become noticeable in the large Q2 region and the energy resolutions of Pb-

glass detectors are not good enough to reject them from the elastic e− p events, the

3Size of a PbWO4 module is about 20.76 mm, and the size of a Pb-glass module is about 38.15 mm
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Figure 4.16: The reconstructed energy as a function of the reconstructed scattering
angle for (a) 1.1 GeV and (b) 2.2 GeV data sets. The solid lines show the kinematic
cuts for the elastic e− p and e− e event selections.

2.2 GeV e−p kinematic cuts were chosen to be asymmetric for the Pb-glass detectors

(from -2 to 4 σdet) for most of their angular coverage. The cut is slightly wider (from

-2.5 to 4 σdet) for the last two angular bins (scattering angle > 5.6◦) due to a worse

energy calibration in the area. This will reduce the sensitivity of the results on the

systematic uncertainties associated with the energy calibration, various modelings in

the simulation for the HyCal response and so on.

The range of the scattering angle for an e− p event is from 0.70◦ to 7.00◦ for the

2.2 GeV data set, limited by the HyCal angular acceptance. For the 1.1 GeV data set,

the minimum scattering angle is 0.75◦ because below this angle, the elastic e− p and

e− e peaks start to merge and the distance between the two peaks becomes less than

6σ of HyCal energy resolution (3σ kinematic cuts were used for the event selection for

the 1.1 GeV data set). For the e−e elastic scattering events, since the detector setup

was able to detect both scattered electrons at the same time, it would be better to use

the double-arm Møller events as they would have less contaminations from various

backgrounds. The angular range for the 2.2 GeV Møller selection is from 0.70◦ to

87



2.00◦ and from 0.75◦ to 4.00◦ for the 1.1 GeV Møller4. The minimum scattering

angles are limited by the same reason as for the e − p events, while the maximum

scattering angles for Møller are limited by the minimum ones as they are completely

correlated.

In addition, for the double-arm Møller event selection, one could apply additional

cuts, such as the co-planarity cut, which requires the azimuthal angle difference

between the two scattered electrons to be about 180◦

|φe1 − φe2 − π| < 10◦, (4.25)

the elasticity cut, which means the total energy of the two scattered electrons must

agree with the initial beam energy

|Etotal − Eb −m| = |Ee1 + Ee2 − Eb −m| < Nσdet. (4.26)

And lastly, one can apply a cut on the reconstructed vertex-z, calculated from

Eq. 4.23, in order to ensure that the Møller event is coming from the target region.

In principle, if one requires both e−e scattered electrons to be detected at the same

time by the GEM detectors, the GEM efficiency needs to be εe−e = εe−e(θ1)×εe−e(θ2),

where θ1 and θ2 are the scattering angles of the two e− e electrons. In this way, the

GEM efficiency for e − e would be inevitably different from the GEM efficiency for

e − p, which only depends on the scattering angle of one electron. And there will

be no cancellation for the GEM efficiency regardless how one forms the e − p to

e− e ratio. This difficulty can be overcome by using a combinatory Møller selection

method. First of all, one uses only HyCal and apply the above mentioned Møller

selection cuts to select the double arm Møller events. And then after matching

4Most of the double-arm Møllers are inside the PbWO4 detector region.
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Beam energy Category Cut

1.1 GeV
Kinematic cut in PbWO4

Kinematic cut in Pb-glass
Angular cut

−3.0 · σdet < Erec − Eexp < 3.0 · σdet

−3.0 · σdet < Erec − Eexp < 3.0 · σdet

0.75◦ < θrec < 7.00◦

2.2 GeV

Kinematic cut in PbWO4

Kinematic cut I in Pb-glass
Kinematic cut II in Pb-glass

Angular cut

−3.5 · σdet < Erec − Eexp < 3.5 · σdet

−2.0 · σdet < Erec − Eexp < 4.0 · σdet

−2.5 · σdet < Erec − Eexp < 4.0 · σdet

0.70◦ < θrec < 7.00◦

Table 4.3: Selection cuts for e−p elastic scattering events. Erec is the reconstructed
energy by HyCal, Eexp is the expected energy at a given angle based on elastic e− p
kinematics, σdet is the energy resolution of a HyCal module (see Table 4.1) and θrec

is the reconstructed scattering angle. In the case of 2.2 GeV beam setting, kinematic
cut II in Pb-glass is used if the scattering angle is larger than 5.6◦ in order to reduce
the sensitivity of the result on the size of this cut. Otherwise, kinematic cut I is used.

with the GEM detectors, one only uses the electron that has a matching hit on

GEMs (two if both are matched), and do not requires that both e− e electrons have

matching hits at the same time. In this way, the GEM efficiency correction factor

for the Møller counts in an angular bin θ is still εe−e(θ), which is similar to that for

the e − p events. This method is still superior in suppressing various backgrounds

from the beam-line, and the energy-independent part of the GEM efficiency can still

be cancelled if one takes the ratio between e − p and e − e counts from the same

angular bin. However, the efficiency and acceptance effects from HyCal will not be

cancelled, and one has to make a corresponding correction based on the simulation.

In addition, when applying the co-planarity and vertex-z cuts, one has to use the

HyCal reconstructed coordinates. These co-planarity and vertex-z distributions from

the data and the simulation are shown in Fig. 4.17. The event selection cuts are

summarized in Table 4.3 and Tabel 4.4, for the e− p and e− e events, respectively.

The GEM matching cuts and the dead module removal cuts are not listed in the

tables as they are universal regardless of the reaction channels.
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Figure 4.17: Top plot: the co-planarity distributions for the 2.2 GeV data and
simulation. Bottom plot: the difference between the reconstructed vertex z and the
distance between the target center and the HyCal for the 2.2 GeV data and simula-
tion. The distributions were obtained using the HyCal reconstructed coordinates.
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Beam energy Category Cut

1.1 GeV

Kinematic cut in PbWO4

Kinematic cut in Pb-glass
Angular cut

Elasticity cut
Co-planarity cut

vertex-z cut

−3.0 · σdet < Erec − Eexp < 3.0 · σdet

−3.0 · σdet < Erec − Eexp < 3.0 · σdet

0.75◦ < θrec < 4.00◦

|Etotal − Eb| < 3.0 · σdet

|φe1 − φe2 − π| < 10◦

|zrec − ztarget| < 500 mm

2.2 GeV

Kinematic cut in PbWO4

Kinematic cut in Pb-glass
Angular cut

Elasticity cut
Co-planarity cut

vertex-z cut

−4.5 · σdet < Erec − Eexp < 4.5 · σdet

−4.5 · σdet < Erec − Eexp < 4.5 · σdet

0.70◦ < θrec < 2.00◦

|Etotal − Eb| < 4.5 · σdet

|φe1 − φe2 − π| < 10◦

|zrec − ztarget| < 500 mm

Table 4.4: Selection cuts for e−e elastic scattering events. Erec is the reconstructed
energy by HyCal, Eexp is the expected energy at an given angle based on elastic
e − p kinematics, σdet is the energy resolution of a HyCal module (see Table 4.1),
θrec is the reconstructed scattering angle, φe1 and φe2 are the reconstructed azimuthal
angles of the two scattered electrons, zrec is the reconstructed vertex-z and ztarget is
the distance between the target center and the detectors.

4.5 Background Subtraction

Not all the events that satisfy the event selection cuts are coming from the reactions

of interest. Some of them may come from the interaction of the electron beam

halo with other objects near the beam-line, such as the upstream beam halo blocker

and the target cell windows, the electron beam interaction with the background H2

gas outside the target cell, etc. While such backgrounds can be subtracted using the

empty target runs, some other backgrounds cannot be treated this way. These include

the backgrounds from the inelastic e− p scattering channels, multiple scatterings of

the small angle e−p and e−e events from downstream objects around the beam-line,

and also the photon induced hits on the GEMs through processes like pair production

and small angle Compton scattering. In the following sub-sections, the details about

subtracting these backgrounds will be discussed.
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4.5.1 Background from Beam-Line

To subtract the backgrounds in this category, an empty target run was taken every few

hours during the production data taking of the experiment. These empty target runs

((b) in Fig 4.18) had all experimental conditions the same as for the full target runs

((a) in Fig. 4.18), except that the H2 gas was filled through a second inlet, directly

into the target chamber instead of the cell, in order to mimic the background gas

distribution far away from the target when the data taking was for the full target.

They also included contributions from the backgrounds that were generated from

objects near the beam-line, such as the upstream beam halo blocker and the target

cell window foils. The e−p and e−e counts from these runs were first normalized by

the total live charge (Eq. 3.5), and then subtracted from the corresponding counts

from the full target runs, before forming the e−p to e−e ratio. (c) and (d) in Fig. 4.18

were used to study the background contribution from some individual sources. For

instance, after normalization by the live charges, one can subtract (c) from (b) in

order to obtain backgrounds generated from the background H2 gas, and one can

study the backgrounds generated from the target cell windows by subtracting (d)

from (c). The backgrounds from (d) were mainly generated by the beam halo hitting

the upstream beam halo blocker.

The ratios between the e− p and e− e counts from the background runs ((b), (c)

and (d) in Fig. 4.18) and those from the full target runs are shown in Fig. 4.19, for

the 2.2 GeV e−p and e−e events. For the 2.2 GeV e−p events, the background rate

is high at nearly 10% of the full target rate in the forward angular region (< 1.1◦) due

to the backgrounds generated from the upstream beam halo blocker, otherwise the

background ratio is around or below 2%. For e−e, the ratio is much lower in general,

due to the coincidence measurement of the two scattered electrons. For both cases,
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(a)

(b)

(c)

(d)

Figure 4.18: Main target configurations during the PRad data taking. In (a) full
target runs, H2 gas was filled directly into the target cell, as marked by the pink area.
Blue area stands for low pressure background H2 gas from the orifices of the cell. (b)
is for the empty target runs, H2 gas was filled directly into the chamber though a
second inlet to mimic background H2 gas far away from the cell. These runs were
used for the beam line background subtraction of the full target runs. No H2 gas
filled to the target system at all for (c) and (d), as marked by the white area. They
were used to study background contributions from individual sources.
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the background contribution from the background H2 gas is below 1% (on average

0.7% for the e− p and 0.6% for the e− e). For the 1.1 GeV data, these background

contributions are generally higher due to worse beam conditions (larger beam halo

for instance). The backgrounds from the empty target runs account for nearly 30%

of the e − p events at angles < 1.1◦ and reduces to less than 10% elsewhere, and

about 2% for e − e events as shown in Fig. 4.20. For the 1.1 GeV e − p events, the

forward angular background is also dominated by those generated from the beam

halo hitting the upstream beam halo blocker. The slight decrease of the background

ratio at extreme forward angles is because the elastic e− p rate increases faster than

this background as we go to smaller angles. As indicated by the harp scans, it is

most likely that the beam halo for the 1.1 GeV data set is larger and more unstable

compared to that for the 2.2 GeV. Another possible evidence can be observed from

the the double-arm Møller background rates. For the e − e events, the selection

cuts can completely reject the background generated from the upstream beam halo

blocker, so that the Møller is only sensitive to the backgrounds generated around the

target region, such as from the beam halo hitting the target cell and the main beam

interacting with the background H2 gas. One can see this by looking at the rate from

type (d) of the background runs, which is negligible. The background generated from

the target cell can be studied by type (c) of the background runs5. For the 1.1 GeV

e− e, this is the dominant background while for the 2.2 GeV e− e, this background

rate is rather small compared to the total rate. On the other hand, the rates from the

background H2 gas between these two energy settings are at a similar level. Thus,

the beam halo is most likely larger for the 1.1 GeV setting.

The background subtracted and normalized e − p to e − e ratios as a function

5This is only for the e − e events, for the e − p events background run type (c) also include the
contribution from the upstream beam halo blocker.
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Figure 4.19: The counts from the runs with target configuration (b), (c) (d) in
Fig. 4.18 over that from the full target runs. Plot (a) shows the ratios for 2.2 GeV
e− p events, Plot (b) is for 2.2 GeV e− e events.
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Figure 4.20: The counts from the runs with target configuration (b), (c) (d) in
Fig. 4.18 over that from the full target runs. Plot (a) shows the ratios for 1.1 GeV
e− p events, Plot (b) is for 1.1 GeV e− e events.
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of the run number (about 1 hour for each run) are shown in Fig. 4.21, covering

the scattering angles from 1.3◦ to 3.5◦ for the 1.1 GeV data set and from 0.9◦ to

2.0◦ for the 2.2 GeV data set. The data points are normalized by the weighted

averages from all the data points, so that they are fluctuating around unity. They

are reasonably stable over a long period of time. Also different beam currents were

used during the data taking for each beam energy setting, in order to study possible

rate-dependent systematic uncertainties. The weighted averages from runs with the

same beam current are reasonably consistent with each other statistically. For the

1.1 GeV, the weighted average from the 10 nA runs is 1.0021 ± 0.0012stat., and that

from the 15 nA runs is 0.9995 ± 0.0006stat.. For 2.2 GeV, the weighted averages for

the 25 nA, 40 nA and 55 nA are 1.0001 ± 0.0012stat., 1.0001 ± 0.0003stat. and 0.9993

± 0.0011stat. respectively. There is no clear rate-dependent systematic uncertainty

observed in the data. The only one that has a clear dependency on the rate is the

pile-up effect, but its overall effect on the cross sections is much less than 0.1% even

with the highest rate. This effect is included in the PRad simulation, and corrected

for the cross section results.

4.5.2 Background from Inelastic e− p channels

The second type of background comes from the inelastic e−p channels, and it cannot

be removed by performing the empty target run subtraction. One has to rely on

certain models to estimate its contribution. It was found that the Christy 2018

empirical fit to the inelastic e − p cross section [75] was able to produce a decent

agreement between the data and simulation, for the position and amplitude of the

∆-resonance peak as shown in Fig. 4.22.

To evaluate the goodness of the agreement, a χ2 is defined,
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Figure 4.21: The normalized ratios between e− p and e− e counts after the back-
ground subtraction using the empty target runs, as a function of the run number.
The left plot (a) shows the ratios from the 1.1 GeV data set. The right one (b)
shows the same ratios from the 2.2 GeV data set. The data points are normalized
by the weighted averages from all the data points in each data set, so that they are
fluctuating around unity.

χ2 =
∑
i=1

(N i
data −N i

sim)2

(σidata)2 + (σisim)2
(4.27)

where the index i runs through all the energy bins in the range from around 1700 MeV

to 1850 MeV, in which the ∆-resonance peak could be visible. N i
data (N i

sim) is the

counts in the i-th bin in the data (simulation), and σidata and σisim are their cor-

responding statistical uncertainties, evaluated based on the Poisson statistics. The

inelastic e − p model is then scaled and stretched, by a scale and a stretch factor

respectively, in the simulation. The inelastic e− p cross section is multiplied by the

scale factor so that it scales the amplitude of the ∆-resonance peak, and the en-

ergy of the scattered electron is multiplied by the stretch factor so that it shifts the

position of the peak. One can then obtain many different values of χ2 and search

for the best agreement by requiring the minimum χ2. The results for some angular

bins are shown in Fig. 4.23. Typically, the minimum χ2 is found very close to the
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Kinematic cut

Kinematic cut

Figure 4.22: The comparison between the reconstructed energy spectrum from the
2.2 GeV data (black) and the simulation (red) for part of the PbWO4 detector region
(a) and Pb-glass detector region (b). (a) covers scattering angle from 3.0◦ to 3.3◦,
which corresponds to Q2 around 0.014 (GeV/c)2. (b) covers scattering angle from
6.0◦ to 7.0◦, which corresponds to Q2 around 0.059 (GeV/c)2 (largest Q2 for PRad).
Blue histograms show the inelastic e− p contribution from the simulation, using the
Christy 2018 model. Due to a large difference in amplitudes, the elastic e − p peak
(amplitude 2800 counts/MeV) is not shown in (a), in order to display the ∆-resonance
peak.
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original Christy 2018 model (scale factor = 1 and stretch factor = 1), particularly for

the PbWO4 region where there is a clear separation between the ∆-resonance peak

and the elastic e − p peak (see (a) in Fig. 4.22). The scale factor is found typically

from 0.9 to 1.1 for the minimum χ2, and from 0.995 to 1.005 for the stretch factor.

For Pb-glass region, the agreement can be slightly worse for certain angular bins, for

example, the minimum χ2 for scattering angles from 6.0◦ to 7.0◦ (shown in (b) of

Fig. 4.22) appears when the stretch factor is 1.01 and the scale factor is 0.9. This is

most likely due to the nonlinear properties of the Pb-glass modules, which may also

shift the position of the ∆-resonance peak. One may disentangle these two effects

by studying the spectrum agreement in the polar-angle overlapping region between

the PbWO4 detectors and the Pb-glass detectors, and the agreement was found to

be better in the PbWO4 detectors. However, this study cannot be applied reliably

to the 1.1 GeV data set as the inelastic e − p contribution is much smaller and the

∆-resonance peak is not clearly visible anywhere. It is assumed that for the 1.1 GeV

data set, the scale factor and the stretch factor would also be in the range from 0.9

to 1.1, and 0.995 to 1.005, respectively.

With the Christy 2018 model, the inelastic e− p contribution is estimated to be

negligible in the PbWO4 region. Due to the good energy resolution, the kinematic cut

for e−p event selection is sufficiently good to reject most of the inelastic e−p events,

as shown in Fig. 4.22. However, for Pb-glass detectors, the tail from the ∆-resonance

peak starts to leak under the e − p elastic peak, due to a worse detector resolution.

