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Abstract

KARKI, BISHNU, Ph.D., August 2020, dissertation

Deep Exclusive π0 Electroproduction Measured in Hall A at Jefferson Lab with the

Upgraded CEBAF (179 pp.)

Director of Dissertation: Julie Roche

Our understanding of the proton’s structure in terms of its fundamental degrees of

freedom, quarks and gluons, is incomplete. Generalized Parton Distributions (GPDs) can

enhance our understanding of the partonic structure of the proton as it includes the

correlation between the momentum and transverse position of partons. Exclusive

electroproduction of the pion (ep→ e′p′π0) is one of the potential channels to access the

GPDs. GPDs are defined at the Bjorken limit where the total amplitude can be factorized

in a hard scattering of the photon off the quark and a soft part described by the GPDs. At

sufficiently high Q2, a factorization scheme for exclusive meson production processes

exists but only for longitudinally polarized virtual photons. As long as the longitudinally

polarized virtual photons dominate the cross-section, we can have factorization and

extract the GPDs. But the existing data for π0 production at low Q2 and low xB show the

dominance of transverse part of the cross-section over the longitudinal one. Some

transversity GPD models have found that an effective way to factorize the contribution

from transversely polarized virtual photons to explain the dominance of σT over σL,

shown by existing data. The experiment E12-06-114 ran in experimental Hall A during

2014-2016. The primary goal of this experiment was to measure the DVCS cross-section

but the experimental configuration also allows the measurement of deep exclusive π0

production. Taking advantage of the upgraded CEBAF at Jefferson Lab, we explored the

high Bjorken-x (0.60) and high Q2 regime for the first time. The extracted cross-section

terms for π0 production helps us to test the validity of QCD factorization in our kinematic

regime. Our π0 production results can be used to test and improve the existing models of
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proton structure. Cross-section results will be presented at two different Q2 values for

fixed xB of 0.60.
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Introduction

The visible matter we see around us is made up of atoms. Each atom consists of

electrons orbiting around a nucleus. The atomic nucleus consists of protons and neutrons

collectively known as the nucleons. When the nucleons were first discovered, they were

classified as elementary particles like the electron. Later in the 1960s, Deep Inelastic

Scattering (DIS) experiments confirmed that protons/neutrons are composite objects.

Nucleons belong to a broader class of particles called hadrons, which are made up of

quarks and gluons collectively known as partons. Quarks and gluons always stick together

via the strong force to form a bound state hadron. The dynamics between quarks and

gluons inside the hadron are described within the mathematical framework called

Quantum Chromodynamics (QCD). QCD is not yet a fully understood theory in the sense

that the QCD problem can not be solved numerically, especially at a larger distance scale

(relative to proton’s size). Even 100 years after the discovery of the proton, there are still

open questions like, ”How a proton (hadron) gets its mass from almost massless quarks

and gluons?” or ”From where does the total spin of the proton come from?”

The strong force has a unique aspect, which makes it more difficult to understand

completely. The coupling constant of the strong force depends strongly on the energy

scale of interactions. At a large energy (short distance) scale, the force between the quarks

is very small, and can be treated as if free; this phenomenon is called asymptotic freedom.

In this energy scale, interactions between quarks and gluons can be treated perturbatively,

and hence calculations can be made from the first principles. But at small energy (larger

distance about the dimension of a nucleon) scale, the force between the quarks becomes

strong enough that they can not be isolated. This phenomenon is called confinement. In

this regime, we cannot rely on perturbation theory. One of the best ways to understand

QCD in the confinement regime is to infer from experimental results.
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There are several approaches to understand the strong interaction and how its

dynamics describes the observed properties in a hadron. One of them is to probe the

internal structure of hadrons in terms of their fundamental degrees of freedom: quarks and

gluons. So far, we have gathered different pieces of information about how partons are

distributed inside the nucleon. For instance, Form Factors (FFs) give the spatial

distribution of partons in the transverse plane inside the nucleon. Parton Distribution

Functions (PDFs) give the longitudinal momentum distribution of partons. However, these

two objects are uncorrelated and cannot provide a complete description of the nucleon. In

the mid-’90s new functions called Generalized Parton Distributions (GPDs) were

introduced [1–3]. GPDs contain the correlation between spatial and momentum

information of a parton and give a more complete, 3-dimensional picture of a nucleon.

GPDs can be experimentally accessed through deep exclusive processes like Deep Virtual

Compton Scattering (DVCS) and Deep Virtual Meson Production (DVMP).

Scattering of an energetic electron beam on a nucleon target is one of the common

approaches to study the internal structure of a nucleon. This is firstly because electrons are

structureless, and their interaction with matter is well understood. Secondly, they can be

easily produced, accelerated, and detected. The Continuous Electron Beam Accelerator

Facility (CEBAF) at Jefferson Lab, Virginia, is one of the appropriate facilities for

studying nucleon structure. The E12-06-114 experiment (DVCS3), the subject of this

document, ran in the experimental Hall A at Jefferson Lab between Fall 2014 and Fall

2016. The main goal of this experiment was to measure the DVCS and DVMP (π0)

production cross-sections at the wide range of kinematics accessible by an upgraded

CEBAF. These cross-sections will help to constraint the GPDs and thus improve our

understanding of QCD. This document will be mainly focused on exclusive π0 production,

and cross-section results for one of the Bjorken x. This document is organized as follows:
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• Chapter 1: This chapter is a review of the study of nucleon structure through the

GPDs framework, experimental approaches, and the world GPDs program.

• Chapter 2: This chapter gives the description of the facility used by this experiment,

Jefferson lab. It also describes Hall A and its standard detectors, the DVCS3

dedicated detector, and DVCS3 experimental setup.

• Chapter 3: This chapter describes the extraction of the deep inelastic scattering

cross-section from the data taken concurrently to the exclusive DVCS3 data.

• Chapter 4: This chapter is the description of the analysis of the DVCS3

electromagnetic calorimeter and of the Monte Carlo simulation of the experiment

based on the Geant4 toolkit.

• Chapter 5: This chapter describes the procedure adopted for the extraction of

exclusive π0 production cross-section, presents results, conclusion, and outlook.
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1 Nucleon structure through the electromagnetic probe

The proton and neutron are the fundamental building blocks of nuclei. Information

about the distribution of quarks and gluons, the elementary particles of which nucleons

are made up of, inside the nucleon can answer many fundamental questions related to

nucleons’ properties. Understanding the internal structure of the nucleon in terms of its

basic unit, quarks and gluons, is one of the important and challenging problems in today’s

nuclear physics community. 3-D nucleon imaging is considered one of the top priorities

that the nuclear physics community should pursue [4]. The scattering of an energetic lepton

beam off the nucleon target has revealed many secrets about the nucleon. But the current

information about the proton is still incomplete to fully understand the proton. In this

chapter, I will focus on the electron beam to probe a proton1.

Elastic scattering and Deep Inelastic Scattering (DIS) of the electron beam off the

proton have given some insight into the partonic structure of the nucleon. However,

the information that can be obtained through these scatterings is limited. Generalized

Parton Distributions (GPDs) were introduced to improve our understanding of the nucleon

structure. GPDs contain a wealth of information about the partons inside the nucleon. In

this chapter, I will summarize what we have learned about the nucleon through Elastic

scattering and DIS scattering, how much more we can learn through GPDs, and how GPDs

can be experimentally accessed via deep exclusive processes. The past and future GPDs

programs around the world is briefly discussed. The main focus will be given to the DVMP,

especially π0 electroproduction channel.

1 alternative to an electron beam can be a muon beam.
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Figure 1.1: Elastic scattering off nucleon. The bold notation are four-momentum vector (E,

~k), and the regular one refers to the magnitude of the variable.

1.1 Elastic Scattering

Elastic scattering is the process in which an electron scatters off a nucleon and the

recoiling nucleon remains intact. This process is dominant at low energies and probes the

global properties of nucleons, such as their charge radii.

Figure 1.1 represents the elastic scattering of the electron of the nucleon. If E and

~k are initial energy and momentum of incoming electron and E′, ~k′ are final energy

and momentum of the scattering electron, then the kinematic variables related to elastic

scattering can be defined as:

• k: four-momentum of beam i.e k(~k, E)

• k’: four-momentum of scattered beam i.e. k’( ~k′ , E′)

• θ: Angle between the initial beam and scattered electron

• ν = E-E′ = energy transfer
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• q= k - k’ = four-momentum of the virtual photon exchanged i.e q (~q, ν)

• Q2 = -q2=virtuality or resolution of the probe = 4EE′ sin2
(
θ
2

)
• t = (p − p’)2 = momentum transferred to recoiled proton

Hofstadter and his team used the electron beam from Standford Linear Accelerator

(SLAC) to elastically scatter off the proton. Their observation established that the proton

is not a point-like object; instead, it is composite [5]. The electron-proton elastic cross-

section for Q2 >> Mp (mass of the proton) can be written using the Rosenbluth formula [6]

as:

dσ
dΩ

=
α2

4E2 sin4
(
θ
2

) E′

E

G2
E + τG2

M

1 + τ
cos2 θ

2
+ 2τG2

M sin2 θ

2

 (1.1)

where

τ =
Q2

4M2
p
. (1.2)

The finite size of a proton is taken into account by introducing two forms factors: GE(Q2)

related to the charge distribution and GM(Q2) related to magnetic moment distribution

within the proton. Sachs form factors, GE(Q2) and GM(Q2), can be separated by measuring

the cross-section at a given Q2 over a large range of scattering angles (θ). This method

is also called Rosenbluth separation. One can also measure the ratio (GE(Q2)/GM(Q2))

through polarization transfer to the recoil proton. GE(Q2) and GM(Q2) can be parameterized

by the empirically determined dipole function (GD).

Gp
E(Q2) = GD =

1
(1 + Q2/0.71GeV2)2 (1.3)

Gp
E(Q2) =

GM(Q2)
µp

(1.4)

where µp is the magnetic moment of the proton. Figure 1.2 shows the existing world data

for GE(Q2) and GM(Q2) from e-p scattering experiments normalized to the dipole form
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Figure 1.2: World existing data for the Sachs form factors normalized by the dipole form

factor. The black line is fit performed by Ye et al. in 2018 [7]. The red shaded band

indicates the systematic uncertainty. The figure is adapted from Ref. [7]. See the reuse

permission in Appendix C.

factor. The uncertainties in both GE(Q2) and GM(Q2), grow with Q2. The larger uncertainty

at high Q2 has generated interest in measuring the form factors at high Q2. Currently, the

data are limited to Q2 <8 GeV2. One of the interesting aspects of GE(Q2) is its connection

with the proton charge radius, as shown by Equation 1.5 [8]. The charge radius of a proton

is still an ongoing debate in the nuclear physics community.

〈r2〉 = −6
dGE(Q2)

dQ2

∣∣∣∣∣∣∣
Q2=0

(1.5)

1.2 Deep Inelastic Scattering (DIS)

If a highly energetic electron beam is scattered off the proton, it is highly likely the

proton will break up. The process in which the proton no longer remains intact is termed

as DIS for e.g., e−p → e−
′

X, where X represents the final hadronic system resulting from
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the break-up of the proton. Based on the final state particle detected, DIS is classified into

three categories:

• Inclusive DIS: Only the scattered electron in the final state is detected

• Semi-Inclusive DIS (SIDIS): Along with the scattered electron, one of the hadrons

in the final state is detected.

• Exclusive process: All the final state particles are detected.

The kinematics of the DIS process can be described by using any two of the following

Lorentz-invariant quantities:

• Bjorken x (xB): It is the fraction of momentum of proton carried by struck parton

xB =
Q2

2Mpν
(1.6)

• W2: It is the invariant mass squared of the hadronic system

W2 = M2
p + Q2

(
xB

1 − xB

)
(1.7)

• y: It is the fractional energy lost by an electron in scattering

y = 1 −
E′

E
(1.8)

The Lorentz invariant expression for inclusive DIS cross-section (Q2 >> M2
py) mediated

by single virtual photon can be written as:

d2σ

dxBdQ2 =
4πα2

Q4

(1 − y)
F2(xB,Q2)

xB
+ y2F1(xB,Q2)

 (1.9)

where F1(xB,Q2) and F2(xB,Q2) are the structure functions such that F1(xB,Q2) has purely

magnetic origin, while F2(xB,Q2) has both magnetic and electric contributions. The

inclusive DIS cross-section was first measured at SLAC in the 1970s by Kendall et al. [9].

Later, a series of experiments were performed to measure the DIS structure functions. The

results from these experiments revealed two interesting features of the proton:
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Figure 1.3: Representation of the DIS process through Feynman diagrams. At the Bjorken

limit, it can be interpreted as elastic scattering off a single quark.

• Both structure functions F1(x,Q2) and F2(xB,Q2) are almost independent of Q2 at

moderate values of xB

i.e F1(xB,Q2)→ F1(xB) and F2(xB,Q2)→ F2(xB). This observed feature was used as

the basis for the idea that the proton is a composite particle consisting of point-like

entities later called quarks.

• In the deep inelastic regime (Q2 > few GeV2), F1(xB) and F2(xB) are related as:

F2(xB) = 2xBF1(xB) (1.10)

This relation is called Callan-Gross relation. It suggests that quarks are spin 1
2

fermions.

1.2.1 Quark-parton model

The quark-parton model of DIS is formulated in an infinite momentum frame where

the incident proton energy E >> Mp. In the Bjorken limit (Q2 and ν sufficiently large),

inclusive DIS can be interpreted as elastic scattering from one of the spin half quarks

carrying a fraction of the momentum of the proton, as shown in Figure 1.3. The quarks

inside the proton will interact with each other. The dynamics of this interacting system

leads to a distribution of quark momenta within the proton. This momentum distribution is

characterized by Parton Distribution Functions (PDFs). PDFs cannot yet be calculated from
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QCD first principles, since the strong force coupling constant is large at a long-distance

scale2, αs O(1). At this scale, the perturbation technique can not be used. PDFs are rather

extracted from the experimentally measured structure functions:

F2(xB) = xB

∑
f

e2
f q f (xB) (1.11)

where q f (xB) is the parton distribution function for quark of flavor f, and e is the electric

charge of each quark flavor f. A proton is a dynamic system; quarks inside interact with

the exchange of virtual gluons, which can fluctuate into a qq̄ pair. Therefore the PDFs not

only have the contribution from quarks (uud) for protons but also have a contribution from

gluons, sea quarks, and anti-quarks. Figure 1.4 (left) is the global fit to many different

experimental data at a scale of Q2 = 10 GeV2 for quarks of flavor u, d, s, d̄ + ū, d̄ - ū and

gluons by the CJ collaboration [10]. It is worth noting that the gluon’s contribution is very

high at low xB and small at high xB. This is due to the fact that high momentum gluons are

suppressed by the 1
q2 gluon propagator. Anti-quark and quark s contribution is relatively

small at large xB as they originate from g → qq̄. The difference in contributions from u

and d quarks increases with xB, which is one of the surprising facts. The spin information

is encoded in the polarized PDFs, which can be extracted from polarized DIS cross-section

data. Figure 1.4 (right) shows the polarized PDFs for the proton. The polarized PDFs have

larger uncertainty due to limited polarized data. The striking outcome of polarized PDFs

analysis is that the total contribution from valence quarks3 to the proton’s spin is only 33%

±3% (Stat.) ±5% (Syst.) [11]. The total contribution to the proton’s spin from sea quarks,

gluons, and valence quarks do not add up to spin 1
2 (the proton spin). This result has

attracted a lot of attention to the orbital angular momentum of quarks and gluons, which

have not been measured so far.
2 compared to dimension of a proton
3 in figure represented by subscript v
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Figure 1.4: Extracted unpolarized and polarized proton’s PDFs from a global analysis

of world data. Left: Contribution from different flavors of quarks and anti-quarks to the

proton’s PDFs. The flavor decomposition is extracted with a global analysis of unpolarized

DIS data [10]. Right: The spin-dependent or polarized PDFs for different quarks flavor in

a proton. The polarized PDFs were extracted using world polarized data from pp collision

and ep scattering [12]. See re-use permission (1) in Appendix C.

1.3 Generalized Parton Distribution Functions (GPDs)

FFs and PDFs discussed in section 1.1 and 1.2, respectively provide the microscopic

structure of the nucleon. Both FFs and PDFs contain limited information about the

partons inside the nucleon. FFs do not contain any dynamical information of partons.

On the other hand, PDFs tell nothing about the spatial distribution of quarks. A complete

picture of a nucleon lies in the correlation between space and momentum coordinates. In

1932, Wigner proposed a distribution, which is a function of both space and momentum

coordinates [13]. These distributions have been used in various areas like signal analysis,

quantum information, optics, image processing, etc. [14]. Later, the concept of a Wigner

distribution was introduced in QCD, and a more natural interpretation in the infinite



32

momentum frame was given by Lorce and Pasquini [15]. Its matrix elements describe

the 5-dimensional distribution of partons (3 in momentum and 2 in position). The Wigner

distribution is regarded as the “mother distribution,” as it contains a full correlation between

partons transverse position and momentum in a single distribution. However, no process

has been realized yet to extract the Wigner distributions. Instead, a lot of experimental

efforts are made to measure some special cases of the Wigner distributions like Transverse

Momentum Distributions (TMDs) [16, 17] and Generalized Parton Distributions (GPDs).

The experimentally extracted observables can be related to GPDs and TMDs. GPDs give

the 3-D image of the nucleon in impact parameter space, while TMDs give in momentum

space. Figure 1.5 shows the connections between different distribution (GPDs, FFs, TMDs,

PDFs) with the Wigner distribution. In this document, I will focus on Generalized Parton

Distributions (GPDs) only.

In the mid-’90s, a new formalism called Generalized Parton Distributions was

introduced for describing the internal structure of the nucleon [1–3]. GPDs encapsulate the

correlation between the spatial distribution and momentum distribution of quarks inside

a nucleon. In an infinite momentum frame, GPDs give the distribution of partons in the

transverse plane for a given longitudinal momentum of a parton.

1.3.1 Experimental access to GPDs and factorization

GPDs can be accessed experimentally through a suitable exclusive process like Deep

Virtual Compton Scattering (DVCS) or Deep Virtual Meson Production (DVMP). These

exclusive processes can be represented by the so-called “handbag diagram.” The handbag

diagrams for DVCS and DVMP processes at leading order and leading twist (twist/higher-

order will be discussed in section 1.3.2) are shown in Figure 1.6. In this formalism,

the virtual photon scatters off a single parton inside a nucleon. The kinematic variables

involved in these processes are defined below:
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Figure 1.5: Projection of Wigner distribution on different phase space [18]. Here x

is a fraction of nucleon’s momenta carried by struck quark, r⊥ is a transverse position

coordinate, and k⊥ is transverse momentum coordinate.

• k, k’, p, and p’ : Same as in section 1.1.

• x: The longitudinal momentum fraction of the proton carried by a struck quark

• ξ : The longitudinal fraction of momentum transfer to the nucleon ξ � xB
2−xB

• t: Squared of 4-momentum transfer to the proton (its Fourier conjugate is an impact

parameter (r⊥ ) i.e,

t= -∆2 = (p′ − p)2

For DVCS (ep→ e′p′γ), the incoming electron gets scattered, emitting a virtual photon

of virtuality Q2. The virtual photon is then absorbed by a quark inside the nucleon with
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( a ) ( b )

Figure 1.6: Handbag representations for exclusive processes at leading order and a leading

twist [19]. On the left (a) is a handbag diagram for the DVCS process and on right (b) is

for DVMP.

a momentum fraction x + ξ of a nucleon. The struck quark is later reabsorbed by the

nucleon with different momentum fraction x − ξ. This is possible due to the emission of

a real photon in the final state. In the case of DVMP instead of a real photon, a meson

is produced in the final state, leaving the nucleon intact in both of the processes. In the

DVMP, there is an additional strong vertex due to meson production. This additional non-

perturbative object describes the structure of the produced meson, called the Distribution

Amplitudes (DAs) [19]. For both DVCS and DVMP, the handbag diagram consists of two

distinct processes, a short-distance/hard process and a long-distance/soft process.

At the Bjorken limit,

Q2 → ∞

ν→ ∞

 at fixed xB (1.12)

the handbag diagram shown in 1.6, can be factorized into two parts: a hard perturbative

and a soft non-perturbative part [20] [21]. The hard part can be analytically calculated from

the first principles. The soft part contains the hadron structure and can be parametrized

by the GPDs. But in the case of DVMP, factorization only holds for the longitudinally
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Figure 1.7: Higher-order and higher twist handbag diagram for DVCS process. On the left

(a) is the higher-order, and on the right (b) is a higher twist-3.

polarized virtual photons but not for transverse polarization. In GPDs formalism, the

nucleon structure is parametrized by eight sets of GPDs, which are a function of 3 variables

x, ξ, and t. Each GPD describes a unique process based on quark-nucleon helicity.

1.3.2 Higher-twist/higher-order

The first approach to solve any scattering processes using perturbation theory is to

solve the Feynman diagram at tree-level. But in most cases, tree-level or leading-order

diagrams are not enough to describe the full experimental process. So one has to add

corrections from higher-order diagrams. The strong coupling constant αs strongly depends

on Q2, so one can use a perturbation treatment only when αs << 1. Contributions

from higher level-diagrams to the amplitude goes on decreasing as the power of αs

in the perturbative regime. A second-order diagram for the DVCS process is shown

in Figure 1.7a, where the virtual photon absorbs a quark/anti-quark produced from the

splitting of gluon (g→ qq̄) and is reabsorbed by the nucleon.

The DVCS (DVMP) amplitude consists of both hard perturbative and soft non-

perturbative parts. As in the perturbative part, a higher-order correction has to be made
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in the non-perturbative part, to describe the full experimental process. For this one can use

the Operator Product Expansion (OPE) to expand the product of two operators as the sum

of local operators at different positions. Then one can introduce “twist” to sort out the terms

according to the magnitude of contributions to the soft process. The twist is a difference

in mass dimension and spin. Leading twist (twist-2) has the highest contribution to the

scattering amplitude. Contributions of twist-3 in the scattering amplitude are suppressed

by a factor of 1
Q relative to leading twist likewise twist-4 by a factor of 1

Q2 and so on.

Figure 1.7b shows a higher twist diagram for the DVCS process where the struck quark

interacts with other quarks before getting reabsorbed. The higher-order or higher-twist has

a relatively lower contribution as compared to leading order/leading twist. But depending

on the Q2 the probe, one needs to take into account those contributions. In the Q2 regime

accessible at Jefferson Lab, before the 12 GeV upgrade, a significant contribution from

the lowest twist/order was reported by M. Defurne et al. [22]. The same result also

showed a sizable contribution either coming from a higher twist or next to leading order.

Their formalism was unable to distinguish between higher twist vs. next to leading order

contributions.

1.3.3 GPDs nomenclature

The DVCS is regarded as one of the cleanest processes to access the GPDs because

it involves only one non-perturbative object, which makes this process theoretically less

challenging. In the valence regime, at leading twist and leading order, the DVCS is sensitive

to 4 sets of chiral even GPDs for each quark flavor f: H f (x, ξ, t), E f (x, ξ, t), H̃ f (x, ξ, t), and

Ẽ f (x, ξ, t). Figure 1.8 is a classification of chiral even GPDs based on the quark-nucleon

helicity [23]. GPDs H and E are averages over quark helicities4, also called “unpolarized”

4 the subscript f is dropped off for simplicity but in practice we have GPDs for each quark flavor f
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Figure 1.8: Definition of GPDs based on quark-nucleon helicity state [23]. The red arrows

represent the nucleon spin while the blue arrows are of the struck quark helicity.

