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Experiment E12-10-103 (MARATHON) was conducted in the Hall A Facility of

JLab in the winter/spring of 2018 during the initial phase of the 12 GeV energy

upgrade of the Lab. One goal of the experiment was the first measurement of the EMC

effect of 3H. Four sealed gas targets were used during the experiment, 1H, 2H, 3H, and

3He. All measurements were in the deep inelastic scattering kinematical regime with

large Q2 and W 2, which are the four-momentum transfer squared and invariant mass

squared of the final hadronic state in the inelastic scattering interaction, respectively.

The range of Q2 and W 2 were 3 < Q2 <12 (GeV/c)2 and 3.2 < W 2 < 12.3 GeV/c2,

respectively. The measurements spanned a wide range of the Bjorken variable x,

between 0.19 and 0.83, where x = Q2/2M(E−E ′) is the momentum fraction carried

by the struck quark in the interaction, with M being the nucleon mass. Knowledge

of the EMC effect of light nuclei, such as 3H, will provide an opportunity to better

understand the origin of the EMC effect.
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CHAPTER 1

Electron Scattering

1.1 Introduction

Nuclear physics is the study of the fundamental structure that comprises the nu-

cleus. The origins of nuclear physics can be traced back to the discovery by Ernest

Rutherford that atoms contained a localized positive charge which was not evenly

distributed throughout the volume of the atom as predicted by J. J. Thomson. The

discovery was made by detecting scattered alpha particles off a gold foil target and,

surprisingly, detecting several of them at large angles. This can be viewed as the

catalyst from which a series of important discoveries have been made. Over time,

the boundary was pushed as experiments probed deeper, providing further clues to

the nature of the nucleus. Lepton scattering by nuclei has played a pivotal role in

the elucidation of nuclear structure. The fundamental point-like nature of leptons

makes them well suited for probing the more complicated structure of nucleons. Such

experiments have helped to explain a broad range of nuclear structure, across a wide

range of energy scales. From mapping out nucleon-nucleon interactions to discovering

the underlying fundamental nucleon structure based on quarks and gluons; they have

contributed to providing a more complete picture of the nucleon.
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1.1.1 Overview

Charged lepton scattering is the best method to learn about the internal struc-

ture and dynamics of nuclei and the nucleons that comprise them. It is especially

well suited due to the point-like nature of leptons such as electrons and muons. The

interaction between an electron and a nucleus is well understood in terms of Quantum

Electrodynamics (QED). The strength of the electron’s coupling to the electromag-

netic field is expressed by the fine structure constant:

α =
e2

4πε0
' 1

137
, (1.1)

where ~ = c = 1, e is the elementary charge, and ε0 is the permittivity of free space.

The relative weakness of the coupling constant allows for a perturbation expansion

to be made in α. Working in the lowest order expansion in α corresponds to the ex-

change of a single virtual photon γ∗ which mediates the electron-nucleus interaction

in QED. This approximation allows for detailed investigations of nuclear structure.

Experimental electron scattering can be divided into 3 regions: elastic, quasi-elastic,

and inelastic scattering. A brief overview of the three types of electron scattering will

be presented before focusing the remainder of the chapter on Deep Inelastic Scatter-

ing (DIS).
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1.1.2 Electron Scattering

Electron Scattering processes can be described in terms of the following Lorentz

invariant quantities defined as:

ν =
pq

M
= E − E ′ (1.2)

Q2 = −q2 = 4EE ′sin2

(
θ

2

)
(1.3)

W 2 = (q + p)2 , (1.4)

where ν is the energy transfer of the electron, Q2 is the square of the four-momentum

transfer of the virtual photon, W 2 is the square of the invariant mass of the final

hadronic state, E and E ′ are the electron’s initial and final energy respectively, M

is the mass of the proton, θ is the angle at which the electron is scattered in the

laboratory frame, and p is the four-momentum of the proton. Electron scattering

can be broadly separated into distinct regions which can be used to describe specific

structure of the nucleon. The spatial extent of the nuclear environment to which

the electron is sensitive depends on both the energy and momentum transfer of the

virtual photon.

Elastic scattering is usually characterized by relatively large Q2 and small ν. At

such four-momentum and energy transfer values, the interaction takes place within

the nucleus, leaving it in a bound state after the interaction, and is a technique to

study nuclear structure. The final hadronic state for elastic scattering, in this case, is

defined as, W 2 =M2. Quasi-elastic scattering can be considered as elastic scattering

off of individual nucleons moving inside the nucleus [1]. With the increasing energy

transfer of the electron, the interacting nucleon is knocked out of the nucleus and
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provides the opportunity to study such things as the momentum distributions of the

nucleons. Finally, in Deep Inelastic Scattering, by increasing the Q2 of the virtual

photon, the internal components of the nucleon become accessible and the electron

begins to scatter off of the constituent quarks inside the nucleus. Inclusive DIS

processes can be represented by the Feynman diagram in Figure 1, which can likewise

be expressed by Equation 1.5:

e−(k) +H(p)→ e−(k′) +X , (1.5)

where k = (E,~k) and k′= (E ′,~k′) are the four-momenta of the initial and scattered

electrons respectively, p is the four-momentum of the target nucleon of mass M in the

laboratory frame, and X represents the undetected hadronic system after scattering.

The virtual photon, γ∗, possesses four-momentum q = (ν, ~q), where ν = E−E ′ is the

energy transfer, and ~q = ~k − ~k′ is the three momentum transfer.

Figure 1: Feynman diagram depiction of electron-proton Deep Inelastic Scattering.
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By expanding Equation 1.4 and noting that in the laboratory frame, where the

target is at rest, the four-momentum of the target proton is p = (M ,0). The invariant

mass squared of the final hadronic system in a DIS process can be expressed by

W 2 = (q + p)2 = M2 + 2Mν −Q2 . (1.6)

Well known resonant states exist in the inelastic region, so to ensure that the process

is deep inelastic it is not only important that Q2 is large but also that the invariant

mass is large enough to be outside of the resonance region (such as the ∆ resonance).

It is typically taken that the invariant mass should be W 2 > 3.25 (GeV/c2)2. Figure

2 is a plot of the differential cross section versus the invariant mass, for a fixed

Energy (E) and scattering angle (θ) [2]. The invariant mass spectrum illustrates the

different regions of electron scattering as well as the need for DIS data to be outside of

prominent resonances. The elastic peak can be seen at W ' 0.9, followed by resonant

peaks, and lastly the DIS continuum at W > 1.84 (GeV/c2).

Figure 2: Invariant mass spectrum of electron-proton scattering [2]. The DIS range is
defined to have W > 1.84 (GeV/c2) in order to exclude prominent resonances. Note
that the elastic peak has been scaled by a factor of 1/8.5 to fit on the plot.

5



1.1.3 QED and Deep Inelastic Scattering

Having outlined the general principles of electron scattering, we will next focus

on a theoretical formalism which can be used to interpret experimental observations.

Quantum Electrodynamics governs the electromagnetic interaction in electron scat-

tering. The experimentally measured quantity is referred to as the cross section, σ.

It can be interpreted as a measure of the probability for the given reaction to occur.

In QED, to construct the cross section, one must determine the invariant ampli-

tude squared, |A|2 of the process [1]. The differential cross section for deep inelastic,

electron-proton scattering, can be expressed as:

d2σ

dE ′dΩ
=
α2

q4
E ′

E
|A|2 (1.7)

where dΩ is the solid angle into which the electron has scattered. The invariant

amplitude is formed from the electron and proton transition currents and contains

the physics of the interaction. The quantity |A|2 can be written more explicitly as:

|A|2 = LµνW
µν , (1.8)

where Lµν and Wµν are the lepton and hadronic tensors respectively. The lepton

tensor is given by [3]:

Lµν =
1

2

∑
spins

[
ū(k′)γµu(k)

][
ū(k′)γνu(k)

]∗
. (1.9)

The quantities u(k) and ū(k′) are Dirac spinors which represent the incoming and

scattered electron, and ū = u†γ0.
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The γµ terms are four (γ0, γ1, γ2, γ3) 4x4 matrices which satisfy the anti-commutation

relation [3]:

γµγν + γνγµ = 2gµν , (1.10)

where gµν is the metric tensor. Equation 1.9 can be further simplified by utilizing the

completeness relation along with trace theorems of the γ matrices. The completeness

relation is given by:

2∑
s=1

u(s)(k)ū(p)(k) = /k +m, (1.11)

where /k = γµk. Equation 1.9 reduces to

Lµν = 2(k
′µkν + k

′νkµ − (k
′ · k −m2)gµν) . (1.12)

Similarly, the hadronic component can be expressed in terms of a hadronic tensor,

W µν . The general form of W µν can be expressed as [4]:

W µν =
1

2

∑
s

∑
N

〈
p, s|Jµ|X

〉〈
X|Jν |p, s

〉
(2π)4δ4(p+ q − pN) , (1.13)

where Jµ is the proton transition current. The hadronic tensor, W µν , has a more

complicated form than that of the lepton tensor due to the complex internal
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structure of the proton. In this way, W µν is the parameterization of this compli-

cated system. By invoking Lorentz invariance, the most general form of the hadronic

tensor can be written as [5]:

W µν = −W1g
µν +

W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qµpν) . (1.14)

The tensor W µν can be further simplified by enforcing current conservation of the

hadronic vertex [6]:

qµW
µν = qνW

µν = 0 , (1.15)

from which we can deduce the following two equations:

− W2

M2
(q ·p)pν +

W5

M2
q2pν = 0 and −W1q

ν +
W4

M2
q2qν +

W5

M2
(q ·p)qν = 0 . (1.16)

This reduces W µν to an expression containing only W1 and W2. In this form, the

lepton and hadronic tensors can now be contracted as:

LµνW
µν = 2

[
k
′
µkν + k

′
νkµ − (k

′ · k −m2)
][
W1(−gµν + qµqν

q2
) + W2

M2 (pµ − (p·q)
q2
qµ)(pµ − p·q

q2
qν
]
.