The contribution is determined as no more than 2% and 0.2%, for the 2.2 GeV and

1.1 GeV data sets, respectively, and the contribution increases with larger Q2.
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Figure 4.23: χ2 from Eq. 4.27, as a function of scale factor and stretch factor
for the 2.2 GeV beam energy setting. (a) is for the scattering angles from 3.0◦ to
3.3◦, corresponding to Q2 of 0.014 (GeV/c)2, (b) is for the scattering angles from
4.0◦ to 4.3◦, corresponding to Q2 of 0.024 (GeV/c)2. The red boxes mark the cell
corresponding to the minimum χ2. The minimum χ2/ndf is about 0.67 for (a) and
1.11 for (b).
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4.5.3 Background from photon induced GEM hits

The possible contamination due to the photon induced GEM hits was studied using

the simulation. Such a contamination is highly suppressed because of the angular-

dependent energy cuts used to select e−p and e−e events and the matching condition

between the GEMs and HyCal (the GEM hits projected to the HyCal assuming they

are coming from the target, must agree with HyCal hits within 6σ of the detector

resolution). If the photons satisfy e−p or e−e kinematic cuts from HyCal, they have

about 1.5% - 2% chance to produce matching GEM hits and contaminate the data,

otherwise the chance is negligible. This number is dominated by the contributions

from the 1.6 mm thick aluminum vacuum window, but also contains the contributions

from other sources, such as the GEM frames, the GEM foils and the back-scattering of

secondary particles from the HyCal. The number of photons relative to the electrons

was estimated by varying the energy cut for the elastic peak (1σ − 4σ, where σ is

the detector resolution) and noting the change in the GEM efficiency. The photon to

electron ratio was estimated to be at the most 0.4% - 0.5% for most of the energy cuts.

This experimental value of the photon to electron ratio agrees with the simulated

value for the same energy cuts. The contamination is the product of the photon to

electron ratio and the chance that the photon can produce a matching pair of hits

in the GEM and HyCal. Thus, the upper bound of this contamination due to the

photon induced GEM hits is about 0.01%.

4.5.4 Background from Multiple Scattering of Small Angle Events

The events with very small scattering angles, for instance < 0.6◦, have a probability

to scatter into the angular range for the event selection, through multiple scatterings

from objects near the downstream beam pipe or the beam pipe itself. The down-
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stream beam pipe started near the exit of the vacuum chamber and went through

the centers of the GEMs and HyCal. Other objects that could produce such a back-

ground included the vacuum window fringe, GEM frames, and the tungstate absorber

that was placed immediately in front of the HyCal. The background generated from

these objects could not be subtracted with the empty target run subtraction, since

the majority of these very small angle scattering events came from the high density

H2 gas filled inside the target cell during the full target runs. Thus, one has to rely

on the simulation to estimate this type of background. First of all, this type of back-

ground will primarily come from events with scattering angles between 0.2◦ and 0.6◦.

Those with scattering angles smaller than 0.2◦ will simply go through the central

hole of the HyCal without producing anything. This is indicated by the simulation

as well. And 0.6◦ corresponds to the corner of the HyCal tungstate absorber located

immediately in front of HyCal. Second, the majority of this type of background can

be rejected, once the matching cut between the GEMs and the HyCal is applied. If

one assumes the track is coming from the target center, the projected GEM hit on

the HyCal will be sufficiently far away from the HyCal reconstructed hit, so that the

event cannot pass the matching cut. However, this type of background will affect the

GEM efficiency measurement, in which one first selects events using only the HyCal

and then looks for whether there is a matching hit on the GEMs. This background

is significantly larger for the efficiency measured by the e − p events, since for the

e−e events, the coincidence detection of both scattered electrons can largely suppress

this background. The ratios between the background counts due to these events and

total counts are shown in Fig. 4.24, in the angular range of the event selection. Once

the GEM matching is required, this background is suppressed to be below 0.01% in

general, which is negligible. However, if using only HyCal, this background can be

significant, particularly for the 1.1 GeV e − p. This means that the GEM efficiency
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Figure 4.24: The ratio between background counts due to the events with scattering
angles from 0.2◦ to 0.6◦ and the total counts using the PRad simulation, for (a):
1.1 GeV e− p, (b): 1.1 GeV e− e, (c): 2.2 GeV e− p and (d): 2.2 GeV e− e. Black
dots are obtained using only the HyCal. Red squares are obtained after requiring
there is a matching hit on the GEMs.

measured using the e−p events can be underestimated in the forward angular region.

The inefficiency due to this background is corrected using the simulation and since

it affects mostly scattering angles less than 1.3◦, for which the bin-by-bin method

is applied and the GEM efficiency is not needed, the systematic uncertainty for this

correction is considered negligible for the results.
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4.6 Efficiency of GEM

The GEM efficiency was determined using both the e− p and e− e events from the

production runs. During this process, the events of interest were first identified using

the HyCal reconstructed information alone and then one would search if there were

matching GEM hits. If there were, then the GEMs were counted as efficient. All the

event selection cuts for e− p and e− e were applied to this study, with much tighter

cuts (1σ of the HyCal energy resolution) on the energy of the scattered electrons in

order to reject high energy radiated photons, cosmic events and other backgrounds.

A cluster profile cut was also applied, which put requirements on the size and shape

of a cluster, in order to further reject the cosmic events. A background subtraction

using the empty target runs was also performed for the efficiency calculation. In this

case, the efficiency could be calculated as

εGEM =
N full

GEM − C·N
emp
GEM

N full
HyCal − C·N

emp
HyCal

, (4.28)

where N is the number of counts, the subscripts “GEM” and “HyCal” indicate which

detector they come from, and the superscripts “full” and “emp” indicate that the

counts are from the full target runs and the empty target runs, respectively. C is the

live charge ratio between the full target and empty target runs. The statistical un-

certainties were estimated using the Binomial statistics. Notice that the backgrounds

generated from the electron beam should be scaled with the live charge while the cos-

mic backgrounds should be scaled with the total time (weighted by DAQ live time)

of the data taking. Thus, the runs and periods with an unstable beam status were

removed from this study so that C is also about the same as the total time ratio

between the full target runs and the empty target runs, as shown in Fig. 4.25. The

data point for the first sub-period of the 1.1 GeV data set ((a) of Fig. 4.25) had a
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beam stability issue, which is the reason that its data point is far away from unity,

and thus it was excluded in the entire analysis. Otherwise, the live charge ratios agree

with the total time ratios mostly within 0.2%. This enables a subtraction of the cos-

mic backgrounds as well. The background subtracted GEM efficiencies for e− p and

e− e events for various scattering angles are shown in Fig. 4.26. The efficiencies are

very stable regardless of the size of the energy cut. In the case of the 1.1 GeV beam

energy setting, the kinematic cut variation is limited to 3σ as the e − p and e − e

events can not be well distinguished at very forward angles if a larger cut is used.

Typically, the variation on the efficiency is smaller than 0.2% except for the efficiency

in the very forward angular region measured by the 1.1 GeV e− p events. This is ex-

pected due to the background generated from the very-small-angle-scattering events

(see Section 4.5.4). Otherwise, the slight increase in the efficiency with narrower cuts

can be explained by high energy radiative photons. In addition, a machine learning

algorithm based on the auto-encoder [76] and the convolutional neural network [77]

was developed by Duke Postdoc researcher Xuefei Yan, and trained using the cosmic

runs taken during the PRad experiment in order to reject the cosmic backgrounds.

The GEM efficiency results obtained after applying this cosmic rejection algorithm

is consistent statistically with the efficiency results obtained after the background

subtraction using the empty target runs, which demonstrates that the cosmic back-

grounds were under control.

The background due to high energy radiative photons generated from the e − p

and e − e bremsstrahlung processes was studied using the generators for e − p and

e− e elastic scatterings. They included the exact calculations for the next-to-leading

order Feynman diagrams and were capable of generating radiative photons up to

nearly the energy of the incident electron beam. The effect is expected to be around

0.06% or less in the Pb-glass detector region, and <0.01% in the PbWO4 region if
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Figure 4.25: Super ratio of the live charge ratio, between the full target and the
empty target runs, over the total time (weighted by ADC live time) ratio, between
the full target and the empty target runs, as a function of the sub-period for the
background subtraction. Left plot (a) for the 1.1 GeV data set, right plot (b) for the
2.2 GeV data set.

using a kinematic cut with 1σ of detector resolution, and around 0.26% or less in the

Pb-glass detector region and around 0.08% in the PbWO4 region if using a kinematic

cut with 4σ of detector resolution.

The GEM efficiencies measured using the 1.1 GeV e−p and e−e events, and those

from the 2.2 GeV data set are shown in Fig. 4.27. The GEM efficiencies measured

by the e− e events have smaller angular coverage than that for the e− p events, as

the double-arm Møller event selection was applied in the study, and it would limit

the angular acceptance. These GEM efficiencies include the efficiency loss due to the

GEM spacers and the gaps between the high voltage sectors. There are a number of

reasons for the slight differences between the efficiencies measured using these two

types of events. First of all, the matching cuts between the GEMs and HyCal are

different for e − p and e − e events. The electrons from the Møller scattering have

lower energies and thus are more sensitive to the multiple scattering effect and have

worse HyCal position resolution. The matching cut for e−e events is larger than that

for the e − p events. Second, for a particular angular bin, the efficiency losses due
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Figure 4.26: GEM efficiencies for 1.1 GeV e − p (a), 2.2 GeV e − p (b), 1.1 GeV
e− e (c), 2.2 GeV e− e (d) for various scattering angles as indicated in the legends,
as a function of the size of the kinematic cuts, which are measured in unit of the
energy resolution of HyCal.
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to the GEM spacers and the gaps between the high voltage sectors can be slightly

different between the e − p and e − e events, as the angular distributions for these

two types of events are very different. The e − p events always focus more on the

lower edge of an angular bin, while the e− e events tend to go to the upper edge of

a bin, particularly if the scattering angle is large. Thus, this effect is more dominant

at the large angles, such as those larger than 1.5◦, but this is expected and can be

reproduced using the simulation. Third, the efficiencies measured by the e−p events

are typically smaller than that from the e − e events in the forward angular region

(< 1.3◦), and it is more obvious in the case of the 1.1 GeV efficiencies. This is due to

the background from the very-small-angle-scattering events (see Section 4.5.4). This

background has a significantly impact on the efficiency measured by the 1.1 GeV e−p

events in the very forward angular region, and quickly becomes less than 0.1% when

the scattering angle is larger than 1.3◦. However, since the GEM efficiency in the

forward angular region can be cancelled by using the bin-by-bin method, the effect

due to this background is further minimized. This effect will be corrected using the

simulation and since the overall effect is expected to be less than 0.1%, the systematic

uncertainty for this correction was considered negligible. And lastly, the efficiencies

measured by the e−p and e−e events may be affected differently by the HyCal finite

resolution effect, which is in fact, one of the major systematic uncertainty sources for

the GEM efficiency measurements.

The HyCal position resolution (see Table 4.1) is not good enough to resolve the

spacers and the gaps between high voltage sectors, and also it is about the same

size as the forward angular bins. It causes a significant bin migration problem,

particularly for the very forward angular region6. One can study this effect using

6The multiple scattering can also cause a similar effect, but it is much smaller than the HyCal
resolution effect.
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Figure 4.27: GEM efficiencies measured using (top) 1.1 GeV e−p and e− e events,
and (bottom) 2.2 GeV e− p and e− e events, as a function of the scattering angle.
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the simulation, by comparing results from the simulation that uses perfect GEM

detectors and simulation that uses more realistic GEM detectors including all the

dead areas. The GEM efficiency obtained from these two cases are shown in Fig. 4.28.

The intrinsic efficiency (probability for the ionization, avalanche, and producing a

detectable signal on the readout strips) is assumed to be 100% for this study. In the

case with no GEM spacers and dead areas, the efficiency is nearly 100%. The small

loss for the GEM efficiencies is mainly due to the finite matching radius used in the

analysis (6σ of the HyCal position resolution) and can be removed if one uses larger

ones. In the other case, the efficiency is highly non-uniform due to the GEM spacers

and the gaps between the high voltage sectors, and the inefficiency can be as large as

6%. One can study the GEM efficiency corrected e− p to e− e ratio obtained from

these two cases. If the GEM efficiency calculation and correction are accurate, one

would expect the two ratios agree with each other. However, due to the systematic

uncertainty related to the HyCal finite resolution, there can be certain deviations

from unity, and the effect is particularly large in the forward angular region. As

shown in (a) of Fig. 4.29, the deviation can be significantly larger than 0.2% at the

very forward angular region (< 1.3◦) for the 2.2 GeV beam energy setting, with

the maximum deviation slightly above 0.5%. This deviation is slightly larger for

the 1.1 GeV setting (about 0.7% for the maximum deviation) as the HyCal position

resolution is energy-dependent and it is better at a higher energy. To overcome this

difficulty, one can apply the bin-by-bin method when forming the e−p to e− e ratio,

that is, taking the e − p counts and e − e counts from the same angular bin. In

this case, the energy-independent part of the GEM efficiency is cancelled. This is

demonstrated in (b) of Fig. 4.29, where the forward angle data points (< 1.6◦) are

obtained with the bin-by-bin method. The deviation for the bin-by-bin method is no

more than 0.05% in this angular range. However, the bin-by-bin method cannot be
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Figure 4.28: The GEM efficiencies obtained from the PRad simulation. The black
dotted points are obtained with perfect GEM detectors with no spacers and no dead
area. The red squares are obtained with more realistic GEM detectors that include
the GEM spacers and the gaps between the high voltage sectors.

applied to the entire angular acceptance of HyCal if one requires the two electrons

from the e − e scattering to be detected at the same time. This is because for the

e − e scattering, if one electron goes to a large angle, the other one may hit the

HyCal tungstate absorber or even pass HyCal through its central hole, so that there

is only one electron detected. This limits the angular acceptance of the double-arm

Møllers to be less than 4.0◦ for the 1.1 GeV beam setting and less than 2.0◦ for the

2.2 GeV beam setting, and the e − p to e − e ratio in larger angular range has to

be obtained from the integrated Møller method, which requires a GEM efficiency

correction. As shown in Fig. 4.29, the deviations for the e− p to e− e ratio obtained

from the integrated Møller method at large angles are mostly within 0.2%, which is

still acceptable.
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Figure 4.29: The GEM efficiency corrected e− p to e− e ratio from the simulation
with more realistic GEM detectors that include all the dead areas, over the same ratio
from the simulation with perfect GEM detectors. The results in (a) are obtained using
the integrated Møller method. For (b), the results on the left hand side of the blue
dash line are obtained with the bin-by-bin method, while the results on the right
hand side remain the same as those shown in (a).

The GEM efficiency measured with the 2.2 GeV e−p events, from the regions that

are far away from the spacers, is shown in Fig. 4.30. The efficiency is rather uniform

when the scattering angle is less than 3◦, while it drops by 5% at larger angles. This

drop was due to an issue with the front-end electronics. All the channels that were

parallel to the y−axis, in the range −460 mm < x < −200 mm, were connected to the

same Frontend Concentrator Card (FEC) during the experiment. They all suffered

from this issue, which led to early saturations for the APV channels, and resulted

in smaller ADC signals from the APV25s, compared to other channels. As a result,

the GEM efficiency in this region was more sensitive to the pedestal cuts, and the

efficiency was lower by nearly 10% compared to the efficiencies in other unaffected

regions. This efficiency drop can be reproduced very well by the simulation. To

further validate the GEM efficiency correction, the e− p to e− e ratios between the

data and the simulation from different quadrants of the detecters are compared, and

shown in Fig 4.31. Two different quadrant definitions were used in this study. In the
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Figure 4.30: The GEM efficiency measured using 2.2 GeV e−p events, from regions
that have no GEM spacers. This figure is made by Xinzhan Bai of University of
Virginia.

first case, the y-axis is vertical to the ground and the x-axis is to the right if one looks

downstream towards the detectors. In the second case, the x − y plane is rotate by

45◦ clockwise around the z-axis. The ratios, after the GEM efficiency correction, are

consistent within their statistical uncertainties for all the angular bins. Lastly, one

can study the extracted e− p elastic scattering cross sections in the Q2 overlapping

region between the 1.1 GeV and 2.2 GeV data sets (more details in Section 4.9.3).

This efficiency drop is the same for both 1.1 GeV and 2.2 GeV data sets. If this

drop is artificial, it will cause the 1.1 GeV data point at the highest Q2 (about 0.016

(GeV/c)2) to shift by nearly 5%, while its statistical uncertainty is about 1%. On

the other hand, for the 2.2 GeV data set, the data point at the same Q2 will not be

affected by the drop as the corresponding scattering angle is about 3.4◦. This will

cause a significantly discrepancy between the two data sets, which is not observed

as their cross section data points are highly consistent statistically around this Q2

value. To sum up, we are confident that this decrease of the GEM efficiency at large
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Figure 4.31: The e − p to e − e ratios between the data and the simulation from
different quadrants, using the 1.1 GeV data (top) and the 2.2 GeV data (bottom).
The areas included in the quadrants are indicated by the diagrams at the lower left
corners. The black boxes represent the GEMs and HyCal if one looks downstream
into the detectors.
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angles was indeed due to the electronic issue and it can be corrected successfully by

the GEM efficiency correction.