GPDs. GPDs H̃ and Ẽ are the difference between quark helicities, also called “polarized”

GPDs. The GPDs E and Ẽ do not conserve the nucleon spin, but H and H̃ do.

1.3.4 Compton form factors

GPDs depend on the three variables: x, ξ, and t. The variables ξ and t can be accessed

by measuring the kinematics of the scattered electron and the final state photon/proton, but

the variable x is not experimentally accessible. Therefore, GPDs are not directly accessible

from the experiment. Instead, we measure Compton Form Factors (CFFs), which are a

function of ξ and t only. The GPD H f of quark flavor f is connected to CFFsH f (ξ, t) as:

H f (ξ, t) = P

∫ 1

−1

H f (x, ξ, t)
ξ − x

dx − iπH f (ξ, ξ, t) (1.13)
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Figure 1.9: Contribution to the ep→ epγ from DVCS and the Bethe-Heitler processes. In

DVCS (left most), the photon is radiated from proton, while in Bethe-Heitler (two figures

on right), the photon is either radiated from an the incoming or outgoing electron.

where P is the principal value integral. For each GPD, there are two (real + imaginary)

CFFs that can be accessed through the DVCS cross-section. The dispersion relation

connects the real and imaginary part of CFFs as:

ReH(ξ, t) = P

∫ 1

−1
dx

ImH(ξ, t)
ξ − x

+ D(t) (1.14)

where the D-term D(t) is given as:

D(t) =
1
2

∫ 1

−1

D(z, t)
1 − z

dz (1.15)

D(z, t) = (1 − z2)
[
d1(t)C3/2

1 (z)
]

(1.16)

such that, -1 < z = x
ξ
<1. The D-term is related to the Gravitational Form Factor d1(t)

through a Gegenbauer coefficient C1(z). The D-term is interpreted in terms of shear force

and pressure inside the nucleon in the infinite momentum frame [24].

1.3.5 Accessing GPDs from DVCS

Experimentally the photo-electroproduction (ep → epγ) process is measured. This

channel has a contribution from two experimentally indistinguishable processes: DVCS

and Bethe-Heitler (BH). Figure 1.9 (left) shows the DVCS process where the photon is
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Figure 1.10: Kinematics for electroproduction of photon in the target rest frame. The

azimuthal angle φ is the angle between the electron scattering plane and the hadronic

production plane. This figure is adapted from Ref. [26]. See the re-use permission in

Appendix C.

radiated from the proton and the BH process (right two) where the photon is either radiated

by an incoming or outgoing electron. The 5-fold differential cross-section for photon-

electroproduction can be written as [25]:

d5σ

dQ2dtdxBdφedφ
=

α3xBy

16π2Q2
√

1 + 4x2
BM2/Q2

|
T

e3 |
2 (1.17)

where angle φe is electron azimuthal angle with respect to the horizontal plane around

the beamline direction, φ is the angle between leptonic and hadronic planes. Figure 1.10

shows the definition of angle φ as by the Trento Convention [26]. The total amplitude (T )

is the sum of the DVCS (TDVCS ) amplitude, the BH amplitude (TBH), and the interference

between these two processes (I).

| T |2=| TDVCS |
2 + | TBH |

2 +I (1.18)
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where interference term can be written as

I = T
†

DVCSTBH + T
†

BHTDVCS . (1.19)

The φ dependence of the electroproduction cross-section can be exploited to expand each

term TDVCS , TBH, and I as a harmonic in φ. Harmonic expansion up to twist 3 terms is

developed by Belitsky and collaborators [25].

1.3.6 Bethe-Heitler term

Bethe-Heithler is a purely electromagnetic process and can be computed from the

existing knowledge of electromagnetic FFs. By using the FF parametrization proposed by

Kelly [27], the BH contribution can be computed within 1% precision for the kinematic

setting of this experiment. Its harmonic expansion on φ can be written as:

| TBH |
2=

e6

x2
By2(1 + ε2)2∆2P1(φ)P2(φ)

CBH
0 +

2∑
n=1

CBH
n cos(nφ) + SBH

1 sin(φ)

 (1.20)

where P1(φ) and P2(φ) are lepton propagators. Further details can be found in Appendix

A.

1.3.7 DVCS term

The harmonic expansion of DVCS term can be written as:

| TDVCS |
2=

e6

y2Q2

CDVCS
0 +

2∑
n=1

CDVCS
n cos(nφ) + SDVCS

n sin(nφ)


 (1.21)

The harmonic coefficients CDVCS
i and SDVCS

i are connected to the bi-linear combinations of

CFFs [28]. The connection is shown in detail in Appendix A.

1.3.8 Interference term

The interference between DVCS and BH process can be written as:

I =
±e6

xBy3∆2P1(φ)P2(φ)

CI
0 +

3∑
n=1

CI
ncos(nφ) + SIn sin(nφ)


 (1.22)
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where +(-) case stands for negatively (positively) charged lepton beam. The harmonic

coefficients of interference terms can be written as a linear combination of CFFs [28].

1.3.9 Properties of GPDs

There are many properties of GPDs which make them exciting subjects in the nuclear

physics community. Some of those interesting properties will be discussed in this section.

1. Nucleon tomography: GPDs allow simultaneous measurement of the longitudinal

momentum and transverse position (impact parameter) distribution of partons inside

the nucleon. The set transverse position representation at different longitudinal

momentum provides a tomographic image of the nucleon, as represented in

Figure 1.11. The probability density of finding a parton of flavor f, with longitudinal

momentum fraction x with respect to its transverse distance b⊥ is given by

q f (x, ~b⊥) =

∫
d2q⊥
(2π)2 ei ~q⊥ ~b⊥H f (x,− ~q⊥

2) (1.23)

where ~q⊥ is transverse momentum transfer.

2. Connection to PDFs and FFs: GPDs can be regarded as the generalized form of PDFs

and FFs. In a forward limit, t→ 0 and ξ → 0, GPDs reduce to PDFs,

H f (x, 0, 0) = q f (x)

H̃ f (x, 0, 0) = ∆q f (x)
(1.24)

where f is a flavor of quark and q f (x) and ∆q f (x) are unpolarized and polarized quark

densities. The GPDs E and Ẽ do not have any connection to PDFs which makes them

even more interesting.
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Figure 1.11: Cartoon showing the sketch of the tomographic view of the transverse spatial

parton distribution for the given longitudinal momentum fraction x. The figure is adapted

from Ref [29]. See the re-use permission in Appendix C.

The first moments of GPDs are related to the FFs [30] as :∫ 1

−1
H f (x, ξ, t)dx = F f

1 (t)∫ 1

−1
E f (x, ξ, t)dx = F f

2 (t)∫ 1

−1
H̃ f (x, ξ, t)dx = G f

A(t)∫ 1

−1
Ẽ f (x, ξ, t)dx = G f

p(t)

(1.25)

where F f
1 (t), F f

2 (t), G f
A(t), and G f

p(t) are Dirac, Pauli, axial, and pseudoscalar form

factors respectively. As PDFs and FFs are well known, the above connections

between GPDs and FFs/PDFs are crucial to test the measured GPDs.

3. Connection to the orbital angular momentum of quarks: Spin is regarded as a

fundamental quantity in quantum physics. The total nucleon’s spin can be written
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as the sum of the contribution from gluon and quarks. However, the measured

contribution to the proton’s spin from the quarks and gluons spin do not add up

to total proton’s spin. The observed spin crisis in the proton is famously known as

the “spin crisis” [31].
1
2

=
1
2

∆Σ + Lq︸     ︷︷     ︸
Jq

+Jg

where Jq and Jg are the total angular momentum of quarks and gluons respectively,

Lq is the orbital angular momentum of quarks, and 1
2∆Σ is the sum of the intrinsic spin

of quarks, which is measured to be around 33 ±6% of the total spin of proton [11].

Through the Ji’s sum rule [1], the total contribution from the quarks can be related to

the GPDs as:

Jq =

∫ 1

−1
x[H f (x, ξ, 0) + E f (x, ξ, 0)]dx (1.26)

Knowledge of GPDs can play a crucial role in extracting the contribution of orbital

angular momentum of quarks to the proton spin. The orbital angular momentum of

quarks has not been measured so far and can be a significant step toward solving

the proton spin puzzle. One of the top priorities for the future accelerator facility,

the Electron-Ion Collider, is to study the orbital angular momentum of quarks and

gluons [32].

4. Connection to mechanical properties: GPDs indirectly allow accessing the basic

mechanical properties of the nucleon like shear force and the pressure distribution

inside a proton [33]. The Gravitational Form Factor (GFF) which encodes the shear

force on quarks and pressure distribution in a proton is connected to GPDs as:∫ 1

−1
xH(x, ξ, t)dx = M2(t) +

4
5
ξ2d1(t) (1.27)

where M2(t) and d1(t) are components of the energy-momentum tensor. The GFF

d1(t) is connected to D-term as described in Equation 1.15 and 1.16. Burkert
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Figure 1.12: The pressure distribution inside the proton as a function of distance from the

center of proton. The black line corresponds to the extracted pressure from the D-term

with the estimated uncertainties represented by the light green shaded region. The blue

shaded region shows the uncertainty without JLab 6 GeV data, and the red shaded region

shows the projected uncertainty from future experiments at 12 GeV. The figure is taken

from Ref. [33]. See the re-use permission in Appendix C.

et al. [33] recently measured the pressure distribution inside the proton using the

GPD data. Their measurement has opened a new area of research on fundamental

gravitational properties of subatomic particles through the electromagnetic probe.

However, their result is subjected to large systematic and simplifying assumptions.

Figure 1.12 shows the quarks pressure distribution inside the proton obtained in this

analysis. Burkert et.al. found the strong repulsive pressure near the center of the

proton (up to 0.6 fm) and binding pressure at a larger distance from the center of the

proton.
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1.3.10 Deep virtual meson production

The Deep Virtual Meson Production (DVMP) process at leading twist and leading

order can be represented by a handbag diagram shown in Figure 1.6b. In this process,

the struck quark hadronizes before getting reabsorbed. The final stage of this process is

a recoiling nucleon, a scattered electron, and one of the mesons (π±, π0, φ,η, etc.). The

structure of the nucleon is encoded by GPDs, which is in the soft part of the handbag

diagram. GPDs are universal, irrespective of the process used for extraction. Theoretically,

DVMP is challenging due to the presence of one additional soft part from hadronization.

The meson structure is described by Distribution Amplitudes (DAs), and we have very

limited information about DAs to date [34]. The DVMP allows accessing the chiral odd

GPDs. Chiral odd or Transversity GPDs describe the processes where a quark helicity is

flipped, and these GPDs cannot be accessed through the DVCS process at leading order.

So far, existing experimental knowledge about the chiral odd GPDs is limited, as the quark

helicity flipping processes are suppressed. For each of the chiral even GPDs described

in Figure 1.8 there is a corresponding chiral odd GPD namely: HT (x, ξ, t), ET ((x, ξ, t),

H̃T (x, ξ, t), ẼT (x, ξ, t).

The cross-section for exclusive meson production can be written as [35]:

d4σ

dQ2dxBdtdφ
=

1
2π

Γγ(Q2, xB, E)

dσT

dt
+ ε

dσL

dt
+

√
2ε(1 + ε)

dσTL

dt
cos(φ) (1.28)

+ε
dσTT

dt
cos(2φ) + h

√
2ε(1 − ε)

dσTL′

dt
sin(φ)


where h (=±1) is the helicity of the lepton probe. For the unpolarized case, h=0 the last

term can be dropped out from Equation 1.28. Γγ is virtual photon flux intensity,

Γγ(Q2, xB, E) =
α

8π

(
1 − ε
ε

) 1 − xB

x3
B


 Q2

M2
pE2

0

 (1.29)
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and ε is degree of polarization

ε =
1 − y − Q2

4E2
0

1 − y +
y2

2 +
Q2

4E2
0

(1.30)

The cross-section terms σL is the contribution from the longitudinal polarized virtual

photon, σT is the contribution from the transversely polarized virtual photon, σTL is

the interference between longitudinal and transversely polarized virtual photon, σTT is

transverse-transverse interference, and σTL′ is the polarized cross-section term. For DVMP,

the factorization is only established for longitudinally polarized virtual photons but not for

the transverse polarization [36]. In the regime where the leading twist handbag formalism

is applicable, QCD factorization predicts that the σL scales as Q−6 and σT as Q−8 [20]. At

sufficiently high Q2, the transverse contribution could be neglected. But the minimum value

of Q2 at which this prediction holds must be tested through experiments. However, the

existing data for meson production measured at different facilities suggest that transversely

polarized virtual photons have a significant contribution to the total cross-section [37] [38]

for the Q2 between 1.5 to 2 GeV2. For instance, Figure 1.13 is the L/T separated cross-

section data for deep exclusive π0 production from Hall A Jefferson Lab [37] showing a

dominance of σT over σL. Currently the available data are limited to a small range of Q2

ranging (1.5 -2 GeV2) and at a fixed value of Bjorken-x (xB=0.36). Experiment E12-06-

114 aims to expand the π0 data to higher Q2 and high xB and test the QCD factorization

prediction.

The observed dominant contribution of σT opens new and unique opportunities to

access the transversity GPDs of the nucleon. On the theory aspect, some advancement has

been made to factorize the transverse amplitude in meson production. It has been suggested

in Goldstein Hernandez and Luiti (GL) [39] and Goloskokov and Kroll (GK) [40] models

that the observed large cross-section for σT relative to σL can be explained by the coupling

of twist 3 DA with the transversity GPDs of the proton without violating the factorization
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theorem. These transversity GPD models introduce the chiral odd GPDs to explain the

experimentally observed contribution from transversely polarized virtual photons as:

dσT

dt
=

4πα
2k′Q4

(1 − ξ2) |〈H̃T 〉|
2 −

t′

8M2
P

|〈ẼT 〉|
2

 (1.31)

dσTT

dt
=

4πα
k′Q4

t′

16M2
P

− |〈ẼT 〉|
2 (1.32)

But Goldstein, Hernandez and Luiti (GL) and Goloskokov and Kroll (GK) uses different

parameterization of the GPDs. For instance, Goloskokov and Kroll uses double distribution

representation for GPDs [40] while GL model uses experimental evidence to constrain the

various theoretical aspects of GPDs [39]. Different meson productions (π+, π0..) exhibit

the sensitivities to different sets of GPDs. For instance, π0 production is sensitive to HT

and ẼT . Transversity based GPDs models are able to explain the extracted σT and σL fairly

well (see Figure 1.13). This agreement between data and model is one of the motivations

to test these models over a wide range of kinematic that can be accessed with an upgraded

e− beam facility at Jefferson Lab.

Depending on the meson produced, the final state can have different quarks in

combination. This feature allows one to disentangle the various flavor of GPDs. Due

to a relatively larger cross-section for exclusive vector mesons, it is mostly studied

experimentally as compared to pseudoscalar meson production. Vector meson production

at leading order is primarily sensitive to the gluon chiral even GPDs [34]. This document is

focused on the exclusive pseudoscalar meson production, more specifically, π0 production.

In exclusive π0 production (ep→ e′p′π0), the quark helicity flipping amplitude is relatively

larger than the quark helicity conserving amplitude [35]. Due to this fact, the exclusive π0

production channel is more sensitive to transversity GPDs. This fact makes this channel

suitable for studying the transversity GPDs. Moreover, the π0 channel does not have

pion pole contributions like in π±, hence data interpretation is relatively easy. Despite its

significance, π0 cross-section data are not available over a large kinematic range mainly due
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Figure 1.13: Different cross-section terms σT, σL, σTT, and σTL for π0 electroproduction

measured at Hall A. This measurement shows the dominance of σT over σL for 3 different

Q2 (1.5, 1.75, and 2 GeV2) and at fixed xB of 0.36. The prediction from different

transversity GPDs models full line from [40] and dashed lines from [39] are in fair

agreement with data. The figure was adapted from [37]. See the re-use permission in

Appendix C.

to two reasons: the cross-section is relatively low as compared to π+, and clean detection

of π0 requires the measurement of two decayed photons.

The current goal for exclusive π0 production is to measure the cross-section over a

wide kinematic range and test the validation of the existing transversity GPDs models by

comparing cross-section data with model predictions. The document reports exclusive π0

production cross-section at high Q2( 5.4 and 8.4 GeV2) at fixed xB of 0.60, exploiting the

upgraded e− beam facility at Jefferson Lab. The extracted cross-sections are compared
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with the Goloskokov and Kroll (GK) [40] GPDs model for the first time in this kinematic

regime5.

1.3.11 Experimental status

Since the connection of GPDs with deep exclusive processes was found, several

experimental efforts have been made, and several are ongoing to extract the GPDs. As

DVCS is one of the cleanest channels to extract the GPDs, most of the experimental efforts

are focused on it. To extract the GPDs, several observables have to be measured with

the polarized/unpolarized beam, positively/negatively charged beam, and different target

polarization at the different kinematic regimes. For measurement of various observables

related to GPDs, an extensive GPDs program has been planned. Figure 1.14 shows the

kinematic coverage of the worldwide DVCS program. Most of the meson production

experiments ran or will be running contemporaneously with the DVCS experiments.

Further detailed information about the past and future GPDs program can be found in

the review article by N.d’Hose [41]. In this section, I will describe various experimental

programs to measure the GPDs through DVCS and DVMP.

1.3.11.1 H1 and ZEUS

The H1 and ZEUS collaborations measured the beam charge asymmetries exploiting

the positron and electron beam at high energy (30 < W < 140 GeV) , over a Q2 range,

2 < Q2 < 100 GeV2. They used the 820 GeV proton beam from HERA (Hadron-

Elektron-Ring-Anlage) accelerator facility to collide with electron/positrons with energy

of 27.5 GeV. H1 and ZEUS collaboration [43, 44] measured the total DVCS cross-section

dependence on different kinematic variables like Q2, W2, and t.

H1 and ZEUS also measured the vector meson production (ρ, φ, J/ψ, ω) cross-

section as a function of Q2, W and t over a wide range of kinematics [45] [46] [47].

5 Goldstein Hernandez and Luiti (GL) [39] and Goloskokov model calculations are pending
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Figure 1.14: Kinematic coverage in xB and Q2 for past and future GPDs experiments around

the world. The figure is taken from Ref. [42]. See the re-use permission in Appendix C.

Their measurement covers a wide kinematic range from threshold up to W∼200 GeV

and 0< Q2 < 100GeV2. The ratio σL
σT

for ρ0 and φ production from H1 and ZEUS

experiment is well described by the GPDs model taking the transverse momenta of parton

into account [48]. Taking advantage of the collider H1 and ZEUS exploited the low xB

about 10−3 regime where the gluons dominate.

1.3.11.2 HERMES

HERMES used the beam from HERA facility and ran between 1995 to 2007. They

have measured wide sets of DVCS observables like beam charge asymmetries [49], single

beam spin asymmetries [50], and double beam asymmetries with both longitudinally and
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transversely polarized targets [51] [52]. The large measured number of DVCS observables

were crucial to unfold the different CFFs contribution.

The HERMES collaboration also measured the cross-section for electroproduction of

π+. Their result was not described by the regular GPDs model [53], which predicts the

dominance of σL. HERMES explored the intermediate xB of about 10−1 where the sea

quarks play a dominant role.

1.3.11.3 CLAS

CLAS is the CEBAF Large Acceptance Spectrometer installed in Hall B at Jefferson

Lab. It covers a larger solid angle (about 4π) compared to the Hall A setup (about 6 msr).

But Hall B only operates at smaller luminosity (about the order of 103) smaller as compared

to Hall A for the same target configurations. CLAS collaboration measured various

DVCS observables in the valence regime, for instance, the beam spin asymmetries [54]

using the longitudinally polarized electron beam with a liquid hydrogen target and double

spin asymmetries with a longitudinally polarized NH3 target. They also reported the

unpolarized and polarized DVCS cross-section at beam energy of 5.75 GeV [55]. With

many assumptions, these measurements helped to put constraints on GPD H f .

The CLAS collaboration is also active in search of transversity GPDs. Figure 1.15 [38]

shows the extracted cross-section parameters for η and π0 electroproduction measured by

the CLAS collaboration at two different values of xB and Q2 [xB=0.17 , Q2=1.38 GeV2]

and [xB=0.28 , Q2=2.21 GeV2]. The extracted cross-section parameters are compared with

the transversity GPDs model by Goloskokov and Kroll (GK). The GK model describes the

σT + εσL term fairly well for both π0 and η production.

1.3.11.4 COMPASS

The COMPASS collaboration (Common Muon and Proton Apparatus for Structure

and Spectroscopy) also has a GPDs program. They use the primary proton beam from
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Figure 1.15: The extracted cross-section parameters for exclusive π0 (left) and η (right)

production at two different kinematic points. Black points are σT + εσL, red σTL, and blue

σTT. Solid lines are the prediction by the GK model. The GK model underestimates the

σT + εσL especially in η production. Error bars are statistical only, and the grey band is

systematic uncertainties for σT + εσL. This figure is taken from Ref. [38]. See the re-use

permission in Appendix C.

the Super Proton Synchrotron (SPS) accelerator to produce a muon beam of both µ− and

µ+. Their main program is to measure the charge and helicity-dependent cross-section to
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Figure 1.16: Exclusive muon π0 production cross-section measured by COMPASS

collaboration. GK model calculations inspired by the COMPASS results agree with data

better than the original calculations made by GK [40]. This figure is taken from Ref. [56].

See the re-use permission in Appendix C.

separate the DVCS and interference terms. The kinematic range that COMPASS can cover

is shown in Figure 1.14. They recently took DVCS data, and analysis is underway.

The COMPASS collaboration has also measured the exclusive π0 production at Q2=2

GeV2 and xB=0.0093 [56]. Figure 1.16 shows COMPASS collaboration cross-section data

compared with the Goloskokov and Kroll model. In the kinematic regime covered by this

experiment, the Goloskokov and Kroll model [40] overshoots the data. Later calculations

by Goloskokov and Kroll (GK) [56] inspired by COMPASS results fairly agree with

data. The ρ meson production data on a transversely polarized target from the COMPASS

collaboration [57] shows a dominant contribution from the chiral odd GPD relative to chiral

even GPD. Their result is consistent with the transversity GPDs model (GK).
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1.3.11.5 Hall C

Hall C at JLab has measured exclusive π+ production cross-section at Q2 up to 2.5

GeV2[58]. Their results show a sizeable contribution from σT. In the future, Hall C will

utilize the new super high momentum spectrometer and a new electromagnetic calorimeter

to measure DVCS and π0 production cross-sections at different kinematic ranges exploiting

the upgraded CEBAF facility at Jefferson Lab [59].