(1.17)

By working in a frame where the proton is initially at rest, p = (M ,0), and neglecting

the mass of the electron, Equation 1.17 can be simplified to

LµνW
µν = W1EE

′
sin2 θ

2
+ 4W2EE

′
cos2

θ

2
. (1.18)

The differential cross section can then be expressed as [7]:

d2σ

dΩdE ′
=

4α2E ′2

Q4

[
2W1(ν,Q

2) sin2 θ

2
+W2(ν,Q

2) cos2
θ

2

]
. (1.19)

The final outcome is that the inclusive electron-proton deep inelastic cross section

depends on two quantities, referred to as the W 1 and W 2 structure functions, which

will be discussed further in the subsequent sections.
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1.1.4 Virtual Photoproduction

Further insight can be gained by viewing electron-proton deep inelastic scattering

in terms of virtual photoproduction [8, 9]. The connection can be seen by noting that

by replacing the electron-virtual photon (γ*) vertex in Figure 1, with a real photon

(γ), will not change the form of the hadronic tensor given by Equation 1.13. How-

ever, the differences in polarization states between virtual and real photons must be

taken into account. Virtual photons (γ*) can be both transversely and longitudinally

polarized while real photons (γ) have only transverse polarization [5]. To make the

connection to Deep Inelastic Scattering, we must sum over all possible polarization

states when constructing the cross section. The differential cross section for electron-

proton scattering can be expressed in terms of the transverse and longitudinal total

cross sections. The virtual photon polarizations are given by [5]:

ε+ = −
√

1

2
(0; 1,+i, 0)

ε− = +

√
1

2
(0; 1,−i, 0)

ε0 = −
√

1

Q2

(√
ν2 +Q2; 1,+i, 0

)
.

(1.20)

The total cross section can be expressed as:

σtot =
4πα

K
ε∗µενW

µν , (1.21)

where K is the laboratory photon energy producing a final state of total mass W

upon absorption of a proton at rest and is defined as [9]:

K =
W 2 −M2

2M
. (1.22)
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The connection between the transverse (σt) and longitudinal (σl) cross sections and

the W1 and W2 structure functions can be shown to be:

σt =
4π2α

K
W1 (1.23)

σl =
4π2α

K

[(
1 +

ν2

Q2

)
W2 −W1

]
. (1.24)

The ratio of the longitudinal to transverse cross sections, σl/σt, can be used to express

W1 in terms of R and W2 since:

R =
σl
σt

=

(
1 + ν2

Q2

)
W2 (ν,Q2)−W1 (ν,Q2)

W1 (ν,Q2)
. (1.25)

Rearranging Equation 1.25 gives

W1

(
ν,Q2

)
=

(
1 + ν2

Q2

)
W2 (ν,Q2)

1 +R
. (1.26)

This is a key result and to which we will return to in the next section.

1.2 Scaling and The Quark-Parton Model

Elastic electron scattering experiments were performed throughout the 1950’s and

culminated in the discovery that the proton was not a point-like object [10]. By the

1960’s, construction of the Stanford Linear Accelerator Center (SLAC) was complete,

providing higher energies that afforded new opportunities to study nucleon structure

[11]. In 1967, a collaboration between Massachusetts Institute of Technology (MIT)

and SLAC began a program of studying deep inelastic electron scattering. The elastic

scattering experiments reported a cross section which had a strong Q2 dependence

[12]. Surprisingly, the results from the DIS experiments showed an unexpected fea-

ture. The DIS cross section exhibited a weak Q2 dependence, in contrast with the

elastic results. Figure 3 illustrates this difference.
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Figure 3: Comparison of elastic and deep inelastic electron-proton cross sections [13].

An apparent difference in the Q2 dependence for each cross section is observed.

An explanation of the experimental DIS results came in the form of the Quark-

Parton Model (QPM). In 1969, Bjorken [14] proposed that in a frame of reference

where a nucleon has infinite momentum, inelastic electron scattering can be inter-

preted as the incoherent sum of elastic scattering of the electron off of a parton

inside of the nucleon, where the partons are the constituent particles which comprise

the nucleon. In this Lorentz frame, the partons appear to be effectively free (non-

interacting) from each other [4]. Also, the partons have no transverse momentum in
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this frame and lie along the same axis before and after the interaction. Finally, it is

assumed that the electron-parton interaction is not affected by final-state interactions

from the subsequent confinement of the partons into color singlet particles. The QPM

can be approximated in the limiting case where

Q2 →∞

ν →∞ .

(1.27)

In this “Bjorken” limit, the structure functions W1 and W2, which depend on two

kinematic variables, ν and Q2, become functions of a single variable, x:

x =
Q2

2Mν
, (1.28)

which is the fraction of the momentum carried by the struck quark. To further explain

the scaling behavior, we can first imagine electron scattering off of a point-like, spin-

1/2 particle. It can be shown that the cross section for such a reaction is given by [3]

dσ

dΩ
=

4α2E ′2

Q4

(
cos2

θ

2
+

Q2

2m2
sin2 θ

2

)
δ

(
ν − Q2

2m

)
. (1.29)

Treating the partons as spin-1/2 particles and comparing Equation 1.19 with Equation

1.29, we can see that for elastic scattering off of point-like particles in the nucleons

implies:

2mW1

(
ν,Q2

)
=

Q2

2mν
δ

(
1− Q2

2mν

)
νW2

(
ν,Q2

)
= δ

(
1− Q2

2mν

)
,

(1.30)

which indicate that the structure functions W1 and W2 are indeed a function of a

single quantity, x, as defined in Equation 1.28.
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In the Bjorken limit, the structure functions are often written as:

MW1(ν,Q
2)→ F1(x)

νW2(ν,Q
2)→ F2(x) .

(1.31)

The differential cross section of Equation 1.19 can then be expressed as:

d2σ

dΩdE ′
=

4α2E ′2

Q4

[
2F1(x)

M
sin2 θ

2
+
F2(x)

ν
cos2

θ

2

]
. (1.32)

By recalling that F1 and F2 are related through R via Equation 1.26, Equation

1.32 can be expressed in terms of F2 and R as:

d2σ

dΩdE ′
=

4α2E ′2

Q4
cos2

θ

2
F2 (x)

[
1

ν
+

1 + Q2

ν2

xM (1 +R)
tan2 θ

2

]
. (1.33)

Thus, experimentally, F2 can be extracted if the quantity R is known. The validity of

the Bjorken approximation is illustrated in Figure 4. One can see that at intermediate

values of x, the F2 structure function is approximately independent of Q2. Logarith-

mic scaling violations which can be observed at low and high x can be explained by

Quantum Chromodynamics (QCD) [15]. Additional details about scaling violations

will be discussed in Section 1.3.
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Finally, in the Bjorken limit, given by Equation 1.27, and with x constant, the struc-

ture functions can be expressed as [2]:

F1(x) =
1

2

∑
i

eifi(x)

F2(x) = x
∑
i

eifi(x) ,

(1.34)

where ei are the fractional charges of the quarks (partons) and fi(x) is the probability

density function of a quark of flavor (type) i.

Figure 4: Compilation of world data illustrating the approximate scaling of F2 [15].

The independence of F2 with Q2 appears most strongly at medium values of x with

scaling violations at low and high x.
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In the Bjorken limit, the structure function of the proton, F p
2 (x) can be written

explicitly in terms of the probability distributions of the constituent quarks and anti-

quarks as [6]

F p
2 (x) = x

[(2

3

)2[
up(x) + ūp(x)

]
+
(1

3

)2[
dp(x) + d̄p(x)

]
+
(1

3

)2[
sp(x) + s̄p(x)

]]
.

(1.35)

Exploiting the fact that the proton and neutron form an isospin doublet, the up

(down) quark distribution in the proton (neutron) can be related to the down (up)

quark distribution in the neutron (proton)

up = dn

dp = un

sp = sn .

(1.36)

In a similar fashion, the structure function of the neutron can be expressed as

F n
2 (x) = x

[(2

3

)2[
dn(x) + d̄n(x)

]
+
(1

3

)2[
un(x) + ūn(x)

]
+
(1

3

)2[
sp(x) + s̄p(x)

]]
.

(1.37)

By exploiting this symmetry, the QPM allows one to examine several features, such

as the limiting behavior of the F n
2 /F

p
2 ratio. The first observation is

1

4
≤ F n

2

F p
2

≤ 4 . (1.38)

Equation 1.38 is known as the Natchmann Inequality [16], which places upper and

lower bounds on the F n
2 /F

p
2 ratio. Further insight can be gained by looking at ex-

treme limiting cases.
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For instance, assuming a flavor symmetric virtual quark and anti-quark sea, one

would expect to find at low x

lim
x→0

F n
2

F p
2

→ 1 . (1.39)

One can also look at the high Bjorken-x limit, where in the valence region there is

little influence from the sea or contribution from strange quark distributions. The

limiting behavior of F n
2 /F

p
2 can be shown to be [17]:

lim
x→1

F n
2

F p
2

→ U + 4D

4U +D
, (1.40)

where U and D are the sum of the quark and anti-quark distribution functions and

are given (after neglecting strange quark distributions) by

U = u+ ū

D = d+ d̄ .

(1.41)

From Equation 1.40, theoretical predictions have been made which can be compared

to experimental measurements of F n
2 /F

p
2 to discern the quark dynamics in the valence

region of medium and high Bjorken-x.

1.3 QCD Scaling Violations

The Quark-Parton Model, discussed above, is an extremely useful framework to

both conceptualize and calculate Deep Inelastic Scattering processes. This can be

seen in Figure 4, which shows that at medium values of x, and over a larger range

in Q2, the Quark-Parton Model approximation provides an accurate description of

the structure functions of the proton. Nevertheless, a small but non-negligible Q2

dependence exists in the structure function. A complete description requires moving
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beyond the QPM to a field theory description in terms of Quantum Chromodynamics.

QCD is a non-abelian field theory describing the strong force between quarks and

gluons [3]. The coupling constant for QCD, αs, can be expressed in a similar fashion

as in QED by solving the renormalization group equations. The unique feature of

the non-abelian nature of QCD results in the coupling constant of QCD to become

smaller with increasing energy. In QCD, it can be shown that the violations seen in

the QPM are in fact due to the interactions between quarks and gluons. An example

of such interaction is shown in Figure 5, in which a quark has radiated a gluon before

the interaction with the virtual photon, γ∗, resulting in a reduction of the fractional

momentum carried by the struck quark.