4.7 Simulation

As mentioned at the beginning of this chapter, the analysis of this experiment re-

quires a comprehensive and realistic Monte Carlo simulation. This is necessary for

the studies of the acceptance, radiative effects, bin center correction, various sys-

tematic uncertainties and so on. A simulation program was developed based on the

Geant4 toolkit [78], which is capable of calculating possible radiative effects such as

the energy loss and bremsstrahlung radiation, and multiple scatterings as particles

pass through the external materials in the experimental setup. It will also generate

possible secondary particles in the process. The program uses the geometric infor-

mation determined from the position calibration for the GEMs and HyCal, and also

the surveyed and blueprint information for other objects in the experimental setup.

The simulation also includes an external package for the detector digitization, whose

purpose is to turn the Geant4 simulation results into ADC values, like one would

obtain directly from the experiment. During this process, one would also include

various electronics effects like the pedestal noises and pile-up effects into the ADC

values. The pedestal data used in the simulation were obtained from the experiment.

They were taken at the beginning of each run and were triggered by the radioactive

sources attached to the reference PMTs (see section 3.7), which were uncorrelated

to the HyCal total sum trigger used for the physics events. These pedestal events

were taken while the electron beam was on so that they could be used to measure

the pile-up effects in the corresponding run.

For the internal radiative effects of e− p and e− e scatterings, two separate event
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Figure 4.32: Feynman diagrams calculated in the generator for the e − p elastic
scattering, including (a) the Born level e− p elastic scattering, (b) vertex correction,
(c) vacuum polarization and (d and e) bremsstrahlung processes. The figure is
obtained from [79].

generators [79] were built, which included the next-to-leading order contributions to

the Born cross sections as shown in Fig 4.32 for the e− p and Fig 4.33 for the e− e

elastic scatterings. The calculations for both e−p and e−e were completed without

the usual ultra relativistic approximation (URA), where the mass of the electron is

neglected. A second independent elastic e−p event generator [31] was used as a cross

check. The radiative corrections to the proton line, which were often neglected, were

included in this generator. All the next-to-leading order diagrams included in this

generator are shown in Fig. 4.34. However, the radiative corrections to the proton line

is highly suppressed due to its heavy mass and it is negligible in the PRad kinematic

range. The two e − p generators were found to be in excellent agreement. The

e− p event generators also included the contribution from the two-photon exchange

processes [80, 81, 82], which were estimated to be less than 0.2% of the e− p elastic
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Figure 4.33: Feynman diagrams calculated in the generator for the e − e elastic
scattering, including (a and b for the t and u channels, respectively) the Born level
e−e elastic scattering, (c) vacuum polarization, (d and e) vertex correction, (f and g)
two-photon exchange and (h to k) bremsstrahlung processes. The figure is obtained
from [79].
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Figure 4.34: All the Feynman diagrams considered in Ref. [31], including (a) Born
level e−p elastics scattering, (b and c) bremsstrahlung radiations from the lepton line,
(d and e) bremsstrahlung radiations from the proton line, (f) vacuum polarization,
(g) the lepton and (h) proton vertex correction, and (i and j) box diagrams. The
figure is obtained from Ref. [31].

scattering cross section in the PRad kinematic range. All the generators are able

to generate hard radiated photons, beyond the peaking approximation7 [83]. This is

crucial for the calorimeter simulation, as the HyCal will integrate some of the radiated

photons into the electron cluster, if they are close enough to each other when they

hit the HyCal.

The inelastic e− p scattering events were included in the simulation using an em-

pirical fit [75] to the e−p inelastic scattering world data. The inelastic e−p scattering

contributes as a background to the elastic e− p events. And the simulation was able

to reproduce the measured energy spectrum reasonably well (see section 4.5.2) once

the inelastic e− p scattering events were included.

After normalizing the integrated luminosities for the outputs of these generators,

the generated particles are then propagated in the experimental setup using the

7In the peaking approximation, the radiated photon will be co-linear with the electron.
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Geant4 simulation. Eventually, the results are digitized into the ADC counts in the

readouts and reconstructed with the same event reconstruction algorithm as for the

data. The simulated energy spectrum is highly similar to that from the data, as

shown in Fig. 4.35.

In addition, as introduced in Section 3.3, a number of pressure gauges and tem-

perature sensors were used during the experiment to monitor the gas pressure and

temperatures at multiple locations across the entire target system. These measured

temperature values, together with the inlet gas flow rate, pumping speeds of the

vacuum pumps, and the detailed geometry of the target system were used to simu-

late the hydrogen density profile in the target using the COMSOL Multiphysics R©

simulation package. The average pressure obtained from the simulation agreed with

the measured values within 2 mTorr for both the target cell and the target chamber,

under the PRad full target running conditions. The simulated gas density profile

along the beam-line is shown in Fig. 4.36.

4.8 Angular Resolution and Q2 Resolution

Using the PRad simulation package, the polar-angle resolution of the experimental

setup can be extracted and it is shown in (a) of Fig. 4.37, for which the GEM de-

tectors were used for the (two-dimensional) position reconstruction. This resolution

is dominated by the multiple scatterings when electrons pass through external ma-

terials, in particular, the 1.6 mm thick aluminum vacuum window. The extended

target effect also plays a role, but the effect is only significant when the polar angle

is large. The polar-angle resolution is about 0.1 and 0.06 mrad at the very forward

angle, for the 1.1 and 2.2 GeV energy settings, respectively, and increases to 0.27 and

0.24 mrad at the largest angle.
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Figure 4.35: The reconstructed energy spectrum from the data and simulations for
the 2.2 GeV beam energy setting. The data are shown as the black histograms and
the simulations are shown as the red ones (as indicated in the legend in (d1)). Each
row shows a spectrum with a different scattering angle, (a1): 0.78◦ to 0.82◦, (b1):
1.20◦ to 1.30◦, (c1): 3.80◦ to 4.20◦, (d1): 5.00◦ to 6.00◦. Plots in the right column
are the same as those on the left, except the y-axes are in log scales.

121



[cm]
60- 40- 20- 0 20 40 60

]3
/c

m
2

G
as

 d
en

si
ty

 [H

1210

1310

1410

1510

1610

1710

1810
COMSOL production run

COMSOL empty target run

COMSOL full target

COMSOL empty target

Figure 4.36: The simulated gas density profile along the beam line by COMSOL
Multiphysics R© simulation package, for the full target run condition (black curve)
and empty target run condition (red curve). The target center is placed at 0 cm in
the plot.

122



Electron scattering angle [deg]
1 2 3 4 5 6 7

P
o

la
r 

an
g

le
 r

es
o

lu
ti

o
n

 [
m

ra
d

]
0.05

0.1

0.15

0.2

0.25

0.3

2.2 GeV
1.1 GeV

a

]2 [(GeV/c)2Q
4−10 3−10 2−10 1−10

]2
 r

es
o

lu
ti

o
n

 [
(G

eV
/c

)
2

Q

6−10

5−10

4−10

b

Figure 4.37: The polar-angle (a) and Q2 (b) resolutions of the experimental setup,
for the 1.1 and 2.2 GeV beam energy settings. They include the multiple scatterings
due to detector materials, detector resolutions, and the extended target effect.

To determine Q2, since the selected events are considered elastic (after subtract-

ing the backgrounds), only the scattering angle is needed as the energy of a scattered

electron is constrained by its scattering angle. Thus, only the resolution of the scat-

tering angle and the energy of the incident electron beam will affect the resolution

of Q2. The electron beam energy delivered by CEBAF was measured with an uncer-

tainty of 0.5 MeV and 1.5 MeV for the central values, for the 1.1 and 2.2 GeV beams,

respectively. And the energy spread is at the level of 3× 10−5. The Q2 resolution is

shown as (b) in Fig. 4.37 and it is dominated by the polar-angle resolution.
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4.9 Cross Section Extraction

4.9.1 (e− p) /(e− e) Ratio

The e − p elastic scattering cross section is extracted based on Eq. 4.12 for the

experiment. It states that after making the efficiency corrections in both the data

and simulation, the e− p elastic scattering cross section equals to the (e− p)/(e− e)

ratio from the data over the (e− p)/(e− e) ratio from the simulation (super ratio),

multiplied by the Born e− p cross section used in the simulation.

Before obtaining the (e − p)/(e − e) ratio from the data, one needs to subtract

the e− p and e− e counts measured in the empty target runs from those in the full

target runs, after normalization by the total live charges between these two types of

runs. Due to possible fluctuations in the background rate, the entire data set was

split into smaller sub-periods (10 for the 1.1 GeV data set, and 20 for the 2.2 GeV

data set), with most of the sub-periods consisted of about 3 to 4 full target runs,

and sandwiched by two empty target runs. For an angular bin at θi, the background

subtracted e− p and e− e counts are

N e,r
ep (θi) =

∑
j

[
(N e,r

ep )full(θi)− Cj · (N e,r
ep )emp(θi)

]
, (4.29)

N e,r
ee (θi) =

∑
j

[(N e,r
ee )full(θi)− Cj · (N e,r

ee )emp(θi)] . (4.30)

The subscript “full” indicates that the counts are from the full target runs, and the

subscript “emp” indicates that the counts are from empty target runs. Cj is the live

charge ratio (see Eq. 3.5) between the full target runs and the empty target runs in

the j-th sub-period, and the index j runs through all sub-periods for a beam energy

setting. After this subtraction procedure, the e−p to e−e ratio can be obtained after
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making the detector efficiency correction to the e − p and e − e counts separately.

Other than taking the total sum of all the background subtracted counts from all the

sub-periods, one can also obtain an (e − p)/(e − e) ratio from each sub-period and

obtain the final ratio by taking a weighted average using their statistical uncertainties.

The two results differ by no more than 0.05% for all angular bins, which is negligible.

For the inelastic e− p contribution, one has the option to either subtract this in the

data or add this in the simulation. The difference in the super ratio between these

two approaches was much smaller than 0.05% for all angular bins.

For the simulation, one can obtain the (e − p)/(e − e) ratio by using the e − p,

e− e and inelastic e− p event generators and then transport the generated particles

in the Geant4 simulation. The events from these generators must be normalized to

the same integrated luminosity (the integrated luminosity of e − e in this study) as

they all share the same luminosity in the data. The exact same event selection cuts

were applied to the simulation to obtain the (e− p)/(e− e) ratio.

As mentioned at the beginning of the chapter, there are two methods to form

the e − p to e − e ratio. The first method is the bin-by-bin method, for which one

will form the ratio using the e − p and e − e counts from the same angular bin.

This method has the ability to cancel out the energy-independent part of the GEM

efficiency (see section 4.6). However, this method is limited to the angular range of

the double-arm Møller acceptance, which is significantly smaller than that for the

e−p, and it may also introduce angular-dependent systematic uncertainties from the

e−e. The other method is the integrated Møller method, which uses the e−e counts

from a selected angular range and is applied as a common normalization factor for

all angular bins of the e − p. It is applicable to all the angular bins in principle,

but requires the GEM efficiency corrections whose systematic uncertainties could be

significant especially in the forward angular region (< 1.3◦). However, the systematic
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uncertainties from the e− e can only affect the normalization of the data points, and

will not affect the extracted rp. Taking various considerations into account, the range

for the bin-by-bin method is applied up to 3.0◦ and 1.6◦ for the 1.1 and 2.2 GeV data

sets, respectively. And the data points in larger angular ranges are obtained from the

integrated Møller method. The selected angular ranges for the e− e integration are

1.3◦ to 3.0◦ for the 1.1 GeV data and 1.3◦ to 2.0◦ for the 2.2 GeV data. The major

reason of choosing these ranges is that the GEM efficiency can be determined more

precisely. One can also choose some other ranges, for example 0.7◦ to 1.0◦ or 1.0◦ to

1.3◦, and the difference on the super ratio is about 0.05% compared to the default

range. The e − p to e − e super ratios obtained with both the bin-by-bin and the

integrated Møller method are very consistent in the range that they can be reliably

compared, as shown in Fig. 4.38.

The azimuthal symmetry of the super ratio between the data (e − p)/(e − e)

and the simulated (e − p)/(e − e) was studied by comparing the results obtained

from each quadrant of the HyCal calorimeter. The super ratio from each quadrant

was found to be consistent with each other within the statistical uncertainties, as

shown in Fig. 4.31 in Section 4.6. The purpose of this comparison was not only to

validate the GEM efficiency correction, but also to check the combined systematic

effects such as, the beam position, tilting angles of both the beam and detectors,

HyCal detector responses and geometric acceptances. Note that a number of these

systematic effects, such as the beam position and tilting angles of both the beam

and detectors, could be averaged out significantly when combing the data from all

the quadrants. In addition, as various properties, including the triggers, are different

between the two types of shower detectors of the HyCal, the consistency between the

PbWO4 and Pb-glass modules was also verified by comparing the super ratio with

and without using the Pb-glass modules. The super ratio in the angular range where
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Figure 4.38: The super ratios (e − p to e − e ratios from the data over that from
the simulation) obtained using the integrated Møller method (black solid dots) and
the bin-by-bin method (red open circle). The 1.1 GeV data are shown in (a) and
2.2 GeV data are shown in (b).
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Figure 4.39: The super ratio obtained when using only the PbWO4 modules and
when using all modules for the angular region where the two types of modules have
overlapping coverage. Plot (a) is for the 1.1 GeV and plot (b) for the 2.2 GeV electron
beam energy settings.

the two types of modules have overlapping coverage is shown in Fig. 4.39.

4.9.2 Radiative Corrections

The radiative corrections for the e− p elastic scattering cross section include the in-

ternal radiative corrections calculated by the e−p and e− e event generators [31, 79]

and the radiative correction for effects due to particles passing through external ma-

terials, which is performed by the Geant4 simulation. There are four important

parameters for the generators, including the minimum and maximum scattering an-

gles (θmin
` and θmax

` ), the maximum allowed bremsstrahlung photon energy cut (Emax
γ )

and the soft photon energy cut (Emin
γ ). Based on the Feynman diagrams presented in

Section. 4.7, the generators will generate all possible scattered electrons within the

angular and energy ranges defined by these four parameters, and also their associated

bremsstrahlung photons. In the ideal case if one wants to cover the full phase spaces

within the experimental kinematic range, one would generate events in the entire 4π
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solid angle and with all possible energies for the radiated photons. However, this is

not practical computationally and the ranges for the generators have to be limited

by these parameters. They have to be chosen carefully so that the effects due to ne-

glecting events outside the ranges are negligible, and the results from the simulation

are not sensitive to the choices for these parameters. The angular range for the gen-

erators is chosen to be from 0.5◦ to 8.5◦, slightly larger than the angular acceptance

of the experimental setup. Even though events outside this range may still bounce

into the acceptance through multiple scatterings, this effect is rather negligible as

shown by the simulation. First of all, the events with smaller scattering angles will

be rejected by the matching condition between the GEMs and HyCal, as discussed

in Section 4.5.4. For the e − e events with larger scattering angles, their energies

will be too small to satisfy the event selection cuts. And for the e − p events, even

though they may still have enough energy, the cross section is decreasing drastically

with larger scattering angles. The purpose of the soft photon cut is to deal with the

infrared divergent problem of the radiated photons with very low energies, and it is

typically chosen to be much smaller than the energy resolution of the detector. For

the analysis, Emin
γ = 1 MeV is used for both beam energy settings and Fig. 4.40 (a)

shows that in the case of the 1.1 GeV beam energy setting, the results with Emin
γ =

2 MeV, 5 MeV and 10 MeV are consistent statistically with the one obtained with

Emin
γ = 1 MeV. Similar results can be obtained from the 2.2 GeV simulation. For

Emax
γ , the difference in the simulation results becomes negligible once this cut is set

to a large enough value, such as larger than 1000 MeV for the 1.1 GeV setting, and

1800 MeV for the 2.2 GeV setting. However, the results are sensitive to this param-

eter if it is set to be too low, as shown in Fig. 4.40 (b) for the 1.1 GeV setting, in

which case the results are normalized to the one obtained with Emax
γ = 1100 MeV.

The reason is that the PRad detector setup cannot distinguish the electrons and pho-
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Figure 4.40: The elastic e − p counts from the simulation, obtained with different
Emin
γ (top) and Emax

γ (bottom) cuts, for the 1.1 GeV beam energy setting. The results
in both plots are normalized to the case with Emin

γ = 1 MeV and Emax
γ = 1100 MeV.

For the top plot, Emax
γ is fixed at 1100 MeV for all the cases while for the bottom

one, Emin
γ is fixed at 1 MeV for all the cases.
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tons if they are almost co-linear. In this case, they will produce only one cluster on

the HyCal and also produce a hit on the GEMs that is able to satisfy the matching

condition. This type of events mostly come from the bremsstrahlung radiation of the

final state electrons, in which case the probability for the photon emission decreases

drastically as the photon energy increases. Thus, once this cut is large enough, the

results start to saturate. In addition, this cut mostly affects the normalization of the

results, so that the systematic uncertainty on rp is expected to be negligible once a

large cut is applied in the generators.

The radiative correction was applied using an iterative procedure, which would

replace the electric form factor used in the e−p event generator by the one extracted

from the data so that the e−p to e−e ratios between the data and simulation would

converge to unity eventually. This procedure is important also for the bin center

correction, which requires a good agreement between the simulation and the data. A

flow chart for this procedure is presented in Fig. 4.41. The Kelly form factors [84] were

used before the iteration. The super ratios before and after this iterative procedure

(4 iterations for the 1.1 GeV and 5 iterations for the 2.2 GeV data sets) are shown in

Fig. 4.42. The super ratios converged very fast after a few iterations. The differences

for the differential cross section results, before and after the iterative procedure are

shown in Fig. 4.43. The cross section results are insensitive to these cross section

models used in the simulation, as the data points are consistent statistically before

and after the iteration.