1.3.11.6 Hall A

Hall A at Jefferson Lab has conducted three different generations of dedicated DVCS

experiments on both proton and neutron targets. The DVCS results from the first generation

of DVCS on the proton showed the dominance of the handbag diagram in the DVCS

process at moderate Q2 (about 2 GeV2) [60]. The second generation of DVCS results

pointed out that there is a significant contribution from the higher twist term [22]. The

same collaboration has published the DVCS results for the neutron target [61].

Hall A also measured exclusive π0 production data on both proton and neutron targets.

These experiments were before the energy upgrade. The results for the proton target is

shown in Figure 1.13. The π0 result for both the proton and neutron from an earlier

generation of the experiment is in good agreement with the transversity GPD models [40].

The third generation of the experiment ran after the accelerator was upgraded to deliver

a maximum beam energy up to 12 GeV. The analysis is ongoing both for DVCS and π0

production. This document will present the results on π0 production for xB=0.60.

1.3.11.7 Electron-Ion collider

Measurement of GPDs with a hard exclusive process to access the 3D image of

the nucleon is one of the important science programs for the future facility Electron-

Ion Collider (EIC). The kinematic range that the EIC potentially can cover is shown in
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Figure 1.14. This facility will be crucial in exploring the gluon and sea quarks GPDs and

flavor separation of GPDs [62].

Integrating the information from past and future experiments, the GPDs in a wide

kinematic range from gluons, sea quarks, and to valence quarks can be extracted. These

measurements help to build the nucleon’s tomographic image. The DVCS is a promising

channel to extract the chiral even GPDs. For meson production, if the experiment finds

the dominance of transversely polarized virtual photons, then it would open the unique

opportunity to access the chiral odd GPDs through meson production. On the theory front,

the contribution from transverse photons is included in the handbag approach (Goldstein

Hernandez and Luiti [39] and Goloskokov and Kroll [40] models). The work presented in

this document will be helpful to constrain the transversity GPDs models at higher xB and

Q2 where data are not available.
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2 The E12-06-114 experiment

In this chapter, I will discuss the experiment of interest “E12-06-114”. Experiment

E12-06-114 took data at the Thomas Jefferson National Accelerator Facility (TJNAF),

Newport News, VA. TJNAF is also commonly known as JLab. It was founded in 1985

with the primary goal of understanding the structure of nuclei and nucleons. Jefferson Lab

is comprised of 4 different experimental halls: A, B, C, and D, each with different detector

systems. All of these experimental halls receive the electron beam from the Continuous

Electron Beam Accelerator Facility (CEBAF), which can deliver electron beams up to 12

GeV in energy6. E12-06-114 is the third generation of DVCS experiments. It ran in Hall

A between 2014-2016. “DVCS3” will often be used to refer to this experiment in this

document. DVCS3 is one of the first experiments to take data after the 12 GeV upgrade of

CEBAF. The first two generations ran in 2004 and 2010 with maximum beam energy up to

6 GeV. The kinematic coverage of the DVCS3 experiment is shown in Figure 2.1.

2.1 Physics Goals

Experiment E12-06-114 had two major physics goals [63]. The primary goal was to

measure both helicity-dependent and helicity-independent cross sections of DVCS process

(ep → e′p′γ ) at fixed xB over a wide range of Q2 with high precision ( about 5% relative

precision). The extracted DVCS cross-section over a wide range of Q2 provides a scaling

test of cross-section, and will help to validate the GPD formalism if it is appropriate to

describe the nucleon structure in this kinematic regime. Measuring both the polarized and

unpolarized cross-sections allows a separation of the real and imaginary part of the DVCS-

BH interference terms. The unpolarized and polarized cross-sections are connected with

6 Only one experimental Hall D, can reach up to 12 GeV. The other halls can get a maximum beam energy
of 11 GeV.
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Figure 2.1: The phase space in xB and Q2 covered by three generations of the DVCS

experiments at Hall A JLab. The black diamonds represent the phase space covered by

the first two generations of the DVCS experiments at Hall A. The red, Green, and Blue

diamonds represent the phase space that experiment E12-06-114 proposed to cover using

three different beam energies. However, experiment E12-06-114 missed two kinematic

points, one green and one blue at Bjorken-x 0.60 due to scheduling issues. The boundary

of the unphysical region (W2 < 4) corresponds to the maximum value of Q2 at fixed xB and

beam energy of 11 GeV. The figure is adapted from Ref. [63].

the real and imaginary part of the DVCS amplitude as:

σpol =
−→
dσ −

←−
dσ = 2 · TBH · Im(TDVCS ) (2.1)

σunp =
−→
dσ +

←−
dσ =| TBH |

2 +2 · TBH · Re(TDVCS ) (2.2)

where
−→
dσ and

←−
dσ are differential cross-sections with opposite beam polarization.
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The experimental setup used to measure the DVCS cross-section also allows us to

measure the cross-section of deep exclusive electroproduction of π0 (ep→ e′p′π0). The π0

events are complimentary in this experimental setup. The lifetime of a π0 is very small

( about 10−17s); therefore, it decays immediately into two photons (π0 → γγ) with a

branching ratio of about 99%. From the energy and momentum information of the decay

photons, the π0 can be reconstructed.

The primary physics motivation behind the π0 production cross-section extraction is

to test the QCD factorization prediction for meson production. In the factorization regime,

σL scales as Q−6 and σT as Q−8. In order to separate σL and σT from the total meson

production cross-section, the cross-sections need to be measured at two different beam

energies with the same Q2 and xB. Unfortunately, this experiment can not separate σL and

σT cross-sections for π0 production. Due to the lack of a cross-section measurement at

multiple beam energies for a fixed xB and Q2, our result will be reported as a sum of σL

and σT that is an unseparated cross-section (σU).

σU = σT + εσL (2.3)

Along with σU , the interference terms σTL, σTT, and σTL′ (only for polarized cross-section)

are also extracted. The extracted cross-section terms can give a hint if σL is dominant over

σT in our kinematic regime. The hard exclusive π0 production cross-section terms will

be compared against existing transversity GPDs model predictions. Our result at high xB

and Q2 can potentially improve the existing transversity GPDs models. If data show the

dominance of transversely polarized virtual photons in exclusive meson production cross-

sections then transversity GPD models are very crucial to extract GPDs .

As DVCS3 was one of the first experiments after the 12 GeV upgrade of CEBAF,

we encountered several technical difficulties related to accelerator performance. As a

consequence, data taking for DVCS3 extended from 2014 to 2016. Table 2.1 shows
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Table 2.1: Actual kinematics covered by E12-06-114 experiment. Data taking started in

the Fall 2014 and was completed at the end of 2016. No useful data were taken in 2015.

The data cover wide range in Q2 (2 < Q2 < 9 GeV2) for different values of xB.

Period Kinematics Beam Energy (GeV) Q2 (GeV2) xB

Fall 2014 36-1 6.66 3.2 0.36

Fall 2016 36-2 8.52 3.6 0.36

Fall 2016 36-3 10.62 4.47 0.36

Spring 2016 48-1 4.48 2.7 0.48

Spring 2016 48-2 8.84 4.37 0.48

Spring 2016 48-3 8.84 5.33 0.48

Spring 2016 48-4 11.02 6.90 0.48

Fall 2016 60-1 8.52 5.54 0.60

Fall 2016 60-3 10.62 8.4 0.60

different kinematic variables (beam energy, Q2, and xB) for all of the kinematics covered by

DVCS3. For each of three different xB (0.36, 0.48, and 0.60), cross-sections were measured

at many Q2 values. Out of these 9 different kinematics, this document will mainly focus on

kinematic with xB=0.60 for π0 production cross-section analysis.

2.2 Continuous Electron Beam Accelerator Facility (CEBAF)

DVCS3 used the longitudinally polarized beam from CEBAF at JLab. The source

of electrons is a Gallium Arsenide crystal doped with Phosphorus (GaAsP), which is

placed at an ultra vacuum chamber. A Ti-Sapphire laser operated at 850 nm is used for

optical pumping of electrons from the valence band to the conduction band. To deliver the

polarized beam, a circularly polarized laser is used for optical pumping. The circularly
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Figure 2.2: Schematic layout of upgraded CEBAF at Jefferson Lab. Upgraded CEBAF can

deliver maximum beam energy up to 12 GeV. 10 cryomodules has been added, 5 in each

linacs and additional arc has been built to recirculate the beam into the linac. This figure

was taken from Jefferson website (https://www.jlab.org).

polarized laser beam is achieved by passing through voltage controlled wave plates called

the Pockels cell. The beam helicity is flipped at the rate of 30 Hz by flipping the sign of

voltage applied to Pockels cell [64]. The electrons in the conduction band are extracted by

applying a potential difference, then accelerated to 45 MeV using the electric field before

being injected into the North linac.

CEBAF is comprised of two linacs: North and South. Each consists of 25

superconducting cryomodules. Each of these cryomodules consist of 8 radio frequency

cavities made of Niobium. The electrons from the source are injected into the North linac

where they get accelerated and steered to the South linac through the magnetic arcs, as
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shown in Figure 2.2. Once the beam travels through the South linac, it is re-injected into the

North linac through another magnetic arc, completing one pass. The beam is accelerated up

to 2.2 GeV as it completes one pass (North + South linac). The beam can be recirculated in

the linacs maximally up to 5 complete passes, thereby reaching the maximum beam energy

of 11 GeV. But due to the position of the new experimental Hall D, the beam can be passed

through one extra linac and reaches to 12 GeV before getting to Hall D. At the end of

South linac, the accelerated beam is extracted using Radio Frequency (RF) separators. It

can then be delivered to one of the three experimental halls (A, B, and C). The beam current

sent to each hall can be controlled independently. CEBAF used to deliver the maximum

beam energy up to 6 GeV. Thanks to the upgrade to 12 GeV, this enables us to explore new

kinematics that was not possible for the first two generations of DVCS experiments.

CEBAF has many distinct features but some of the crucial features that make it proper

to take data for experiment E12-06-114 are:

• CEBAF has a high duty factor

Accelerator facilities deliver pulsed beam separated by some time interval. In a non-

cryogenic accelerator the time gap between the two pulses is required to cool the

machine because of the heating caused by the electric field necessary to accelerate

the particles. The duty factor is a measure of how continuous the beam is. The

higher duty factor means more continuous beam while a low duty factor beam

will be more pulsed. CEBAF can deliver an almost continuous beam, thanks to

its superconducting radio frequency cavity technology. Continuous beams help

coincidence experiments like DVCS37 to reduce the accidental background rate. The

signal to noise ratio for the coincidence experiment is related to the average beam

7 for DVCS3 photon(s) are detected in coincidence with e−
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current (Iavg) and duty factor (df) as:

Nsignal

Nnoise
∝

 d f
Iavg

 (2.4)

Experimentalists desire to have a high value of the signal to noise ratio at a given

beam current. For the given beam current, facility with higher duty factor can provide

a higher signal to noise ratio.

• High beam luminosity

The upgraded CEBAF can deliver a maximum beam current up to 180 µA [65].

However, the DVCS3 ran at relatively small current (about 15 µA) as the DVCS

calorimeter was placed close to the beam line. This amount of current on the 15 cm

long liquid hydrogen target correspond to the total luminosity of about 1038 cm−2

s−1. High luminosity is another important factor needed to measure the small DVCS

cross-sections.

• High beam polarization

CEBAF can deliver the e− beam with polarization as high as 86%. The measured

beam polarizations for kinematics 60-1 and 60-3 were 86.20 ±0.10 (Stat.) ± 1.0

(Sys.) and 85.39 ±0.11 (Stat.) ± 1.0 (Sys.), respectively [66].

2.3 Experimental Hall A

Experiment E12-06-114 ran in experimental Hall A. In this section, the beamline

component and Hall A standard equipments used by DVCS3 experiment will be described.

Further details of Hall A instruments can be found in a NIM paper by the Hall A

collaboration [67]. Figure 2.3 shows the schematic the layout of experimental Hall A.

The beamline components used by the experiment E12-06-114 will be discussed in this

section.
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Figure 2.3: Schematic layout of experimental Hall A at Jefferson Lab. It consists of two

identical High-Resolution Spectrometers (HRS): Left (LHRS) and Right (RHRS). Each

spectrometer consists of three quadrupoles (Q1, Q2, and Q3) for focusing the e− beam and

a dipole (D) arranged in the Q1Q2DQ3 configuration.

2.3.1 Polarimeters

The beam polarization is measured by the two polarimeters: the Compton Polarimeter

(located at the entrance of Hall A) and the Møller Polarimeter (located a few meters before

the target). The Møller is an invasive8 way of measuring the polarization of electron beam

in the hall while the Compton is a non-invasive one. However, during DVCS3 the Compton

detectors were not fully functional so the Compton measurements are not considered in our

data analysis.

8 a measurement that can not be done along with data taking process
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Figure 2.4: Schematic layout of the Møller polarimeter in Hall A. The top figure (a)

represents the side view while the bottom figure (b) represents a top view. The paths

followed by simulated Møller scattered electrons at θCM = 80◦ and φ = 0◦ are shown

by the line. The figure is adapted from Ref. [67]. See the re-use permission in Appendix C.

The experiment E12-06-114 entirely relied on the Møller measurement for determin-

ing the beam polarization. The location of the Møller polarimeter is shown in Figure 2.3.

This process is based on the scattering of an e− beam off the atomic electrons (Møller

scattering) of a ferromagnetic target polarized by a magnetic field of 24 mT. The scattered

electrons are detected using the dedicated spectrometer. The e− scattering cross-section

depends on the beam polarization; hence the beam polarization can be infered by measur-

ing the spin asymmetry. Figure 2.4 shows different components of the Møller polarimeter
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and simulated paths of the scattered electrons. For the Møller measurement, the target has

to be inserted on the beamline, hence one cannot take data during the Møller measure-

ment. Moreover, this process is carried out at low current (about 0.5 µA) which makes it

an invasive process.

The main systematic for Møller measurement comes from the target polarization . For

the experiment E12-06-114, the beam polarization was measured at least once in every

kinematics. The typical beam polarization for this experiment is achieved around 85 ±0.11

(Stat.) ± 1.0 (Sys.) % [66].

2.3.2 Beam position monitors

A pair of Beam Position Monitors (BPMs) is located upstream to the target (see

Figure 2.3) to measure the beam position and angle of their trajectory. Each BPM consists

of a pair of antennas set up around the beam. As the beam passes through, it induces a

current in the antennas. Comparing the intensities of the induced current in each antenna,

the position of beam relative to antennas can be determined. The BPM can provide the

relative position of the beam within 100 µm for currents above 1µA [68]. For absolute

beam position, BPM is calibrated against the wire scanners called Harps, whose positions

are surveyed regularly.

2.3.3 Beam current monitors

Beam Current Monitors (BCMs) are low noise and stable instruments used to measure

the beam current. The BCM package consists of a Unser monitor, two RF cavities

(upstream (U) and downstream (D) with respect to the beam direction), electronics, and

data acquisition system. Figure 2.3 shows the positions of the upstream and downstream

BCMs in Hall A. As the beam passes through the cavity, it induces the magnetic field within

the cavity. The induced magnetic field is proportional to the beam current. The output

signal from the BCM gives a relative measurement of beam current. For absolute current
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measurement, BCMs are calibrated against the Unser. The Unser monitor (or Parametric

Current Transformer, P.C.T Toroids) [69] provides the absolute reference to beam current.

The Unser can be calibrated against a known DC current source. Unfortunately the Unser

cannot be used for a long time as its pedestal drifts in an unpredictable way over several

minutes. Unlike the Unser, a BCM cannot be calibrated directly using DC current as it

is an RF cavity, and the cavity does not induce a magnetic field with DC source. During

experiment E12-06-114 each of the BCMs had two receivers: one analog and one digital.

U1 and D1, the analog receivers, do not amplify the signal from cavities while D3 and D10

are other analog receivers that amplifies the signal from the downstream cavity by 3 and

10 times, respectively. Two new digital receivers, Unew and Dnew, were available since

2016 for development purposes. The output voltage of each receiver is sent to Voltage to

Frequency (V-F) converters, and then to scalers. The rates ( fBCM) measured by the scalers

are proportional to the current.

I was responsible for the BCM calibration during our run period. The BCM calibration

is a two-step process:

• The Unser Calibration: The Unser is calibrated using known DC source current.

The output of Unser is the frequency ( fUnser), which is linear in DC current used for

calibration. The calibration coefficients relate the Unser output to the current passing

through it as:

IUnser = f × P1 + P0 (2.5)

Through the Unser calibration, the gain (P1) and offset (P0) were determined and

later used to convert any fUnser to the beam current in Unser (IUnser).

Figure 2.5 shows a typical fitting procedure to extract the Unser calibration

coefficient. The calibration coefficients for Unser during the different run period

can be found in Appendix D.
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Figure 2.5: A Typical example of Unser calibration. The coefficients of a linear fit to the

Unser response (frequency) against the known current source were extracted.

• The BCM calibration: Using the Unser as a reference current, the BCM is calibrated.

The BCM output, fBCM is fitted against the reference current (Unser current). A

typical fitting procedure for BCM calibration is shown in Figure 2.6. The gain (GBCM)

and offset (I0) were extracted by fitting the BCM output fBCM as:

IUnser = GBCM × fBCM + I0 (2.6)

The BCM calibration was typically done once every couple of weeks. After the

series of calibrations for each run period, the gain of receiver D3 was found to be
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Figure 2.6: A typical fitting procedure to extract the calibration coefficients for BCM. The

output of each BCM is fitted with a linear equation.

stable over a run period (see Figure 2.7 for the Spring 2016). Moreover, D3 was

linear in the current range for the experiment E12-06-114 so we decided to use D3

for our current/charge measurement [70]. At the end, all those calibration runs were

taken at once, and the BCM response was linearly fitted to extract the global gains

and offsets. The gains and the offsets for different run periods are given in Appendix

D.

BCM can measure current down to 1µA with a relative accuracy of 0.5% [67]. Equation 2.6

gives the instantaneous BCM current. Integrating Equation 2.6 over the total time (t) of the

experiment yields the total charge accumulated:

Q = GBCM ×CBCM + I0 × t (2.7)

where Q is charge accumulated in time t, and CBCM is the total count from the scaler output.
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Figure 2.7: The extracted gains of BCM D3 for the Spring 2016. During the Spring 2016

BCM was calibrated 4 different times. The gain for D3 was stable for every run period, so

we used D3 to measure the charge for the experiment E12-06-114.

2.3.4 Beam energy measurement

The beam energy is measured by an “Arc method.” The experimental Hall A is

connected to the accelerator via a 40 m long arc section. The beam is steered through

the arc section using eight dipoles. The momentum of electron beam (p) in GeV can be

written as:

p = k
∫ ~B · ~dl

θ
(2.8)

where θ is deflection angle (radian),
∫
~B · ~dl (Tm) is field integral and k =0.299792

GeV.rad.T −1 m −1/c [67]. For beam energy measurement one needs to measure

simultaneously the angle of deflection of beam and field integral in the arc. The magnetic

field through the eight dipoles is not measured directly. Instead, a 9th dipole identical to the

other eight dipoles is connected in series for the measurement of the field. That 9th dipole is

use to extrapolate the total ~B · ~dl integral. The wire scanners located at the entrance and exit

of the arc are used to measure the deflection angle. The precision in energy measurement

is δE/E = 10−4 [71].
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2.3.5 Raster

Experiment E12-06-114 used a cryogenic target, and the beam in Hall A has high

intensity with a small transverse section. So if the beam is directly passed through the

target, it may locally heat the target and change its properties. To mitigate this situation a

raster is used to move the beam on the target. The raster is a set of magnetic coils that can

move the beam in both the horizontal and the vertical directions. The 2 × 2 mm rastered

beam was used on the liquid Hydrogen target while running at around 20 µA. With the

rastered beam, the density fluctuation from the beam heating is limited to a 1% percent at

a beam current of 100 µA [72].

2.3.6 The target system

The cryogenic target system is mounted inside an evacuated target chamber. The

DVCS3 took data on a Liquid Hydrogen (LH2) target. The LH2 was enclosed in a 15

cm long cylindrical aluminum target cell of about 15 mm thickness at entrance and exit

window. The density of LH2 target at the operating temperature of 19 K and pressure of

0.17 MPa is 0.0723 g/cm2 [67]. Along with the cryogenic target, the target ladder consisted

of another five solid targets. One of a solid target is the dummy target which is 15 cm

aluminum cell without LH2 inside it. It helps to estimate the scattering contribution from

an Al window enclosing the LH2. Another solid target is a multi-foil carbon target, which

is used for optics calibration of the spectrometer. The other solid targets (carbon hole, BeO,

and raster target) are used for beam centering purposes. All these targets are arranged in a

vertical stack and can be moved remotely onto the beam path. Figure 2.8 shows the target

ladder used for experiment E12-06-114. Further information about the Hall A target system

used in this experiment can be found in Ref. [73].
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Figure 2.8: Hall A target scattering chamber during the experiment E12-06-114. Three

cryotarget loops on top followed by solid targets dummy and optics (multi-foil target).

During the Fall of 2016 loop 2 was used. During Spring 2016 and Fall 2014 loop 3 was

used. The primary difference between the three cryotarget loops is the dimension of the

entrance and the exit window of a cylinder containing the cryotarget. The other targets like

carbon hole, BeO, and raster target are not shown in the figure. This figure is taken from

Ref. [73].

2.3.7 The high resolution spectrometers

The Hall A contains of a pair of identical High Resolution Spectrometers (HRS), one

in left (LHRS) and the other at right side (RHRS) of the beam direction. The momentum

range of each of the spectrometers is 0.3 - 4.0 GeV/c with the acceptance of 4.5% with
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respect to the central momentum i.e -4.5% < δP/P0 < +4.5%. One of the main features

of those spectrometers is high momentum resolution of the order of 10−4 between the

momentum range of 0.8 to 4.0 GeV/c. The other features are a good position resolution,

σx(y) = 1mm and angular resolution, σθ = 0.5 mrad [67].

The HRS consists of three quadrupoles (Q) and a dipole (D) in the configuration

QQDQ with a vertical bend. The first two quadrupoles focus the particles into a dipole

on the way towards the detector hut. As the charged particles enter the dipole, they are

deflected depending on their momentum. Based on this fact, one can tune the magnetic

field of the dipole (both magnitude and polarity) to select the particles of desired charge

and momentum. These particles are then focused by the third quadrupole to the detector

stack.

The detector packages for each of the HRS are almost the same and shielded

against background radiation by thick concrete blocks. Figure 2.9 shows the schematic

representation of the spectrometer’s detector package used by DVCS3. The tracking

information is provided by a pair of Vertical Drift Chambers (VDCs). Each VDC consists

of two wire planes oriented 900 to each other. The position and angular resolutions for

the VDC are about 100 µm and 0.5 mrad, respectively. The detector package is equipped

with scintillators, one long scintillator S0 and another plane of 32 scintillator labelled S2.