Figure 5: Feynman diagram of a gluon radiating off of a quark. Such interactions
result in the observed DIS scaling violations.

This implies that a fraction of the momentum of the interacting quark has been

carried away by a related parton, resulting in the violations of scaling noted above.

Recalling from Equation 1.34, the structure functions in QPM were written in terms

of the quark distributions, which are functions of the scaling variable x. In evaluating

the quark distributions in QCD, it can be shown that they can be expressed in terms of

the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations [18].

The distribution functions are no longer a function of simply x but also Q2. Including
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the gluon distribution, the parton distribution functions in terms of the DGLAP

equations can be written as [19, 20]:

∂qi (x, µ
2)

∂lnµ2
=

α

2π

∫ 1

x

dz

z

[
Pq←q (z) qi

(x
z
, µ2
)

+ Pq←g (z) g
(x
z
, µ2
) ]

∂gi (x, µ
2)

∂lnµ2
=

α

2π

∫ 1

x

dz

z

[
Pq←q

∑
i

qi (z)
(x
z
, µ2
)

+ Pg←g (z) g
(x
z
, µ2
) ]

,

(1.42)

where the Px←y terms are splitting functions, which describe the probability that a

parton (e.g. quark) has lost a portion of its momentum through radiation of a parton

(e.g. gluon) [21], z is the fraction of the momentum carried by the radiated gluon or

anti-quark, and µ is a factorization scale parameter. The DGLAP equations do not

solve the parton distribution function at a certain scale, µ1, but with a known value

for an input at µ1, will evolve the distributions at the new desired scale µ2. The F2

structure function can then be expressed as:

F2(x,Q
2) = x

∑
n=0

αns (µR
2)

(2π)n

∑
i=q,g

∫ 1

x

dz

z
C

(n)
2,i (z,Q2, µR

2, µ2
F )φ i

p

(x
z
, µ2

F

)
, (1.43)

where the sum is over parton distribution functions, labeled φ i
p

in Equation 1.43.

The terms, µF and µR, are the factorization and renormalization scale respectively.

Commonly, a single scale is used, µF = µR. The procedure of factorization, from

which the factorization scale (µ2
F ) comes, acts to explicitly separate perturbative and

non-perturbative processes [17]. Processes below some threshold (< µ2
F ) are grouped

into the parton distribution functions φ i
p

and those above the threshold in the C2,i

coefficients. Equation 1.43 is an evolved F2 structure function. An important feature

to note is the lowest order contribution to Equation 1.43. In the case when n =

0, Equation 1.43 simplifies to Equation 1.34, returning the QPM picture of Deep

Inelastic Scattering.
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CHAPTER 2

EMC Effect

Prior to 1983, the general assumption was that the nucleons inside of a nucleus

could be imagined as being weakly bound to one another with their internal properties

largely unaffected by the specific nuclear environment in which they were in. Thus,

the structure functions were assumed to simply scale with nuclei according to [22]:

AFA
2 = ZF p

2 + (A− Z)F n
2 , (2.1)

where A is the atomic mass and Z is the atomic number of each nucleus. In this

view, F p
2 and F n

2 are the structure functions of a free proton and neutron respectively.

But, in 1983, The European Muon Collaboration (EMC) at CERN measured the per

nucleon ratio F
56Fe
2 /F

2H
2 , and surprisingly found that the isoscalar ratio was not unity

as expected. Figure 6 shows the results of their findings. It should be mentioned that

the low x behavior has been found to be inconsistent with subsequent experiments

and further reanalysis showed agreement among data sets.

Recalling from Equation 1.34, the F2 structure functions are the sum of the quark

probability distribution functions, weighted by the fractional charge of the quarks.

Combining the definition of the structure function with the experimental results in-

dicates that the fraction of the quark distributions are modified in bound nucleons

[23], in direct contradiction to the prevailing opinions of the day. While there has

been intense theoretical and experimental activity to explain the mechanism causing

the effect, the EMC effect has so far, persisted without a definitive explanation.
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Figure 6: Original results from the European Muon Collaboration showing the first
indication of the EMC effect [22]. Note that low x data have subsequently been
revised.

2.1 Cross Section Ratios

As discussed in the previous section, the EMC effect is expressed as the per nucleon

ratio of F2 structure functions for a given nucleus (A) and Deuterium (2H):

FA
2 /A

F
2H
2 /2

, (2.2)

where A represents the number of nucleons in the nucleus. In order to arrive at such

an expression, we must first recall the form of the cross section, as shown in Equation
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1.33. The cross section has been written in terms of the F2 structure function as well

as R. The ratio of cross sections for any two nuclei, a and b, can be expressed as

σa
σb

=

4α2E′2
Q4 cos2 θ

2
Fa2 (x)

 1
ν
+

1+
Q2

ν2
xM(1+Ra)

tan2 θ
2


4α2E′2
Q4 cos2 θ

2
F b2 (x)

 1
ν
+

1+
Q2

ν2

xM(1+Rb)
tan2 θ

2

 . (2.3)

The kinematic quantities, Q2, E, E ′, and θ will cancel if the cross section mea-

surements are made at the same set of values. Furthermore, the cross section ratio

depends on the four quantities F a
2 , F b

2 , Ra and Rb. The difference in R for different

nuclei, ∆R = Ra − Rb, has been measured in high precision experiments at both

SLAC [24] and Jefferson Lab (JLab) [25] in an attempt to determine the universality

of this quantity. To date, these experiments have found that within errors, ∆R=0. If

R is indeed the same for all nuclei, then the ratio of cross sections given by Equation

2.3 would result in a ratio of structure functions [26]

σa
σb

=
F a
2

F b
2

. (2.4)

Hence, from the measured cross section ratio, we can directly extract the F2 structure

function ratio. Throughout the remainder of this thesis, the terms cross section ratio

and structure function ratio, may both be used but should be understood as being

interchangeable as implied by Equation 2.4.

2.2 EMC Effect in Nuclei

Deep Inelastic Scattering data, such as the structure function ratio of the EMC

effect, plotted as a function x, fall between the extreme values of 0 < x < 1. His-

torically, the term “EMC effect”, has described the structure function ratio between
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0 < x < 1, slicing it into regions along the x-axis in an attempt to explain the physical

processes affecting each region. This division of the effect can be seen in Figure 7,

which is a compilation of carbon data from SLAC [27] and NMC [28] experiments,

where 4 distinct regions are highlighted. More recently, the term has been used to

describe specifically the region between 0.3 < x < 0.7. I will take the historical

approach in describing the effect while keeping in mind the current formal definition.
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Figure 7: Compilation of carbon data showing the standard regions of the EMC effect.
See text for a complete description.

Starting at x = 0 and moving to the right of Figure 7, region 1 is commonly

referred to as the shadowing region. The shadowing region range is typically defined

as 0 < x < 0.06. In this region, a reduction in the cross section ratio is observed. It
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is believed that shadowing is due to fluctuations of the virtual photon into qq̄ pairs

(mesons) which interact with the target by means of the strong force. This process

occurs at low x, and thus is not sensitive to valence quarks but instead dominated

by interactions with the sea quarks. Between 0.06 < x < 0.3, region 2 is known

as the anti-shadowing region. A clear enhancement in the cross section ratio can be

seen. There appears to be no conclusive agreement on the cause, but suggestions have

related it to constructive interference among the partons in the nucleus [29]. Region

3 is found between 0.3 < x < 0.7 and is referred to as the “EMC” or depletion region.

In this region, there is a pronounced reduction in the cross section ratio. The amount

of reduction appears to be A dependent with the amount of reduction increasing with

A. An important feature of this region is the universal unity crossing at x ' 0.3. This

crossing occurs for all measured nuclei. Lastly, region 4, 0.7 < x < 1.0, in which a

dramatic increase in the cross section ratio occurs, is attributed to the Fermi motion

of the nucleons inside the nucleus [1].

2.2.1 EMC Effect Experiments

In the three decades since the original discovery, considerable focus has been

focused on mapping out the effect in a variety of nuclei at a number of experimental

facilities, in order to pin down the possible mechanism(s) responsible for the effect. A

brief highlight of a selected number of experiments and their contributions will follow.

European Muon Collaboration

As mentioned earlier, the EMC effect was first discovered in 1983 by the European

Muon Collaboration at CERN. The goal of the collaboration was to measure DIS

cross sections at high Q2. They could achieve higher Q2 by using muon beams that
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reached energies of 280 GeV [22]. The F2 structure function ratio of iron to deuterium

F
56Fe
2 /F

2H
2 was measured and showed the first clear indication of unknown effects in

bound nucleons for x > 0.3, as can be seen in Figure 6.

SLAC E139

Soon after the publication from the EMC collaboration, experiment E139 at SLAC

began a detailed investigation, studying both the A and Q2 dependence of the effect.

They did so by measuring the EMC effect of a wide range of light, medium, and

heavy nuclei, including 4He, 12C,108Ag, and 197Au, for 2 < Q2 < 15 (GeV/c)2 [27].

A noticeable A dependence of the effect was observed, with increased suppression of

the ratio between 0.3 < x < 0.7. Also, no obvious Q2 dependence was observed.

Figure 8 illustrates the EMC effect of the measured nuclei, along with the apparent

A dependence of the effect [27].

NMC Collaboration

After the initial discovery by the European Muon Collaboration, the New Muon

Collaboration (NMC) began a program specifically aimed at studying the EMC effect,

with the goal to greatly reduce the uncertainty in the final ratios, as well as to

determine the A and Q2 dependence. To do so, they included additional targets of

4He, 12C, and 40Ca and covered a range in Q2 between 0.5 and 90 (GeV/c)2 [28].

Jefferson Lab

Experiment E03-103 was performed at Jefferson Lab and focused on measuring

the EMC effect of light nuclei, including 3He, 4He, 9Be, and 12C. Portions of the data,

specifically at high x, did not reach the typical W 2 threshold considered to be DIS.

Instead, they employed Bloom-Gilman duality, which states that the Q2 averaged
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Figure 8: The EMC effect for different nuclei. An increase of the effect with A can
be observed. Reproduced from Reference [27].

structure functions in the resonance region approximates the structures functions in

the DIS region [30].