4.9.3 Born Level e− p Elastic Scattering Cross Section

The e− p elastic scattering cross sections were obtained by comparing the measured

e−p to e−e ratio to the simulated e−p to e−e ratio, as indicated by Eq. 4.12, after

the efficiency corrections for both the data and simulation. For angles below 3.0◦
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Figure 4.41: The iterative procedure for the radiative correction. This procedure is
terminated once the e− p to e− e ratios between the data and simulation converge
to unity.

and 1.6◦ for 1.1 GeV and 2.2 GeV respectively, the bin-by-bin method was applied

to cancel the GEM efficiency. For larger angles, the integrated Møller method was

applied, and the selected angular range for the Møller counts integration was 1.3◦ to

3.0◦ for the 1.1 GeV data set and 1.3◦ to 2.0◦ for the 2.2 GeV data set. The extracted

differential cross sections for the e−p elastic scattering are shown in Fig. 4.44. There

are in total 33 data points from the 1.1 GeV data set, covering Q2 from 2.1 × 10−4

to 1.6 × 10−2 (GeV/c)2. The Q2 range for the 2.2 GeV data set is from 7.0 × 10−4

to 5.9 × 10−2 (GeV/c)2, covered by 38 data points. For the 1.1 GeV data set, the

statistical uncertainties are about 0.2% in the forward angular region, and increases

to nearly 1% for the largest Q2 bin. The systematic uncertainties are larger (about

0.5%) in the forward angular region due to the systematic uncertainties related to

the beam-line background subtraction, and in general between 0.3% to 0.5% at larger

angles. For the 2.2 GeV data set, the statistical uncertainties are about 0.15% in the
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Figure 4.42: The super ratios before and after the iteration process. The top plot
is for the 1.1 GeV beam energy setting and the bottom plot for the 2.2 GeV beam
energy setting. Before the process, the Kelly form factors [84] were used in the
simulation. The error bars contain the statistical uncertainties only.
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Figure 4.43: The relative difference in the cross sections before and after the itera-
tion process for (a) the 1.1 GeV and (b) the 2.2 GeV data sets. Before the process,
the Kelly form factors [84] were used in the simulation. The error bars contain only
the statistical uncertainties from the simulation.

forward angular region, and increases to nearly 0.8% for the largest Q2 bin. The

systematic uncertainties are larger in the high Q2 region (maximum 1.1%) due to the

inelastic e−p contribution and the energy response of the Pb-glass shower detectors,

and in general in between 0.25% to 0.32% in the PbWO4 region (< 3.5◦).

To have a better visualization of the proton electromagnetic form factors, one

can divide out the kinematic factors and the Mott cross sections in the Rosenbluth

formula (Eq. 2.16), and define a reduced cross section

σreduced =
E(1 + τ)

(
dσ
dΩ

)
ep

E ′
(
dσ
dΩ

)
Mott

= (Gp
E)2 +

τ

ε
(Gp

M)2. (4.31)

Notice that this definition of the reduced cross section differs slightly from the one

for the Rosenbluth separation, which is defined in Eq. 2.31. The latter requires a

division of another kinematic factor of ε/τ . The reduced cross section results are

shown in Fig. 4.45 for both the 1.1 GeV and 2.2 GeV data sets.
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Figure 4.44: The Born level differential cross sections for the e−p elastic scattering
from (a) the 1.1 GeV and (b) the 2.2 GeV data sets. Statistical and systematic
uncertainties are shown as separate bands and are scaled to the right axes of each
plot.

Figure 4.45: The reduced cross section as defined in Eq. 4.31, for the 1.1 GeV and
2.2 GeV data sets. After dividing out the kinematic factors, the reduced cross section
is a linear combination of the electromagnetic form factors squared.
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4.10 Systematic Uncertainties on Cross Section

The systematic uncertainties of the PRad experiment are grouped into uncorrelated

uncertainties and correlated ones. The latter are further divided into normalization

uncertainties and Q2-dependent uncertainties. Only a few systematic uncertainties

may be considered uncorrelated, that is, no clear correlations are observed among

different angular or Q2 bins. These include the uncertainties in the detector effi-

ciency measurements, parts of the energy calibration of the HyCal modules, and also

parts of the detector responses for the Pb-glass detectors. Unlike the PbWO4 mod-

ules, which show clear similarities, the Pb-glass modules have some differences in

their responses and no clear correlations are observed among them. So, these sys-

tematic uncertainties are assumed to be uncorrelated. Most of the other systematic

uncertainties are considered to be correlated, and their angular dependencies are ex-

tracted using either the data or the simulation, and are included in the systematic

uncertainty studies. A few items, such as the energy cuts in the event selection, and

the time-stability of the background subtraction are considered to be mixed, that is,

they are partially correlated and partially uncorrelated. Studies for their systematic

uncertainties involve using many different sizes for the event selection cuts and us-

ing different combinations of empty target runs to do the background subtraction.

All the systematic uncertainties that are considered for the cross section results are

shown in the following list:

1. Event selection

2. Detector efficiency

3. Beam-line background

4. HyCal response
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5. Geometric acceptance

6. Beam energy

7. Energy loss and multiple scattering due to external materials

8. Radiative corrections for e− p and e− e

9. Inelastic e− p

The total relative systematic uncertainties for the cross sections are shown in Fig. 4.46

for both the 1.1 and 2.2 GeV data sets. The first item is related to various cuts used

to select the e − p and e − e elastic scattering events, which will be discussed in

the Sub-section 4.10.1. Various systematic uncertainties can arise from the imperfect

knowledge about the experimental setup, such as the beam energy, positions and

efficiencies of the detectors, the HyCal energy response to incident particles, and

fluctuations and possible biases in the beam-line background subtraction. These

are related to various conditions while the experiment was taking place and they

will be discussed in the Sub-section 4.10.2. Lastly, the cross section results depend

inevitably on certain models and calculations, such as the radiative corrections for

the e − p and e − e and also the inelastic e − p subtraction. They are discussed in

the Sub-section 4.10.3.

4.10.1 Systematic Uncertainties Associated with Cuts

A series of cuts were used in the analysis to select the elastic e−p and e−e events, such

as the kinematic cuts for both reaction channels, and the coplanarity and vertex-z

cuts for the e−e events. Slightly different cross sections results can be obtained once

the sizes of these cuts are changed, and this variation arises from the fact that there

are always some slight differences between the data and simulation. For example, for
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Figure 4.46: Total relative systematic uncertainties for the e− p elastic scattering
cross sections for the 1.1 and 2.2 GeV data sets.

the shape of the elastic e − p peak, the central positions and widths obtained from

the data and simulation match very well, however, there can be small differences in

the tail regions (see Fig. 4.35). These differences may arise from various sources such

as the light attenuation in the modules, the non-linearity, the gaps between HyCal

modules that are not simulated perfectly, other electronics related effects that were

unaccounted for in the detector digitization and so on. These sources are typically

very difficult to be isolated and studied separately. In order to quantify their overall

effects, the sizes of the event selection cuts are varied around the nominal cuts used

to obtain the cross section results (see Table 4.3 and Table 4.4). The root-mean-

squares (RMS) of the cross section results as one changes these cuts are used as the

uncertainties due to the event selection.

The uncertainties for the event selection are dominated by those cuts related to

the HyCal reconstructed energy, such as the kinematic cuts. And the variations
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are not uniform across different detector modules of the HyCal, especially given

that it consists of two different types of shower detectors. These variations may

come from small inter-module differences in properties such as the light attenuation,

non-linearity of detector responses, microscopic gaps between detector modules and

the energy calibrations. The effect of this systematic uncertainty was studied by

varying the kinematic cuts over a wide range, which is ± 20% for the 1.1 GeV

default kinematic cuts and at least ± 50% for the 2.2 GeV default kinematic cuts

(see Table 4.3 and Table 4.4). The reason of a smaller range for the 1.1 GeV data

set is because the e− p and e− e elastic peaks are very close, particularly in the very

forward angular region (< 1.0◦ for instance). Increasing the cut size for the e − p

events can include significant amount of e− e events and vice versa.

The super ratios (proportional to the cross section) as a function of the e − p

kinematic cut size, are shown in Fig 4.47 and Fig 4.48. The variation of the kinematic

cut leads to changes in the extracted cross section of about 0.1%, on average, and

is typically within ± 0.15%, except for the last few bins in the large angular region.

This is most likely due to the lack of statistics in the fine tuning process of the

energy calibrations for the Pb-glass modules and the effect is more significant if the

size of the kinematic cut is reduced. In the PbWO4 region (< 3.4◦), the variation

is significantly smaller and it is most likely due to the light attenuation property

of the PbWO4 modules and the gaps between them. The variations when changing

the energy cuts for the e− e (see Fig 4.49 and Fig 4.50) are typically slightly larger

than those for the e − p in the similar detector region. This is because the double-

arm Møller selection requires three cuts on the HyCal reconstructed energy for each

event (two kinematic cuts for the two scattered electrons and an elasticity cut for

the total energy of these two electrons). However, the variation is more uniform
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across the HyCal8, which means varying energy cuts for the e−e mostly just changes

the normalization of the data points and the angular dependency of the variation is

significantly smaller than that for the e−p. The RMSs of the cross section results, due

to the change in the size of the energy cuts, are used as the systematic uncertainty.

For the co-planarity and vertex-z cuts, the variations are negligible compared to

those from the energy cuts. Only a 0.02% difference was observed when changing

the sizes of these cuts by ±20%, and the difference is mostly on the normalization

of the data points. The cross section results are also shown to be insensitive to the

matching cuts between the GEMs and HyCal. The default value for this cut is 6σ

of the HyCal position resolution. When using 5σ, 7σ and 8σ cuts, the RMSs of the

cross section results are about 0.02% (mostly uncorrelated) of the nominal ones. The

sensitivity on the selected angular ranges for the integrated Møller method was also

included for the systematic uncertainties of the event selection. These ranges are, by

default, 1.3◦ to 3.0◦ for the 1.1 GeV data set and 1.3◦ to 2.0◦ for the 2.2 GeV data set,

as the GEM efficiency could be more precisely determined in these ranges. Typically

around 0.05% difference would appear if some other ranges are used, such as 0.7◦

to 1.0◦ or 1.0◦ to 1.3◦. This difference is assigned as the corresponding systematic

uncertainty.

4.10.2 Systematic uncertainties from Experimental Conditions

Detector efficiency: These systematic uncertainties include two items. The first item

includes the statistical uncertainties in the detector efficiency measurements, namely,

measurements of the HyCal trigger efficiency and the GEM efficiency. These statis-

tical uncertainties are determined using the Binomial distribution. For the HyCal

trigger efficiency, the uncertainties are typically less than 0.03% for each module, so

8Partially because the double-arm Møllers are mostly inside the PbWO4 detector region.
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Figure 4.47: The variations of the super ratio results when changing the size of the
kinematic cuts for the 1.1 GeV e− p event selection, for different scattering angular
bins. The multiplication factor is to be multiplied on top of the default sizes of the
kinematic cuts, listed in Table 4.3. A multiplication factor of 0.8 means reducing
the sizes by 20%, which leads to -2.40 σdet to 2.40 σdet for the size of the cut in the
PbWO4 region for instance. Data points are shifted so that the super ratio with the
default cut size is at unity.
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Figure 4.48: The variations of the super ratio results when changing the size of the
kinematic cuts for the 2.2 GeV e− p event selection, for different scattering angular
bins. The multiplication factor is to be multiplied on top of the default sizes of the
kinematic cuts, listed in Table 4.3. A multiplication factor of 0.5 means reducing
the sizes by 50%, which leads to -1.75 σdet to 1.75 σdet for the size of the cut in the
PbWO4 region for instance. Data points are shifted so that the super ratio with the
default cut size is at unity.
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Figure 4.49: The variations of the super ratio results when changing the size of
the energy cuts for the 1.1 GeV e− e event selection, for different scattering angular
bins. The multiplication factor is to be multiplied on top of the default sizes of the
kinematic cuts, listed in Table 4.4. A multiplication factor of 0.8 means reducing
the sizes by 20%, which leads to -2.40 σdet to 2.40 σdet for the size of the cut in the
PbWO4 region for instance. Data points are shifted so that the super ratio with the
default cut size is at unity.
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Figure 4.50: The variation of the super ratio results when changing the size of the
energy cuts for the 2.2 GeV e − e event selection, for different scattering angular
bins. The multiplication factor is to be multiplied on top of the default sizes of the
kinematic cuts, listed in Table 4.4. A multiplication factor of 0.5 means reducing
the sizes by 50%, which leads to -2.25 σdet to 2.25 σdet for the size of the cut in the
PbWO4 region for instance. Data points are shifted so that the super ratio with the
default cut size is at unity.
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the effect is negligible. For the statistical uncertainties of the GEM efficiency, only

data points obtained using the integrated Møller method can be affected (scattering

angles larger than 3.0◦ for 1.1 GeV and 1.6◦ for 2.2 GeV data sets), as the GEM

efficiency correction is not needed for the bin-by-bin method. For the 2.2 GeV data

set, this uncertainty is about 0.05% at 1.6◦ and increases to 0.3% for the largest

angular bin. For the 1.1 GeV data set, it is about 0.1% at 3.0◦ and increases to

0.4% for the largest angular bin. These statistical uncertainties should be considered

uncorrelated among different angular bins. The second item includes the uncertain-

ties in the GEM efficiency measurements due to the finite HyCal position resolution

effect (see Section 4.6). The uncertainties from this source are estimated by running

multiple simulations with slightly different widths and locations for the GEM spac-

ers, and then compared the GEM efficiency corrected cross section results to those

obtained with perfect GEMs (no GEM spacers and other dead areas). These simula-

tions include ± 0.9 mm variations around the nominal width (3.0 mm) and ± 2 mm

variations around the measured locations for the GEM spacers. This source can in-

troduce a maximum uncertainty of 0.35% on the 1.1 GeV cross sections and 0.25%

on the 2.2 GeV cross sections. The background related systematic uncertainties for

the GEM efficiency, such as those due to cosmic events, high energy photons and

very-small-angle-scattering events (see Section 4.5.4 and Section 4.6) are considered

negligible.

Beam-line background: There are three items included in the systematic uncer-

tainties due to the beam-line background subtraction. The first one is the time

variation of the background, which was studied by performing the background sub-

traction using different combinations of the empty target runs, such as, the empty

target run before or after the corresponding production runs, or the average of these

two empty target runs. The RMSs of the cross sections were used as the systematic
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uncertainties due to the time variation of the background subtraction. These uncer-

tainties are negligible for the 2.2 GeV cross section results (∼ 0.02%) as the beam-line

background was highly stable during the experiment, but is one of the dominant un-

certainties for the 1.1 GeV data set. It introduces nearly 0.5% uncertainties on the

cross sections in the very forward angular region, and reduces to around 0.25% for

larger angles. The second item is the uncertainty in the live charge measurement,

and the nominal uncertainty is about 0.1%. This leads to a maximum 0.05% and

0.02% uncertainties on the cross sections below 1.1◦ for the 1.1 and 2.2 GeV data

sets, respectively, as the background rates are high in this region. The last item is

related to the background hydrogen gas distribution around the target cell. When

the hydrogen gas is filled directly into the target cell, it produces two diffusing tails

as it exits the window-less cell through the orifices. The empty target runs can only

be used to subtract hydrogen gas that is far away from the cell and cannot reproduce

these tails, as the gas is filled directly into the chamber. In this case, effects due to

these tails can cause systematic uncertainties for the results. One way to quantify this

effect is to study the vertex-z distributions in the data and simulation, reconstructed

by two hits on the GEMs from the double arm Møller events. Over 10 different gas

profiles were used to study the comparisons of the vertex-z distributions between the

data and simulation, and also to study the effects on the cross section results. They

include gas profiles from the COMSOL simulation and a number of variations based

on that, no gas outside the target cell, and profiles based on a simple gas diffusion

relation 1/(dz + c)2, where dz is the z−coordinate difference between a point outside

the cell and the orifice, and c is a tunable parameter that can control the size of

the diffusing tails. To estimate the possible systematic uncertainties, we use the two

extreme cases. In the first case (min. tails), the gas profile has no diffusing tails out-

side the target cell. The vertex-z distribution simulated with this profile always gives
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smaller tails compared to the same distribution from the data, as shown in Fig. 4.51

for the 2.2 GeV setting. In the second case (max. tails), we use one of the gas profiles

based on the simple gas diffusion model, which always gives larger tails compared to

the same distribution from the data. The ratios between the e − p to e − e ratios,

obtained with these two gas profiles, are shown in Fig. 4.52 for the 2.2 GeV setting.

The effect on the cross section results is correlated. The e−p to e−e ratios obtained

in the second case are larger than those in the first case by around 0.2% for the very

forward angles, and then converge almost linearly with larger angles. This effect is

about the same for the 1.1 GeV setting. The differences in the results obtained with

these two gas profiles are used as the 3σ boundaries for the systematic uncertainties

due to the diffusing gas tails.