The scintillators provide fast signals that are used for triggers. The gas Cherenkov filled

with CO2 at the atmospheric pressure is mounted between the two scintillators planes S0

and S2. It distinguishes between electrons and pions. The threshold for pions to create

Cherenkov light is 4.8GeV/c while for electrons it is 17 MeV/c [67]. The coincidence

between the Cherenkov and the scintillator, S2, forms the main electron trigger for this

experiment. The electromagnetic calorimeter (Pion Rejector) is located at the end of the

detector package. The pion rejector consists of two layers. Each of the layers consists

of 34 identical lead glass blocks (left HRS). On the basis of the energy deposited on
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Figure 2.9: Schematic representation of HRS detector package used for DVCS3 experiment

the pion rejector, electrons and pions are discriminated. Pions being hadron deposit less

energy in electromagnetic calorimeter. On the other hand, the electron deposits relatively

high energy in the electromagnetic calorimeter as it interacts electromagnetically with the

material of the calorimeter. The combination of the gas Cherenkov and electromagnetic

shower detector select electrons with about 99% efficiency [74].

The standard Hall A detector package consists of other detectors that are not discussed

in this document. This document is focused on the detectors used by the DVCS3. However,

further information can be found at [67].
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2.4 Experimental Setup for E12-06-114

As discussed in section 2.1, the primary purpose of this experiment is to measure the

cross-section of exclusive channels: ep → e′p′γ and ep → e′p′π0. In the later channel,

the lifetime of π0 is very small (about 10−17s), so it decays into two photons immediately

before reaching to detectors. The branching ratio of π0 → γγ is 98.823% [75]. During

the cross-section analysis of π0, the reconstructed π0 events are corrected by the branching

ratio. In both exclusive channels of interest, the scattered electrons are detected in Left

High-Resolution Spectrometer (LHRS). The final photon(photons) is(are) detected in the

DVCS dedicated electromagnetic calorimeter. In case of π0 cross-section analysis, the π0

events were reconstructed by the detection of two photons decayed from π0. The recoiled

proton is not directly measured. Instead, it is reconstructed using the energy and momentum

information of the incident electron, the target proton, the scattered electron, and the final

photon(s). The mass of the missing proton for DVCS and π0 production is given by

M2
ep→e′γX = (k + p − k’ − q)2 (2.9)

M2
ep→e′π0X = (k + p − k’ − q1 − q2)2 (2.10)

where k, p, and k’ are the four-momentum vectors of the incident e−, the target proton,

and the scattered e−. q is four-momentum of DVCS photon while q1 and q2 are the four-

momentum of two decayed photons from π0 in the case of pion production. The exclusive

π0 events can be further constrained by applying an invariant mass cut. The invariant

mass of the π0 can be reconstructed using the energy-momentum information of decayed

photons,

m2
π0 = m2

γ1γ2
= (q1 + q2)2 (2.11)

Figure 2.10 shows the experimental setup for experiment E12-06-114.
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Figure 2.10: Experimental setup for the DVCS3 experiment. A longitudinally polarized

e− beam from CEBAF scatters off the Liquid Hydrogen (LH2) target. The scattered e− is

detected by High-Resolution Spectrometer (HRS) while the photon (photons in case of π0)

is detected by the electromagnetic calorimeter (ECAL). The recoiled proton is identified

indirectly using the missing mass squared technique.

2.5 Electromagnetic Calorimeter (ECAL)

Apart from the Hall A equipment, a dedicated DVCS electromagnetic calorimeter was

used for a photon detection. The DVCS calorimeter consists of 208 lead-fluoride (PbF2)

blocks arranged in 16 rows and 13 columns. The dimension of each block is 3 cm × 3 cm

× 18.6 cm. As the photon passes through the calorimeter, it produces showers of electron-

positron pairs. Those electron-positron pairs pass through the calorimeter material and

produce the Cherenkov light. This light is collected by photo-multiplier tubes (PMTs). A

PMT is connected to the end of each block. The Molière radius and the radiation length
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of PbF2 are 2.2 cm and 0.93 cm, respectively [63]. For the typical case of a photon hitting

the center of a block, 90% of the incident energy is contained within that block. The total

energy of that initial photon is absorbed within 9 adjacent blocks. Each block is wrapped

in Tyvek and then in Tedlar paper to minimize the energy leakage between the blocks.

However, there is small energy leakage, below 5% either from the back of block or from

the space between the blocks. Due to the radiation damage, the resolution of calorimeter

degrades with time, necessitating regular energy calibration. The energy resolution of a

calorimeter during the data taking period of kinematics 60-1 and 60-3 was measured to

be 2.39% at a beam energy of 4.2 GeV from elastic calibration [76]. The horizontal and

vertical angular resolution measured during the same elastic calibration were 1.64 mrad

and 1.36 mrad, respectively. During the elastic calibration the calorimeter was placed at

6m away from the target.

2.6 The Analog Ring Sampler

The DVCS calorimeter is small in size. In order to have an acceptance as large as

possible, it is placed close to the target. Moreover to minimize data taking time DVCS3 ran

at high luminosity (about 1037 s−1 cm−2). As a result, the raw events on the calorimeter is

expected to be as high as 10 MHz [77]. This high event rate results in pile-up events where

two or more events hit a given block in a narrow time window (see Figure 2.11). In this

case, ADCs which typically integrate the signal within 60 ns window can not separate two

signals. In order to deal with these pile-up events, the signal from each block is digitized by

an Analog Ring Sampler (ARS). The ARS [78] consists of 128 capacitors that continuously

samples the signal at a clock rate of 1 GHz in capacitor. If an external trigger is issued to

the ARS, the sampling is stopped and the signal produced by the block in the last 128 ns

preceding the stop is stored in capacitors and then digitized on demand.
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Figure 2.11: A typical example of a pile-up event recorded by ARS. ARS signals recorded

in the 128 ns window. ARS takes the snapshot of the signal every 1 ns. The black signal

is the sum of red and green signals arrived close in time (few ns). Offline analysis of the

ARS signal allows to extract the green and red signals from the black one with good time

and energy resolution. The figure is taken from Ref. [77].

2.7 Data Acquisition and Trigger

The Data Acquisition (DAQ) process uses the CEBAF Online Data Acquisition

(CODA) developed by the JLab data acquisition group [67]. Each detector is connected

to Analog-Digital Converters (ADCs), Time-to-Digital Converters (TDCs) or scalers. The

signals are read out by VME crates. All the crates are controlled by Read-Out-Controller

(ROC) which are connected to a Trigger Supervisor (TS). The TS controls the trigger: as

a trigger fires, the TS orders the ROCs to gather the data, buffer them and stored in local
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disks. The data in the local disk are subsequently moved to the Mass Storage Tape Silo

(MSS) for long term storage.

The DVCS trigger is a two-level decision logic. The first level trigger logic is formed

by a scintillator (S2) signal and a Cherenkov signal in coincidence (S2&Cherenkov) in

the HRS. A threshold is set on Cherenkov so that π− events triggering S2 are rejected.

Once electron is identified by the HRS, the second level decision will be to search for a

photon(photons) in the calorimeter in coincidence with HRS e−. As S2&Cherenkov trigger

is fired, the TS sends a stop signal to the ARS system. The signals produced by the blocks

are equally divided between the ARS and ADCs, one ARS, one ADC for each block. The

calorimeter trigger module computes the sum of the integrated ADCs signal for all 2 × 2

neighboring blocks called towers. If an integrated ADCs tower is above a set threshold,

then a VALID signal is sent to the trigger supervisor, and the whole event is recorded

(LHRS and ARS data). The ARS is then reset. It takes 128 µs to digitize and transfer the

ARS data [79]. Otherwise, if the ADCs integrated sum from the calorimeter trigger module

does not pass the threshold, the ARS signals are cleared within 500 ns, and the DAQ gets

ready for a new signal. The schematic representation of the trigger configuration is shown

in Figure 2.12.

As S2&Chernkov trigger rate was low for both kinematics with xB=0.60 about few

hundred kHz, no threshold was set on ADC sum to select the photons. Along with electron

and photon in coincidence, we also triggered on inclusive DIS event for DIS cross-section

extraction. The DIS trigger was formed by the S2&Cherenkov signal and an external

prescaled valid signal for the ARS. Because of the high DIS rate, a suitable prescale was

set on the DIS trigger. The prescale factor allows to save only a fraction of the event that

pass the trigger. The prescale factor helps to reduce the dead time caused by engaging

electronics to save each event.
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Figure 2.12: Schematic diagram of the two-level DVCS Trigger system. The first logic is

to identify an e−, by looking at the events that trigger S2 and Cherenkov in coincidence.

The second level decision is to identify if there is a photon(photons) in coincidence with

e−. To detect potential photon candidates, it computes the integrated ADC signal from

the calorimeter in a 60 ns time window for every signal passing the first logic. The ARS

signals are recorded or cleared depending on whether the integrated ADCs signal passes

the set threshold or not.

In some of the kinematics, in addition to DVCS and inclusive DIS trigger, the other

triggers formed by different combinations of S0, S2, and Cherenkov coincidences were

present. For instance, S0&S2 and S0&Cherenkov. These additional triggers were for

the measurement of detectors efficiencies. Expect for the DVCS, the main coincidence

trigger, all other additional triggers had an external validation for the calorimeter trigger

that bypassed the search for a high energy photon in the calorimeter.
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3 Deep inelastic scattering

The E12-06-114 experiment ran with multiple coincidences triggers simultaneously

formed by different detectors. In addition to triggering on e− and γ in coincidence, we

also had a trigger to record the inclusive electron events for every nine kinematics. For

inclusive electron events, the trigger was formed by the scintillator (S2) and Cherenkov

(CER) in coincidence as shown in Figure 2.12. Same detectors were used to trigger the

DVCS/π0 event, but in case of the Deep Inelastic Scattering (DIS) the electrons events were

recorded regardless of the energy deposited by coincidence photon(s) in the calorimeter.

This configuration allowed us to measure the DIS cross-section, the process described in

section 1.2, in all nine kinematics. The DIS cross-sections are well known in our kinematic

regime, so reproducing them with our data would help us to understand the luminosity,

e− detection efficiency, systematic errors, and overall normalization of our data. In this

chapter, I will present my DIS cross-section analysis.

3.1 Cross-section Extraction Principal

The experimental differential DIS cross section is given by:

d2σ

dxB dQ2 =
NDIS

L
×

1
ηTracking × ηS 2 × ηCER × LT

×
1
ηvirt

×
1

α(xB,Q2) × ΓDIS (xB,Q2)
(3.1)

A short description of individual terms used in Equation 3.1 is given below. The detail can

be found in the later sections of this chapter.

• NDIS : The total number of DIS events passing through the selection cuts.

• ηTracking : A factor correcting for the events misidentified by the tracking detectors,

Vertical Drift Chambers (VDCs). The misidentified events are good electron events

that are not properly tagged by the VDCs.
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• ηS 2 : A factor correcting the events due to the inefficiency of the scintillator S2.

• ηCER : A factor correcting the events due to the inefficiency of the Cherenkov detector.

• LT : A factor correcting the events lost due to the dead time/ live time of the trigger.

• L : The integrated luminosity gives the estimation of the number of the collision that

can be produced in a unit area for a given time duration. It can be computed as :

L =

(
Q
e

) (
NA × ρ × l

AH

)
(3.2)

where e = 1.602×10−19 C is the charge of an electron , AH = 1.0079 g/mol is the

atomic mass of hydrogen, NA = 60.22 ×1023 mol−1 is Avogadro,s constant, l=15 cm

is length of the LH2 target at operating temperature and pressure of 17 K and 25

psi, and ρ=0.07229 g/cm3 is the density of LH2 at the same operating temperature

and pressure. The accumulated charge Q is measured using the BCM described in

section 2.3.3 for every single run.

• ηvirt : A factor correcting the virtual internal radiative effects.

• ΓDIS (xB,Q2) : The phase-space from where the NDIS events are selected.

• α (xB,Q2) : A factor to incorporate the kinematic dependence of cross-section. This

factor allows us to extract the cross-section at a nominal value.

In Equation 3.1, terms in the red box are extracted using the data, the term in the green

box is obtained from theoretical calculations, and the terms in the purple box are inputs

from the simulation. Table 3.1 lists the values of these terms used for the DIS cross-section

calculation.



82

Table 3.1: Summary of analysis cuts and correction factors used in the DIS analysis.

Kinematic ηTracking ηCER ηS 2 ηvirt α LT

36-1 0.943 0.998 0.997 1.077 0.863 0.99

36-2 0.940 0.997 0.997 1.078 0.865 0.98

36-3 0.935 0.998 0.996 1.079 0.863 0.97

48-1 0.959 0.997 0.996 1.076 0.947 0.98

48-2 0.941 0.997 0.996 1.079 1.209 0.95

48-3 0.946 0.997 0.996 1.080 1.037 0.98

48-4 0.943 0.997 0.996 1.082 1.123 0.98

60-1 0.938 0.998 0.997 1.080 0.885 0.98

60-3 0.940 0.997 0.996 1.083 0.889 0.97

3.2 HRS Optics with Saturated Q1

As described in chapter 2, the scattered electrons are transported through the magnetic

spectrometers up to the detectors. The spectrometer consists of 3 quadrupoles and a

dipole. In principle, all of these electro-magnets are tuned to select the particles of

desired momentum range. Particles are bent in the magnetic field of the spectrometer.

Characteristics of the trajectory of a particle exiting the spectrometer is measured by the

VDCs (see section 2.3.7). A complete trajectory is defined by four variables (δ, y, φ, and

θ). The θ is the tangent of the angle in the dispersive plane, while y and φ are the position

and tangent of the angle perpendicular to the dispersive plane (see Figure 3.1). The δ is the

fractional deviation of the momentum of a particle with respect to the central momentum

of HRS i.e.

δ =
P − P0

P0
(3.3)
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Figure 3.1: Definition of the variable defining the acceptance of HRS. The figure is adapted

from [67]. See the re-use permission in Appendix C

.

where P is momentum of particle and P0 is the central momentum of HRS.

The positions (x,y) and angles (θ, φ) of the trajectory in the spectrometer focal plane

can be related to the characteristics of the trajectory at the target (at entrance of the

spectrometer) by an optics matrix ([Φ f p
tg ]), such that

δ

y

φ

θ


tg

= [Φ f p
tg ] ×



x

y

φ

θ


f p

(3.4)

The optics matrix can be extracted from dedicated data taking (see Hall A NIM paper [67]

for further information).

In order to select the particles of the desired momentum range, a specific value of

the magnetic field needs to be applied in the spectrometer. To have the desired field, a
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suitable current is passed through the coils of the magnets. As long as the applied current is

linear to the magnetic field, the same optics matrix can be used to recompute the target

variables using Equation 3.4, despite the momentum setting in the spectrometer. But

when the linearity between the induced magnetic field and current applied does not hold,

then optics data are needed to recompute the optics matrix for that particular momentum

setting. Usually for standard optics calibration, optics data are taken at low momentum (1.0

GeV/c) because rates are high. For Fall 2014, the standard optics was used as Q1 was fully

functional. For Spring 2016, the Q1 was not fully functional due to cryogenic coupling

issues [80]. But we were aware of this fact and took the optics calibration data for the

specific momentum settings we worked with. Optics calibration for Spring 2016 was done

by F. Georges [81].

In Fall 2016, Q1 in the left HRS was replaced by the quadrupole Q1 of the obsolete

Short-Orbit Spectrometer (SOS) of Hall C. During this run period, the applied current in

the Q1 was not linear with the induced magnetic field in it beyond 550 A (see Figure 3.5).

But in most of our kinematics, to have the desired momentum (magnetic field), the required

current in the Q1 was above 550 A. Unfortunately, we were not aware of that Q1 saturation

and did not collect the optics data for the optics calibration. Instead, used the simulation to

compute the correction in the optics matrix due to the Q1 saturation. In this section, I will

describe the optics matrix correction procedure briefly for the Fall 2016 run period.

Figure 3.2 shows the ratio of Q1 field as shown by the Hall A magnetic probe to the

expected value for the given current reading. In principle, the relative field should stay

constant at one at different currents (I). But the Q1 field was below the expected value

above 550 A. The reduction in the field due to saturation effect can be parametrized by(
B
P

)
saturated(

B
P

)
expected

= 1 − 0.27
[
Ireadback

550A
− 1

]2

(3.5)
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Figure 3.2: Reduction in quadrupole Q1 field as the function of read back current. The

field measured in Q1 by a hall probe is compared to the expected field for a given applied

current (Read back I from epics). We (DVCS) ran concurrently with other experiment

(GMp) using same magnets, so the kinematics for both experiment is shown in figure. The

Q1 was saturated beyond 550 A. The red line is a graphical representation of Equation 3.5.

Due to the lack of optics data to account for this saturation effect, we relied on Monte-

Carlo simulation for the optics matrix optimization. The correction procedure was adapted

from Ref. [72]. First, using the COSY simulation package [82] the optics matrix was

generated with the actual Q1 field (Q1 saturated field). COSY generates the vertex of the

multi-foil target to map out the magnetic field in the spectrometer. Then pseudo-data for

optics calibration were generated using SIMC [83]. SIMC transports the particles from

the entrance window of the spectrometer to the detector through the magnetic field, and

applies realistic resolution effects. The simulated pseudo-data were used to determine the

saturated optics matrix in the same way as regular data would be. Once the optics matrix
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for saturated setting was determined, the correction factor (∆X
′

tar ) due to the reduction in

the field is given as:

X
′sat
tar (δ f p, θ f p, y f p, φ f p) = X

′Nominal
tar (δ f p, θ f p, y f p, φ f p) + ∆X

′

tar(δ f p, θ f p, y f p, φ f p) (3.6)

where X
′sat
tar is the optics element with pseudo-data from SIMC simulation with Q1 saturated

field, X
′Nominal
tar is reconstruction element determined using the optics data without Q1

saturated. For example,

X
′Nominal
tar = A0000 + A0010y f p + A0001φ

2
f p + A0011y f pφ f p (3.7)

X
′sat
tar = B0000 + B0010y f p + B0001φ

2
f p + B0011y f pφ f p (3.8)

∆X
′

tar(δ f p, θ f p, y f p, φ f p) = (B0000−A0000)+(B0010−A0010)y f p+(B0011−A0011)y f pφ f p+.. (3.9)

The coefficients A0000’s and B0000’s are optics matrix elements from data without Q1

saturation and with Q1 saturated determined with SIMC pseudo-data, respectively.

The corrected matrix is used to reconstruct the vertex position of the multi-foil target.

Figure 3.3 is the reconstructed vertex of a multi-foil target whose foils position are known.

The blue one with the poor resolution is before correcting the optics matrix, while the red

one is after optics optimization. The impact of optics correction on vertex resolution is very

distinct. After the optimization, the positions of the foils are well reconstructed.

3.3 Event Selection

The events selected by the DIS trigger (S2&CER in coincidence) are not all DIS

events. The events are passed through a series of analysis cuts to select the sample of

good DIS electrons. The analysis cuts used to select the DIS events will be described in

this section.
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Figure 3.3: Reconstructed z vertex position for the data taken for optics (multi-foil) target

with 7.2% Q1 saturation. The blue histogram is from data analyzed with regular optics

matrix. The red histogram is of same the data analyzed with the corrected optics matrix.

After the correction, the resolution looks better, and the position of foils are reconstructed

at their expected positions.

3.3.1 HRS acceptance cut

Events produced at the target enter the spectrometer if they pass through the thick

collimator that defines the geometrical acceptance of the HRS. Not all the events passing

through the entrance window of the HRS are ultimately detected by the focal plane detector.

Edge effects throughout the magnetic path of the particle limit the phase-space (δ, y, θ, φ)

that the HRS can detect. There are two approaches to estimate that phase space: (1) a full
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simulation of the spectrometer magnetic area and focal plane detector or (2) an effective

extraction based on the reconstructed trajectories. Our collaboration choose the effective

method.

Our GEANT4 based Monte-Carlo simulation does not transport the particle in the

magnetic field. Instead, it assumes all the particles passing through the HRS entrance

window are detected in the detector. Due to this reason the effective HRS acceptance needs

to be determined.

The naive way to define the HRS acceptance would be applying the 1-dimensional cut

in each of the four variables, but due to the correlation between these variables, such cuts

will be inefficient. Instead, the HRS acceptance is defined in a 4-dimensional hyperspace.

The R-Function depends on 4 variables (δ, y, θ, and φ see Figure 3.1) and reduce that

hyperspace to one number the R-value. The R-value represents the closest distance of any

one point (δ, y, θ, φ) to defined boundary in the 4-dimensional hyperspace. As discussed

in the earlier section, one of the quadrupoles was not fully functional and was detuned at a

different extent in the different kinematic setting. As a consequence, we had to determine

the R-Function for each kinematic settings. To determine the acceptance, boundaries are

set on each of the 2D planes made by 4 different variables (see Figure 3.4). Once the

limits are set on the 2D planes then for every electron, the minimum distance from those

boundaries is computed. This minimum distance is called R-value. Now for the acceptance

cut, the computed R-value distribution for data and Monte-Carlo events are compared, as

shown in Figure 3.5. The threshold R-value, R-cut, above which the data and Monte-Carlo

matches, is assigned as acceptance cut for the spectrometer for that kinematic. The analysis

by A. Johnson [84] confirmed implementing R-Function analysis instead of 1D cuts in each

target variable is better; as the extracted DIS cross-section is more stable and additionally

allows us to consider more events.
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Figure 3.4: The distribution of target variables on 2D planes. Top left: distribution of θtg vs

δtg Top right: distribution of φtg vs δtg. Bottom left: distribution of φtg vs ytg. Bottom right:

distribution of θtg vs φtg. The red line defines the edges of the spectrometer acceptance in

these planes. Some boundaries are not shown in the figure as they would be redundant with

the limit set on other planes. The figure is extracted from [85].

3.3.2 Vertex position cut

The liquid hydrogen (LH2) target is contained in an Aluminum cylinder. The entrance

and exit window of the Aluminum cyclinder is about 0.15 mm thick. Some of the electrons

scatter off the Aluminum window, and these events should be eliminated from the analysis.

For this process, we took data on the dummy target, an Aluminum cylinder slightly thicker
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Figure 3.5: Comparison of the R-value distribution for data and Monte-Carlo. The data

(red) and Monte-Carlo (blue) agree beyond 0.003. For this kinematic, all the events with

R-value greater than 0.003 were selected as good events. The figure is extracted from [85].

than the one containing the LH2 target. Figure 3.6 shows the vertex position distribution

for LH2 run and dummy run in the same kinematic. From the knowledge of the thickness

of an Al window in dummy target (tAl
dummy), the thickness of an Al window in LH2 (tAl

LH2
),

the charge accumulated for LH2 run (QLH2), and the charge accumulated for dummy run

(Qdummy ) one can determine the contribution from the end caps for LH2 target for the given

run as:

NAl
LH2

=

 Ndummy

Qdummy × tAl
dummy

 (tAl
LH2
× QLH2

)
(3.10)

Unfortunately, we acquired dummy runs for only 4 out of 9 kinematics (48-1, 48-2, 36-

2, and 60-3). Instead of subtracting the contribution from dummy target, we selected the

events with the vertex position in the interval [-6.5 cm , 6.5 cm] for all kinematics. The

analysis by B.Karki [86] used the data from dummy target (for available kinematics) to

show that the contribution from the Al windows are negligible (below 0.1%) for the vertex

position within [-6.5 cm , 6.5 cm].
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Figure 3.6: Vertex position distribution of the events from the dummy target in blue and

LH2 in red for kinematic 48-1. The peak on either side of distribution represents the events

scattered off the end caps of the target. The difference in the number of events at the edge

is due to the difference in thickness and beam charge for the two different targets.