2.2.2 EMC Models

Over the past 30 plus years, many models have attempted to explain this phe-

nomenon, with varying success and at present, no one single model has been able to

give a full accounting of the effect. A short summary of these different models follows,

covering the physics motivation as well as highlighting the strengths and weaknesses

of each.
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Dynamical Rescaling

Comparing the structure functions of iron and deuterium, there is an apparent

similarity of the F
56Fe
2 and F

2H
2 structure functions, but with F

56Fe
2 at a higher Q2

value. It has been suggested that this difference is related to the confinement size

of the quarks in the nucleus. As the confinement size changes so does the Q2. The

comparison of F
56Fe
2 (or of any other nucleus) with F

2H
2 should not be made at the same

Q2 but at a shifted Q2, such that F
56Fe
2 has been “re-scaled” [31]. The relationship

between nuclear structure functions is given by:

FA
2 = F

2H
2 (x, ξQ2) , (2.5)

where ξ is given by

ξ(Q2) =

[
µ2
N

µ2
A

]−α(µ2N )

α(Q2)

, (2.6)

where µN and µA are the renormalization scale factors of QCD and ξ is the “rescal-

ing” value that is determined through the Q2 evolution of the DGLAP equations.

Dynamical rescaling models have been capable of matching EMC data in the range

0.20 < x < 0.70 but show less promise at low and high x.

Pion Enhancement

Considering the effect in terms of more standard nuclear physics, a possible ex-

planation focused on an increase in additional hadronic components in the nucleus,

such as due to that of the pion field. It is understood that the binding of nucleons

in a nucleus occurs through meson exchange, most notably due to pions. Not all

the momentum in the nucleus can be attributed to the nucleons but a portion of the

contribution is shared by these virtual pions. In this way, the structure function of
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the nucleus, FA
2 , is a convolution of the sum of nucleon structure functions as well as

a pion structure function and can be expressed as [32]:

FA
2 (x) =

∫ A

y

fN(y)FN
2

(
x

y

)
dy +

∫ A

y

fπ(y)F π
2

(
x

y

)
dy , (2.7)

where y is the fraction of the nuclear momentum carried by a nucleon (N) or pion

(π) and FN
2 and F π

2 are the structure functions of the nucleon and pion, respectively.

Models including an enhancement of the pion field have been able to reproduce some

features of the EMC effect but they also predict an increase of sea quarks, which

appears to disagree with recent Drell-Yan experiments [33].

Multi-Quark Cluster

In a similar fashion to the pion enhancement model, a more exotic explanation

considers the possibility of multi-quark clusters that may form inside a nucleus. If

such color-singlet multi-quark clusters form, the nuclear structure functions would

take a form similar to the convolution formulation of Pion enhancement [33]:

FA
2 (x) =

∫ A

y

fN(y)FN
2

(
x

y

)
dy +

∫ A

y

fB(z)FB
2

(
x

y

)
dy , (2.8)

where FB
2 the structure of any color singlet quark cluster. The formation of multi-

quark clusters can be explained as the overlapping of the nucleon wave functions when

two or more nucleons come close together. This overlap can create color-singlet quark

“bags” or clusters of 6, 9, or more quarks.

Short Range Correlations

The theories and models discussed above were put forward around the time of

the discovery to explain the effect. The most recent model is due largely to the
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findings from the experiment E03-103 at Jefferson Lab. Prior to experiment E03-

103, the compilation of EMC results from world data seemed to indicate the effect

could be largely explained by the average nuclear density of the nuclei. Further

investigations discovered that the slope of the cross section ratio between x of 0.3 and

0.7 was a meaningful way to characterize the effect since the slope is not sensitive to

normalization uncertainties, which may introduce a constant shift in the data [34].

Thus, this region is defined colloquially as the “EMC region”.

As mentioned in Section 2.2.1, experiment E03-103 measured the EMC effect of

a series of lighter nuclei including 9Be. Once including 9Be into the picture, it was

apparent that 9Be did not fit nicely in the correlation between the EMC slope and the

average nuclear density. A new or a more detailed explanation would be needed that

could encompass 9Be as well. Recognizing that 9Be could be thought of as two alpha

particles plus a neutron, perhaps it was instead a local density effect [35]. A local

density effect, such as the overlapping of nucleon pairs in the nucleus, known as Short

Range Correlations (SRCs) [36], appears as a possible explanation. SRCs are highly

correlated nucleon pairs that are believed to be the source of the high momentum tails

of nucleon distributions [36]. SRCs have been probed through quasi-elastic scattering

in the kinematic region x > 1 and have been explored in experiments at both SLAC

and JLab. In a similar way to the EMC effect, SRCs manifest themselves in cross

section ratios of a given nucleus and deuterium. The cross section ratio is given by

[37]:

σA/A

σD/2
= a2(A) , (2.9)

where the ratio of cross sections corresponds to the probability to find high momentum

nucleons [34]. Direct evidence of SRCs can be seen by noting that if SRCs are the
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origin of the high momentum tail for each nucleus, the ratio of Equation 2.9 should

be constant, up to some proportionality factor. This region of scaling (or plateau),

where SRCs are dominant is described by a2 in Equation 2.9. Figure 9 shows the

slope of the EMC effect versus the a2 scaling variable. A strong correlation can be

observed for all nuclei, including 9Be, suggesting that these overlapping nucleon pairs

may be the mechanism of the EMC effect. More experimental results are still needed

to further validate this correlation.

Figure 9: The slope of the EMC effect versus the scaling plateaus [35]. A strong
correlation can be seen between these two phenomenon.

2.3 MARATHON Experiment

This thesis presents work related to the MARATHON experiment (E12-010-103)

at Jefferson Lab in Hall A. The goals of the MARATHON experiment were two-fold.

First, the measurement of F n
2 /F

p
2 and D/U at large x, for which model uncertainty

due to nuclear effects has plagued previous measurements. The unique nature of the
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A = 3 system makes this possible by looking directly at the DIS cross section ratio of

3H and 3He, in which nearly all nuclear effects cancel. Theoretical predictions exist to

describe the behavior of both F n
2 /F

p
2 and D/U in the limit as x→ 1. A measurement

which is not hampered by the model uncertainties of previous measurements offers

a direct way to discern between these various predictions. The second goal of the

MARATHON experiment was the measurement of the EMC effect of 3H and 3He.

The MARATHON experiment will provide the first measurement of the EMC effect

of the 3H nucleus. Also, it provide strictly DIS result for the 3He nucleus.

The focus of this thesis will be on the measurement of the EMC effect of 3H. A

key to understanding the underlying mechanism of the EMC effect is precise mea-

surements of the effect in light nuclei. More specifically, the A=3 mirror nuclei can

provide deeper insight into the effect due to their isospin symmetry. This provides a

test for the plausible models and theories put forward over the past three decades.

This thesis will present the results of the experiment.
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CHAPTER 3

Experimental Setup

3.1 CEBAF

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) has a Con-

tinuous Electron Beam Accelerator Facility (CEFAB), which delivers high energy

electrons to 4 different experimental halls. Jefferson Lab has recently undergone an

upgrade making it capable of delivering electrons with energies up to 11 GeV (12

GeV for Hall D) [38]. The accelerator is designed in a“racetrack” shape, consisting

of 2 superconducting linacs (North and South), used to accelerate electrons, and re-

circulation arcs, as can be seen in Figure 10. The electrons can be accelerated a total

of 5 times around both linacs to reach the highest energy available of 11 GeV.

A polarized photogun in the injector produces the electrons via photoemission

from a GaAs cathode using a 1497 MHz gain-switched diode [39]. Electrons are trans-

mitted to the North Linac, where they are accelerated through a series of cryomodules

and subsequently extracted to each of the 4 experimental halls. In the original con-

figuration used during the 6 GeV era, both linacs consisted of 20 cryomodules. An

upgrade to the existing infrastructure added 5 newly designed niobium cryomodules,

with higher field gradients, to each linac [40]. These additions allowed the accelerator

to reach an energy of 11 GeV. An additional factor in the CEBAF operation is the

ability to operate efficiently while also delivering a range of currents simultaneously

to each of the 4 experimental halls. The MARATHON experiment required the high-

est energy deliverable, which during the experiment was 10.6 GeV. Administrative
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procedures limited the maximum current that could be delivered to Hall A during

the MARATHON experiment to 22.5 µA. This was due to the use of gaseous tritium,

one of the targets used by the experiment, which is highly radioactive.

Figure 10: Jefferson Lab CEBAF Accelerator. Shown are the experimental halls A, B,

C, and D, along with the superconducting linacs and recirculation arcs. Also shown

are the new cryomodules added for the 12 GeV upgrade.

3.2 Hall A

Hall A is one of the four experimental Halls at Jefferson Lab, focusing on the

studying of electro- and photo-induced reactions [39]. The standard Hall A configu-

ration can be seen in Figure 11, which is a pair of identical 4 GeV/c High Resolution
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Spectrometers. They are commonly referred to as the Left High Resolution Spectrom-

eter (LHRS) and Right High Resolution Spectrometer (RHRS). Both spectrometers

are capable of being rotated around the center of the hall, where the target system

is located. Scattered particles traverse a series of magnets and bend upwards by

45◦ into a detector stack. The magnet configuration for both spectrometers con-

sists of three quadrupoles used for focusing and a bending dipole for momentum

analyzing the scattered particles. The arrangement of the magnet system during

the MARATHON experiment consisted of a resistive quadrupole, a superconduct-

ing quadrupole, a superconducting dipole, and lastly a superconducting quadrupole.

Additional information about the spectrometers will be given in Section 3.5.