HyCal response: This item is mainly related to the HyCal energy response for an

incident particle with different energies (non-linearity). There are a number of fac-

tors that can affect the nonlinear behavior of a module, such as the light attenuation,

pedestal cuts, back scattering of secondary particles and so on. A typical nonlinear

behavior of a HyCal module is shown in Fig. 4.10 over a very broad energy range

of an incident particle, based on measurements from the PrimEx-II experiment [65].

The linearity is usually very good when the energy of the incident particle is high, but

changes rapidly at the low energy side mainly due to the pedestal cuts. For the PRad

experiment, the non-linearity near the elastic e− p peak can be measured using the

data from production runs if the energies of the scattered electrons from both e− p

and e− e scatterings are high enough, so that they are both on the linear part of the

response curve. This is true for most of the PbWO4 modules and some of the Pb-glass

modules that are covering smaller scattering angles. However, when the scattering

angles are too large, the incident energies of the e − e electrons become so low that

they will fall on the rapidly changing part of the response curve, and it can no longer
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Figure 4.51: The z-vertex distributions from the 2.2 GeV data (black histogram),
and simulations using the gas profiles with min. tails (green histogram) and max.
tails (red histogram). All distributions are normalized by the integrals in the peak
region (from -20 mm to 20 mm, size of the target cell). The bottom plot is a zoom-in of
the top plot. The distribution from the data is completely within the two boundaries
set by the simulations with min. and max. tails.
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be used to measure the non-linearity near the e − p peak. Thus, the uncertainty

associated with non-linearity corrections primarily affects data points in the large

angular region and it is expected to be larger for the 2.2 GeV setting as the HyCal

gain was lower and the effect due to the pedestal cuts would be more significant. In

addition, for the 2.2 GeV data set, these corrections affect directly the position of the

∆-resonance peak, which is significantly larger than that in the 1.1 GeV data set. To

estimate these uncertainties, a few versions of the non-linearity corrections are used

for modules in the large angular region, including those from the PrimEx-II exper-

iment and those that can produce the best match for the ∆-resonance peak in the

data and simulation. For the 2.2 GeV setting, the uncertainties are mostly correlated

and are estimated to be negligible in the PbWO4 region (< 3.4◦) but increase linearly

to about 1% at the largest angular bin. Additional uncorrelated uncertainties are as-

signed in order to take into account the module-by-module differences in the Pb-glass

nonlinear properties. These systematic uncertainties are negligible at 3.4◦ and grow

linearly to 0.4% at the largest angular bin. On the other hand, for the 1.1 GeV data

set, the differences between results obtained with different non-linearity corrections

are much smaller than the statistical uncertainties of the data points and the effect

is expected to be negligible. The other item considered for the HyCal response is

the non-uniformity correction for the HyCal energy reconstruction (discussed in sec-

tion 4.3.1). In principle, to extract this correction, one will need to study the ratio

(Erec/Eexp) as a function of the reconstructed position for each module separately.

This is particularly important for the Pb-glass modules as their non-uniformities are

very different from each other. This requires a sufficient amount of statistics from

the production runs for each module. However, the e− p cross section drops drasti-

cally at large scattering angles, and one has to group multiple neighboring modules

in order to extract this correction. And one has to assume that the correction is
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applicable to all modules within the group, which makes this correction much less

reliable compared to that for the PbWO4 modules. The systematic uncertainties

are expected to be larger for the 2.2 GeV data set, as the non-uniformity effect is

relatively larger than that for the 1.1 GeV data and a tighter energy cut is used in

order to reject inelastic e−p events. Given that no clear correlations are observed for

this non-uniformity behavior among the Pb-glass modules, uncorrelated systematic

uncertainties are assigned for the 2.2 GeV data points in the large angular region.

The sizes of these uncertainties are considered negligible at 3.4◦ and increase linearly

to 0.3% at the largest angular bin.

Beam energy: The measured beam energy for the 1.1 GeV data set is 1101.0 MeV

± 0.5 MeV, and 2143.0 MeV ± 1.5 MeV for the 2.2 GeV data set. These uncertain-

ties are assumed to be Gaussian distributed, with the widths equal to 0.5 MeV and

1.5 MeV for the 1.1 and 2.2 GeV data sets, respectively. The effects due to these

systematic uncertainties are determined by running multiple simulations with dif-

ferent beam energies. Ratios between the e − p to e − e ratios with different beam

energies and those obtained with the nominal beam energy, are shown in Fig 4.53

for the 2.2 GeV beam energy setting. Note that as the z positions of the detectors

were determined using Eq. 4.23 (see Section 4.3.2), which depend also on the beam

energy. Thus, there is a strong correlation between the beam energy and detector z

positions. That is, for every 1 MeV increase in the beam energy, it corresponds to

a 2.3 mm shift in z for the 1.1 GeV energy setting, and a 1.2 mm shift in z for the

2.2 GeV energy setting, as shown in Fig. 4.54. Therefore, the systematic uncertain-

ties for the beam energy will include the beam-energy-dependent part of the detector

position systematic uncertainties. In fact, these two systematic effects will partially

cancel out each other due to this correlation. The total systematic uncertainties on

the cross sections due to the beam energy are about 0.1% for the 2.2 GeV data set
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(labeled as simx) over those obtained with the nominal beam energy (labeled as sim),
in the case of the 2.2 GeV energy setting. For the scattering angles below 1.6◦, data
points are obtained using the bin-by-bin method, otherwise, the integrated Møller
method is applied.
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Figure 4.54: Correlation between the beam energies and the determined z position
of GEM-I for the 1.1 GeV (a) and 2.2 GeV (b) energy settings. Similar relations can
be obtained for GEM-II and the HyCal.

and 0.07% for the 1.1 GeV data set.
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Geometric acceptance: this item includes the uncertainties in the detector posi-

tions, beam position, dead module removal cuts for certain HyCal modules (due to low

trigger efficiency and no ADC readout), and microscopic gaps between the modules.

For the detector positions of the GEMs, the beam-energy-dependent part is included

in the systematic uncertainties due to the beam energy. The energy-independent part

may come from the statistical uncertainties in the selected double-arm Møller events,

the uncertainties in the beam position and so on. It is assumed to be around 1 mm,

since the determined values for the detector positions using data from the production

runs (see Table 4.2) and the surveyed results agree at this level. The effects on the

cross section results are determined by running a number of simulations with slightly

different GEM positions, varied around the measured positions based on a Gaus-

sian distribution with 1 mm width. For data points obtained using the integrated

Møller method, the shifts in the GEM positions mostly just affect the normalization

of the data points, at around ± 0.05%. For data points obtained using the bin-by-bin

method, it starts from nearly 0 at the most forward angle and then increases to about

0.05% at around 3.0◦ and 1.6◦ for the 1.1 and 2.2 GeV data set, respectively. The e−p

to e−e ratios from a few versions of these simulations versus those obtained from the

standard simulation are shown in Fig 4.55. The Q2-dependent uncertainty mostly

comes from the Møller through the bin-by-bin method. For the HyCal position, the

effect is rather negligible since the HyCal reconstructed coordinates are eventually

replaced by the GEM coordinates after matching. The tilting angles of the detectors

were surveyed by the Jefferson Lab survey group before the experiment took place.

The maximum tilting angle of all the detectors is about 0.016◦. The effect will very

likely get averaged out (at least partially) by combining the data from the full 2π

azimuthal angle. The systematic uncertainties are studied using the simulation and

found to be negligible. Similarly, for the systematic uncertainties due to the beam
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position, the effect will get averaged out by using the data from the full 2π azimuthal

angle, and it is also shown to be negligible. There were in total 3 PbWO4 and 4 Pb-

glass dead modules in the HyCal and they needed to be removed during the analysis.

The cut to remove a dead module would remove all the hits reconstructed inside a

circle around the center of a dead modules, with the radius as 1.5 times the size of

the module (20.75mm for a PbWO4 and 38.15mm for a Pb-glass module). These

cuts are varied from 1 to 2 times the size of the module and the RMSs of the cross

sections are assigned as the associated systematic uncertainties. There should be no

need to use a larger cut size since the lateral shower width is very narrow in the

HyCal. On average nearly 80% of the energy deposition is in the central module of

a cluster. Apparently, only angular bins containing dead modules would be affected,

and it is at maximum 0.14% for the 1.1 GeV cross sections and 0.11% for the 2.2 GeV

cross sections, at around 3.9◦ where there were two low efficiency Pb-glass modules

removed during the analysis. For the microscopic gaps between the modules, the

systematic uncertainties are studied by randomly varying the sizes of the PbWO4

modules by 20 µm and 100 µm for the Pb-glass modules in the simulation, and then

comparing the results to those obtained with standard sizes. The observed variations

are a few times smaller than the statistical uncertainties of the cross section results,

and they are uncorrelated. Thus, this effect should be rather negligible.

Energy loss and multiple scattering due to external materials: radiative effects

such as the bremsstrahlung radiation, ionization energy loss and also multiple scat-

tering are simulated by Geant4 as particles propagate inside the experimental setup.

They depend on the geometric and material information in the simulation about

these external materials, and also the physics list used in the simulation for com-

puting these effects. They may cause systematic uncertainties in the results as they

may not reflect exactly the reality. These systematic uncertainties are studied by
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Figure 4.55: The e − p to e − e ratios from different simulations (labeled as simx)
with shifted GEM positions (positive shift means shift to down stream) over those
obtained from the standard simulation (labeled as sim), for the 1.1 GeV (top) and
2.2 GeV (bottom) energy settings.
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changing the areal densities of the external materials between the target and HyCal

by ±20%, shifting the positions for some of the dominant sources of radiative effects

(the aluminum vacuum window for instance), and also changing the physics list used

in the simulation. The observed deviation from the default simulation is mostly on

the normalization of the data points. In order words, these radiative effects due to

external materials mostly shift all data points in the same way and no clear angu-

lar dependency was observed. A systematic uncertainty of 0.2% is assigned for this

source.

4.10.3 Systematic uncertainties from Models

Internal radiative corrections for the e − p and e − e: The systematic uncertain-

ties due to the radiative corrections arise mainly from higher order contributions to

the cross sections for both elastic e − p and e − e scatterings. The next-to-leading

order diagrams (see Fig. 4.32 and Fig. 4.33) are calculated exactly beyond the ultra-

relativistic approximation [79] and included in the analysis. These corrections also

include the multi-photon emission and multi-loop processes, which are approximated

at the Q2 → 0 limit by the exponentiation procedure described in Ref. [79]. How-

ever, these higher order contributions are not calculated exactly, and the possible

systematic uncertainties are estimated based on the approach by Arbuzov and Kopy-

lova [85], for some of the higher order radiative corrections. The estimated systematic

uncertainties for both the e−p and Møller are correlated and Q2-dependent [86]. The

estimated systematic uncertainties on the cross sections are shown in Fig. 4.56 for

the 1.1 GeV and 2.2 GeV data sets. The Q2-dependence is larger for the Møller

and it affects the cross section results through the use of the bin-by-bin method.

This can be seen from the uncertainties below 1.6◦ for the 2.2 GeV and 3.0◦ for

the 1.1 GeV where the bin-by-bin method is applied. On the other hand, the Q2-
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Figure 4.56: Relative systematic uncertainties for the cross sections due to internal
radiative corrections for the e− p and e− e. Blue squares are for the 2.2 GeV energy
setting, red dots are for the 1.1 GeV energy setting.

dependence from the e − p are estimated to be much smaller. The Q2-dependent

systematic uncertainties from the Møller can be suppressed by using the integrated

Møller method for all angular bins, which will turn all systematic uncertainties from

the Møller into normalization uncertainties for the cross sections. This requires high

precision GEM efficiency measurements particularly for the forward angular region,

which unfortunately cannot be achieved with the PRad setup (see Section 4.6), but

can be achieved with an additional GEM plane. In addition, the collaboration has

been working on calculating exactly the next-to-next-leading order diagrams for both

the e − p and e − e elastic scatterings, beyond the ultra-relativistic approximation.

These improvements will be discussed in Chapter. 6.

Consider that the Q2-dependent systematic uncertainty is larger for the Møller

scattering and the potential impact on rp will be more significant, a second, inde-

pendent estimate was provided by the Duke postdoc researcher Vladimir Khacha-

tryan [87]. This estimation follows the method developed for the MOLLER experi-
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ment at JLab [88], where the authors have calculated two-loop electroweak corrections

to the parity-violating asymmetry for the Møller scattering, in the kinematic range of

the MOLLER experiment. Based on their mathematical framework, we were able to

estimate the contribution from the next-to-next-leading order diagrams on the Born

cross section in the PRad kinematic range. The estimated Q2-dependent systematic

uncertainties are smaller than those estimated in the first approach, for any reason-

able photon energy cut for the PRad experiment (20 MeV to 70 MeV). Thus, we still

use the uncertainty from the first approach as a conservative estimate for the Møller

radiative correction.

Inelastic e− p: The inelastic e− p contribution to the cross section is simulated

using the Christy 2018 empirical fit [75] to the existing inelastic e − p scattering

world data. It produces a good agreement between the data and simulation, with at

most a 10% difference for the magnitude and a 0.5% difference for the position of

the ∆-resonance peak, in the PbWO4 detector region (see section 4.5.2). A similar

conclusion can be drawn if one uses the MAID 2007 model [89]. The systematic

uncertainties on the cross sections are determined by running multiple simulations.

Each simulation has the inelastic model randomly scaled and shifted, based on two

random numbers generated by two Gaussian distributions, with their widths as 10%

and 0.5%, corresponding to the observed differences in the magnitude and position

of the ∆-resonance peak, respectively. The systematic uncertainties are found to be

negligible in the PbWO4 detector region (<< 0.02% for both energy settings), and

then increase almost linearly with larger angles in the Pb-glass region, as shown in

Fig. 4.57. In the case of the 2.2 GeV setting, the sudden increase for the last two

angular bins is due to the slightly larger kinematic cuts used (see Table 4.3). The

largest uncertainty is about 0.35% for the 2.2 GeV data set and 0.04% for the 1.1 GeV

data set.
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Figure 4.57: Relative systematic uncertainties for the cross sections due to the
inelastic e−p contribution. Blue squares are for the 2.2 GeV energy setting, red dots
are for the 1.1 GeV energy setting.

4.11 Proton Electric Form Factor Extraction

In the very low Q2 region, the e− p elastic scattering cross section is dominated by

the electric form factor. This is due to the fact that τ approaches zero, and also in the

case of PRad, the very forward angular range ensures that ε is nearly at its maximum.

For the PRad kinematic range, the contribution from the term (τ/ε)× (Gp
M)2 in the

cross section (see Eq. 2.16) is around 10% in the largest Q2 bin, and is less than 2% in

the Q2 < 0.01(GeV/c)2 range. One can assume the proton magnetic form factor with

some parameterizations or models, and extract Gp
E alone with a proper systematic

uncertainty associated with this assumption. This systematic uncertainty is only

included in the electric form factor results. For the PRad Gp
E extraction, the Kelly

proton magnetic form factor [84] was assumed. To study the systematic uncertainty

associated with this assumption, multiple Gp
M parameterizations and models were
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used [90, 91, 92, 93, 94], including the standard dipole form,

Gp
M,dipole = µp

1

(1 + Q2

0.71(GeV/c)2
)2
, (4.32)

where µp is the magnetic moment of a proton. These Gp
M parameterizations are

shown in the top plot of Fig. 4.58. The difference between these parameterizations is

around 2% in the largest Q2 bin and less than 0.5% in the Q2 < 0.01(GeV/c)2 range.

The relative differences between the extracted Gp
E using other Gp

M parameterizations

or models, and the Gp
E extracted using the Kelly Gp

M parameterization are shown

in the bottom plot of Fig. 4.58. The extracted Gp
E varies by no more than 0.3% at

Q2 = 0.06 (GeV/c)2, which is the largest Q2 accessible to the experiment, and <

0.01% in the Q2 < 0.01 (GeV/c)2 region. The total relative systematic uncertainties

of Gp
E, including the additional source related to the Gp

M assumption, are shown

in Fig. 4.59. The extracted proton electric form factors Gp
E from both the 1.1 and

2.2 GeV data sets are shown in Fig. 4.60.
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Figure 4.58: Top plot: Different Gp
M parameterizations [90, 91, 92, 93, 94],

divided by the Kelly Gp
M parameterization [84]. Bottom plot: The relative

difference between the extracted Gp
E using other Gp

M parameterizations or mod-
els [90, 91, 92, 93, 94] and the extracted Gp

E using the Kelly Gp
M parameterization [84].
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Figure 4.59: The total relative systematic uncertainties of the proton electric form
factor Gp

E for the 1.1 and 2.2 GeV data sets.

Figure 4.60: The extracted proton electric form factors Gp
E from both the 1.1 (red)

and 2.2 GeV (blue) data sets. The proton magnetic form factor Gp
M is assumed to be

the Kelly form factor [84] in the extraction. Statistical uncertainties are shown as the
error bars, systematic uncertainties are shown as the shadow bands at the bottom.
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Chapter 5

Radius Extraction

The slope of Gp
E(Q2) as Q2 →0 is directly proportional to r2

p (see Eq. 1.1). A common

practice is to fit Gp
E(Q2) to a functional form and then obtain rp by extrapolating to

Q2 = 0. However, each functional form handles the higher order effects of Gp
E(Q2)

differently and may introduce a model-dependent bias in the extrapolated rp result.