3.3.3 Particle identification

The combination of S2&CER in coincidence forms the DIS trigger. The momentum

threshold for e− to produce the signal in Cherenkov is 17 MeV/c but for pions is about

4.8 GeV/c [67]. Hence, Cherenkov removes most of the π− events. In Cherenkov, the

signal from single-photon peaks around 100 ADC channel, and this one photo-electron

peak represents the noise. To reject the false electrons in analysis the Cherenkov threshold

is set at 150 ADC channel, represented by the blue line in Figure 3.7 (left).
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Pions passing through the detector material ionize matter and produces secondary

electrons called δ ray. The Cherenkov threshold of 1.5 photo-electron peak is not sufficient

to remove all δ rays. Depending upon the kinematic up to 10% of the δ rays lie above the

150 ADC channel cut. To reject the δ rays, an additional cut is applied on the pion rejector

(electromagnetic calorimeter) signal. The δ rays have low energy as compared to the DIS

electrons. Based on the energy deposition on the pion rejector, δ rays can be removed

from the analysis. Figure 3.7 (right) shows some fraction of low energy δ ray passes the

Cherenkov threshold, but can be discriminated from DIS electron in the pion rejector. The

low energy peak represents δ ray, while the peak at higher energy corresponds to DIS e−

events. The threshold cut of 600 ADC channel on the pion rejector total energy is applied

for DIS event selection. An additional cut on pion rejector 1st layer at 200 ADC channel is

also applied. The combination of cuts on pion rejector and Cherenkov selects the e− with

more than 99% efficiency [74].

3.3.4 Single track cut

The tracking information (x f p, y f p, θ f p, φ f p, and x f p) is provided by a pair of Vertical

Drift Chambers (VDCs), described in section 2.3.7. As the charged particle passes through

the VDC wire planes; it ionizes the gas on its path. The ions and ejected electrons drift to

the wires producing a signal on a few adjacent wires. That group of wires forms a cluster.

The analysis by H.Rashad [87] shows that the track can be only reliably reconstructed

if one of the following condition is justified.

• All 4 wire planes have a single cluster

• Only one wire plane has multiple cluster, the other 3 wire planes have a single cluster

• At most only two wire planes have multiple clusters, the other two have a single

cluster
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Figure 3.7: Left: Total energy distribution in the Cherenkov detector. The peak at lower

energy corresponds to the single photo-electron peak (noise), while the higher energy peak

represents mostly DIS electrons. The blue line corresponds to the 150 ADC channel

threshold cut applied in analysis to select DIS electrons. Right: Total energy distribution

in the pion rejector for events passing the Cherenkov cut. The low energy δ rays pass

through the Cherenkov cut, so an additional cut on the energy deposited in the pion rejector

is applied to discriminate between DIS electrons and δ rays. The blue vertical line at 600

ADC channel represents the pion rejector energy cut.

An event satisfying one of these three conditions is termed a single-track event. In our

analysis, we require a single track cut. However, this cut sometime eliminates true DIS

events. To account this loss, the number of DIS events is corrected by tracking efficiency

(nTracking).

ηTracking =
NPID

multiTrack

NmultiTrack
(3.11)

where NmultiTrack is the number of events with more than one track i.e. events which can not

be reliably reconstructed and NPID
multiTrack are the number of multi-track events passing the

PID cut formed by Cherenkov and pion rejector. The tracking efficiency mostly depends

on beam current for a given run, but the study by H.Rashad [87] showed that variation of
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tracking efficiency from one run to another is very small. So for the given kinematic, the

mean value of of tracking efficiency is used. The tracking efficiencies for each kinematic

are given in Table 3.1.

3.4 Trigger Efficiency

The DIS trigger was formed by S2 and Cherenkov in coincidence. To determine the

efficiencies of these detectors, dedicated runs are taken.

• Cherenkov efficiency

To determine the Cherenkov efficiency, events trigger by S0&S2 in coincidence are

used. The Cherenkov lies between the scintillators S0 and S2 (see Figure 2.9).

So every good electron triggering S0&S2 should leave a signal in Cherenkov if

Cherenkov is 100% efficient. The sample of a good electron event is selected by

using the pion rejector. The Cherenkov efficiency is then given by:

ηCER =
NS 0&S 2&CER&PR

NS 0&S 2&PR
(3.12)

where NS 0&S 2&PR is the sample of good electrons firing the S0&S2 and the pion

rejector. NS 0&S 2&CER&PR is the number of events firing the Cherenkov from the same

sample of good electrons.

• S2 efficiency

To determine the S2 efficiency, the run with trigger S0 and Cherenkov in coincidence

(S0&CER) is used. The efficiency of S2 is given by the expression

ηS 2 =
NS 0&CER&S 2

NS 0&CER
(3.13)

where NS 0&CER is the number of events triggered by S0&CER and NS 0&CER&S 2 is

number of events firing S2 from the sample of events triggered by S0&CER.

The S2 and Cherenkov efficiencies for each kinematic is given in Table 3.1. Both S2 and

Cherenkov were more than 99.5% efficient throughout the period of our data taking.
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3.5 Dead Time

The Data Acquisition (DAQ) takes some time to decide whether an event is of our

interest or not and if it is a good event then additional time is required to save the event

on tape. While the DAQ processes an event, it will be dead and will not accept a new

event. This duration is termed as dead time. Due to the dead time, events of interest are

missed. The dead time can be significant correction depending on the event rates for that

kinematics. In order to minimize the dead time correction, a prescale factor is set in our

trigger system. This prescale factor allows us to save an event after every certain number

of good events. For instance, the prescale factor of 4 will save one event out of every 4

good events. Hence, prescale allows us to minimize the dead time by spending less time

writing event on tape. Even after the prescale setting, there can be a few percent corrections

(1-5%) needed due to dead time depending on the beam current. In our analysis, every run

is corrected by its corresponding dead time.

The dead time is evaluated by the scaler system. Every events accepted by the trigger

are counted even if they are not fully recorded. Counting is virtually dead time free. Events

are counted as soon as they pass the trigger giving the number Nraw. Additionally, events

that are fully recorded are also counted giving the number NLive. Then the dead time (DT)

can be computed as:

DT = 1 −
NLive

NRaw
(3.14)

The dead time and Live Time (LT) are equally used in this document, they are related as:

DT + LT = 1 (3.15)

The average value of LT for each of the kinematic is given in Table 3.1.
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3.6 Radiative Effects

The electron is a very light particle, as a result it easily loses its energy through

radiation on its way. One of the major disadvantages of using the e− beam is dealing

with the radiative loss of energy. Broadly speaking, the radiative loss can be classified into

two categories: external radiative loss and internal radiative loss.

3.6.1 External radiative loss

When an electron traverses through the medium, it will lose some of its energy through

the Bremsstrahlung process, radiating a photon. If this energy loss is not at interaction

vertex, then it is termed an external radiative loss. For instance, in our case electrons lose

energy as they pass through the Al windows of the target cell and through LH2. The amount

of energy loss follows the statistical distribution is given by [88].

I(E0,∆E, tmat) =
btmat

∆E

(
∆E
E

)btmat

(3.16)

where E0 is the energy of an electron, ∆E is energy loss, tmat is the material thickness (in

units of radiation length) traversed, and b is a constant for a given target. For the H2, b is

about 4
3 . The distribution I(E0, ∆ E, tmat) is normalized to 1, i.e.,∫ ∆E

0
I(E0,∆E, tmat) d(∆E) = 1 (3.17)

If the energy loss for an individual event is computed as in Equation 3.18 then energy

loss follows the distribution described by Equation 3.16.

∆E = E0 r
1

btmat (3.18)

where r is uniformly generated in an interval [0,1]. The external radiative loss is handled

by the GEANT4 toolkit in the Monte-Carlo, on an event by event basis. The energy loss

is computed within the peaking approximation that is the photon emitted is in the same

direction as the initial electron.
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Figure 3.8: Illustration of the internal radiative correction (first-order) for DVCS process.

3.6.2 Internal radiative loss

Unlike in external radiative loss, in internal radiative loss, photons are emitted at

interaction vertex. The emitted photons can be either real or virtual. The internal radiative

loss is prominent in a leptonic part as compared to the proton side in the electron-proton

scattering. All the radiative loss on the proton is ignored and this is good first order

approximation as a proton is heavy. As the radiative effects only for the electron but not

for a hadron (proton/pion) is considered, so corrections will be the same for DIS, DVMP,

or DVCS process. Figure 3.8 shows the first-order internal radiative effects for the DVCS

process. At first order there, are three radiative processes:

• The vertex correction [see Figure 3.8(a)]: a virtual photon is emitted by the incoming

electron before the main scattering and is reabsorbed after the main scattering.

• The vacuum polarization [see Figure 3.8(b)]: a virtual photon splits into an electron-

positron pair, which later recombines into a virtual photon.

• The internal Bremsstrahlung [see two right diagrams in Figure 3.8(c)]: a real photon

is emitted either by an incoming or outgoing electron.



98

The connection between the experimentally measured cross-section (σexp) and the Born

cross-section (σBorn) can be written as [89]:

σexp = σBorn ×

 eδBrem+δver

(1 − δvac)2

 (3.19)

where δvac, δBrem, and δver are the correction for vacuum polarization, Bremsstrahlung

contribution, and vertex correction respectively.

δvac =
α

3π

ln Q2

m2
e

 − 5
3

 (3.20)

δver =
α

π

3
2

ln
Q2

m2
e

 − 2 +
π2

6
−

1
2

ln2

 Q2

me2
e

 (3.21)

δBrem =
α

π

Sp
(
cos

θe

2

)
−
π2

3
+

1
2

ln2

Q2

m2
e

 − 1
2

ln2
(

E0

E′

) +
a
π

ln
 (∆E)2

E0E′

 ln Q2

m2
e

 − 1


(3.22)

with α the QED fine structure constant, E’ is scattered electron energy and Sp is the

Spence’s function defined as:

Sp(z) = −

∫ z

0

ln(1 − t)dt
t

(3.23)

Equation 3.22 can be separated into two independent parts: one dependent on energy loss

and another independent on ∆E such that:

e−δBrem ∼ e−δBrem,0 ×

(
∆E
E0

)δBrem,1

×

(
∆E
E′

)δBrem,1

(3.24)

where the terms δBrem,0 and δBrem,1 are given by:

δBrem,0 =
α

π

Sp
(
cos

θe

2

)
−
π2

3
+

1
2

ln2

Q2

m2
e

 − 1
2

ln2
(

E0

E′

) (3.25)

δBrem,1 =
a
π

ln Q2

m2
e

 − 1

 (3.26)

The energy losses
(

∆E
E0

)δbrem,1
and

(
∆E
E′

)δbrem,1
follows the statistical distribution as described

in Equation 3.19, with the radiator of thickness δBrem,1. To reproduce the energy loss by
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internal Bremsstrahlung, this loss is computed in the Monte-Carlo simulation for every

event, in a similar way as an external radiative loss given by Equation 3.18. But the internal

Bremsstrahlung is computed twice for every event: one for incoming and other for outgoing

electron.

The correction related to emission and re-absorption of electron-positron pairs from

virtual photons within a loop (see Figure 3.8(b)) is given by the expression:

ηvirt =
eδBrem,0+δver

(1 − δvac)2 (3.27)

The term ηvirt mostly depends on Q2 and hence is computed theoretically using

Equation 3.27 for every kinematics. The values of ηvirt used for different kinematics are

given in Table 3.1.

3.7 Monte-Carlo Simulation

After scattering at vertex, but before being detected in the spectrometer, the e− travels a

few centimeter in dense material. Therefore the scattered electron might lose energy before

being detected. Similarly, the incident beam also loses some energy before scattering due

to the radiative loss. As a consequence, events that are detected within the spectrometer

acceptance might have the energy and angle at vertex far from the HRS acceptance (see

Figure 3.9). Similarly, events with vertex kinematics within the HRS acceptance end up

not being detected by the HRS. Unlike in data, the vertex variables can be accessed in

Monte-Carlo simulation. In order to compute the phase space factor ΓDIS and the term α

(see Equation 3.32) the simulation is used.

The major steps in Monte-Carlo simulation are: generate the DIS event, account for

radiative losses, and test if the measured events are in spectrometer acceptance. First,

the vertex position is generated within the target length (15 cm). This vertex position

determines the distance traversed by the beam in the target. Knowing the distance traverse,

the external radiative loss is computed both in the Al window and the LH2 target. The
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Figure 3.9: The distribution of variables, Q2 and xB at vertex for the events detected in

spectrometer. The dense portion represents the HRS acceptance for which the incident and

scattered electron energies are not significantly modified by radiative effects. Due to the

radiative loss, the event can migrate either in or out from the HRS acceptance.

kinematic variables (xB, Q2) are generated uniformly in a window larger than the nominal

spectrometer acceptance window.

xB ε [0, 1] (3.28)

Q2 ε [0, 3 × Q2
Nominal] (3.29)

where “Nominal” stands for the central value of the given kinematic setting. The energy

and angles of the scattered electron are deduced using the energy of the beam, xB, and

Q2. Later internal radiative losses are computed to both incoming and scattered electron as

described in section 3.6.2. All the major steps in Monte-Carlo simulation for generating

the DIS event are shown in Figure 3.10. Once the scattered e− reaches the spectrometer,

the vertex position is smeared to take the spectrometer resolution effect.
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Figure 3.10: Schematic representation of the steps involved in Monte-Carlo simulation for

generating DIS events. The red star represents the vertex. The internal radiative correction

before and after the vertex is represented by magenta color photon. The external radiation

are represented by the green photons. The Ei represent the e− energy after the radiative

loss.

The DIS phase space is computed as:

ΓDIS =

Naccept

Ngen

 ΓMC (3.30)

where ΓMC = ∆xB × ∆Q2 × ∆φ, Ngen is the total number of generated events. Naccept is

the total number of events passing through the set of analysis cuts, same as the DIS event

selection.
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3.8 Parametrization of DIS Structure Functions

For the data normalization study, the extracted DIS cross-section from E12-06-114

experiment is compared with the existing world’s data. The DIS cross-section can be

computed using Equation 1.9, if the structure functions:F1 (xB, Q2) and F2 (xB, Q2)

are known at a given kinematics. These structure functions can be extracted from

experimentally measured observables. To evaluate F1 (xB, Q2) and F2 (xB, Q2) at our

kinematic points, we opted to use the parameterization suggested by E.Christy et al. [90].

The main reasons to choose this parameterization of structure functions are:

• The longitudinal (L) to transverse (T) cross-section ratio, i.e., R= (σL
σT

), is extracted

by fitting the L/T separated cross-section data rather than using the educated guess

for the value of R as in Ref. [91].

• The data set used for fitting is a precision data set, covering a wide kinematic range

very close to our kinematics.

The value R is related to the structure function F1 and F2 as:

R =
σL

σT
=

( F2

2xBF1

) 1 +
4M2x2

B

Q2


 − 1 (3.31)

The structure function F1 is the purely transverse response, so it can be computed after

knowing σT , while F2 (transverse + longitudinal) can be computed using Equation 3.31

once R is extracted.

3.9 Variation of Cross-Section within a Bin

To extract the experimental cross-section, the number of DIS events in a particular

kinematic bin was selected. Due to our choice of single large bin in xB and Q2, the cross-

section changes within the bin. This makes it difficult to compare our extracted cross-

section with a theoretical one, defined at a nominal kinematic point. The experimentally
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extracted correction is corrected by the term α to compare with the theoretical cross-section

from the world’s data at given xB and Q2.

α(xB,Q2) =

 1(
d2σ

dxB dQ2

)
Nominal

 × 1
Naccept

×
∑

i

 d2σ

dxB dQ2


i

(3.32)

where
(

d2σ
dxBdQ2

)
i
, and

(
d2σ

dxBdQ2

)
Nominal

are the cross-section (using E. Christy and P. Bosted

parametrization) for ith event and at the nominal value, respectively. The nominal value

of kinematic is the point where we want to compare experimental and theoretical cross-

section. Table 3.1 shows the value α used in DIS cross-section analysis for different

kinematics.

3.10 Result

We extracted the DIS cross-section for all nine kinematics for experiment E12-06-

114. In this section, the stability of extracted cross-section within a kinematic and overall

normalization by comparing with world data will be discussed.

3.10.1 Trigger interference

The data for the experiment E12-16-114 were taken in three different run periods: the

Fall 2014 (36-1), the Spring 2016 ((48-1, 48-2, 48-3, and 48-4), and the Fall 2016 (36-2,

36-3, 60-1, 60-3). In addition to the DVCS and DIS triggers, an additional S0&CER trigger

was also present during the Spring 2016 kinematics. In the Fall 2016, only the DVCS and

DIS trigger were present. Through our DIS cross-section analysis, we found that there

was interference between DIS and S0&CER triggers. Some of the electrons triggered by

S0&CER arrived too late to be registered by DIS trigger despite being a DIS event [92]

and [93]. The events with low momentum (relative to peak value) can potentially miss

the DIS trigger whenever the S0&CER was triggered due to delay in time. Depending
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on the prescale setting on the S0&CER trigger, we missed up to 15 % DIS events. To

compensate for the missed DIS events, a correction was applied to raw DIS events. For

the correction, a sample of events triggered by S0&CER only (exclusive), but passing the

same cuts used to select the DIS events were added to DIS events. Figure 3.11 shows the

correction introduced from exclusive S0&CER events reduced the disagreement in DIS

cross-section between the runs with and without the S0&CER from 15% to 3%. This

correction equally holds for the rest of the kinematics where there was interference between

DIS and S0&CER trigger.

The extracted differential cross-section was stable within 1% over the runs for the

kinematics without the S0&CER trigger (Fall 2016). But for the Fall 2014 and the Spring

2016 data set, stability is within 3%. The typical stability plot for kinematic without

S0&CER trigger is shown in Figure 3.12, and kinematic with S0&CER trigger is shown

in Figure 3.11 by the blue triangles. This stability test helps us to select the good runs

and to understand the uniformity in our data while taking data in different experimental

configurations within the same kinematics. The runs that were 3σ away from the root

mean square of the cross-section distribution of each kinematic were excluded for DVCS

or π0 analysis.

3.10.2 Comparison with world data

The cross-section is extracted using 3 different simulations for the systematic study.

The result from each simulations are compared with the model or theoretical cross-section

from [90]. Here are the main features of the 3 different simulations:

• Simulation A:

This is a GEANT4 simulation used by E12-06-114 collaboration for the DVCS

and π0 cross-section analysis. The same simulation was modified for DIS event

generation. While transporting the particles from the vertex to the detectors all
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Figure 3.11: The effect of including the missing events in DIS cross-section analysis for

kinematic 48-1. The red triangles represent the cross-sections without correcting the DIS

events with missing events from S0&CER trigger. The cross-section for runs around 12520

(without S0&CER trigger) is about 15% higher than the rest runs with S0&CER trigger.

The blue triangles represent the cross-sections for the same set of runs after correcting the

DIS events. The agreement between the runs with and without the S0&CER trigger is

below 3%. The dashed red line is the theoretical cross-section for this kinematic.

material in between the scattering chamber and the spectrometer entrance window

is considered. However this simulation does not consider the magnetic field

effect inside the spectrometer. The radiative corrections are done as described in

section 3.6.
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Figure 3.12: Experimentally extracted DIS cross-section for all runs within the same

kinematics. The shaded region corresponds to the root mean square of the distribution.

Left: For kinematic 60-3, the extracted cross-section is stable within 0.5%, expect few

outliers which are excluded in π0 analysis.

• Simulation B:

It is a standard Hall C DIS event generator commonly called SIMC [83]. The main

feature of this simulation is, it contains the full description of the spectrometer

including the transport of the scattered particle through the magnetic filed and

detection in the focal plane of the detector. The internal radiative correction are

implemented differently compared to a simulation A (for more details see document
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by E.Christy [94]). The SIMC is limited for some kinematics due to the absence of

the magnetic field map due to the detuned setting for the quadrupole Q1.

• Simulation C:

This simulation is more close to simulation A, the only difference is that it does not

use the GEANT4 tool-kit to compute the energy loss by the incoming or scattered

electron [95].

Table 3.2 shows the ratio of theoretical or model cross-section σM to extracted DIS cross-

section9 (σD) for 9 different kinematics using 3 different simulations (A, B, C). The 4th

and 5th columns of Table 3.2 are the results extracted by me while the 6th column is taken

from [95]. Comparing results in Table 3.2 along one line is an indication of systematic

error rising from the solid angle estimation. We estimated this variation to be 2%. On

average, the measured cross-sections are 4% smaller than the world data with the total

systematic uncertainty (dispersion) of 4%. The different sources of experimental systematic

uncertainty are given in Table 3.3. The total uncertainty for electron detection is 3.5%. The

uncertainty in HRS acceptance is computed by studying the DIS cross-section variation

with the different values of R-cut [85]. The DIS model used to extract the cross-section (E.

Christy and P. Bosted parametrization) at our kinematics interpolates the existing data. The

uncertainty associated with the interpolation is 2% [90]. With additional 2% uncertainty

from DIS model results total systematic uncertainties to 4% which is equivalent to the

dispersion of the measured cross-section compared to expected cross-section (RMS of the

last column of Table 3.2).

After our rigorous analysis, we concluded that 4% below the reference cross-section is

due to the inefficiency of our DIS trigger. We strongly believe that this inefficiency does not

affect the DVCS/π0 analysis. As for the DVCS/π0 event selection, the trigger information

is not used in the same way as in the DIS event selection. The dead time for DVCS trigger
9 For simplicity it is represented with σ but its actually differential cross-section
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Table 3.2: Comparison of model and extracted DIS cross-section results for 9 different

kinematics of the experiment E12-06-114. For the systematic study, three different

simulations were used to compute the solid angle. In average the extracted cross-section

is 4% below the model cross-section from world data with a systematic uncertainty of 4%.

The third column represents the quadrupole Q1 status for different run periods. Only for

the kinematics 36-1 and 48-1 the Q1 was fully functional (Unsat.). For the Spring 2016, Q1

was not in tune (detuned) with rest magnets. But the optics calibration data were taken. For

the Fall 2016, a different quadrupole was used from SOS. The Q1 saturation was saturated

between 1-7 % in different kinematics.

Kinematic Run Period Q1 status
(
σM
σD

)
A

(
σM
σD

)
B

(
σM
σD

)
C

Average

36-1 Fall 2014 Unsat. 0.95 0.97 0.99 0.97

36-2 Fall 2016 SOS (1%) 1.04 1.06 1.06 1.05

36-3 Fall 2014 SOS (7%) 1.04 1.07 1.06 1.06

48-1 Spring 2016 Unsat. 1.03 1.06 1.00 1.03

48-2 Spring 2016 detuned. 1.06 – 1.06 1.06

48-3 Spring 2016 detuned. 1.06 – 1.09 1.07

48-4 Spring 2016 detuned. 1.09 – 1.09 1.09

60-1 Fall ’16 SOS (4%) 1.01 1.06 1.06 1.04

60-3 Fall ’16 SOS (1%) 0.98 1.02 1.03 1.01

Average 1.03 ± 0.04 1.04 ± 0.04 1.05 ± 0.03 1.04 ± 0.04

is different than that for DIS but systematic on them is about the same. The radiative

correction is only applied for the leptonic part, but not on proton which is a good first order

approximation; as proton is relatively heavier so less radiative loses. The total systematic

from electron side (3.5%) is taken into account for DVCS/π0 analysis.
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Table 3.3: Sources of experimental systematic errors for DIS cross-section. Total

uncertainty in electron detection is 3.5%. The reference DIS cross-section from E. Christy

and P. Bosted [90] has 2% systematic uncertainty resulting total DIS systematic to 4%.