Figure 11: Side view illustration of Hall A, showing the two High Resolution Spec-

trometers.
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3.3 Beam Line

3.3.1 Beam Energy

The beam energy used for the MARATHON experiment was the highest available

beam energy the accelerator was able to provide to Hall A, which during the running

period for MARATHON was approximately 10.6 GeV. A precise knowledge of the

incident energy is required to extract meaningful physics from the data. The beam

energy was measured using the arc-energy Method [41], which measures the deflection

of the beam in the arc section of the accelerator. Both series of arcs can be seen in

Figure 10. The beam is steered using a series of 8 dipole magnets in the arc. In the

arc near Halls A, B, and C, a 9th dipole is connected in series with the other 8 in the

arc and is accessible outside of the accelerator. A field mapper equipped with two

coils mounted on a table is moved through the 9th dipole at a constant velocity to

measure the magnetic field integral. Also, the bending angle of the arc is determined

using a series of harps, located at the beginning and end of the arc. The bending

angle of the beam is 34.3◦. With the integrated field of the dipoles, the energy of the

beam can be calculated by

p = k

∫
~B · d~l
θ

, (3.1)

where k = 0.299792 GeV rad T−1 m−1/c,
∫
~B · d~l is the field integral, and θ is the

bending angle. The uncertainty of the beam energy has been determined to be ±

5× 10−4 [42].

3.3.2 Beam Current Monitor

Located inside of the experimental hall is a beam current monitor, which is used to

determine the beam current and subsequently, the amount of charge that is delivered
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to the target. The monitoring system is located 25 meters upstream of the target

system and consists of a Parametric Current Transformer (PCT), also known as an

Unser monitor, and two radio-frequency (RF) cavities [43]. The Unser Monitor is

positioned along the beam line and in between the two RF cavities. Each RF cavity

is tuned to match the 1497 MHz frequency of the beam. Figure 12 indicates the

layout of each component along the beamline.

Figure 12: Beam current monitoring system layout. The beam current monitors are
located upstream and downstream of the PCT monitor (see text).

The Unser monitor is used as an absolute reference to which the RF cavities can

be calibrated. This is due to a drift in the output signal from the Unser monitor,

which is unpredictable and can fluctuate during the timescale of individual physics

runs. This precludes it from being used independently for beam current monitoring.

Instead, it is used as an absolute calibration reference for the RF cavities, which are
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used during beam operations to measure the beam current. The Unser monitor is

calibrated periodically, when no beam is being delivered to Hall A. A known current

is passed through a wire along the beam line and the gain of the Unser, which is a

constant value that converts the Unser frequency to current, can be determined.

After calibration of the Unser monitor, the RF cavities can then be calibrated to it.

The RF cavity calibration is performed in a similar fashion as the Unser calibration,

except using the electron beam. In order to accommodate the large range of currents

that could possibly be delivered to Hall A, as well as accounting for the linearity of

the intermediate electronics, amplifiers with gains of x3 and x10 are used to improve

the linearity of lower currents while sacrificing that of the higher currents. After the

12 GeV upgrade, new digital receivers were added, which have a larger dynamic range

over which their signals are linear, no longer requiring the need for amplifiers. The

signals are sent to scalers in both the LHRS and RHRS and inserted into the data

stream. A diagram of the relevant signals sent to scaler can be seen in Figure 13.

Table 1 lists the RF signals that were available during the MARATHON exper-

iment. Physics analyses utilized the downstream digital receiver (dnew), while the

remaining signals were used to check the stability of the system.

Amplification Upstream Cavity Downstream Cavity
x 1 u1 d1
x 3 - d3
x 10 - d10
No Amplification unew dnew

Table 1: A list of the BCM signals and amplification factors for both upstream and
downstream cavities.
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Figure 13: Schematic of the signal pathway for the beam current monitoring system.
See Table 1 for list of BCM signals.

3.3.3 Beam Position Monitors

The position of the beam delivered to Hall A is determined by a pair of Beam

Position Monitors (BPMs), which are located at 7.34 and 2.22 meters upstream of the

target. The BPMs provide a non-invasive method to determine the relative position

of the beam to 100 µm [44]. The calibration of the BPMs requires first determining

the absolute beam position from an invasive measurement using a harp fork (wire

scanners), which is located adjacent to the BPMs along the beam line. It is to this

absolute position that the BPMs can be calibrated to. Figure 14 shows a drawing

of the harp fork. The calibration of the BPMs to the harps requires dedicated runs,

during which the harp fork is passed through the beam, allowing for a precise de-

termination of the beam position. The BPMs can then be calibrated to the harps

allowing for the beam position to be known on a run-by-run basis.
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Figure 14: Drawing of the harp which is used to determine the absolute beam position
during the BPM calibration.

3.3.4 Raster

In order to reduce density fluctuations of the target due to local heating from the

beam as well as to minimize any possible damage to the target cell from the small

beam profile, the size of the beam is increased by four dipoles, called the raster system,

which can change the size of the beam in both the vertical and horizontal directions.

The rastering system is positioned 23 meters upstream of the target [39] and consists

of a pair of vertical and a pair of horizontal dipoles, which deflect the incoming beam

at 25 kHz. Both vertical and horizontal dipoles are synchronized together respectively.

The raster current signals are sent to and recorded by an analog-to-digital-converter

(ADC) and are used offline to more accurately determine the beam position at the

target.

Prior to the MARATHON experiment, several upgrades were made to the elec-

tronics and readout system used for the raster signals. Previous to the MARATHON

experiment, the raster signals were sent to an offset and attenuator board, before going

to the Fastbus ADCs to be recorded. This was due to the limited signal size the ADCs

could receive. After the 12 GeV upgrade, the normally flat raster signal distribution

exhibited a distinct fluctuation. Attempts were made to reduce the fluctuations but
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with limited success. To help rectify this, before the beginning of MARATHON, the

offset and attenuator board was replaced with a 20 dB inline attenuator. Also, the

signals were sent directly to Flash ADCs, which are JLab designed ADCs and were

recently installed on both spectrometers. An overview of the Flash ADC will be pre-

sented later in Section 3.6.1. An important feature of the Flash ADC is that it has a

larger dynamic range than the Fastbus ADC, which can be manually adjusted. This

feature allows the Flash ADCs to receive larger amplitude signals. The new setup

resulted in a more uniform raster signal which produced similar results to those from

during the 6 GeV era.

3.4 Target System

The target system was specifically designed and fabricated for the unique require-

ments of the MARATHON experiment. Driving the need for a new target system was

the inclusion of 3H, a radioactive isotope of hydrogen. The target system needed to

meet both the safety standards as well as the physics goals of the experiment. This

process took many years and designs in order to reach the final design. The final

design chosen was a sealed 25 cm long cell with a 1.25 cm radius, made from 7075

Aluminum Alloy.

Figure 15 shows the final assembly of the target ladder used during MARATHON,

which included 4 gas cells, hydrogen, deuterium, helium-3, and tritium as well as an

empty cell. The gas target and empty target cells were fabricated to be identical.

Along with these gas cells were a series of solid targets that were used for calibration

and other functions during the experiment. The target ladder was contained inside

of the scattering chamber, which was under constant vacuum during the experiment.

A complete list of the targets used is given in Table 2.
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Figure 15: Target Ladder Assembly. Gas targets are located at the top and solid

targets at the bottom. A heat sink is attached to the gas targets for conductive

cooling.

The 3H gas cell was filled by The Tritium Facility of Savannah River National

Laboratory (SRNL) and shipped to Jefferson Lab for installation. The 1H, 2H, and

3He gas targets were all filled on site at Jefferson Lab. The temperature and pressure

conditions during the filling process are summarized in Table 3.
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Target Position Target Material
1 Tritium
2 Deuterium
3 Hydrogen
4 Helium-3
5 Empty
6 Dummy
7 Optics
8 Raster Target
9 Carbon
10 Titanium
11 BeO

Table 2: MARATHON Target Assembly.

Target Temperature Pressure
(K) (atm)

Tritium 293.80 13.81
Deuterium 296.25 33.02
Helium-3 294.45 17.19
Hydrogen 297.55 33.02

Table 3: The fill Temperature and Pressure of each gas target.

The gas targets were sealed after being filled, thus a single value for the density and

target thickness were used for each target throughout the MARATHON experiment.

The densities of 1H and 2H were determined from a NIST (National Institute of

Standards and Technology) database [45] while the densities of 3H and 3He were

calculated. Table 4 is a list summarizing these parameters for each gas target. A

complete description of the target system can be found in Reference [46].

A target operator located in the counting house was able to access each target via

a target GUI (Graphical User Interface) system, designed by the JLab Target group.

This allowed the operator to quickly switch between targets with little downtime to
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Target ρ Length Thickness
(mg/cm3) (cm) (mg/cm2)

Tritium 3.404 25 85.1±0.8
Deuterium 5.686 25 142.2±0.8
Helium-3 2.135 25 53.4±0.6
Hydrogen 2.832 25 70.8±0.4

Table 4: Physical characteristics for each gas target. From Reference [46].

the experiment. This meant the experiment could continuously cycle through the

target cells, eliminating systematic errors on the cross section ratios, which would

arise from spending long periods on a single target.

Temperature stabilization of the gas targets was achieved via conductive cooling

from a copper heat sink attached to the gas target cells. The JLab End Station

Refrigerator (ESR) supplied 15 K liquid helium to Hall A, which was then heated to

a temperature of 40 K, and subsequently used to cool the heat sink and stabilize the

target temperature of the target system.

3.5 High Resolution Spectrometers

The Hall A facility is comprised of two High Resolution Spectrometers, the Left

High Resolution Spectrometer (LHRS) and the Right High Resolution Spectrometer

(RHRS). The layout of the spectrometers is shown in Figure 11. As their names

imply, the HRSs were designed to provide high resolution for the momentum of the

scattered particle, on the order of ± 2 × 10−4 [39]. Both HRS systems are nearly

identical, with each arm consisting of two focusing quadrupole magnets, a bending

dipole magnet, and a focusing quadrupole, such that the order is: QQDQ. All the

magnets are superconducting, with the exception of the first quadrupoles (Q1) on
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both LHRS and RHRS, which are resistive quadrupoles. This is due to the failure and

replacement of the original superconducting Q1 magnets with resistive quadrupoles

on both spectrometers. The current magnet configuration has been in place since

Fall 2016. Detailed optics studies were performed by experiments proceeding the

MARATHON experiment [47].

3.5.1 Detector packages

The MARATHON experiment utilized the standard detector configuration of the

two High Resolution Spectrometers. Each spectrometer is equipped with a series

of detectors designed to detect and characterize the scattered particles originating

from the target cell. The detector packages in both spectrometers are essentially

identical, each consisting of a pair of vertical drift chambers, two scintillator planes,

a threshold gas Cherenkov counter, and a segmented lead-glass calorimeter. The two

main differences between the detector packages are due to the differences in the total

radiation length of the segmented calorimeters and also the radiator lengths of the

Cherenkov counter. Figure 16 shows the layout of each detector in the detector stack.