Thus, it is critical to choose a robust functional form that is most likely to yield

an unbiased determination of rp given the uncertainties in the data set, and test

the chosen functional form over a broad range of parametizations of Gp
E(Q2). This

study was discussed in the paper of X. Yan, et al. [12] and will be summarized in

Section 5.1 of this chapter. To determine the systematic uncertainty in rp, a Monte

Carlo technique was used to randomly smear the cross section and GE(Q2) data

points for each known source of systematic uncertainties, which were described in

Section 4.10 and Section 4.11. The rp was extracted from the smeared data and the

process was repeated 100,000 times. The RMS of the rp distribution was recorded

as the systematic uncertainty. The studies related to the systematic uncertainty of

rp will be discussed in Section 5.2 of this chapter. Due to the fact that different

normalization uncertainties might exist between the 1.1 and 2.2 GeV data sets, the

radius result was obtained by introducing two independent normalization constants

n1 and n2 to the 1.1 and 2.2 GeV data sets, respectively, but the Q2-dependence was

kept identical during the fitting. The proton charge radius result will be discussed in

Section 5.3 of this chapter.
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5.1 Search for Robust Fitters

As described in [12], to search for the robust fitters for the PRad data set, first of all, a

large number of pseudo-data sets were generated based on a number of well-known Gp
E

parameterizations and models [84, 93, 94, 95, 96, 97, 98] with known input rp values.

The pseudo-data points were sampled based on the PRad Q2 range, binning and

statistical uncertainties. Second, a number of functional forms for Gp
E (fitters) were

used to fit and extract rp from these pseudo-data sets. These Gp
E parameterizations

are summarized in the following list, with pi as free parameters:

• Dipole:

Gp
E(Q2) =

(
1 +

Q2

p1

)−2
, (5.1)

where rp can be determined as
√

12/p1.

• Monopole:

Gp
E(Q2) =

(
1 +

Q2

p1

)−1
, (5.2)

where rp can be determined as
√

6/p1.

• Gaussian:

Gp
E(Q2) = e−Q

2/p1 , (5.3)

where rp can be determined as
√

6/p1.

• Multi-parameter polynomial expansion of Q2:

Gp
E(Q2) = 1 +

N∑
i=1

piQ
2i, (5.4)

where rp can be determined as
√
−6p1 and the maximum order N is defined by

the user.
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• Multi-parameter rational function of Q2 (rational (N,M)):

Gp
E(Q2) =

1 +
∑N

i=1 p
a
iQ

2i

1 +
∑M

j=1 p
b
jQ

2j
, (5.5)

where rp can be determined as
√

6(pb1 − pa1) and the maximum order N and M

are defined by the user.

• Continuous fraction expansion:

Gp
E(Q2) =

1

1 + p1Q2

1+
p2Q

2

1+...

, (5.6)

where rp can be determined as
√

6p1.

• Multi-parameter polynomial expansion of z:

Gp
E(Q2) = 1 +

N∑
i=1

piz
i, (5.7)

after making a conformal mapping through [13]:

z =

√
Tc +Q2 −

√
Tc − T0√

Tc +Q2 +
√
Tc − T0

, (5.8)

where Tc = 4m2
π, mπ is the mass of a π0 meson, and T0 is a free parameter

representing the point that is mapping onto z = 0 (T0 = 0 for this study). The

charge radius is given by rp =
√
−3p1/2Tc.

In addition, it is a common practice to include an additional normalization parameter

(floating parameter) to handle systematic uncertainties associated with the normal-
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ization of the data points, such that the final functional form of a fitter is

f(Q2) = nGp
E(Q2), (5.9)

where n is the floating parameter and Gp
E(Q2) can be any of the functions listed

above.

Lastly, the mean value and RMS of the extracted rp values were compared to the

input rp. In addition to minimizing the value of the Root-Mean-Square Error (RMSE

=
√

bias2 + RMS2), it is also required that a robust fitter must have the mean value of

the extracted rp agree with the input rp within the value of the RMS, for all the input

form factor models used in the test. The results for some of the fitters are shown in

Fig 5.1 to Fig 5.4, which apply to the entire PRad kinematic range (1.1 and 2.2 GeV

data sets together). Single parameter fitters (excluding the floating parameter) such

as the dipole, monopole, Gaussian and the first order polynomial expansion of Q2

and z tend to give biased results with very small uncertainties. Fitters including

more than two parameters (excluding the floating parameter) such as the third order

polynomial expansions of Q2 and z tend to give unnecessarily large uncertainties even

though the results are well consistent with the input rp within their RMS values. The

robust fitters identified from this study include the two-parameter rational function

(rational (1,1)):

f(Q2) = nGE(Q2) = n
1 + pa1Q

2

1 + pb1Q
2
, (5.10)

and the second order polynomial expansion of z (second order z transformation):

f(Q2) = nGE(Q2) = n
(
1 + p1z + p2z

2
)
. (5.11)
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Figure 5.1: Robust fitter test results for the dipole, monopole and Gaussian fitters,
based on the full PRad kinematic range, binning and statistical uncertainties. The
figure is taken from Ref. [12]. Input form factor models can be found from Ref. [84,
93, 94, 95, 96, 97, 98].

The second order continuous fraction is also a robust fitter, but it is mathemati-

cally equivalent to the rational (1,1), so it will be excluded from further discussions.

In addition, the second order polynomial expansion of Q2 is slightly less robust com-

pared to the rational (1,1) and the second order z transformation, as the deviations

between the extracted rp and the input rp are close to the RMS values for some

models.

5.2 Systematic Uncertainty on the Radius

The systematic uncertainties on the radius include all of those that can affect the

cross section results, as discussed in Section 4.10, and also the uncertainty associated

with the assumption about Gp
M during the extraction of Gp

E as discussed in the Sec-
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Figure 5.2: Robust fitter test results for the multi-parameter polynomial expansion
of Q2, based on the full PRad kinematic range, binning and statistical uncertainties.
The figure is taken from Ref. [12]. Input form factor models can be found from
Ref. [84, 93, 94, 95, 96, 97, 98].

Figure 5.3: Robust fitter test results for the multi-parameter rational function of
Q2, based on the full PRad kinematic range, binning and statistical uncertainties.
The figure is taken from Ref. [12]. Input form factor models can be found from
Ref. [84, 93, 94, 95, 96, 97, 98].
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Figure 5.4: Robust fitter test results for the multi-parameter polynomial expansion
of z, based on the full PRad kinematic range, binning and statistical uncertainties.
The figure is taken from Ref. [12]. Input form factor models can be found from
Ref. [84, 93, 94, 95, 96, 97, 98].

tion 4.11. A Monte-Carlo technique was used to evaluate the effect of these system-

atic uncertainties on the radius result. First of all, 100,000 data sets were generated

based on the PRad cross section results. Then the data points were smeared by all

the systematic uncertainty sources at once, and a set of Gp
E data points was extracted

from each smeared cross section data set. For each systematic uncertainty source, if

it was uncorrelated, then each cross section data point was smeared independently

by a random number generated from a Gaussian distribution, with its width as the

systematic uncertainty of this data point. If the systematic uncertainty source was

correlated, then the correlation between different angular or Q2 data points must be

included in the smearing. Typically, the correlation could be described by low order

polynomials or splines. Then the data points would be multiplied or divided by these

correlation functions. For the mixed uncertainties (partially correlated and partially

uncorrelated), such as those related to event selection cuts, the cross section tables

were generated by randomly choosing the cuts within a given range (± 50% of the
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nominal kinematic cut for the 2.2 GeV e − p in the PbWO4 region for instance).

For the uncertainty associated with the Gp
M assumption, a Gp

M model was randomly

selected from Ref. [84, 90, 91, 92, 93, 94], and also the standard dipole model (see

Eq. 4.32), when extracting Gp
E from the cross section data points.

Second, the extracted Gp
E data sets were fitted separately and a rp value was

extracted from each of these data sets. Only the statistical uncertainties were used

during these extractions. Lastly, the RMS of these extracted rp values was assigned

as the systematic uncertainty. The distributions for these extracted rp using the

rational (1,1) and the second order z transformation are shown in Fig. 5.5. The

contributions from individual systematic uncertainties are listed in Table 5.1, for the

rational (1,1) fitter. In this case, the data points were smeared by the individual

systematic uncertainty source only, while effects from other sources were turned off.

The table also includes the systematic uncertainties for the normalization parameters

n1 and n2 for the 1.1 and 2.2 GeV data sets respectively. The systematic uncertainties

obtained with the second order z transformation are in general very similar to those

from the rational (1,1), but slightly larger.

5.3 Proton Charge Radius Result

The Gp
E(Q2) extracted from the 1.1 GeV and 2.2 GeV data sets were fitted simul-

taneously using the rational (1,1) function. Independent normalization parameters

n1 and n2 were assigned to the 1.1 and 2.2 GeV data sets, respectively, to allow

for differences in the normalization uncertainties, but the Q2-dependence was identi-

cal. The normalization parameters and rp obtained from the fit to the rational (1,1)

function are [99]:
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Figure 5.5: Distributions of rp extracted using (a) the rational (1,1) and (b) the
second order z transformation; from data sets that were smeared by all the PRad
systematic uncertainties. The RMS of the distribution in (a) is 0.0115 fm and that
for (b) is 0.0135 fm.
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Item rp uncertainty [fm] n1 uncertainty n2 uncertainty
Event selection 0.0070 0.0002 0.0006

Radiative correction 0.0069 0.0010 0.0011
Detector efficiency 0.0042 0.0000 0.0001
Beam background 0.0039 0.0017 0.0003
HyCal response 0.0029 0.0000 0.0000

Acceptance 0.0026 0.0001 0.0001
Beam energy 0.0022 0.0001 0.0002
Inelastic ep 0.0009 0.0000 0.0000

Gp
M parameterization 0.0006 0.0000 0.0000

Total 0.0115 0.0020 0.0013

Table 5.1: The systematic uncertainty table for rp and the normalization parameters.
Items are arranged in decreasing order of the effect on rp. The parameters n1 and n2

are the normalization parameters for the 1.1 GeV and 2.2 GeV data sets, respectively.
Uncertainties are estimated using the rational (1,1) function.

rp = (0.831± 0.007stat. ± 0.012syst.) fm,

n1 = 1.0002± 0.0002stat. ± 0.0020syst., (5.12)

n2 = 0.9983± 0.0002stat. ± 0.0013syst..

Only the statistical uncertainties were used when evaluating the central values.

The rational (1,1) fit and the Gp
E data points from the experiment are shown in

Fig. 5.6, compared to two recent Gp
E models [96, 97]. The 68% point-wise confidence

level band for the total uncertainties of the result is shown in Fig. 5.7, compared to

those from the same Gp
E models [96, 97]. The total uncertainties were taken as the

quadratic sum of the total systematic uncertainties and the statistical uncertainties.

The rational (1,1) function describes the data reasonably well, with a reduced

χ2 of 1.3 when considering only the statistical uncertainties. The quality of the fit

is shown in Fig. 5.8, where (a) shows the residuals (differences between data points
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Figure 5.6: The proton electric form factor Gp
E as a function of Q2. (a) uses a

logarithmic x-axis while (b) uses a linear one. The data points are normalized by
the n1 and n2 normalization parameters, for the 1.1 GeV (red) and 2.2 GeV (blue)
data sets separately. Statistical uncertainties are shown as error bars. Systematic
uncertainties are shown as colored bands. The solid black curve shows the GE(Q2)
from the fit to the function given by Eq. 5.10. Also shown are the parameterizations
from the previous high-precision, magnetic spectrometer based e− p experiment [96]
(green dash line) and the calculation of Alarcon et al. [97] (purple dash line).
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and the fit) of the fit, and (b) shows the pull distribution (residuals weighted by

the statistical uncertainties of the data points). The largest deviation is about 2.5

standard deviations. For the pull distributions, if the uncertainties describe the

fluctuation in the data points very well, one would expect that about 68% of the

data points fall inside ±1. This number is about 67% for the 1.1 GeV data set and

about 58% for the 2.2 GeV data set.

The results obtained with the second order z transformation are very similar to

those from the rational (1,1): n1 = 1.0002 ± 0.0002stat. ± 0.0021syst., n2 = 0.9983 ±

0.0002stat.± 0.0013syst., and rp = (0.830± 0.008stat.± 0.013syst.) fm. Fig 5.9 shows the

results obtained from the rational (1,1) and the second order z transformation, and

also results obtained from other slightly less robust fitters. Based on our robustness

tests [12], lower order functional forms such as the monopole, dipole, and the first

order expansion of Q2 (not shown here) tend to give smaller statistical uncertainties,

but have larger uncertainties from the truncation of the Q2 range and the extrap-

olation to Q2 = 0, and also tend to produce larger biases depending on the input

Gp
E(Q2) parametrization used. On the other hand, higher order functional forms such

as the third order polynomial expansion of Q2 (not shown here) and z transformation

tend to give very large overall uncertainties. The results also confirm that rational

(1,1) and the second order z transformation are the most robust fitting functions,

giving the most consistent results with the least uncertainties for the Q2 range of

the PRad experiment.

The consistency of the radius extraction was further studied by extracting rp from

various sub-sets of the experimental data, such as the data collected with only the 1.1

GeV electron beam, only the 2.2 GeV electron beam, just the PbWO4 modules, and

the Q2 range limited to < 0.016 (GeV/c)2 and > 0.002 (GeV/c)2. All the data sub-

sets were fitted with the rational (1,1) functional form and the rp values obtained are

174



Figure 5.7: The 68% point-wise confidence level band of the rational (1,1) fit to the
Gp
E(Q2) extracted from the PRad data (blue). Also shown are the bands from the

previous high-precision, magnetic spectrometer based e−p scattering experiment [96]
(green) and the calculation of Alarcon et al. [97] (purple). (a) is for the entire PRad
Q2 converage, (b) shows a zoom-in view for the Q2 < 0.02 (GeV/c)2 region.
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Figure 5.8: (a) shows the residuals between PRad Gp
E data points and the fit using

the rational (1,1) fitter. Red squares are from the 1.1 GeV data set and blue dots
are from the 2.2 GeV data set. Error bars contain only the statistical uncertainties.
(b) shows the pull distributions (residuals weighted by the statistical uncertainties
of the data points) for the 1.1 GeV (red) and 2.2 GeV (blue) data sets.
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Figure 5.9: The rp results obtained when using different fitters. Statistical uncer-
tainties are shown as error bars, and the total uncertainties (quadratic sum of the
total systematic and statistical uncertainties) are shown as colored bands. The ratio-
nal (1,1) and the second order z transformation are identified as robust fit functions
by Yan et al. [12].

consistent within statistical uncertainties as shown in Fig. 5.10 (a). However, the rp

values extracted from some data sub-sets, such as the ones with restricted Q2 range,

have larger uncertainties because the Q2 coverage is reduced, and the rational (1,1)

is not the most robust functional form for these data sub-sets. This is demonstrated

in Fig. 5.10 (b), where the 1.1 GeV and 2.2 GeV data sets are separately fitted using

the two best functional forms for these particular data sets, as determined from the

robustness study [12].

The statistical fluctuation of the result was studied by separating the entire data

set randomly into 20 subsets (10 for the 1.1 GeV and 10 for the 2.2 GeV settings).

Each subset is then fitted with the same functional form, which is the monopole

fitter for the 1.1 GeV subsets and the rational (1,1) for 2.2 GeV subsets1. The results

1The reason for choosing a lower order fitter for the 1.1 GeV subsets was that the uncertainty by
using the rational (1,1) was too large (over 0.1 fm for each data point).
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Figure 5.10: (a): the extracted rp values under different conditions, as listed in the
figure. All data points are obtained using the rational (1,1) fitter. Error bars show
only the statistical uncertainties. (b): the monopole and dipole fits for the 1.1 GeV
data points, and the rational (1,1) and the second order z transformation fits for the
2.2 GeV data points. Error bars show the statistical uncertainties. Colored bands
show the total uncertainties.

from the subsets are well consistent statistically with the ones obtained by fitting the

whole data sets, which are almost identical to the weighted averages from the subsets

by their statistical uncertainties, as shown in Fig. 5.3.