Systematic errors value (%)

Luminosity and dead time 1.6

Radiative correction 2.0

HRS acceptance (R-cut) 1.0

HRS multi-track correction 0.5

HRS electron identification 0.5

Solid angle (multiple simulations) 2

Quadratic total 3.5

Model cross-section 2

Quadratic total (DIS) 4
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4 Data analysis and monte-carlo simulation

The procedure for detecting the electron using the spectrometer is described in the

previous chapter. This chapter will briefly explain the procedure to extract the photon

information from the raw calorimeter signals. Each of the calorimeter blocks is equipped

with an Analog Ring Sampler (ARS) as described in section 2.6. The calorimeter analysis

is done in two steps: first, the ARS waveforms are analyzed to extract the amplitude and

arrival time of the signal of each block. This process is called waveform analysis. The

second step of the calorimeter analysis is to take the information from multiple adjacent

blocks to reconstitute the total energy of the photons. Because the Molière radius of PbF2 is

comparable to the transverse size of the block, a photon entering the center of a given block

leaves its energy to eight adjacent blocks. The process of reconstructing the photon’s energy

from the signals of many blocks is called clustering. The clustering gives the position and

energy information of an incident photon.

4.1 Waveform Analysis

The waveform analysis algorithm assumes that the shape of the signal in each block of

the calorimeter is independent of the amplitude [77]. Depending on the energy deposited

in the block, signals from a given PMT are related to each other by a scaling factor. Thus,

the ARS pulses can be fitted with reference shapes by adjusting their amplitudes and arrival

time to match the raw data. The reference shapes are the average ARS pulses of each block.

The reference shapes of each PMT are determined using elastic calibration data

acquired at low current (5 µA) that is configuration where pile-up events are rare. As the

reference shapes are critical for the waveform analysis, they were extracted and updated

frequently (5 times) during the run period of this experiment. The study by M. Dlamini [76]

has shown that there is no significant change in reference shapes between the two years of
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data taking except for a few blocks. In this section, I will briefly describe the waveform

analysis procedure.

4.1.1 Baseline fit

The first part of waveform analysis is to check if photon signal is measured by the

calorimeter block. Indeed if an electron is detected by the HRS and a photon is detected

in the calorimeter, signal from all the blocks of the calorimeter is written to tape. For this

purpose, the ARS signal is fitted with the noise, baseline (b), to minimize the functional:

χ2 =

imax∑
imin

(xi − b)2 (4.1)

The minimization yields χ2 and the best value of b as:

b =
1

imax − imin

imax∑
imin

(xi) (4.2)

where xi is the ARS signal in bin i, i is the bin number of the ARS signal.

Instead of analyzing the entire 128 ns ARS window, the analysis iss limited between

the interval, imax - imin = 80 ns. The ARS signals close to 0 and 128 ns do not contain

any useful information, so reducing the time interval makes the analysis more efficient and

reduces noise. The χ2 obtained after minimization is then compared with the set global

threshold, χ2
0 (see Section 4.1.4). If χ2 is smaller than χ2

0, then the algorithm decides there

is no real signal, and the event is ignored. Figure 4.1 shows a case with no signal where the

baseline fit is sufficient to fit the ARS signal.

4.1.2 Single pulse fit

Once the baseline fit confirms that there is a potential photon signal, then the ARS raw

signal is fitted with a single pulse. This is done by minimizing the χ2:

χ2(t1, a1, b) =

imax∑
imin

(
xi − a1hi−t1 − b

)2
(4.3)
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Figure 4.1: Illustration of baseline fit during the waveform analysis. The ARS raw signal

in black is fitted with a baseline in red. This represents a case with no signal.

where hi is the reference shape, t1 is the arrival time, a1 is amplitude, and b represents

the baseline. The one pulse fit yields a1, b, t1 and χ2 values that minimizes Equation 4.3.

Again like in the previous step, the evaluated χ2 is compared to a preset global value, χ2
1

(see Section 4.1.4). If χ2 is smaller than χ2
1, then single pulse fitting is regarded as accurate.

Otherwise, the two pulses fitting is invoked. Figure 4.2 shows a waveform analysis with a

single pulse.

4.1.3 Two pulse fit

If one pulse fit is not adequate to reproduce the signal (χ2 > χ2
1), then the raw signal is

fitted with two pulses. The idea is to minimize Equation 4.4 to best estimate the values of
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Figure 4.2: An example of waveform analysis with a single pulse fit. The ARS raw signal

in black is fitted with a single pulse in red.

t1, t2, a1, a2, and b.

χ2(t1, t2, a1, a2, b) =

imax∑
imin

(
xi − a1hi−t1 − a2hi−t2 − b

)2
(4.4)

The two pulse fit can not discriminate between the two signals if they are separated by less

than 4 ns. The pile-up events for our kinematics are very small (below 5%), so the two-

pulse fit is sufficient; there is no requirement for a three-pulse fit [81]. Figure 4.4 shows

how the ARS can be useful to disentangle pile-up events.

4.1.4 Global thresholds

The values of χ2
0 and χ2

1 are determined by studying the variation of different variables

with respect to χ2
0 and χ2

1. Figure 4.4 shows an example of such a study for the energy

resolution of calorimeter at different values of χ2
0. A similar analysis of other variables: W2
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Figure 4.3: An illustration of the two pulse fit of the ARS signal. ARS allows the separation

of the two signals if they are more than four ns apart. This would not be possible only with

the ADC.

with elastic data, π0 invariant mass etc. showed a plateau below the threshold followed by a

steep rise above that threshold. The combined analysis of these variables is used to infer χ2
0

and χ2
1 threshold. For the simplicity values of χ2

0 and χ2
1 are converted from ADC channel

to MeV using the calorimeter energy calibration coefficients. The optimized values for χ2
0

and χ2
1 are 60 MeV and 300 MeV, respectively [81].

4.2 Calorimeter Calibration

The amplitude of a signal from the waveform analysis is in some ARS channel

units. Its relationship to the amount of energy deposited in the block depends on multiple

efficiency factors like the critical transmission, property of the block, the amplification

of the PMT (depending on high voltage), etc. Through the calorimeter calibration, the

coefficients corresponding to the individual blocks are determined. In practice, the ARS
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Figure 4.4: Variation of the calorimeter energy resolution as the function of χ2
0. Below the

80 MeV, the resolution is stable, and above 80 MeV, it starts to degrade. The conservative

value of 60 MeV was chosen as χ2
0 threshold after a similar analysis using other variables.

The figure was taken from [81].

signal amplitude is related to the energy through an overall calibration coefficient. The

coefficients from calibration also help to tune the High Voltage (HV) of the PMTs such

that for the same energy deposition, every block across the calorimeter produces the same

raw ARS response. This allows us to implement a global energy threshold cut to remove

the noise instead of having a block specific threshold. We adopted two different ways for

calorimeter calibration.

4.2.1 Elastic calibration

The elastic calibration is performed with the electron-proton elastic scattering data.

The elastically scattered electron is detected in the calorimeter and proton on the
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spectrometer. The elastic kinematic is used to determine the energy of the jth scattered

electron (E j). If A j
i is the amplitude of a jth event in the ith block of calorimeter, then

energy deposited in calorimeter can be written as:

E j =

208∑
i=0

CiA
j
i (4.5)

where Ci’s are the unknown calorimeter coefficients that relate raw ARS signal to energy.

This can be done by minimizing the given function for each value of Ci.

χ2 =

Nevents∑
j=0

E j −

208∑
i=0

CiA
j
i

 (4.6)

The calorimeter blocks suffer radiation damage after long continuous use. As a

consequence, the relationship between energy deposited in the block and the resulting

ARS amplitude changes with time, and the calibration coefficients needs to be adjusted.

In order to account for the radiation damage, several elastic calibrations were performed

(5 times) during the DVCS3 run period. Through the elastic calibration the energy and

angular resolution of the calorimeter was determined. The study by M. Dlamini [76] found

a 3% energy resolution for the electrons of average energy 7.0 GeV. The same study showed

angular resolution, both vertical and horizontal, to be about 2 mrad when the calorimeter

was placed 6 m away from the target.

4.2.2 Calibration using π0

The elastic calibration of the calorimeter is an invasive procedure and consumes about

a day of data taking. Hence, the elastic calibration cannot be frequently afforded. The

typical gap between two elastic calibrations is 20 days. In between two elastic calibrations,

the gains of the calorimeter blocks change due to the radiation exposure. To account for

the change in the gain of the calorimeter blocks, the complimentary procedure using π0

events was implemented. This method is non-invasive and relies on the detection of the

two decayed photons from π0. The calibration coefficient of each block is adjusted on a
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Figure 4.5: The reconstructed invariant mass of π0 from ep → e′p′π0 channel. The blue

curve and the red curve are before and after the π0 calibration. The mean of invariant mass

after the calibration is aligned with the expected value of 0.135 GeV, as shown by a black

line. The resolution is improved by 3%. The figure is taken from [81].

daily basis so that the invariant mass of π0 can be recovered at 0.135 GeV. Further detail

for this procedure can be found in the thesis of F. Geogres [81]. Figure 4.5 shows the

reconstructed pions invariant mass before and after π0 calibration. For most of the blocks,

the correction was not greater than 30%, but for the few blocks it was up to 300% between

two elastic calibrations (about a month) [81].

4.3 Clustering Algorithm

As the photon traverses through the PbF2 blocks of the calorimeter, it loses its energy.

If the photon strikes at center of a block, then most of its energy (about 90%) is contained

within that central block. But depending on the position of the hit on the block, the photon

energy might distributed within 9 adjacent blocks. The group of blocks recording the

signal from the same event is called a cluster. In some cases, multiple particles can hit
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the calorimeter at the same time; for instance, two decayed photons from π0. This will

give rise to multiple clusters within the calorimeter for one event. The clustering algorithm

determines the position of a photon in the calorimeter as well as its energy. For each of the

kinematic, clustering threshold is assigned well below the expected signal to discriminate

the photon signal from noise. For kinematic 60-1 and kinematic 60-3, the clustering

threshold is set at 0.8 and 1.0 GeV, respectively.

For the given spectrometer-calorimeter coincidence time window10, the clustering

algorithm first finds the impact point, where the energy deposition is maximum. Then it

computes every possible combination of 4 blocks (see red boxes in Figure 4.6, the number

inside blocks corresponds to the energy deposited by the photon). For each combination

of 4 adjacent blocks, the total deposited energy is computed. If the sum of the energies

deposited in 4 adjacent blocks is greater than the set threshold, then the cluster is saved

for further analysis. There can be a possibility that a single block may belong to multiple

groups of 4 blocks. Out of all possible 4 blocks combination, the right one is picked based

on the fact that the energy lost by a photon will be maximum in the central block, and the

energy in adjacent blocks gradually decreases. For each cluster, the total energy is given

by;

Ecluster =
∑

i

CiAi; (4.7)

where Ci and Ai are calibration coefficient and signal amplitude for the ith block,

respectively. The cellular automata algorithm [96] used in clustering can distinguish

between two clusters arriving at the same time, close to each other in distance.

The second part of the clustering algorithm is to find the position of the photon in the

calorimeter (xclust, yclust). It is calculated as a weighted sum of blocks positions xi (yclust is

10 the photon must be within ±3 ns coincidence window i.e. 3 σ of spectrometer-calorimeter time
resolution
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Figure 4.6: Illustration of the identifying the cluster to reconstruct the photon. The

large rectangles represent the same portion of the calorimeter and small rectangles are

calorimeter blocks with the amount of energy deposited in it by an event. Top: four different

combinations of 4 blocks can be made such that the energy deposited is larger than the set

threshold. But a particular block can fall into multiple groups as represented by the red-

colored portion. The clustering algorithm picks the right one based on the fact that most of

the energy is deposited at the central block and energy is photon is calculated by summing

up 9 adjacent blocks shown by the purple color. The figure is taken from [81].

determined in a similar way).

xclust =

∑
i wixi∑

i wi
, (4.8)

The weights wi are assigned as the logarithm of the relative energy deposited in each block.

wi = Max.
0,W0 + log

(
Ei

E

) (4.9)

The logarithmic weighting factor takes into account the fact that energy deposition

decreases exponentially with distance from the impact point. Near the impact point, the
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relative energy deposited is large so does the weight, and the weight is smaller the farther

from the central value. The term W0 provides an additional tuning of the relative weight.

For large W0 (W0 → ∞), despite relative energy deposited the weight becomes uniform.

But for a small W0, the block with larger relative energy gets a larger weight. Using the

Monte-Carlo simulation and elastic data, the value of W0 is estimated to be 4.3 [81].

The previous calculation of the clustered position was based on the assumption that

the shower starts at the surface of the calorimeter. But in practice, shower only starts after

the photon traverses certain distance inside the calorimeter block. Hence the correction on

the xclust is required, and given as:

xcor = xclust

1 − a√
L2 + x2

clust

 (4.10)

where L is the distance from the vertex to the calorimeter, a is the depth from the surface

of the calorimeter to the point where the shower starts. The value of a is estimated to be 7

cm using Monte-Carlo simulation and elastic data [81]. Finally, the cluster/photon arrival

time is computed as:

tcluster =

∑
i Aiti∑
i Ai

(4.11)

where Ai and ti are amplitude and arrival time of the signal in block i.

4.4 Monte-Carlo Simulation

The Monte-Carlo simulation is used to estimate the phase space or acceptance of the

spectrometer and calorimeter in coincidence. For every event, the simulation gives access

to both the vertex and the reconstructed variable simultaneously. This information is very

advantageous for the extended target. But in data, only reconstructed variables can be

accessed. The particle has to travel through the material medium to reach the detectors.

On the way to detectors, a particles may lose some of their energies due to interaction with

material. As a consequence, for any event the reconstructed kinematics variables (energy
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and angle) may be different than that at a vertex. Besides the phase-space determination,

the simulation is also used to extract the cross-section at vertex via a fitting procedure that

will be described in the next chapter.

The simulation is based on the CERN software package, GEANT4, written in

C++ [97]. The DVCS setting in the GEANT4 was implemented by R. Paremuzyan and

M. Defurne [98], and later the setup was adapted to the experiment E12-06-114 by M.

Dlamini [76]. The GEANT4 package can handle the interaction of particles with the

detector material, for instance, energy loss by electron while passing through different

materials from vertex to entrance of the spectrometer, etc. Figure 4.7 shows an exact

implementation of the experimental setting in the Monte-Carlo simulation. The scattering

chamber, different beam shields, the spectrometer entrance window, the material between

the vertex and spectrometer entrance window, and beam pipes are introduced as in HRS.

However, the transportation of particles from the HRS entrance window to the HRS

detectors is not implemented in the simulation. All the particles reaching the spectrometer

entrance window are assumed to be detected by the HRS. To deal with the spectrometer

acceptance, we use the R-Function concept discussed in Chapter 3. The calorimeter

geometry is also fully implemented in simulation. All the calorimeter blocks are placed

according to the survey position, and the full block package (screws, Tyvek paper, Tedlar,

etc.) is implemented.

4.4.1 Event generator

The event generator in the simulation generates the event of interest within the given

kinematic setting. The exclusive electroproduction of π0 (ep → e′p′π0) can be split into

two parts. First the leptonic part, describes the emission of a virtual photon and includes all

radiative losses as described in Chapter 3. The hadronic part (γ∗p → p′π0) is treated

in the second step (see dashed rectangle in Figure 4.8). Events are generated in the
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Figure 4.7: The experimental setup for the experiment the E12-06-114 implemented in

GEANT4 Monte-Carlo simulation. The cylindrical mesh of the blue lines represents the

scattering chamber maintained at very low pressure about 10−7 Torr where the target is

placed. The beamline is represented in the dark blue. A lead pipe represents the shielding

in the beam pipe, downstream to the target. The HRS entrance window and different beam

shields are also implemented in the simulation.

larger acceptance window as compared to the actual spectrometer acceptance in order to

accommodate for the radiative effects. For instance, the momentum acceptance range of

the HRS is ± 4.5% of central value, but in the simulation events are generated within ±
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6% of central value. In the same way though the horizontal acceptance is ± 28 mrad of the

central value of the HRS angles, events are generated within ± 60 mrad of central value.

First, the vertex is generated then the external radiative loss is implemented. Taking

the beam energy E1 after the external radiative loss, the Q2 is generated uniformly as:

Q2 ∈

4 × E1 × pmin × sin2
(
θmin

2

)
, 4 × E1 × pmax × sin2

(
θmax

2

) (4.12)

where max stands for maximum. To have physical π0 event, the constraint on the invariant

mass of the hadronic system is implemented i.e., W2 ≥ M2
p + mπ0 . It puts the constraint on

the maximum value of Bjorken-x as:

xlim
B =

Q2

(Mp + mπ0)2 − M2
p + Q2 (4.13)

where Mp and mπ0 are masses of proton and pion, respectively. Then xB is generated within

the limit defined by:

xmin
B = Max

 Q2

2Mp(E1 − Pmin)
, 0.05

 (4.14)

xmax
B = Max

 Q2

2Mp(E1 − Pmax)
, xlim

B

 (4.15)

The GEANT4 toolkit handles all the radiative losses while transporting the electron up

to the HRS entrance window. In the hadronic part, first the square of momentum transfer

to the recoiling proton “t” (see the definition in Chapter 1) is uniformly generated between

tmin and tmax. The value of tmax is fixed at -3 GeV2 while tmin can be computed as:

tmin = −Q2 − 2(A × B) + 2(C × D) + mπ0 (4.16)
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Figure 4.8: Schematic representation of event generation and the radiative corrections

process in simulation. The radiative correction is on the leptonic part and follows the same

procedure as described in chapter 3. The green and magenta photons are from external and

internal radiative losses, respectively. The steps inside the dashed rectangular represent the

hadronic part (γ∗p→ π0 p′).

with

A =
W2 − M2

p + m2
π0

2W
(4.17)

B =
W2 − M2

p − Q2

2W
(4.18)

C = B2 + Q2 (4.19)

D = A2 + m2
π0 (4.20)

Once t is generated, the four-momentum vectors of final state particles are computed in the

center of mass of the virtual photon-proton system. Later it is boosted to the laboratory

frame and rotated around the virtual photon by and angle φπ0 which is generated uniformly
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between the interval [0, 2π]. The photons from π0 decay are isotropically generated in π0

rest frame and later boosted to the laboratory frame. The phase space for each event can be

computed as:

Γi = (∆Q2)i × (∆xB)i × (∆t)i × (∆φπ0)i × (∆φe)i (4.21)

where the term φe is the angle made by the leptonic plane with the beam direction. The

event is generated in a single plane, and to account for the azimuthal symmetry the factor

2π is introduced, i.e., (∆φe)i = 2π. Figure 4.8 illustrates the whole π0 event generation

process.

4.5 Calibration and Smearing of Simulation

The recoiled proton in the reaction e(p, e’π0)p is selected by the missing mass squared

distribution (see Equation 2.10). The Monte-Carlo simulation allows selection of most

ep → e′p′π0 events while rejecting the events with additional particle production. In

order to use the simulation for the estimation of exclusive cut, the missing mass squared

distribution for both data and the simulation should have the same position and same

resolution. However, due to the following reasons, the missing mass distribution from

the simulation is different than data.

• In the simulation, the resolution of the PbF2 blocks of the calorimeter do not degrade

with the beam exposure time. But data are affected by the degradation of resolution

of the calorimeter, so the width of missing mass distribution of data is larger as

compared to simulation.

• Around 4% of photon energy leaks either between the blocks or at the back of

the block. The energy leak is compensated in the data by adjusting the calibration

coefficients but not in a simulation. As a consequence, the energy of a photon in

simulation is underestimated, which shifts the missing mass peak towards larger

value as compared to data.
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To perform the calibration and smearing of the simulation, the momentum and energy

of the photons are multiplied by a random variable following a Gaussian distribution, Gauss

(µ, σ), as: 

qx

qy

qz

E


→ Gauss(µ, σ) ×



qx

qy

qz

E


(4.22)

The parameter µ shifts the mean of the energy distribution of the photons, and the

energy resolution effect of calorimeter crystal is taken into account by the parameter σ. The

method for the calibration and the smearing is adapted from the M. Defurne thesis [79].

The data for each kinematics are separated by time. With time, the response of

calorimeter blocks degrades due to the radiation damage. To account for this fact, the

simulation for each kinematics needs to be smeared. The resolution of calorimeter

block differs with the position in the calorimeter. For instance, blocks close to the

beamline degrade faster than the blocks farther away from the beamline. To have

position dependent calibration coefficients, the entire calorimeter is divided into 7× 7 =

49 overlapping rectangular sections. The parameters µ and σ are computed for each of the

sections independently such that the missing mass square distribution between the data and

simulation have the best match in that particular section. Later for each event depending

on its impact position on calorimeter, µi, σi are extracted by interpolating the previously

extracted µ, σ values for different 49 sections. In addition to the missing mass cut, we also

apply the π0 invariant mass (see definition in Equation 2.11) cut to select the exclusive π0

events. This requires the agreement between the simulation and data for invariant mass

distribution. The invariant mass is mostly sensitive to the angle between two photons:

m2
π0 = m2

γ1γ2
= 2E1E2

(
1 − cos θγ1γ2

)
(4.23)
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where θγ1γ2 is the angle between two decayed photons from π0. To have the same invariant

mass distribution both on data and simulation, keeping the µ and σ constant (determined

from missing mass smearing), the angular resolution is smeared isotropically with an angle,

θ, generated following a Gaussian distribution.

Figure 4.9 shows the variation of calorimeter calibration coefficient (µ) and resolution

parameter (σ) within the surface of the calorimeter for the kinematic 60-3. The coefficient

µ varies by about 4% across the calorimeter blocks. While the energy resolution parameter

varies between 0.14 GeV to 0.21 GeV for photon of energy 5 GeV. For the smearing

of invariant mass distribution, the angular resolution (in degrees) across the calorimeter

surface is shown in Figure 4.10. The angular resolution varies between 0.04 to 0.1 degrees

within the calorimeter. The observed small variation in µ, σ, and θ across the calorimeter

position is expected due to the energy and the angular resolution of the calorimeter and

the position dependent effect of radiation damage. In other words, the blocks close to the

beamline are more susceptible to radiation damage, so they have poorer resolution.

Figure 4.11 shows the effect on missing mass squared and invariant mass distribution

before and after smearing the simulation. Before smearing the simulation (black

histogram), the mean position is different than that of data (red histogram). This is due

to energy leakage, as described previously. Along with the mean position, the widths for

both the distributions are different in simulation and data before smearing. After smearing

(blue histogram), the simulation and data have a similar distribution.