Signals from the detectors are sent to analog-to-digital-converter (ADC) and time-to-

digital-converter (TDC) modules. These and other electronic modules are stationed

above the detectors and shielded from radiation in the detector stack.

Vertical Drift Chambers

Both spectrometers contain a pair of vertical drift chambers (VDCs), which pro-

vide tracking information for the scattered particles. Each chamber consists of two

planes of sense wires, U & V, which are oriented at 90◦ to each other [48]. Each plane

is comprised of 368 sense wires, which are spaced 4.24 mm apart. The planes are filled
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Figure 16: Schematic layout of the LHRS detector Stack showing the relative position
of each detector.

with a gas mixture of argon (62%) and ethane (38%). An electric field is formed from

mylar cathode planes which bound the top and bottom of each plane. The mylar

planes are kept at an operating voltage of ∼ -4 kV. When a charged particle passes

through a plane, it ionizes the gas mixture, producing ions and electrons along its

path. The electrons will drift towards the closest sense wire, and produce additional

ions and electrons. This avalanche of electrons will fire the sense wire, which is sent

to a TDC module. The TDCs, which record the signals from the VDCs, are oper-

ated in Common Stop Mode. TDCs measure the time difference between 2 signals,

the first which starts the clock and the second which will stop it. In Common Stop

Mode, a common (reference) signal is used to stop all channels in the TDC, which

during MARATHON was a trigger signal. Details of the trigger system and setup

used during MARATHON will be discussed in Section 3.6.2. Thus the TDCs measure

44



the time difference between when the sense wire fired and when a trigger signal is

formed and sent to the TDC. This time difference is referred to as the drift time.

From the drift time, the drift distance can be determined, which when combined with

information from both drift chambers, ultimately allows for the determination of the

scattered particle’s track.

Figure 17: A track of a particle traversing a VDC plane. A typical track will fire 5
sense wires in a plane.

Scintillator Planes

Two scintillator planes are located in both the LHRS and RHRS, referred to as

S0 and S2m, and are separated by approximately 1.6 meters. Each one is made of

a plastic material which has a photomultiplier tube (PMT) attached on both ends.

When a charged particle passes through the scintillator, the luminescence which is
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created can be detected by each PMT attached to the scintillator paddle. S0 is a

single paddle, oriented vertically in front of the gas Cherenkov detector, with a 3-inch

PMT on both the top and bottom. S2m is made up of 16 individual paddles, stacked

behind the Cherenkov, with each paddles’ long axis perpendicular to S0 and a PMT

on each side. Due to their fast response time they are used for timing as well as are

included in the formation of triggers.

Gas Cherenkov Detector

The gas Cherenkov detector is located between the S0 and S2m scintillator planes

and is used for particle identification. The length of the gas Cherenkov detector is

120 cm and 130 cm in the LHRS and RHRS, respectively.

Figure 18: Arrangement of mirrors and PMTs in the gas Cherenkov detector. The
nominal particle trajectory is into the page. The orientation is the same for both the
LHRS and RHRS.
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Both gas Cherenkov detectors contain 10 spherical mirrors and 10 PMTs, divided

into two columns of five, with a PMT associated with each mirror. The spherical

mirrors are used to focus Cherenkov radiation to the corresponding PMT. Figure 18

illustrates the design and orientation of the gas Cherenkov detector used in both High

Resolution Spectrometers. The Cherenkov tank is filled with CO2 gas, which has a

refractive index of 1.0004. Cherenkov radiation is produced when a charged particle

travels faster than the speed of light through a medium [49]. The angle between the

Cherenkov radiation and charged particle is given by:

cos(θ) =
1

βn
, (3.2)

where

β =
v

c
, (3.3)

with v being the speed of the particle and n the refractive index of the medium. The

gas Cherenkov operates as a threshold detector, with only particles having energy

greater or equal to a threshold energy, Ethresh, producing Cherenkov radiation. The

kinetic energy of the charged particle required to produce Cherenkov radiation is

Ethresh = mc2
[√

n2

n2 − 1
− 1

]
. (3.4)

Using the refractive index of CO2, one can determine Ethresh for both electrons and

pions, with pions being the dominant background of the experiment. The energy

threshold is approximately 0.017 GeV/c and 4.62 GeV/c for electrons and pions,

respectively, providing a clear way to discriminate between electrons and background

particles.
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Electromagnetic Calorimeter

The final detector in both the LHRS and RHRS is the segmented electromagnetic

calorimeter, which provides an additional method for performing particle identifica-

tion. The calorimeter in the LHRS is comprised of two separate layers, often referred

to as Pion rejector 1 and Pion rejector 2 respectively. Both layers contain two columns

of lead-glass blocks. Each column has 17 lead-glass blocks, which are oriented such

that their long axis is perpendicular to the trajectory of the particle passing through

the detector stack [39]. The top left image of Figure 19 shows a side view of the

LHRS calorimeter detector, with the particle trajectory from the bottom to the top

of the page.

The calorimeter in the RHRS is also comprised of two layers, a pre-shower and

shower layer, but has a total radiation length larger than that of the LHRS. The

pre-shower is oriented in a similar fashion as both layers in the LHRS, made up of

two columns, but with 24 lead-glass blocks in each column. The long axis of the lead-

glass blocks are perpendicular to the particle’s trajectory. Unlike the pre-shower, the

shower has 5 columns of lead-glass blocks, with the long axis of the lead-glass blocks

parallel to the particle trajectory. The shower has a total of 75 lead-glass blocks

[39]. The bottom left image of Figure 19 shows a side view of the RHRS calorimeter

detector, with the particle trajectory from the bottom to the top of the page.

The electromagnetic calorimeter in both the LHRS and RHRS can differentiate

between electrons and hadronic background based on the amount of energy each

deposits. The radiation length of the calorimeter is such that the electron will deposit

approximately all of its energy into the calorimeter while hadrons need to travel a

much longer distance in order to deposit their full energy. Hadrons will thus deposit
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less energy per unit length, allowing for the discrimination between electron events

and hadronic background.

As an electron travels through the lead-glass blocks of the calorimeter, it loses

energy via bremsstrahlung radiation [50]. Photons produced can create secondary

particles via pair production in the field of the block’s nucleus (γ → e+ + e−). This

shower process will continue until the particle’s energy falls below some critical energy

(Ec) at which time other mechanisms become the dominant form of energy loss. The

cascade produced from bremsstrahlung photons decaying into an e+ e− pair is highly

collimated in the direction of travel of the incident electron.

Figure 19: The arrangement of shower detectors in HRS-L (top left, top right) and
HRS-R (bottom left, bottom right) from 2 different orientations. The left images of
both the top and bottom show a side view of both calorimeters. The right images of
both the top and bottom show a top view of the calorimeters. For both orientations,
particles traverse from the bottom to the top of the page.
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3.6 Data Acquisition

Data collection and storage during an experiment occurs through a system de-

signed by the Data Acquisition (DAQ) group at Jefferson Lab called CODA (CEBAF

Online Data Acquisition) [51], which works at both the hardware and software level.

Front-end crates, such as Fastbus or VME crates, contain ADC and TDC modules.

Each front -end crate has a Readout Controller (ROC) and each ROC is connected

to the central Trigger Supervisor (TS), which acts to instruct the various modules

when to record data as well as ensuring event synchronization between the different

ROCs. When a trigger is formed by meeting all the requirements at the hardware

level, it is sent to the TS, which checks the state of each ROC to determine if it is able

to process a new trigger. The DAQ can be run in two different modes, unbuffered

(standard) or buffered mode. In the unbuffered mode, the TS will not accept any

new triggers until each of the ROCs has finished recording and writing the event to

tape. During MARATHON, the DAQ was run in the second mode, buffered mode.

The buffered mode allows for new triggers to be accepted by the TS even while the

ROCs are still reading out the previous event. This is accomplished by storing the

unprocessed events in a buffer and reading them out sequentially. The advantage of

the buffered mode is that it can reduce the dead time of the DAQ. The dead time of

the DAQ corresponds to the amount of time in which the DAQ cannot receive new

triggers, resulting in missing valid events that should otherwise be recorded.

The dead time associated with each ROC can be separated into two parts, the

front-end busy and readout busy. The front-end busy, which is on the order of 10

µs, occurs for each new trigger that is accepted, regardless of the operating mode.

Second, is the readout busy, which is the time it takes to read the data and write
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it to tape. For Fastbus ADC and TDC modules, in the current configuration, the

readout busy is approximately 110 µs. Thus, in the standard unbuffered mode, the

time to acquire and readout out a single event is approximately 120 µs. Buffering

decouples the front-end busy from the readout busy as long as the buffer is not full,

meaning that the TS can accept new triggers even while the ROCs are reading out

an event. Once the buffer is full, the TS will not accept a new trigger until the ROC

has readout all events in their buffer. Only when the buffer is full is the dead time

due to the readout busy associated with the reading and writing of the event tape.

3.6.1 Flash ADCs

An upgrade to the existing Data Acquisition system used in Hall A made prior

to MARATHON was the implementation of JLab built and designed Flash ADCs

(fADCs) to record signals from selected detectors in both the LHRS and RHRS. Flash

ADCs are advantageous due to their ability to be used in high rate environments, do

not require external delay cables, and have the capability to provide complementary

TDC information [52]. Both spectrometers were outfitted with 4 Flash ADC boards

apiece. Each Flash ADC board is equipped with 16 channel inputs. The number of

inputs limited the number of detectors that could be sent to the Flash ADCs. For

this reason, the S0, S2m, and Cherenkov detectors were read out by the Flash ADCs

while the calorimeters continued to be readout by Fastbus ADCs. MARATHON was

the first experiment in Hall A to use Flash ADCs for full analysis purposes, so as a

redundancy, signals from S0, S2m, and the Cherenkov detectors were split and sent to

both the Flash ADCs as well as the Fastbus ADCs. Each channel on the Flash ADC

board has a series of programmable functions, which it uses to record the appropriate

information from each triggered event. These functions include the latency (PL),
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trigger window width [ns] (PTW), the number of samples before (NSB) to record,

the number of samples after (NSA) to record, and the number of samples (NPED) to

use to determine the pedestal. The latency is the amount of time it will look back in

its buffer to find the corresponding event. The trigger window width is the size of the

window it will look in to for the signal. The general operating principle of the Flash

ADC is visualized in Figure 20. First, the Trigger Supervisor (TS) sends a Level 1

Accept (L1A) signal to the Flash ADC. Once it finds the signal, it counts the number

of samples before and after to include in what will be the recorded signal. Finally, it

performs event-by-event pedestal subtraction for each channel using the predefined

NPED before each event which it subtracts from the integrated signal.