Another important study is to extract the rp result using only the integrated

Møller method. As discussed in Section 4.10, a number of dominant systematic un-

certainties are Q2-dependent ones due to the Møller and they affect the result through

the bin-by-bin method, as in this case, the e− p to e− e normalization is performed

separately for each angular bin. On the other hand, for the integrated Møller method,

all systematic uncertainties from the Møller can only affect the normalization of all

data points and cannot introduce any Q2-dependent systematic uncertainty. How-

ever, the integrated Møller method is more sensitive to systematic uncertainties such

as the GEM efficiency, which cannot be determined well enough when the scattering

angles are smaller than 1.3◦. If one removes all data points below 1.3◦ for both en-
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Figure 5.11: Radius results from the 10 different 1.1 GeV subsets (top plot), ob-
tained using the monopole fitter, and 10 different 2.2 GeV subsets (bottom plot),
obtained using the rational (1,1) fitter. Red solid lines and red shadow bands show
the weighted average and statistical uncertainty from the subsets. Blue dash lines and
blue shadow bands (almost underneath the rad bands) show the rp and its statistical
uncertainty by fitting the whole data set.
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ergy settings and apply only the integrated Møller method, the extracted results will

be: n1 = 1.0001± 0.0003stat. ± 0.0018syst., n2 = 0.9984± 0.0004stat. ± 0.0014syst., and

rp = (0.834±0.010stat.±0.008syst.) fm, using the rational (1,1) fitter. They agree with

the results shown in Eq. 5.12 within 1 standard deviation of the statistical uncertain-

ties. In this case, the minimum Q2 will be 6.3× 10−4 (GeV/c)2 for the 1.1 GeV and

2.4 × 10−3 (GeV/c)2 for the 2.2 GeV data sets. In addition, removing data points

below 1.3◦ also significantly reduces the effect due to the background generated from

the upstream beam halo blocker, which is the dominating background source partic-

ularly in the forward angular region. The consistency of the rp results demonstrates

that the empty target run subtraction was rather effective.
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Chapter 6

Possible Improvements on the Result

In this chapter, we discuss and present studies concerning a follow-up experiment

to the PRad experiment, which we can PRad-II. The systematic uncertainty of the

PRad rp result is dominated by those uncertainties that primarily affect the low Q2

data points. One of the reasons is that in the low Q2 region, form factors with

different rp values all converge to unity, while at the highest Q2 region, they can

differ by a few percent. If one has a 0.1% Q2-dependent systematic shift for the data

points in the low Q2 region, the impact on the extracted rp is significantly larger than

the case if the same systematic shift appears in the high Q2 region. These systematic

uncertainties include the beam-line background subtraction, radiative correction for

the Møller, event selection, beam energy and acceptance. In particular, many of

them are dominated by the Møller, which occupies mostly the forward angular region

and its angular distribution is very sensitive to these systematic uncertainties. The

Q2-dependent systematic uncertainties from the Møller are introduced to the cross

sections through the use of the bin-by-bin method. If the precision of the GEM

efficiency measurement can be improved in this region, one should consider using the

integrated Møller method for all the data points. In this case, both statistical and

systematic uncertainties due to the Møller can only affect the normalizations of the

data points and will not contribute to the systematic uncertainties of rp. For example,

in the cases of the beam energy and detector position systematic uncertainties, one

finds that if the integrated Møller method is applied to all angular bins, these two

systematic uncertainties mostly just shift all the results up or down at the same time,
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Figure 6.1: The e− p to e− e ratios from different simulations with different beam
energies (labeled as simx) over the one with the nominal beam energy (labeled as
sim), in the case of the 2.2 GeV energy setting. The integrated Møller method is
applied to all angular bins.

as shown in Fig. 6.1 and Fig. 6.2.

These can be compared to Fig. 4.53 and Fig 4.55, for which the bin-by-bin method

is applied to the angular bins with θ < 1.6◦, and the results show obvious Q2 depen-

dency in this region. Similarly, this method can be applied to turn the Q2-dependent

systematic uncertainties in the Møller event selection and radiative correction com-

pletely into normalization uncertainties. However, in the case of the PRad experi-

ment, the GEM efficiency can not be determined well enough in the forward angular

region because of two major reasons. First, the HyCal position reconstruction is not

good enough to resolve the dead areas on the GEMs, such as the GEM spacers. This

causes a significant bin migration effect and the uncertainty in the GEM efficiency

correction is very dominant in the very forward angular region (see Fig. 4.29). This

difficulty can be overcome by using another layer of GEM detectors. When calculat-

ing the GEM efficiency in this case, one would require a matching hit pair on one
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Figure 6.2: The e − p to e − e ratios from different simulations with shifted GEM
positions (positive shift means shift to down stream, labeled as simx) over the one
obtained from the standard simulation (labeled as sim), in the case of the 2.2 GeV
energy setting. The integrated Møller method is applied to all angular bins.

GEM layer and the HyCal, and then look for whether there is a hit found on the

other GEM layer. The incident angle would be determined by the matching GEM

hit, which will eliminate the bin migration issue due to the HyCal resolution and

non-uniformity in the position reconstruction. The expected systematic uncertainty

in the GEM efficiency correction, due to the GEM dead areas, is shown to be better

than 0.1% (see Fig. 6.3), and the corresponding systematic uncertainty on rp will

be much smaller than that from the PRad. The uncertainty is determined using a

similar approach as discussed in Section 4.6, by comparing the e − p to e − e ratios

obtained using perfect GEM detectors in the simulation and those with more realistic

GEMs including the spacers and other dead areas. This systematic uncertainty can

be further reduced if one assembles the second GEM using a new technique [123],

which requires no spacers in between the GEM foils. Second, the very forward angular

region suffers from the background that is generated from very-small-angle-scattering
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Figure 6.3: The expected GEM efficiency correction uncertainty on the cross section
if a second GEM layer were used.

particles hitting the downstream beam pipe and other surrounding objects (see Sec-

tion 4.5.4). This type of background cannot be rejected by the HyCal alone, but can

be rejected when combining one GEM layer and the HyCal, since these tracks cannot

be projected back to the target region. In addition, other backgrounds for the GEM

efficiency measurement, such as the cosmic events and high energy photons, will be

rejected easily by having a second GEM layer. The collaboration is currently working

on more detailed simulations to study the improvement of the GEM efficiency. We

will also consider using the overlapping region of the PRad GEM data (there was a

4.4 cm × 123 cm overlapping region for PRad GEMs, see Section 3.4) to demonstrate

the improvement, as in this case there were two separated GEM planes in this region.

Another benefit of having two separated GEM detector layers is that, once the

distance in between the two layers is large enough, one can reconstruct the vertex-z
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Figure 6.4: The proposed experimental setup for PRad-II.

for the e − p events with a reasonable resolution in order to reject the background

that is generated very far away from the target center. In particular, it can reject

the background generated from the upstream beam halo blocker, which is about 2 m

upstream from the target and its background is a few times larger than all the other

beam-line backgrounds combined. This can significantly suppress the systematic un-

certainties related to the beam-line background subtraction. The proposed setup will

have the PRad HyCal and GEMs pushed slightly downstream and have the second

GEM layer placed immediately after the vacuum chamber, as shown in Fig. 6.4. With

a 40 cm distance between the two GEM layers, the vertex-z resolution can be better

than 30 cm as shown in Fig. 6.5 for the 2.2 GeV beam setting, which is sufficient to

reject the background generated from the upstream halo blocker. The resolution can

be further improved by using a thiner aluminum vacuum window (0.8 mm instead

of 1.6 mm as for the PRad experiment for example), or by pushing the PRad GEMs

and the HyCal slightly downstream, at a cost of sacrificing slightly the maximum Q2
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Figure 6.5: The vertex-z resolution for the e−p events as a function of the scattering
angle, reconstructed using two GEMs layers that are separated by 40 cm, for the
2.2 GeV beam energy setting. For the red dots, the simulation uses a 1.6 mm thick
aluminum vacuum window, which is true in the case of the PRad experiment. The
black triangles assume a 0.8 mm thick vacuum window. The plot is taken from [124].

coverage.

Other than the possible improvements mentioned above, there is a plan to include

calculations for the next-to-next-leading order Feynman diagrams in the radiative

correction (currently only the next-to-leading order diagrams included), which will

further reduce this systematic uncertainty. The dominant part is the Møller radiative

correction and it can already be reduced by using the integrated Møller method. The

remaining part comes from the e − p elastic scattering, and it should be reasonable

to assume that even higher order contributions should be one order of magnitude

smaller than that from the next-to-next-leading order. The future experiment should

also consider to increase the statistics by a factor or 4 at least so that the statistical

uncertainty of rp can be suppressed to a 0.003 fm level. The increase of statistics

can also help reducing the systematic uncertainties due to the event selection and

HyCal response in the large angular region. For the PRad experiment, the energy
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spectrum agreement between the data and simulation is significantly worse in the

Pb-glass region. As shown in Fig. 4.47 and Fig. 4.48, the variation on the cross

section is significantly larger if one changes the size of the event selection cuts, com-

pared to the PbWO4 region. This is partially due to the lack of statistics for the

energy calibration of the HyCal. And also for the same reason, one has to combine

multiple modules to extract certain properties, such as their light attenuation and

non-uniformity properties in the energy reconstruction. With more statistics, these

types of studies can be done module by module, and thus improving the agreement

between the data and the simulation. It should be reasonable to assume a factor of

2 reduction for the systematic uncertainties associated with the event selection and

HyCal response in the large angular region. With 4 times more statistics, a second

GEM layer, the planned use of the integrated Møller method for all data points and

the same beam energy settings as for the PRad experiment, the projected statistical

and systematic uncertainty for PRad-II are shown in Table 6.1 (as PRad-II type A),

and compared to those from the PRad experiment. The major improvement comes

from the planned use of the integrated Møller method for all data points. This item

alone can already reduce the total systematic uncertainty by about a factor of 2, as

long as the GEM efficiency is known to better than 0.1% precision. As discussed

earlier in this chapter, this method will turn all the systematic uncertainties from the

Møller into normalization uncertainties, and thus will not introduce any systematic

uncertainties in rp. Such systematic uncertainties include the Møller event selection,

Møller radiative correction, acceptance and beam energy. Further improvements may

come from the rejection of some beam-line background using two GEM planes, fixing

all the dead modules of the HyCal, better modeling for the HyCal response, better

simulation for the target gas profile and so on.

The future experiment can also exploit possible benefits from enlarging the Q2
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Item PRad δrp [fm] PRad-II type A δrp [fm] PRad-II type B δrp [fm]
Stat. uncertainty 0.0075 0.0036 0.0034 (0.0036)
Event selection 0.0070 0.0034 0.0024 (0.0024)

Radiative correction 0.0069 0.0004 0.0004 (0.0004)
Detector efficiency 0.0042 0.0028 0.0028 (0.0030)
Beam background 0.0039 0.0016 0.0012 (0.0013)
HyCal response 0.0029 0.0014 0.0005 (negligible)

Acceptance 0.0026 negligible negligible (negligible)
Beam energy 0.0022 0.0001 0.0001 (0.0001)
Inelastic ep 0.0009 0.0009 0.0002 (negligible)

Gp
M parameterization 0.0006 0.0006 0.0007 (0.0006)

Total syst. uncertainty 0.0115 0.0049 0.0040 (0.0042)
Total uncertainty 0.0137 0.0061 0.0052 (0.0055)

Table 6.1: The uncertainty table for rp from the PRad experiment, and projected
uncertainties for PRad-II. Uncertainties are estimated using the rational (1,1) func-
tion (Eq. 5.10). PRad-II type A assumes the same beam energy settings as PRad.
PRad-II type B assumes an additional 3.3 GeV beam energy setting. For PRad-II
type B, the numbers in the parenthesis are estimated assuming the Pb-glass detectors
will not be used for all three beam energy settings. Otherwise, they will be used for
the 1.1 GeV and 2.2 GeV settings.

coverage and overlapping region, such as using the 0.55 GeV, 1.65 GeV, 2.75 GeV, and

3.3 GeV beam energies. This will help constraining possible beam-energy-dependent

systematic uncertainties. One possible configuration is to add an additional 3.3 GeV

electron beam setting and use only the PbWO4 part of the HyCal for this beam en-

ergy. The PbWO4 detectors provides a scattering angle coverage from 0.7◦ to about

4.5◦ (including the corners of PbWO4 detectors), and a maximum Q2 coverage of

0.066 (GeV/c2) with the 3.3 GeV beam, which is similar to the PRad experiment.

The excellent energy resolution of the PbWO4 detectors will still allow one to re-

move almost completely the inelastic e − p contribution and reduce its systematic

uncertainty. As shown in Fig. 6.6, the inelastic e − p events can be safely rejected

using a 3σ energy cut, even at 4.5◦ with the 3.3 GeV beam energy. The inelastic

e−p contribution is less than 0.1% in the PbWO4 region at this beam energy setting.

The PbWO4 detectors also behaved more uniformly and were better modeled for the
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Figure 6.6: Left plot: the energy spectrums for the elastic (black histogram) and
inelastic (red histogram) e−p with the 3.3 GeV beam energy at around 4.5◦ scattering
angle. Only the PbWO4 part of the HyCal is used. The blue dash line indicates a
3σ kinematic cut. Right plot: the ratio between the inelastic e− p and elastic e− p
counts with 3.3 GeV beam energy as a function of the scattering angle θ, using the
3σ kinematic cut.

PRad experiment. Thus the systematic uncertainties associated with HyCal response

and event selection are also expected to be under better control.

A possible PRad-II type B run plan consists of both 1.1 and 2.2 GeV runs with 2

times more statistics compared to the PRad, and an additional 3.3 GeV setting using

only the PbWO4 part of the HyCal. The beam time for the 3.3 GeV setting is assumed

to be roughly 260 hours with a 55 nA beam current (included 52 hours of beam time

for the empty target runs). This plan can produce a similar statistical uncertainty

for rp as the PRad-II type A. The Q2 coverage for each beam energy setting and the

projected relative statistical uncertainties on the cross section are shown in Fig. 6.7.

An advantage of this run plan is that, the e−p elastic scattering cross section will be

measured at least twice for most part of the total Q2 coverage, which is very useful

for cross-checking the beam-energy-dependent systematic uncertainties.

Since the beam energy setting is different, it is also important to study the robust-

ness of the rational (1,1) fitter for this configuration. The results, obtained following
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Figure 6.7: The Q2 coverage and the relative statistical uncertainties for the cross
sections for each beam energy setting in the PRad-II type B run plan.

the same approach in Ref. [12], are shown in Fig. 6.81. The study indicates that the

rational (1,1) fitter is still a robust fitter for this configuration. Assuming a second

GEM layer will be available, the projected statistical and systematic uncertainties for

the PRad-II type B are shown in Table 6.1, and compared to those from the PRad

experiment. The improvement is also dominated by the use of the integrated Møller

method for all data points. For both types of the PRad-II experiments, the expected

total uncertainties on rp are over two times smaller than that from the PRad exper-

iment. The projected total uncertainties are shown in Fig. 6.9, along with the PRad

result and other recent rp measurements.

1The form factor model from Ref. [98] is removed from the test as the rp parameter was fixed to
the CODATA-2014 value during fitting. This approach is different from the fitting procedures
used for other form factor models used in the robustness test.
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plans are shown along with the PRad rp result and other recent rp measurements.
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Chapter 7

Conclusion

In conclusion, this dissertation presents the analysis and results for the PRad ex-

periment, which measured the proton electric form factor Gp
E in the Q2 region

Q2 = 2.1 × 10−4 − 0.06 (GeV/c)2. The PRad rp result, obtained by fitting Gp
E

using the rational (1,1) function, is shown in Figure 7.1, with statistical and sys-

tematic uncertainties summed in quadrature. The result is also compared with a

number of previous rp measurements. It shows a significant discrepancy compared

to results obtained from previous e− p elastic scattering experiments. For instance,

it is about 3-standard deviations smaller than the high-precision electron scattering

measurement at MAMI [5], which was a spectrometer based experiment and the Q2

was limited to higher values (> 0.0038 (GeV/c)2), and it is about 2.7-standard devia-

tions smaller than the CODATA-2014 recommended value for rp based on the results

from previous e− p scattering experiments. However, the result of this experiment is

in agreement with the muonic hydrogen spectroscopic measurements [1, 6], and also

two recent ordinary hydrogen spectroscopic results including the 2S-4P transition

frequency measurement [18] and the 2S-2P Lamb shift measurement [20]. This result

is also consistent with the most recent announced rp value from CODATA-2018 [100].

The result of this experiment does not support any fundamental difference between

the e− p and µ− p interactions.

The comparison between the PRad Gp
E and a number of previous measured Gp

E

data sets [15, 36, 37] are shown in Fig. 7.2. The top plot shows the full PRad Q2

range and the bottom plot shows only the Q2 < 0.02 (GeV/c)2 range. The Gp
E data

set for the Mainz 2010 experiment [5, 96] is obtained from Ref. [15]. Generally speak-
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Figure 7.1: The rp extracted from the PRad data, shown along with the other
measurements of rp since 2010 and the CODATA recommended values. The PRad
result is 2.7-σ smaller than the CODATA recommended value for e − p scattering
experiments [7]. Other results can be found from [1, 5, 6, 18, 19, 20, 22, 100]

ing, the PRad Gp
E data points are consistent with the previous measurements in the

Q2 < 0.02 (GeV/c)2 range, while the PRad points are consistently larger in the higher

Q2 range. To understand this difference, one may consider various systematic uncer-

tainties of these experiments. The PRad experiment is less sensitive to systematic

uncertainties associated with the integrated luminosity of the measurement, as the

Møller scattering was measured simultaneously and data points with difference Q2

were collected at the same time. However, it is more sensitive to inelastic e− p con-

tribution due to a worse energy resolution compared to magnetic spectrometers, and

also to the detector response of the Pb-glass shower detectors of the HyCal. System-

atic uncertainties due to these two sources can be reduced significantly for PRad-II

as discussed in Ch. 6. The difference may also arise from radiative corrections, which

are quite different for the PRad experiment and other magnetic-spectrometer-based

experiments. Lastly, the difference may be also related to the proton magnetic form
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factor contribution in the cross section. Important inputs can be obtained in the

future from high precision Gp
M measurements at very low Q2. Such measurements

may be provided by experiments such as (but not limited to) Ref. [25, 53].