In this chapter, I have briefly explained how to extract the energy and position

information of the photons from the raw calorimeter signal. I also explained the steps

involved in the Monte-Carlo simulation and briefly described the necessity and procedure

for smearing the simulation. After smearing the same peak position and shape of the same

missing mass squared and invariant mass distribution was obtained between the simulation

and data.
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Figure 4.9: The extracted parameters µ and σ in GeV for different sections of the

calorimeter for kinematic 60-3. Left: The values of the calibration coefficient for the blocks

in a different position to have the same peak position for the missing mass and invariant

mass distribution. Right: The values of σ to change the width of missing mass squared

distribution.
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Figure 4.10: The angular resolution in degrees used to smear the invariant mass distribution

for kinematic 60-3. As expected blocks close to the beamline have (towards negative x)

poor resolution relative to the blocks away from the beamline.
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Figure 4.11: Smearing effects on the missing mass squared and invariant mass distribution

from simulation. Left: The missing mass squared distribution. Right: Invariant mass

distribution. The black histogram represents the simulation before smearing, the blue

histogram represents simulation after smearing, and the red histogram is for the data for

comparison. After smearing, data and simulation have the same mean position and the

resolution.
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5 Exclusive π0 production and cross-section results

The main goal of my dissertation is to extract the cross-section for the exclusive π0

production (ep→ e′p′π0). To measure the cross-section for exclusive processes all the final

state particles (recoiled proton, scattered electron, and pion) are identified. The procedure

for selecting the scattered electron is same as the one described in Chapter 3. The recoiled

proton is reconstructed using the missing mass square distribution (see Equation 2.10). In

the first part of this chapter, I will focus on the selection criteria for π0. In the second part,

I will describe the cross-section extraction formalism and finally present my results and

conclusions. I analyzed the kinematics with two different values of Q2 equal to 5.54 GeV2

and 8.40 GeV2 at fixed Bjorken-x (xB=0.60).

5.1 Accidental Subtraction

Exclusive π0 electroproduction is a three-body final state, but only the scattered

electron and π0 are detected. Neutral pions decay before they arrive at our detector. So the

π0 events are reconstructed from decayed photons information. As discussed earlier, for

the overall exclusivity of the reaction, we select the recoil proton from the missing mass

squared distribution. One of our main sources of background is accidental events. Two

photons detected in the calorimeter in coincidence with an electron in the spectrometer

may not always come from the same reaction. To exclude the accidental events from our

analysis, we perform a side band random time coincidence estimation. Figure 5.1 shows

the arrival time of each of the two photons with respect to the electron. The rectangular

section R5 represents two photons γ1 and γ2, arriving within ±3 ns (coincidence window)

relative to an electron in the spectrometer. However, these events may still be contaminated

with accidental events. The number of events in section R5 can be

R5 = Nccc + Nacc + Ncca + Ncac + Naaa (5.1)



131

10− 5− 0 5 10 (ns)
1

γt

10−

5−

0

5

10 (n
s)

2γt

0

10

20

30

40

50

60

70

80

90

1R

2R

3R 4R

5R

Figure 5.1: Arrival time of each of the two photons in the calorimeter with respect to the

electron in the spectrometer. The start time 0 corresponds to the detection of an electron in

the spectrometer. The diagonally aligned events represent two photons in coincidence.

where the N is the number of events. The subscript “a” and “c” represent accidental

and coincidence, respectively. The three subscripts are listed in order for the electron,

first photon (γ1), and the second photon (γ2) to describe if they are accidental or true

coincidence. For instance, Nacc means the number of events with two photons in

coincidence with each other but in random coincidence with the electron.
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In the same way, the other sections of Figure 5.1 can be defined as:

R1 = Naaa (5.2)

R2 = Ncca + Naaa (5.3)

R3 = Nacc + Naaa (5.4)

R4 = Ncac + Naaa (5.5)

The total number of accidental event is given by:

NACC = Nacc + Ncca + Ncac + Naaa (5.6)

The accidental rates are uniform with time; based on this fact, we can estimate the number

of accidental events by performing the clustering (as described in section 4.3) in several

time windows. Table 5.1 shows the different clustering windows, sensitiveness of each

window to a different kind of accidentals (Ncca, Ncac, etc. ), and corresponding visual

representation in Figure 5.1.

Table 5.1: Different calorimeter clustering time windows to estimate the accidental events.

The different clustering time windows are sensitive to different types of accidental and can

be visually represented in the arrival time distribution of photons by different sections.

Clustering window Accidental Section Description

[-3, 3] Nccc + NACC R5 |tγ1 | <= 3 and |tγ2 | <=3

[-11, -5] Nacc + Naaa R3 |tγ1 + 8| <= 3 and |tγ2 + 8| <=3

[-11, -5] and [-3, 3] Ncca + Ncac + Naaa R4 |tγ1 + 8| <= 3 and |tγ2 | <=3

[-3, 3] and [-11, -5] Ncca + Ncac + Naaa R2 |tγ1 | <= 3 and |tγ2 + 8| <=3

[5, 11] and [-11, -5] Naaa R1 |tγ1 − 8| <= 3 and |tγ2 + 8| <=3
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The suitable combination of these clustering windows as given by Equation 5.7 can

reproduce the same total number of accidentals that are required to be eliminated from

main coincidence window, [-3, 3].

NACC = R3 +

(
R2 + R4

2

)
− R1 (5.7)

5.2 π0 Selection

The lifetime of π0 is very short (about 10−17s), so it decays into two photons (about

99% of cases) before reaching the calorimeter. π0 events are reconstructed from the energy

and momentum information of the decayed photons detected in the calorimeter. The two

photons produce two clusters in coincidence in the calorimeter. However, two clusters in

the calorimeter may not always represent a π0 event. In some cases, either one or both

the clusters may be from low energy photons (background). In order to remove the low

energy photons from the signal, we apply an minimum energy threshold cut (see Table 5.4

for value). The choice of energy threshold cut introduces systematic in the π0 analysis and

will be discussed in a later section.

After we identify the two photons in the calorimeter, along with an electron in the

spectrometer, we apply the pion invariant mass and p(e,e’π0)X missing mass cuts to select

the exclusive events from the channel our interest (ep → e′p′γ1γ2). The π0 invariant

mass distribution and missing mass distributions are correlated because any imperfection

in measuring the energies of photons will effect both of the distributions. Because of

this correlation, we can not apply a simple geometrical exclusivity cut. To remove this

correlation, an empirical approach suggested by M. Malek [99] is adopted. The corrected

missing mass squared distribution is given as:

M2
X = M2

X |raw + Corr ·
(
mγ1γ2 − mπ0

)
(5.8)

where M2
X |raw and M2

X are the missing mass square before and after removal of the

correlation, respectively. mγ1γ2 is the measured invariant mass in the experiment while
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Figure 5.2: The invariant mass vs. the missing mass squared distribution before and after

the correction for the kinematic 60-1. Left: Before correcting the correlation effect. Right:

After the removal of correlation.

mπ0 is ideal the invariant mass for π0, and its value is set at 0.13497 GeV from Particle Data

Group [75]. The correction is applied on an event by event basis. The correction factor

(Corr) is defined as:

Corr =
2

mπ0

(
m2
π0 − 2

√
2
(
ν + Mp − q cos θπγ∗

) E1E2

E1 + E2

)
(5.9)

where ν is the energy of a virtual photon, θπγ∗ is the angle between virtual photon and π0, and

q is the magnitude of 3-momentum of the virtual photon. E1, E2 are the energies of photons

decayed from the π0. Though the correction factor (Corr) was evaluated for each event, the

mean value was used in Equation 5.8 for the correction. The correction factor is determined

for each kinematics independently. The correction factors for kinematic 60-1 and 60-3 were

-13.7 GeV and -17.64 GeV, respectively. Figure 5.2 shows the effect of that correction.

The red rectangular box in Figure 5.2 (right) shows the simple geometric cut used to select

the exclusive events. The choices of exclusive cuts were based on the comparison of the

missing mass squared distributions between data and simulation. For instance, Figure 5.3

illustrates that the choice of the exclusivity cuts by comparing simulation and data. The
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Figure 5.3: Left: Comparison of the missing mass squared distribution between data (red)

and simulation (blue). Random coincidences are removed before applying exclusivity cuts.

The black histogram shows the difference between simulation and data. The blue line and

red line represent the lower and upper bound between which simulation can well describe

the data. Right: The invariant mass distribution for data (red) and simulation (blue). The

magenta lines on either side of the peak represent the upper and lower bounds for the

invariant mass cuts. These three sets of invariant mass extrema were used for the systematic

study.

extrema of the exclusive cuts for kinematics 60-1 and 60-3 are given in Table 5.2. The

systematic effect on the extracted cross-section due to the different choice of exclusive cuts

is studied and will be explained later.

A photon striking at the edge of the calorimeter may not lose all of its energy in

the calorimeter; as a consequence, the reconstructed energy-momentum information is not

precise. In order to avoid photons incident on the edge of the calorimeter, a calorimeter

acceptance cut is implemented. The calorimeter acceptance cut is a rectangular cut, which

eliminates events striking on the most external layer of the calorimeter (one block deep).
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Table 5.2: Position of the exclusivity cuts selecting exclusive π0 events.

Kinematic M2
x (GeV2) Mγ1γ2 (GeV)

60-1 [0.3, 1.08] [0.10, 0.16]

60-3 [0.5, 1.08] [0.10, 0.16]

5.3 Correction for Branching Ratio of π0 → γγ

A π0 decays into two photons (π0 → γγ) with a branching ratio 98.82% [75]. The

number of detected pion are corrected by branching ratio as:

Ncorrected =
Nraw

BR
(5.10)

where BR is the branching ratio. Nraw and Ncorrected are the number of detected π0 events.

5.4 Correction from 3 Clusters

As discussed in Section 4.3 to select exclusive π0, only the events with two clusters in

the calorimeter are selected. But sometimes there can be 3 clusters in the calorimeter, two

clusters from decayed photons from π0 and one accidental photon. Due to our selection

criteria we can miss the possible exclusive π0 event if there are 3 clusters in the calorimeter.

The correction from 3 clusters is implemented in our final number of events selected as:

Ncorr = N × 3ClusCorr (5.11)

where N and Ncorr are the total number of exclusive π0 events before and after implying the

correction from 3 clusters. The correction from 3 clusters (3ClusCorr) is given by,

3ClusCorr =
N3Clus

N2Clus
(5.12)

where N2Clus is the total number of exclusive π0 events with the total number of clusters

equal to 2 during clustering (see Section 4.3). N3Clus is the total number of exclusive π0
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events with 3 clusters in the calorimeter. Out of those 3 photons (γ1, γ2, and γ3) all the

possible π0 events are reconstructed (γ12, γ13, γ23). The accidental events for 3 clusters are

subtracted in the same way as 2 clusters analysis (see Section 5.1). Table 5.3 shows the

correction from 3 clusters.

Table 5.3: The correction factors from 3 clusters. The cases where two or more

combinations of photons forming the π0 are neglected. The precision of the correction

factor is our inability to identify the exclusive π0 event while multiple combinations of

photons are possible.

Kinematic Correction (%)

60-1 3.9 ± 0.1

60-3 3.6 ± 0.1

5.5 Cross-Section Extraction Formalism

The π0 electroproduction cross-section is parametrized by Equation 1.28. The

experimental cross-section is extracted by minimizing the difference between the number

of events in the data and the number of events predicted by simulation in each kinematic

bin. This procedure has two main advantages:

• It can take care of bin migration from the vertex kinematic to measured kinematic,

caused by resolution and radiative effects.

• It integrates the kinematics dependencies of the cross-section over the entire

experimental acceptance range.

Based on the reconstructed variables, the π0 events are binned in 5 different tmin − t bins

(see Equation 4.16) and 12 φ bins (see Figure 1.10 for φ definition). These bins are called
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reconstructed bins. The Monte-Carlo simulation contains both the vertex and reconstructed

variables information. So these events are binned in both reconstructed and vertex bins. If

there would be no radiative and resolution effects, then the same number of events would

be in both the reconstructed and vertex bins. The number of event reconstructed in a bin r

is the sum of events generated in any of the vertex bins, weighted by the probability (Krv)

of the vertex events to migrate in that reconstructed bin that is,

Nr =

V∑
v=1

KrvNv (5.13)

where Nr is the total number of events in a specific reconstructed bin r and Nv is the total

number of events in a specific vertex bin ν. V is the number of vertex bins. Now the

cross-section is related to the number of events at the vertex as:

Nv = L

∫
φv

d4σv

dΦ
dΦ (5.14)

where dΦ=dQ2 dxB dt dφπ is a four-fold phase space factor. Now using Equation 5.14,

Equation 5.13 can be re-written as:

Nr = L

V∑
v=1

Krv

∫
φr

v

d4σv

dΦ
dΦ (5.15)

where φr
v corresponds to the sub-volume of vertex phase space contributing to Nr.

Assuming the cross-section to be stable in the phase space φr
v, Equation 5.15 can be re-

written as:

Nr =

V∑
v=1

Krv

L∫
φr

v

dΦ

 d4σv

dΦ
(5.16)

Now the integration of the Equation 5.16 yields:

Krv =
∑
iεr∩v

Γi
MC

Ngen
, (5.17)
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Figure 5.4: The bin migration probability matrix with kinematic dependence terms for

unseparated cross-section term for kinematic 60-1. The horizontal axis represents the five

tmin − t (t’) bins measured at the interaction point (vertex). The Y-axis represents five

reconstructed t’ bins. Each t’ bin is divided into 12 φ bins. The diagonal boxes represent

the events where both the vertex and reconstructed kinematics fall in the same t’ bin. The

off-diagonal boxes represent the cases with bin migration.

where i is an event in reconstructed bin r and vertex bin v, Ngen is the number of generated

events in simulation, Γi
MC is the phase space factor for an event i. Using the simulation,

the bin migration probability can be computed. Figure 5.4 shows the bin migration

probability matrix for unseparated cross-section term along with kinematic dependence

term. Depending on kinematic and bin, the bin migration is up to 10% [100].
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5.5.1 Fitting procedure

Let Xn be the different cross-section parameters then the cross-section for π0

production can be re-written from Equation 1.28 as:

d4σ

dQ2dxBdtdφπ
=

N∑
n=1

Γn(E,Q2, xB, t, φ)Xn, (5.18)

where Γn(E, Q2, xB, t, φ) is a known function, which depends only on kinematic variables

(see Equation 1.28). N represents the total number of cross-section parameters. For

unpolarized cross-section there are total 3 parameters to be extracted: σT + εσL, σTT),

and σTL. The helicity dependent or polarized cross-section term σTL′ in the total cross-

section (see Equation 1.28) is extracted by measuring the difference of cross-sections with

opposite beam helicity, as:
1
2

(
d−→σ − d←−σ

)
= dσT L′ (5.19)

Using Equation 5.18 in Equation 5.15 the number of events in a reconstructed bin can

be connected with cross-section parameters as:

Nr =

V∑
v=1

N∑
n=1

Kn
rvXn

v (5.20)

Now with the assumption that these cross-section parameters do not vary within a

experimental bin, the bin migration probability can be defined as follows:

Kn
rv =

∑
iεr∩v

Γn(E,Q2, xB, φ)
Γi

MC

Ngen
, (5.21)

To extract the cross-section parameters the total number of events in data and Monte-Carlo

is minimized as:

χ2 =

R∑
r=1

Nexp
r − NMC

r

σ
exp
r

2

(5.22)

whereR is the total number of φ bins, σexp
r is the error associated with the experimental

bin r. The number of events generated in Monte-Carlo is about an order of magnitude
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larger than in data so the error associated with Monte-Carlo is neglected. NMC
r and Nexp

r

are the number of events in the reconstructed bin r in Monte-Carlo and data, respectively.

Equation 5.20 connects NMC
r to the cross-section parameters. For the case of polarized

cross-section extraction, the Nexp
r is given by

Nexp
r = N+ − N− (5.23)

where N+ is the number of events with positive helicity state and N− is the number of events

with negative helicity state.

Let X
n

be the values of Xn which minimize the χ2 in Equation 5.22 i.e,

0 = −
1
2
∂χ2

∂Xn

∣∣∣∣∣∣
X

n
(5.24)

0 =

V∑
v′=1

N∑
n′=1

An,n′
v,v′X

n′

v′ − Bn
v ∀v, n (5.25)

Equation 5.25 is the matrix equation in the form, AX=B. The matrix A has a dimension

(N ×V) × (N ×V) and the matrix B with (N ×V) × 1. The matrix elements for A and B

can be defined as:

An,n′
v,v′ =

R∑
r=1

L2 Kn
rv × Kn′

rv′

(σexp
r )2

Bn
v =

R∑
r=1

L
Kn

rv × Nexp
r

(σexp
r )2

(5.26)

where the term L is the integrated luminosity given by Equation 3.2. The linear system

of equations represented by Equation 5.25 is solved to extract the cross-section parameters

(X
n
), by inverting the matrix A:

X
n

=

V∑
v′=1

N∑
n′=1

[A−1]n,n′
v,v′ · B

n′
v′ (5.27)

where A−1 is the inverse matrix. The cross-section parameters that give the minimum value

of χ2 in Equation 5.22 are extracted. The error on each cross-section parameter (σ2
n) is
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Figure 5.5: The number of events in the typical experimental bin of kinematic 60-3. The

black points are data with statistical error bar and the red bars represent the Monte-Carlo

prediction. The cross-section parameters that minimize the difference between the number

of events in data and Monte-Carlo are extracted.

given by

σ2
n = [A−1]nn (5.28)

In order to check the extraction procedure, one can reconstruct the the number of simulation

counts in each tmin -t bin by computing,

NMC = L
∑
v,n

Kn
rvẊn

v (5.29)

Figure 5.5 illustrates the best agreement between the prediction by the simulation and

the data for a specific bin. Appendix B shows a similar comparison for all the bins in both

kinematics 60-1 and 60-3.
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5.6 Systematic Errors

Our choices of the cuts to select the exclusive π0 events introduces a systematic error

in the cross-section analysis. I studied the different sources of systematic errors for both

kinematics 60-1 and 60-3. While studying the DIS cross-section, a 3.5% of systemic

uncertainty from electron selection was found. The sources of the 3.5% uncertainty in

inclusive electron measurements were from: radiative correction, spectrometer acceptance,

luminosity, electron identification, and spectrometer multi-track corrections. This error

needs to be taken in to account in π0 cross-section analysis. This 3.5% systematic

associated with inclusive electron measurement (DIS) will be taken as the global effect,

that is, the same effect will be considered for all kinematical points. Along with the error

associated with an electron selection and luminosity, there is also an error associated with

the photon selection. For instance the choice of exclusivity cut, photon energy cut, and

clustering threshold cut to select the good π0 candidates might have a systematic effect on

the extracted cross-sections.

5.6.1 Exclusivity cuts

To evaluate the systematic effect of exclusivity cuts, the fluctuation of the cross-section

parameters with different cut positions is studied. In this section, the procedure adapted for

this analysis is described.

• Missing mass cut higher extremum:

The extrema of the invariant mass distribution is fixed at “2” (see Figure 5.3). In

addition, the lower end of the missing mass squared distribution is also fixed as

shown by the blue line in Figure 5.3 (left). Then the cross-section parameters are

extracted at the different higher extrema of the missing mass squared cut, below the

threshold (the extremum up to where the simulation and data are in agreement). The

red points in Figure 5.6 denote the unseparated cross-section parameter at different
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values of higher extremum of missing mass squared cut for kinematics 60-1 (top)

and 60-3 (bottom).

• Missing mass cut lower extremum:

The upper bound of missing mass squared distribution and invariant mass cuts are

fixed. Then the cross-section is extracted at different values of lower extrema of

missing mass squared cut. The extracted unseparated cross-section parameter is

shown with blue points in Figure 5.6 for kinematics 60-1 (top) and 60-3 (bottom).

• Invariant mass cuts:

The extrema of missing mass squared cut is fixed. Then the cross-section terms are

extracted at different invariant mass cut positions “1”, “2”, and “3” (see Figure 5.3).

The extracted unseparated cross-section parameter is shown with magenta points in

Figure 5.6 for kinematics 60-1 (top) and 60-3 (bottom).

The unseparated cross-section parameter σT + εσL is stable within 0.5% for different

choices of the exclusivity cuts for both kinematics 60-1 and 60-3 (see Figure 5.6). The

other cross-section terms like σTL, σTT, and σTL′ are insensitive to the choices of different

exclusivity cuts presented here due to the large statistical error.

5.6.2 Energy threshold

In order to eliminate the low energy photon background, only the reconstructed

photons above certain threshold are selected. Our choice of minimum energy cut is the

other source of systematic error. Figure 5.7 shows the variation in the cross-section

parameter σT + εσL in one of the tmin-t bin, with different choices of photon energy cut

for kinematic 60-1 (top) and 60-3 (bottom). For kinematic 60-3, the cross-section is

independent of the choice of energy cut. For kinematic 60-1, the small tmin-t bins show

a variation up to 4% with the different choices of photon energy cuts. The other cross-
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Figure 5.6: The cross-section parameter σT + εσL normalized to a value at 1.08 GeV2 (A)

at different exclusivity cuts for kinematic 60-1 (top) and 60-3 (bottom). The red points

represent the different higher extrema of missing mass squared cuts, keeping the other

fixed. The magenta points represent the variation with the different invariant mass cut. The

blue points represent the variation of cross-section term with the lower end of missing mass

squared cut, keeping other cuts fixed.
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section parameters are insensitive to the energy cut due to larger statistical error associated

with these parameters.

5.6.3 Clustering threshold

When a photon hits on the calorimeter it deposits its energy in multiple blocks. The

blocks producing a signal from the photon form a cluster. In order to discriminate the

noise from a real signal, we require the cluster to be above a certain energy threshold.

This energy threshold implemented during the clustering process is called the clustering

threshold. The values of the software cut on photon’s energies, clustering thresholds, and

expected π0 energies are shown in Table 5.4 for the kinematics I analyzed.

Table 5.4: Clustering and software thresholds with expected π0 energies for the kinematics

60-1 and 60-3. Both the photons are required to have the energy greater than the threshold

to qualify as good π0 events.

Kinematic Clustering Threshold (GeV) Expected π0 energy (GeV) Software threshold (GeV)

60-1 0.8 4.92 1.1

60-3 1.0 7.46 1.1

To quantify the systematic due to the clustering threshold, the variation in the extracted

cross-section with different clustering thresholds is studied. The unseparated cross-

section term for kinematic 60-3 is fairly independent on clustering thresholds (see bottom

Figure 5.8). But for kinematic 60-1, especially at small tmin-t bin the choices of threshold

cut introduces the systematic up to 4% (see top Figure 5.8 ). The other cross-section terms

are insensitive to the different choices of the clustering threshold due to the large statistical

error associated with them. The total systematic errors are given in Table 5.5. The error

due to photon energy or clustering threshold cut are different for each tmin-t bin. They are

not reported in Table 5.5 but considered in the final cross-section results.
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Figure 5.7: The variation in the cross-section parameter σT + εσL with different choices of

the energy cut imposed in selection of photons from π0 decay for kinematic 601 (top) and

60-3 (bottom). The y-axis represents the unseparated cross-section parameter relative to a

mean value. The extracted cross-section should be constant regardless our choice of energy

threshold. But for kinematic 60-1, the choice of energy threshold introduces systematic up

to 4% depending on bin.
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Figure 5.8: The variation in the cross-section parameter σT + εσL with different choices of

the clustering threshold cut, while selecting the photons cluster from π0 decay for kinematic

60-1 (top) and 60-3 (bottom). The result is only shown for one of the tmin-t bins in each

kinematics, but all other bins show a similar trend.