3.6.2 Triggers

The trigger system used for the MARATHON experiment was formed using the

electronic hardware in the front-end to take signals from the detectors to create logic

signals. Figures 21 and 22 demonstrate how the coincidences for each detector are

created. A trigger is formed when there is a coincidence between certain detectors.

For instance, the MARATHON experiment utilized three separate triggers, S0 & S2m,

S0 & S2m & GC, and (S0 ‖ S2m) & GC, where S0 and S2m are the forward and

rear scintillator detectors, and GC is the gas Cherenkov detector. The production

trigger for MARATHON was S0 & S2m & GC, requiring a coincidence between the

two scintillator paddles as well as the gas Cherenkov. Trigger signals are sent to the

Trigger Supervisor. If all ROCs are not busy, the Trigger Supervisor will issue a Level

One Accept to each ROC, to record the current event.
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Figure 20: Visual description of parameters of the fADC for an event. Once receiving
a trigger, the fADC uses predefined values to find and integrate the appropriate signal.
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Figure 21: S2m counter coincidence signal logic.

Figure 22: gas Cherenkov detector coincidence signal logic.
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CHAPTER 4

Calibrations

4.1 Calibrations

As the beam enters Hall A, there are individual components along the beam line

used to ensure the beam quality. Likewise, after interacting with the target, a series of

detectors are used to measure the scattered electrons. Both the beamline components

and the detectors need to be properly calibrated in order to ensure the reported results

are accurate. Both during and after the MARATHON experiment, calibrations were

performed on each component and the following section will discuss several of the key

calibrations along with the specific methods applied.

4.1.1 Unser and Beam Current Monitors

To determine the total charge that was delivered to the Hall and seen by the

target, Hall A utilizes two separate monitoring systems in tandem. This combined

monitoring system provides an accurate and precise measurement of the beam current,

from which the total charge can be determined. As mentioned in Section 3.3.2,

this monitoring system is comprised of a Parametric Current Transformer (Unser

monitor) and the Beam Current Monitors (BCMs). Both the Unser and the BCM

must be calibrated several times during an experiment, to ensure that the resulting

measurement is accurate. The basic calibration procedure follows a two-step process,

in which the Unser is first calibrated, followed by the BCMs. The necessity of both

systems is due to a drift in the offset of the Unser which precludes it for direct use
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during the experiment. The gain of the Unser, on the other hand, is extremely stable.

A calibrated Unser can then be used as an absolute reference to which the BCMs are

calibrated to. The Unser is calibrated during periods when the beam is not being

delivered to the Hall. A wire is passed through the cavity with a predetermined

set of currents at 90 seconds intervals followed by 90 seconds without current. To

accurately calibrate the Unser, a large dynamic range of currents is chosen, 2.5 - 100

µA. A linear fit of wire current versus the Unser response (frequency), determines an

overall gain factor for the Unser. The Unser was calibrated 4 separate times during

the MARATHON experiment. This calibration was performed before each BCM

calibration procedure, to benchmark the Unser’s stability. The Unser exhibited high

stability. Table 5 lists the gain factor found from the calibration of the Unser during

MARATHON.

Date Gain
03/05 0.0002526
03/28 0.0002524
04/03 0.0002529
04/06 0.0002527

Table 5: Unser monitor gain values from each calibration. The gain of the Unser was
quite stable during the MARATHON experiment.

With a calibrated Unser, the BCMs can then be accurately calibrated. The cal-

ibration procedure for the BCMs is similar to that of the Unser, the only difference

being the use of the electron beam. Similarly, MCC delivers beam at a set of prede-

termined currents for 90 second intervals followed by 90 seconds without beam. The

range of currents used during the BCM calibration was 2.5 - 22.5 µA, which covers

the current range used in the MARATHON experiment. Figures 23 and 24 show
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the response of the BCM and Unser respectively during the BCM calibration. Also

shown in both Figures 23 and 24 are the cuts made to select stable regions which

were used in the calibration. These cuts must be made to exclude regions where the

current may fluctuate, which often occurs at the start and end of each interval.

Figure 23: The response of the digital receiver (dnew) during one of the BCM cali-

bration. The lines in red are the cuts applied to determine calibration coefficients.

Figure 24: Unser response during BCM calibration. The lines in red are the cuts

applied to determine calibration coefficients.
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A linear fit to the calibrated Unser current and BCM frequency is performed from

which the BCM gain and offset coefficients are determined. The linear fits can be

seen in Figures 25 and 26, which are from two separate calibrations.

Figure 25: Current versus dnew frequency for the first BCM Calibration. The slope

and intercept from the linear fit correspond to the gain and offset of the dnew receiver.

Figure 26: Current versus dnew frequency for the second BCM Calibration. The

slope and intercept from the linear fit correspond to the gain and offset of the dnew

receiver.
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A total of three BCM calibrations were performed during MARATHON and the

results of the dnew digital receiver can be seen in Figure 27, which shows the gain

and offset of the dnew receiver during the experiment. The figure indicates the BCMs

were highly stable throughout the entirety of the experiments with the gain drifting

by less than 0.03%.
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Figure 27: The gain stability of the digital dnew receiver. The vertical axis is the
gain factor from each calibration, and the horizontal axis indicates the calibration
number. The dashed line is meant to assist in comparison among coefficients.

4.1.2 Beam Position Monitor

Dedicated Beam Position Monitor calibrations were performed at the beginning

of the experiment. The calibration procedure involves moving the beam to different
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positions at which point the Machine Control Center (MCC) passes the harp through

the beam profile to determine the beam positions. An image of the harp is seen in

Figure 14.

This process is repeated at several different positions. Afterwards, the BPMs can

then be calibrated to the absolute position reported from harp. Figure 28 shows

the bull’s-eye scan calibration performed during MARATHON [53]. The grey points

correspond to the absolute beam position as reported by the harp scan for each of the

five measurements. The colored points are the reported positions from the calibrated

BPMs for each measurement. After calibration, the BPMs show a great agreement

with the harp positions. Further details about the BPM calibration can be found in

[53].

Figure 28: Bulls eye scan performed for BPM calibration [53]. The grey points are

the beam positions reported from the harps while the colored points are the same

beam positions from the calibrated BPMs.
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4.1.3 Raster

The raster ensures a uniform spread of the beam profile before interacting with

the target to decrease localized heating of the target as well as to avoid damage to

the target cell. Also, an offline calibration of the raster is performed to improve the

target z reconstruction. Due to a time lag in the BPM signals, they cannot be used

for an event-by-event beam position determination. Instead, the raster is capable

of providing position information using the raster current, which is sent to ADCs in

each spectrometer. Translating the ADC values of the raster current to a position

requires a raster calibration. For MARATHON, the mapping was achieved by fitting

the carbon hole of the target assembly, which has a well-defined 2 mm diameter [54].

This fit could then be used to make the conversion of the raster ADC to a position.

4.1.4 Vertical Drift Chambers

As discussed in Section 3.5.1, the two Vertical Drift Chambers (VDCs) provide

tracking information for the scattered electron at the focal plane of each spectrometer.

The VDCs measure the drift time for each wire and an algorithm utilizes the drift time

to determine the drift distance for each wire. A typical event will fire multiple (∼5)

wires in each plane. A linear fit to these drift distances is performed which determines

the cross over point and angle for each of the two planes [48]. Combining each plane

from both chambers, one can determine the trajectory of each event. Due to possible

time differences introduced along the path of the signal, such as the differences in path

length as well as additional offsets from various electronics, a reference time for each

wire is determined. The reference time, t0, can be determined for each wire by looking

at each wire’s raw TDC time. The calibration procedure looks for the maximum slope
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in the region of the leading edge of the TDC spectrum. The procedure calculates the

slope (derivative) between adjacent bins. After determining the maximum slope, a

line from the leading edge bin is drawn to cross the time (TDC) axis. Figures 29 and

30 show the calibration for a group of wires in the u1 and u2 planes on the LHRS.

This time value corresponds to the t0 for this wire.

Figure 29: The t0 reference time calibration for wires 1-15 in wire plane u1 of the

LHRS (see text).
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Figure 30: The t0 reference time calibration for wires 1-15 in wire plane u2 of the

LHRS (see text).

4.1.5 Gas Cherenkov Detectors

Each PMT in the Cherenkov detector collects light produced from Cherenkov

radiation due to incident particles traversing the detector. The sum of all Cherenkov

PMTs for an event is used for particle identification, so it is important that all PMTs

produce a uniform response. Since each PMT has a different high voltage applied to

provide the best response, the calibration procedure determines unique gain factors for

each PMT, which produces a uniform response of the detector. The signals from each

PMT are readout by Flash ADCs and the number of ADC channels is proportional to
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the size of the signal. A reference value is needed to which all PMTs can be matched

to. Traditionally, the reference used is the position of the single photoelectron peak

(SPE). The SPE spectrum is the response of the PMT when a photon strikes the

PMT’s cathode and only a single electron is emitted [55]. For the MARATHON

experiment, the mean of the single photoelectron peak spectrum was set to 300 ADC

channels. The calibration procedure determines the position of the SPE for each

PMT and with that determines the gain factor of each PMT. The gain factor for the

ith PMT can be expressed as:

Ci =
300

Mi

, (4.1)

where Ci is the gain coefficient and Mi is the uncalibrated mean value of the SPE

spectrum for the ith PMT. The gain coefficient, Ci, shifts each Cherenkov PMT

spectrum such that the mean of the SPE spectrum is at ADC channel 300. With

a common reference to which all PMTs have been adjusted to, a sum of Cherenkov

ADC signals for each event can be made to form the Cherenkov sum. The Cherenkov

sum before and after calibration can be seen in Figure 31.