The comparison between the rp result obtained from this experiment, and other

rp results from previous e− p elastic scattering experiments and analyses are shown

in Fig. 7.31. Compared to the previous measurements, the PRad experiment used a

spectrometer-free approach and is the first e−p elastic scattering experiment to cover

two orders of magnitude of low Q2 region in one detector setting. This means that for

each beam energy setting, data points at different Q2 were recorded simultaneously,

with all the detectors fixed in location for the entire data taking process. This elimi-

nates the need for having vast multitude of normalization parameters, which may in-

troduce additional systematic uncertainties to the result. The lowest Q2 measured by

this experiment, 2.1×10−4(GeV/c)2, is currently the lowest measured value for all e−p

elastic scattering experiments. This reduces the uncertainties due to extrapolation

in the rp extraction. Further measurements for rp are certainly needed particularly

from lepton-proton elastic scattering experiments. A number of e−p and µ−p elastic

scattering experiments are currently under preparation [21, 23, 24, 25, 26, 27, 53],

which will certainly provide useful inputs for the puzzle. The initial state radiation

technique has been proven to be viable by the ISR experiment at MAMI [22], and a

new experiment is planned using the same technique, but with a point-like jet target

and an improved spectrometer entrance flange to further reduce the systematic un-

certainties [21]. An important result is expected in the next few years from the MUSE

collaboration [23], which will use e+, e−, µ+ and µ− beams to perform lepton-proton

elastic scattering measurements, and has a sufficiently large Q2 coverage (0.002 to

0.07 (GeV/c)2). The expected precision on rp is about 0.01 fm for each of the incident

1Thanks to Douglas Higinbotham for providing all the references for the plot.
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Figure 7.2: Comparison between PRad Gp
E and a number of previously measured

Gp
E data sets [15, 36, 37]. The top plot is for the full PRad Q2 range while the bottom

plot is only for Q2 < 0.02 (GeV/c)2. The error bars for the PRad data contain only
statistical uncertainties.
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leptons. This experiment can directly test the lepton universality and will be very

important for fully resolving the proton charge radius puzzle. In addition, the PRad

collaboration has a plan to perform a follow-up experiment to the PRad experiment.

As discussed in Chapter 6, this new experiment will include a second GEM plane to

improve the tracking capacity and the precision of the GEM efficiency measurements,

which allows the application of the integrated Møller method to all angular bins. It

is quite possible that the new experiment can reduce the total uncertainty of rp by a

factor of 2 to 3, compared to the PRad result.
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Figure 7.3: The rp extracted from the PRad data (black squares), shown along with
the other measurements or analyses of rp from e − p elastic scattering experiments
(blue dots). Data points are obtained from references (bottom to top) [30, 101, 102,
37, 48, 95, 103, 104, 36, 105, 106, 107, 108, 109, 110, 111, 5, 112, 113, 114, 38, 115,
116, 117, 118, 119, 120, 13, 15, 16, 121, 97, 122, 22]
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Appendix A

Cross Section and Form Factor Data

The fitting function (rational (1,1)) used to obtain the PRad final rp result is,

f(Q2) = nGp
E(Q2) = n

1 + pa1Q
2

1 + pb1Q
2
, (A.1)

where n is 1.0002 for the 1.1 GeV data set and 0.9983 for the 2.2 GeV data, pa1 is

-0.07146 and pb1 is 2.88141, both in (GeV/c)−2. Please see Chapter 5 for more details

Table A.1 and Table A.2 contain the cross sections and the f(Q2), that is, they include

the floating parameters n. Our best estimates for the floating parameter n for the

two beam energy settings are listed above. Table A.3 and Table A.4 contain the

proton electric form factor Gp
E(Q2) without the floating parameter n, i.e. f(Q2)/n.

The bin width for each θ angle bin is shown as “θbw” in Table A.1 and Table A.2.

The polar angle coverage of a polar angle bin goes from θ − 0.5θbw to θ + 0.5θbw.

198



E` θ θbw Q2 σ δσstat. δσsyst. f(Q2) δf(Q2)stat. δf(Q2)syst.

[MeV] [◦] [◦] [GeV/c]2 [mb/sr] [mb/sr] [mb/sr] [1] [1] [1]
1101 0.7625 0.025 0.000215 2173.30000 4.27660 11.14500 0.99801 0.00098 0.00253
1101 0.7875 0.025 0.000229 1920.60000 3.95980 9.79210 1.00070 0.00103 0.00252
1101 0.8125 0.025 0.000244 1694.70000 3.71820 8.38080 1.00060 0.00110 0.00244
1101 0.8375 0.025 0.000259 1496.80000 3.51490 7.89930 0.99916 0.00117 0.00261
1101 0.8625 0.025 0.000275 1335.40000 3.33650 6.01830 1.00090 0.00125 0.00222
1101 0.8875 0.025 0.000291 1190.50000 3.12730 5.51420 1.00060 0.00132 0.00229
1101 0.9200 0.040 0.000312 1026.60000 2.28790 4.92340 0.99847 0.00111 0.00236
1101 0.9575 0.035 0.000338 874.24000 2.17710 4.57160 0.99805 0.00124 0.00258
1101 0.9945 0.039 0.000365 753.64000 1.83400 3.24370 0.99964 0.00122 0.00211
1101 1.0355 0.043 0.000396 639.98000 1.52630 3.43360 0.99868 0.00119 0.00265
1101 1.0810 0.048 0.000431 538.60000 1.26520 2.97920 0.99842 0.00117 0.00274
1101 1.1310 0.052 0.000472 450.10000 1.03500 2.01120 0.99908 0.00115 0.00220
1101 1.1840 0.054 0.000517 373.16000 0.83371 1.52830 0.99692 0.00111 0.00201
1101 1.2405 0.059 0.000568 312.19000 0.65870 1.29390 1.00090 0.00106 0.00204
1101 1.3040 0.068 0.000628 253.75000 0.51715 1.02260 0.99708 0.00102 0.00198
1101 1.3775 0.079 0.000700 204.03000 0.41431 0.82302 0.99765 0.00101 0.00198
1101 1.4655 0.097 0.000793 159.52000 0.32207 0.61447 0.99839 0.00101 0.00189
1101 1.5740 0.120 0.000914 119.67000 0.24211 0.43621 0.99746 0.00101 0.00179
1101 1.7105 0.153 0.001080 85.90400 0.17184 0.34341 0.99791 0.00100 0.00197
1101 1.8935 0.213 0.001323 57.04200 0.10879 0.19283 0.99631 0.00095 0.00166
1101 2.1065 0.213 0.001637 37.08100 0.07857 0.13113 0.99396 0.00106 0.00175
1101 2.3525 0.279 0.002041 23.93300 0.05027 0.09441 0.99566 0.00105 0.00196
1101 2.6420 0.300 0.002574 14.97400 0.03506 0.05211 0.99294 0.00117 0.00174
1101 2.9420 0.300 0.003190 9.72850 0.02670 0.03721 0.99203 0.00137 0.00192
1101 3.2420 0.300 0.003873 6.55510 0.02000 0.02711 0.98838 0.00152 0.00205
1101 3.5420 0.300 0.004621 4.59280 0.01651 0.01826 0.98702 0.00179 0.00196
1101 3.8420 0.300 0.005434 3.27990 0.01337 0.01262 0.98078 0.00202 0.00188
1101 4.1420 0.300 0.006313 2.42860 0.01090 0.01275 0.98034 0.00223 0.00261
1101 4.4420 0.300 0.007257 1.82920 0.00887 0.00650 0.97789 0.00241 0.00175
1101 4.7420 0.300 0.008265 1.41160 0.00735 0.00638 0.97840 0.00259 0.00225
1101 5.0460 0.308 0.009353 1.08360 0.00619 0.00540 0.96986 0.00283 0.00243
1101 5.6000 0.800 0.011506 0.71577 0.00377 0.00273 0.96955 0.00262 0.00188
1101 6.5000 1.000 0.015468 0.38535 0.00374 0.00197 0.95586 0.00480 0.00251

Table A.1: Cross section table for the 1.1 GeV data set.
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E` θ θbw Q2 σ δσstat. δσsyst. f(Q2) δf(Q2)stat. δf(Q2)syst.

[MeV] [◦] [◦] [GeV/c]2 [mb/sr] [mb/sr] [mb/sr] [1] [1] [1]
2143 0.7075 0.015 0.000700 770.68000 1.12020 2.17990 0.99548 0.00072 0.00131
2143 0.7230 0.016 0.000731 708.49000 1.02900 2.03670 0.99672 0.00072 0.00133
2143 0.7395 0.017 0.000765 647.43000 0.93569 1.78110 0.99676 0.00072 0.00127
2143 0.7570 0.018 0.000801 588.99000 0.85118 1.53890 0.99621 0.00072 0.00119
2143 0.7755 0.019 0.000841 532.97000 0.77834 1.44190 0.99450 0.00073 0.00124
2143 0.7955 0.021 0.000885 483.98000 0.70171 1.31900 0.99717 0.00072 0.00125
2143 0.8170 0.022 0.000934 433.38000 0.64203 1.21350 0.99526 0.00074 0.00129
2143 0.8400 0.024 0.000987 387.58000 0.57302 1.10740 0.99490 0.00074 0.00132
2143 0.8655 0.027 0.001048 344.10000 0.50158 0.92061 0.99516 0.00073 0.00123
2143 0.8935 0.029 0.001116 302.80000 0.44735 0.81152 0.99485 0.00074 0.00123
2143 0.9240 0.032 0.001194 264.97000 0.39036 0.72446 0.99518 0.00074 0.00126
2143 0.9575 0.035 0.001282 228.76000 0.33633 0.62901 0.99287 0.00073 0.00127
2143 0.9945 0.039 0.001383 196.55000 0.28454 0.56710 0.99274 0.00072 0.00134
2143 1.0355 0.043 0.001499 167.69000 0.24187 0.44462 0.99405 0.00072 0.00122
2143 1.0810 0.048 0.001634 140.92000 0.20253 0.37934 0.99297 0.00072 0.00125
2143 1.1310 0.052 0.001789 117.65000 0.16705 0.35418 0.99304 0.00071 0.00142
2143 1.1840 0.054 0.001960 98.22900 0.13930 0.28399 0.99429 0.00071 0.00136
2143 1.2405 0.059 0.002152 81.22500 0.11288 0.22507 0.99233 0.00069 0.00130
2143 1.3040 0.068 0.002377 66.41200 0.09185 0.19050 0.99132 0.00069 0.00135
2143 1.3775 0.079 0.002653 53.22400 0.07312 0.15754 0.99008 0.00068 0.00141
2143 1.4655 0.097 0.003002 41.55000 0.05614 0.11158 0.98986 0.00067 0.00127
2143 1.5740 0.120 0.003463 31.14800 0.04103 0.09216 0.98826 0.00066 0.00143
2143 1.7105 0.153 0.004089 22.30600 0.02713 0.06532 0.98714 0.00061 0.00142
2143 1.8935 0.213 0.005009 14.78300 0.01759 0.04313 0.98404 0.00059 0.00141
2143 2.1065 0.213 0.006197 9.61710 0.01315 0.02956 0.98134 0.00068 0.00149
2143 2.3525 0.279 0.007726 6.12150 0.00874 0.01979 0.97523 0.00071 0.00155
2143 2.6420 0.300 0.009739 3.82970 0.00631 0.01215 0.97134 0.00082 0.00154
2143 2.9420 0.300 0.012069 2.46440 0.00485 0.00725 0.96437 0.00097 0.00141
2143 3.2420 0.300 0.014646 1.64330 0.00373 0.00498 0.95424 0.00112 0.00146
2143 3.5420 0.300 0.017469 1.14160 0.00307 0.00384 0.94722 0.00133 0.00165
2143 3.8420 0.300 0.020537 0.81784 0.00252 0.00380 0.94111 0.00151 0.00217
2143 4.1420 0.300 0.023848 0.60265 0.00206 0.00256 0.93677 0.00168 0.00210
2143 4.4420 0.300 0.027401 0.44210 0.00166 0.00233 0.91986 0.00184 0.00248
2143 4.7420 0.300 0.031196 0.33932 0.00138 0.00201 0.91612 0.00199 0.00301
2143 5.0460 0.308 0.035285 0.25817 0.00116 0.00172 0.90179 0.00218 0.00318
2143 5.4000 0.400 0.040354 0.19505 0.00100 0.00150 0.89474 0.00250 0.00389
2143 5.8000 0.400 0.046477 0.14266 0.00106 0.00144 0.87877 0.00361 0.00478
2143 6.5000 1.000 0.058188 0.08600 0.00068 0.00099 0.84966 0.00376 0.00546

Table A.2: Cross section table for the 2.2 GeV data set.
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E` θ Q2 Gp
E(Q2) δGp

E(Q2)stat. δGp
E(Q2)syst.

[MeV] [◦] [GeV/c]2 [1] [1] [1]
1101 0.7625 0.000215 0.99779 0.00098 0.00253
1101 0.7875 0.000229 1.00050 0.00103 0.00252
1101 0.8125 0.000244 1.00040 0.00110 0.00244
1101 0.8375 0.000259 0.99895 0.00117 0.00260
1101 0.8625 0.000275 1.00070 0.00125 0.00222
1101 0.8875 0.000291 1.00040 0.00131 0.00228
1101 0.9200 0.000312 0.99825 0.00111 0.00236
1101 0.9575 0.000338 0.99783 0.00124 0.00258
1101 0.9945 0.000365 0.99942 0.00122 0.00211
1101 1.0355 0.000396 0.99846 0.00119 0.00265
1101 1.0810 0.000431 0.99821 0.00117 0.00273
1101 1.1310 0.000472 0.99886 0.00115 0.00220
1101 1.1840 0.000517 0.99670 0.00111 0.00201
1101 1.2405 0.000568 1.00070 0.00106 0.00204
1101 1.3040 0.000628 0.99686 0.00102 0.00198
1101 1.3775 0.000700 0.99743 0.00101 0.00198
1101 1.4655 0.000793 0.99817 0.00101 0.00189
1101 1.5740 0.000914 0.99724 0.00101 0.00179
1101 1.7105 0.001080 0.99769 0.00100 0.00197
1101 1.8935 0.001323 0.99609 0.00095 0.00166
1101 2.1065 0.001637 0.99374 0.00106 0.00175
1101 2.3525 0.002041 0.99544 0.00105 0.00196
1101 2.6420 0.002574 0.99272 0.00117 0.00174
1101 2.9420 0.003190 0.99181 0.00137 0.00192
1101 3.2420 0.003873 0.98816 0.00152 0.00205
1101 3.5420 0.004621 0.98680 0.00179 0.00196
1101 3.8420 0.005434 0.98057 0.00202 0.00188
1101 4.1420 0.006313 0.98012 0.00223 0.00261
1101 4.4420 0.007257 0.97768 0.00241 0.00175
1101 4.7420 0.008265 0.97819 0.00259 0.00225
1101 5.0460 0.009353 0.96965 0.00283 0.00243
1101 5.6000 0.011506 0.96934 0.00262 0.00188
1101 6.5000 0.015468 0.95565 0.00480 0.00250

Table A.3: Electric form factor Gp
E table for the 1.1 GeV data set.
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E` θ Q2 Gp
E(Q2) δGp

E(Q2)stat. δGp
E(Q2)syst.

[MeV] [◦] [GeV/c]2 [1] [1] [1]
2143 0.7075 0.000700 0.99715 0.00073 0.00131
2143 0.7230 0.000731 0.99840 0.00073 0.00133
2143 0.7395 0.000765 0.99844 0.00072 0.00127
2143 0.7570 0.000801 0.99789 0.00072 0.00119
2143 0.7755 0.000841 0.99617 0.00073 0.00124
2143 0.7955 0.000885 0.99885 0.00073 0.00126
2143 0.8170 0.000934 0.99693 0.00074 0.00129
2143 0.8400 0.000987 0.99657 0.00074 0.00133
2143 0.8655 0.001048 0.99684 0.00073 0.00123
2143 0.8935 0.001116 0.99653 0.00074 0.00123
2143 0.9240 0.001194 0.99686 0.00074 0.00126
2143 0.9575 0.001282 0.99454 0.00073 0.00127
2143 0.9945 0.001383 0.99441 0.00072 0.00135
2143 1.0355 0.001499 0.99573 0.00072 0.00122
2143 1.0810 0.001634 0.99464 0.00072 0.00125
2143 1.1310 0.001789 0.99471 0.00071 0.00142
2143 1.1840 0.001960 0.99597 0.00071 0.00136
2143 1.2405 0.002152 0.99400 0.00069 0.00130
2143 1.3040 0.002377 0.99299 0.00069 0.00136
2143 1.3775 0.002653 0.99175 0.00069 0.00141
2143 1.4655 0.003002 0.99152 0.00067 0.00128
2143 1.5740 0.003463 0.98992 0.00066 0.00143
2143 1.7105 0.004089 0.98881 0.00061 0.00142
2143 1.8935 0.005009 0.98570 0.00059 0.00141
2143 2.1065 0.006197 0.98300 0.00068 0.00149
2143 2.3525 0.007726 0.97688 0.00071 0.00155
2143 2.6420 0.009739 0.97298 0.00082 0.00155
2143 2.9420 0.012069 0.96599 0.00098 0.00141
2143 3.2420 0.014646 0.95585 0.00112 0.00146
2143 3.5420 0.017469 0.94881 0.00133 0.00165
2143 3.8420 0.020537 0.94270 0.00152 0.00217
2143 4.1420 0.023848 0.93835 0.00169 0.00211
2143 4.4420 0.027401 0.92141 0.00184 0.00248
2143 4.7420 0.031196 0.91766 0.00200 0.00302
2143 5.0460 0.035285 0.90331 0.00219 0.00319
2143 5.4000 0.040354 0.89625 0.00250 0.00390
2143 5.8000 0.046477 0.88026 0.00362 0.00479
2143 6.5000 0.058188 0.85109 0.00377 0.00547

Table A.4: Electric form factor Gp
E table for the 2.2 GeV data set.
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