149

Table 5.5: Systematic errors for exclusive π0 cross-section. The DIS study error

includes the systematic from radiative correction, electron identification, and spectrometer

acceptance.

Systematic Value (%)

Exclusivity Cuts 0.5

DIS study 3.5

Clustering threshold 0.5

Photon Energy cut 0.5

Total Quadratic (helicity-independent) 3.6

Beam polarization 1

Total Quadratic (helicity-dependent) 3.75

5.7 Result and Discussion

Having taken data with only one beam energy for each xB and Q2, we can not separate

the cross-section termsσT andσL. Instead, the unseparated termσU =σT+εσL is extracted

(see Equation 1.28). Therefore in the unpolarized case, only three cross-section parameters

are extracted. For the polarized case (absolute beam spin asymmetry), one cross-section

parameter σTL′ is extracted. The unseparated term σU = σT +εσL is shown in Figure 5.9 for

kinematic 60-1 (top) and 60-3 (bottom). The red points are the results of this experiment,

while the blue line is the prediction from the Goloskokov and Kroll (GK) transversity

model [40]. The cyan band represents the systematic uncertainty. The values for all cross-

section parameters at different kinematic bins can be found in Table B.1, Appendix B.

Before comparing our results directly with the Goloskokov and Kroll model, one

should keep in mind that the model calculations are totally based on the data at low xB
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(0.36) and low t (about 0.3 GeV2) due to the limitation on the availability of data at large t

and xB. However, our results at high xB of 0.60 and high t about 1 GeV2 will be very useful

to improve the model [101]. With this fact in mind, we can now discuss some findings of

our results.

The systematic disagreement in σU (see Figure 5.9), between our data and

the Goloskokov and Kroll model, which assumes the negligible contribution from

longitudinally polarized photons, hints that σL might be underestimated in this model.

From the perspective of GPDs, this can be important in the sense that factorization is

only proven from longitudinally polarized virtual photons, and if σL has a significant

contribution to the total cross-section, it still opens the possibility to extract the GPDs

with a regular factorization scheme. The other source of this disagreement in σU could be

from the Goloskokov and Kroll model under predicting the contribution from σT. In the

latter case, σT would still dominate the cross-section like it was observed at smaller Q2

(see Figure 1.13). In that case, the transversity GPDs can be extracted but has to rely on

the model-dependent factorization scheme either suggested by Goloskokov and Kroll or by

Goldstein, Hernandez and Luiti.

The extracted result for cross-section parameter σTL (see Figure 5.10) is more

exciting. Our result is consistent in sign with the previous π0 result from Hall A [37]

(see Figure 1.13), at the low xB (0.36) and Q2 (about 2 GeV2). Our results are significantly

different from the Goloskokov and Kroll model prediction, both in sign and magnitude.

This can be interpreted as a hint that the Goloskokov and Kroll model is under predicting

the contribution from σL.

The Goloskokov and Kroll model is able to predict the cross-section parameter σTT

(see Figure 5.11) fairly well in our kinematics. It suggest that in the kinematic regime we

explored, σT has a sizable contribution in exclusive π0 production. This can be a strong
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Figure 5.9: The extracted unseparated cross-section parameters for kinematic 60-1 (top)

and 60-3 (bottom). The red points are the results of this experiment with their statistical

error bar. The cyan band represents the systematic uncertainty. The blue dotted line is the

prediction from the Goloskokov and Kroll (GK) model. The GK model predicts an almost

negligible contribution from the longitudinally polarized virtual photons.

motivation to further improve the existing models that can factorize the contribution of the

transversely polarized virtual photon in handbag formalism.
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The measured absolute beam spin asymmetry is small with large statistical error bars

for both kinematics 60-1 and 60-3 (see Figure 5.12 top and bottom respectively). We can

not infer much besides giving fairly wide limits on the asymmetry values.

5.8 Conclusion

Generalized Parton Distributions can improve our understanding of the quark and

gluon structure of the nucleon. In the future, it can potentially give access to the orbital

angular momentum of the quarks. This information can be crucial to understand the spin

structure of the nucleon.

GPDs can be accessed through exclusive channels like DVCS and DVMP. This

document was focused on exclusive π0 production (ep→ e′p′π0). We took data between

2014 -2016 in experimental Hall A, Jefferson Lab. Our data covered a wide range of

kinematics. We scanned three different Bjorken-x at valence regime (xB= 0.36, 0.48, and

0.60). For each of xB setting, we covered at least two different Q2 settings. The Q2 range

of our data was roughly 2 to 9 GeV2. However, I analyzed only two different kinematics

settings [Q2 = 5.54 GeV2 , xB=0.60] and [Q2 = 8.40 GeV2 , xB=0.60]. These are the first

results at such a high xB and Q2. Our overall precision on absolute cross-section is about

5%.

Next, I will pose my research question and discuss how my result can justify it. In the

end, I will discuss what is the future of these types of studies.

• Does the QCD factorization prediction (σL >> σT) hold at large Q2?

The factorization is valid for only longitudinally polarized virtual photons at

sufficiently high Q2. The QCD factorization predicts the dominance of σL over σT.

As long as this prediction holds, the GPDs can be extracted from deep exclusive π0

production. However, the previous π0 results, limited to small Q2 and xB, had a strong

disagreement with the QCD factorization prediction. One of our goals is to extend
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Figure 5.10: The extracted interference term σTL in the unpolarized cross-section for

kinematic 60-1 (top) and 60-3 (bottom). The experimentally extracted cross-section

parameter is opposite in sign as compared to the Goloskokov and Kroll model prediction.

the data to higher Q2 and xB to test if the factorization prediction is observed at higher

Q2. The extracted cross-section term σTT is relatively large. This might be a strong
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Figure 5.11: The extracted interference term σTT in the unpolarized cross-section for

kinematic 60-1 (top) and 60-3 (bottom). The experimentally extracted cross-section

parameter is in fair agreement with the Goloskokov and Kroll model prediction.
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Our results consist of large statistical error bar.
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hint that even up to Q2 of 8.5 GeV2 there is a sizable contribution from transversely

polarized virtual photons. O the other hand, the significant difference between the

Goloskokov and Kroll model and the data for the cross-section term σTL suggests,

there can be larger contributions from longitudinally polarized virtual photons than

the model predicts. In the end, it can be concluded that the contribution from both the

longitudinally and transversely polarized virtual photons are significant. Integrating

all the results from exclusive π0 production ranging from Q2 1.5 to about 9 GeV2 at

different xB (0.36, 0.48, and 0.6), we can not find a kinematic regime where the QCD

factorization prediction holds i.e, σL >> σT.

• How good are current existing models for transversity GPDs?

The transversity GPDs models are so far the only way to extract the GPDs from

the existing data with dominance of transversely polarized virtual photons in the

exclusive meson production cross-section. These models have an effective way

to factorize the contribution from transverse photons and explains the sizable

contribution of σT [40] [39]. Out of two existing models, I could only compare my

result with the model from Goloskokov and Kroll. The calculation from another

model, Goldstein, Hernandez and Luiti, is still in work. Both of these models

were fair enough to explain the data at low Q2. The comparison between the

Goloskokov and Kroll model prediction and our results is encouraging, given the

fact that Goloskokov and Kroll prediction was based on the available data at small xB

and small t but our data are at large xB and t. This result provides a strong motivation

to further improve the transversity GPDs models. Our data can be very important in

improving the existing transversity GPDs model [101].

• Can we extract GPDs through exclusive π0 production?
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In order to connect the experimental measured cross-section for exclusive processes

with GPDs, the factorization is essential. In our kinematic regime, neither the regular

QCD factorization is applicable nor can we solely rely on transversity GPD models

that can factorize the observed dominance of transversely polarized virtual photons.

GPDs can not be reliably extracted from our exclusive π0 production data.

To make a significant improvement in data interpretation, the future experiments

should aim to measure the L/T separated cross-section terms. These measurements

can lead to two possible outcomes. First, σL maybe sufficiently large so that GPDs

can be extracted from the exclusive π0 production channel using the regular QCD

factorization. Second, if σL is not large enough or σT is sufficiently large, then

we have to rely on the factorization scheme as suggested by transversity models

to factorize the contribution from transversely polarized virtual photons. But for

the latter scenario first the observed cross-section data should be explained by the

models, only then we can move forward to extract the GPDs.

Recently a proposal for a new experiment in Hall C, Jefferson Lab has been

accepted [59] to measure L/T separated cross-section parameters σL and σT in π0. The

proposed Electron-Ion Collider facility posses a unique potential to explore the nucleon

structure through GPDs and can explain the role of gluons and sea quarks. In the theoretical

front, some work is needed to improve the existing transversity GPDs model.

In this document, I showed my analysis for the kinematic with Bjorken-x (xB=0.60),

but the other kinematics (xB=0.36 and xB=0.48) were analyzed by other member from the

DVCS collaborations (M. Dlamini, S. Ali, Po-Ju Lin, and Ho-San). The same experiment

also measured the DVCS cross-section. Other members from DVCS collaboration (F.

Georges, A. Johnson, and H. Rashad) were involved in DVCS cross-section analysis. The

results for DVCS cross-sections can be found in F. Georges’s thesis [81].
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Appendix A: Addendum to DVCS cross-section

A.1 The Bethe-Heitler term

Here are the definition of the terms used in Equation 1.20

P1(φ) = −
J + 2Kcos(φ)

y(1 + ε2)
,

P2(φ) = 1 +
t

Q2 +
J + 2Kcos(φ)

y(1 + ε2)
,

J =

(
1 − y −

yε2

2

)(
1 +

t
Q2

)
− (1 − xB)(2 − y)

t
Q2 ,

K2 = −
∆2

Q2 (1 − xB)
(
1 − y −

y2ε2

4

)(
1 −

∆2
min

∆2

)(√
1 + ε2 +

4xB(1 − xB) + ε2∆2 − ∆2
min

4(1 − xB)

)
,

−∆2
min ≈

M2x2
B

1 − xB + xBM2/Q2

(A.1)

A.2 The DVCS term

The DVCS squared term can be expanded using Harmonic coefficients: cDVCS
n and

sDVCS
n . These Harmonic coefficients are connected with the CFFs as described in following

equations.

| TDVCS |
2=

e6

y2Q2

cDVCS
0 +

2∑
n=1

cDVCS
n cos(nφ) + cDVCS

n sin(nφ)


 (A.2)

Before starting the connection I will describe some terms:

tmin = −Q2
2 (1 − xB)

(
1 −
√

1 + ε2
)

+ ε2

4xB((1 − xB) + ε2 (A.3)

tmax = Q2
2 (1 − xB)

(
1 +
√

1 + ε2
)

+ ε2

4xB((1 − xB) + ε2 (A.4)

K̃ =

√
(1 − xB)xB +

ε2

4

√
(tmin − t)(t − tmax)

Q2 (A.5)

Let F be the general notation for twist-2 CFFs such that F ∈ [ H , E, H̃ , Ẽ ] and the

term Fab a and b represent the helicity of initial and final photon.
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F++ = F + O

(
1

Q2

)
(A.6)

F′+ =

√
2K̃

√
1 + ε2Q

(
2 − xB + xBt

Q2

)F e f f + O

(
1

Q2

)
+ O(αs) (A.7)

F−+ =
K̃2

2M2
(
2 − xB + xBt

Q2

)F T + O

(
1

Q2

)
(A.8)

with FT is the twist-2 gluon transversity CFFs and F e f f , the effective twist-3 CFFs such

that:

F e f f = −2ξ
(

1
1 + ξ

F + F twist−3
+ − F twist−3

−

)
+ O

(
1

Q2

)
+ O

(
αs

Q2

)
(A.9)

F twist−3
+ and F twist−3

− are twist-3 CFFs.

The harmonic coefficients cDVCS
n and sDVCS

n are defined as:

cDVCS
0 = 2

2 − 2y + y2 + ε2

2 y2

1 + ε2

CDVCS (F++,F
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++|F−+,F

∗
−+)+8

1 − y − ε2

4 y2

1 + ε2

CDVCS (F′+,F ∗′+)

(A.10)
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cDVCS
2 = 8
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sDVCS
2 = 0;

where λ = ±1 corresponds to beam helicity and CDVCS (F++,F
∗
++|F−+,F

∗
−+) and

CDVCS (F′+|F ∗++,F
∗
−+ are incoherent sum of transverse helicity-flip and non-flip CFFs.

CDVCS (F++,F
∗
++|F−+,F

∗
−+) = CDVCS (F++,F

∗
++ + CDVCS (F−+,F

∗
−+) (A.13)
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CDVCS (F′+|F ∗++,F
∗
−+) = CDVCS (F′+,F ∗++ + CDVCS (F′+,F ∗−+) (A.14)

Now the bi-linear combination of CFFs CDVCS (F ,F ) is given as:

CDVCS (F ,F ∗) =
4(1 − xB)(1 + xBt
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∗
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Appendix B: Exclusive π0production cross-section analysis

As discussed in chapter 4, cross-section terms for exclusive π0 production are extracted

by minimizing the χ2 from the Equation 5.22. Data are divided into 5 different tmin − t bins

and for each tmin− t bin there are 12 different φ, angle between leptonic and hadronic plane,

bins. In this section, I will show the result from the minimization for each tmin − t bin as

the function of φ in degree. The left panel is comparison between the number of events

from data, the black points, and simulation, the red bars. The right panel is the extracted

total cross-section, the blue points, as the function of φ in degree, the red line is fit to the

extracted cross-section. The value of reduced χ2 are fairly good ranging between 0.8 -2.83.
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Table B.1: The experimental extracted cross-section terms for 60-1 and 60-3. For

unseparated parameter both statistical (first) and systematic (second) errors are quoted.

But for other cross-section parameters statistically error is quoted as it is larger relative to

systematic error.

〈tmin − t〉

(GeV2)

d(σT+εσL)
dt

(nb GeV−2)

dσTL
dt

(nb GeV−2)

dσTT
dt

(nb GeV−2)

dσTL′

dt

(nb GeV−2)

Kinematic 60-1

0.084 108.53 ± 0.75 ± 5.53 -6.71 ± 0.78 -8.43 ± 2.42 -1.19 ± 1.48

0.250 100.37 ± 0.87 ± 5.11 -9.78 ± 0.89 -19.29 ± 2.15 -1.12 ± 1.33

0.422 88.02 ± 1.13 ± 4.48 -12.91 ± 1.23 -23.23 ± 2.62 0.68 ± 1.36

0.630 83.81 ± 1.67 ± 4.27 -10.39 ± 1.82 -8.85 ± 3.57 -0.19 ± 1.38

0.885 66.94 ± 2.72 ± 3.41 -19.67 ± 2.75 -17.26 ± 5.79 2.01 ± 1.88

Kinematic 60-3

0.084 30.24 ± 0.30 ± 1.54 -1.64 ± 0.38 -3.67 ± 1.25 0.41 ± 0.54

0.25 25.34 ± 0.33 ± 1.29 -2.90 ± 0.42 -4.83 ± 1.07 0.71 ± 0.47

0.42 22.71 ± 0.46 ± 1.16 -2.94 ± 0.60 -3.93 ± 1.37 1.62 ± 0.49

0.63 18.88 ± 0.66 ± 0.96 -2.85 ± 0.86 -6.14 ± 1.86 1.56 ± 0.50

0.89 14.27 ± 1.31 ± 0.73 -4.49 ± 1.52 -4.67 ± 3.63 -0.16 ± 0.70
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Figure B.2: For 2nd tmin − t bin at 0.2500 GeV2
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Figure B.3: For 3rd tmin − t bin at 0.4215 GeV2
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Figure B.4: For 4th tmin − t bin at 0.6300 GeV2
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Figure B.5: For 5th tmin − t bin at 0.8850 GeV2
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Now I will present the fitting result for Kinematic 603. For kinematic 603, the obtained

χ2 is fairly good.
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Figure B.6: For 1st tmin − t bin at 0.0750 GeV2

0 50 100 150 200 250 300 350
 (deg.)φ

0

200

400

600

800

1000

1200

N
um

be
r o

f e
ve

nt
s

/ndf = 2.752χ,2-t = 0.2250 GeVmin t

0 50 100 150 200 250 300 350
 (deg.)φ

0

5

10

15

20

25

30

)2
 (n

b/
G

eV
dtσd

2 - t = 0.225000 GeV
min

=0.60, t
B

, x2 = 8.38 GeV2 = 10.59 GeV, QBE

Figure B.7: For 2nd tmin − t bin at 0.2250 GeV2



172

0 50 100 150 200 250 300 350
 (deg.)φ

0

200

400

600

800

1000

1200
N

um
be

r o
f e

ve
nt

s
/ndf = 1.672χ,2-t = 0.4000 GeVmin t

0 50 100 150 200 250 300 350
 (deg.)φ

0

5

10

15

20

25

)2
 (n

b/
G

eV
dtσd

2 - t = 0.400000 GeV
min

=0.60, t
B

, x2 = 8.38 GeV2 = 10.59 GeV, QBE

Figure B.8: For 3rd tmin − t bin at 0.4000 GeV2
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Figure B.9: For 4th tmin − t bin at 0.5750 GeV2
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Figure B.10: For 5th tmin − t bin at 0.8500 GeV2
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Appendix C: Reprint permission and licenses

1. Figure 1.4, DOI:10.1103/PhysRevD.93.114017, License date: 11-Nov-2019, License

Number: RNP/19/NoV/020234

2. Figure 1.10, DOI:10.1103/PhysRevD.70.117504, License date: 11-Nov-2019,

License Number: RNP/19/NoV/020233

3. Figure 1.11, Elsevier/Nuclear Phys B Proceedings, License date: 16-Feb-2020,

License Number: 4771001027278

4. Figure 1.12, Nature/Springer Nature, License date: 16-Feb-2020, License Number:

4771011123945

5. Figure 1.13, DOI:10.1103/PhysRevLett.117.262001, License date: 20-Nov-2019,

License Number: RNP/19/NoV/020480

6. Figure 1.14, Springer Nature, Journal of High Energy Physics, License date: 21-

Nov-2019, License Number: 4713711116442

7. Figure 1.15, DOI:10.1103/PhysRevC.95.035202, License date: 21-Nov-2019,

License Number: RNP/19/NoV/020514

8. Figures 2.4, 3.1, Elsevier, Nuclear Instruments and Methods in Physics Research

Section A, License date: 11-Dec-2019, License Number: 4726090892423

Figure 1.4
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Figure C.1: Permission to re-use the the Figure 1.2 which contains the Sach Form Factors
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Appendix D: BCM calibration coefficients

While experiment E12-06-114 was running I was the responsible for the BCM

calibration. As stated in Chapter 2 the BCM calibration is two step process: the Unser

calibration and BCM calibration. The Unser calibration coefficients during the different run

period of the experiment E12-06-114 is reported in Table D.1. During the run period, Fall

2016 BCM, was calibrated two different times. The BCM calibration runs were 14252 and

14545. The combined analysis of these two BCM calibration runs was performed to extract

the gains and offsets of each BCM receiver. Table D.2 shows the gains and coefficient for

Fall 2016 run period.

Table D.1: Unser calibration coefficients for different run periods. In the Spring of 2016

and Fall of 2014 run periods, a part of Unser output was used for commissioning purpose

of the upcoming experiment and rest part was sent to the electronic readout. But during

Fall of 2016, the total output from Unser was sent to electronic readout. Due to this reason

the gain of the Unser changed about 10% from Spring of 2016 to Fall of 2016.

Gain (10−6 µA/Hz) Offset (µA)

Fall 2014

2755 ± 7.25 0.17 ± 0.11

Spring 2016

2753 ± 6.1 0.15 ± 0.12

Fall 2016

2505 ± 4.59 0.16 ± 0.10

In case of Fall 2014, Hall A had only analog BCM receivers. The Fall 2014 run period

was very small about 15 day, so BCM was only calibrated once. The BCM calibration run
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Table D.2: The BCM calibration coefficients for six different receivers for Fall 2016 run

period. The coefficients were extracted with combined analysis of two BCM calibration

runs 14252 and 14545.

BCM Gain (10−6 µA/Hz) Offset (µA)

U1 384.84 ± 1.86 1.10 ± 0.11

D1 328.77 ± 1.59 0.62 ± 0.11

D3 97.05 ± 0.32 0.19 ± 0.06

D10 33.72 ± 0.22 0.3 ± 0.08

Dnew 224.23 ± 0.74 0.1 ± 0.06

Unew 255.50 ± 0.85 0.05 ± 0.06

for Fall 2014 is 10505. Table D.3 gives the gains and offsets for different BCM receivers

during Fall 2014.

Table D.3: The BCM calibration coefficients for four different BCM receivers for Fall 2014

run period. The coefficients was extracted with BCM calibration run 10505.

BCM Gain (10−6 µA/Hz) Offset (µA)

U1 515.9 ± 9.99 0.56 ± 0.29

D1 454.53 ± 8.8 0.55 ± 0.22

D3 127.4 ± 1.6 0.39 ± 0.17

D10 45.65 ± 0.57 0.31 ± 0.17

For Spring 2016, the BCM was calibrated 4 different times. The gains of analog

receivers were fairly stable so combined analysis using 4 BCM calibration runs: 12514,
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Table D.4: The gain of the digital receivers were not stable, in order to use digital receiver

the gains and offsets corresponding the specific calibration run should be used.

Run period BCM calibration run used

12508-13015 12514 and 12916

13100-113261 13220

13279-13418 13447

12916, 13220, and 13447 was done. But in case of digital receiver, the gain were not stable

so in order to use the digital receiver one need to use run specific calibration coefficients.

Table D.4 gives the run interval and corresponding calibration run to be used for gain and

offsets of digital receivers. The gain and offset of BCM receivers for Spring 2016 run

period is given in Table D.5.
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Table D.5: The BCM calibration coefficients for six different receivers for Spring 2016

run period. The coefficients were extracted with combined analysis of 4 different BCM

calibration runs 12514, 12916, 13220, and 13447. However, digital BCMs were not stable,

so global calibration would not be appropriate.

BCM Gain (10−6 µA/Hz) Offset (µA )

U1 351.17 ± 0.72 0.75 ± 0.06

D1 319.28 ± 0.65 0.41 ± 0.06

D3 93.09 ± 0.18 0.30 ± 0.05

D10 32.14 ± 0.18 0.19 ± 0.06

Digital receivers, calibration runs 12514 & 12916

Dnew 172.15 ± 0.66 0.19 ± 0.06

Unew 199.25 ± 0.76 0.20 ± 0.06

Digital receivers, calibration run 13220

Dnew 249.95 ± 1.41 0.10 ± 0.12

Unew 295.64 ± 1.66 0.20 ± 0.12

Digital receivers, calibration run 13447

Dnew 42.94 ± 0.25 0.04 ± 0.12

Unew 50.05 ± 0.29 0.05 ± 0.12
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