64



0 500 1000 1500 2000 2500 3000
ADC Channels

103

104

New Calibration
Old Calibration

Figure 31: Uncalibrated versus Calibrated RHRS Cherenkov ADC sum. The dashed

line is indicated ADC channel 300 (see text).

4.1.6 Electromagnetic Calorimeter

The Calorimeters in both spectrometers are designed to measure the energy de-

posited from scattered particles entering the detector stack. Due to the differences

in the shower process of hadrons and leptons, they can be used to discriminate be-

tween hadronic background and electrons. Tracking information from the VDCs can

be used to project the track to each segment of the calorimeter. For each event,

the analyzer can determine a cluster of blocks involved in the shower process. The

sum of each cluster represents the amount of energy deposited, in ADC units. The

conversion between ADC channels to energy requires a calibration coefficient that is

unique for each PMT. The calibration procedure aims to determine this coefficient for
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each block. The high voltage applied to each PMT can change over time, in order to

maximize the response of each PMT. Thus, it is natural for the coefficients to change

and require periodic updating. The calorimeter calibration for both HRSs involves

selecting high statistics runs which will provide full coverage of the entire calorimeter

geometry. A minimization routine is performed which minimizes the function [56]:

χ2 =
N∑
i=1

[ ∑
j∈Mj

ps

Cj · Aij +
∑
k∈Mk

sh

Ck · Aik − pi
]2
, (4.2)

where the sum is over all events N , j and k are the number of preshower and shower

blocks in the reconstructed cluster, Mps and Msh respectively, and Ci and Ck are

the calibration coefficients that are determined from the minimization routine which

translate the ADC value to energy. As mentioned previously, an electron will deposit

nearly all of its energy in the calorimeter. A reasonable check of the calibration is

to plot the E/p spectrum, where E is the total amount of energy deposited in the

calorimeter, given by

E = Elayer1 + Elayer2 , (4.3)

and p is the reconstructed momentum from the particle track. E/p should follow a

Gaussian distribution, with a mean value of 1. Figures 32 and 33 are plots of E/p

for the LHRS and RHRS calorimeters respectively. Both show the spectrum before

and after the calibration with a noticeable improvement for each. The resolution of

the RHRS calorimeter is better than that of the LHRS due to the difference in total

radiation lengths of each.
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Figure 32: Comparison of E/p spectrum for LHRS before and after calibration.
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Figure 33: Comparison of E/p spectrum for RHRS before and after calibration.
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CHAPTER 5

Data Analysis

5.1 Cross Section Ratios

This chapter will explore the steps and procedures necessary for calculating exper-

imental cross section ratios. Nuclear physics experiments such as MARATHON are

fundamentally counting experiments, where the goal is to measure a certain reaction

given the predetermined kinematics. For inclusive electron scattering, this is achieved

by measuring the number of scattered electrons which satisfy a set of criteria. While

in principle this is straightforward, care must be taken when selecting the electrons

to account for background and contamination sources which would otherwise appear

as good events. To extract absolute cross sections, one must either determine the

acceptance function of each High Resolution Spectrometer or, simulate the yield us-

ing a Monte Carlo event generator and cross section model [47], both of which will

introduce additional uncertainties to the final cross section ratio. These additional un-

certainties, which can be large, may preclude any meaningful conclusions from being

made from the final results. For this reason, the proposed plan of the MARATHON

experiment was to instead measure cross section ratios. This is due to the fact that

many of the systematic uncertainties cancel in the ratios. By measuring cross section

ratios, it is possible to achieve the physics goals of the experiment while reducing
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the overall systematic uncertainties. The cross section ratio effectively reduces to

the ratio of the yields of the individual targets. The total yield, Y , is expressed by:

Y =
NeC

LT QρTcor
, (5.1)

where Ne is the number of scattered electrons, C represents corrections which are

applied multiplicatively and includes charge symmetric and endcap background, LT

is the electronic live time of the DAQ, Q is the total beam charge, ρ is the target

density, and Tcor is a target density correction. In the following sections each of the

components in Equation 5.1 will be discussed.

5.2 Event Selection

In order to accurately count electron events, sensible cuts must be applied on a se-

ries of quantities which act to ensure the quality of the data. These cuts should be re-

strictive enough to effectively limit the amount of background in the measured events

while loose enough to record almost all electron events of interest. The quantities on

which cuts were applied include the number of tracks in the VDCs, the Cherenkov

ADC sum, E/p, the reaction vertex position (ztg), spectrometer acceptance, and W 2.

Among the cuts listed, several were applied uniformly to both spectrometers and all

kinematics. These include a T2 trigger signal (S0 & S2m & GC), a single track in the

VDCs, W 2 > 3.24 (GeV/c2)2, and E/p > 0.70. Table 6 lists those cuts which were

either kinematic or spectrometer specific. Table 6 does not list cuts applied to either

φtg or θtg due to the geometrical nature of the cuts, which will be discussed more in

the following section. Also, definitions for ztg, φtg, and θtg are provided in Appendix

A.
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Kin Cherenkov Sum ADC Reaction Vertex (m) δp
0 1500 -0.08 < ztg < 0.10 -0.035 < δp < 0.045
1 1500 -0.08 < ztg < 0.10 -0.035 < δp < 0.045
2 1500 -0.08 < ztg < 0.10 -0.035 < δp < 0.045
3 1500 -0.08 < ztg < 0.10 -0.035 < δp < 0.045
4 1500 -0.08 < ztg < 0.10 -0.035 < δp < 0.045
5 1500 -0.09 < ztg < 0.10 -0.035 < δp < 0.045
7 1500 -0.09 < ztg < 0.10 -0.035 < δp < 0.045
9 1500 -0.095 < ztg < 0.10 -0.035 < δp < 0.045
11 1500 -0.095 < ztg < 0.10 -0.035 < δp < 0.045
13 1500 -0.10 < ztg < 0.105 -0.035 < δp < 0.045
15 1500 -0.10 < ztg < 0.105 -0.035 < δp < 0.045
16 2000 -0.15 < ztg < 0.11 -0.030 < δp < 0.045

Table 6: Event Cuts used for each kinematic. Note that kinematics 0-15 correspond
to the LHRS while kinematic 16 corresponds to the RHRS.

5.2.1 Acceptance and Momentum Cuts

The reconstructed acceptance quantities of both spectrometers are determined

through an optimization of the extraction of the optics matrix elements. The relevant

quantities are δp, θtg, φtg, and ytg where θtg, φtg, and ytg are defined in terms of the

target coordinate system as illustrated in Figure 61 in Appendix A. The quantities

θtg and φtg are the in-plane and out-of plane angles from the central ray of the

spectrometer, ytg is the transverse position at the target, and δp is the fractional

momentum deviation from the central momentum, given by:

δp =
∆p

p0
, (5.2)

where p is the momentum of the scattered particle and p0 is the central momentum

setting of the spectrometer.

Cuts must be placed in these variables to exclude regions where the optics matrix

elements are not well constrained. Explicit cuts were made on δ, θtg, φtg, which
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were similar to standard acceptance cuts traditionally used in Hall A. A number of

different but reasonable combinations of the δ, θtg, φtg cuts were applied to determine

the overall reliability of the final cuts chosen. A maximum change of 0.2% was

observed in the cross section ratio by altering the acceptance cuts. An uncertainty

of 0.2% from the acceptance cuts is applied to each cross section ratio. Figures 34

and 35 illustrate the angular acceptance cuts used for the LHRS and RHRS systems,

respectively.
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Figure 34: LHRS angular acceptance for the 3H target at kinematics 1. The red lines
outline the angular acceptance cuts applied.
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Figure 35: RHRS angular acceptance for the 3H target at kinematics 16. The red
lines outline the angular acceptance cuts applied.

5.2.2 Particle Identification

The gas Cherenkov detector, along with the electromagnetic calorimeter, formed

the particle identification (PID) set used to separate electrons from various back-

ground sources. For MARATHON, pions (π−) were the primary background. Both

the gas Cherenkov and electromagnetic calorimeter detectors are designed to suppress

the hadronic background, based on the Ethresh required to create Cherenkov radia-

tion, and the total amount of Energy (Etot) deposited in the calorimeter. With these

in mind, cuts were placed in each detector to minimize background sources. Cuts

on the Cherenkov ADC sum and E/p spectrum constitute the PID cuts used in the

analysis. Figure 36 shows the PID cuts placed on the Cherenkov ADC sum and E/p
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quantities. One can see that the combination of these cuts removes nearly all of the

non-electron events. To check the validity of the cuts, sensible variations to the cuts

were made to check the sensitivity of yields to the PID cuts applied. Variations of

less than 0.1% were observed to the yield ratios, indicating little contamination as

well as a reasonable choice in PID cuts.

Figure 36: Cherekov ADC sum versus E/p for the 3H target at kinematics 1. The
red lines indicate the cuts placed on the Cherenkov ADC sum and E/p quantities.

5.2.3 z Target Reconstruction

Each event with a track in the VDCs is reconstructed back to the target. The

reconstructed location along the target cell is known as the target z reaction point.

The spectrum of the events from the thick Aluminum endcaps of each target cell

may have appreciable tails, as can be seen in Figure 37. If the target z cuts are too

loose, these tails can extend into the gas electron sample, and conversely, if they are
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too strict, they would remove otherwise good events and greatly reduce the overall

statistics. The target z cuts applied are kinematic dependent and were checked by

varying them and comparing the change in the final yield ratios. The target z cuts

for each kinematic are listed in Table 6.
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Figure 37: Reconstructed position of the origin of the events along the 3H target cell
(for kinematics 1). The two large peaks are due to scattered electrons originating
from the upstream and downstream target endcaps.
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5.3 Charge Calculation

The Beam Charge Monitors (BCMs) measure the beam current delivered to the

Hall as seen by the target. The beam current I is given by:

I = g ∗ BCMfreq + b , (5.3)

where g and b are the gain and offset of the BCM receiver, which are coefficients

determined from the BCM calibration, and BCMfreq is the response of the BCM

receiver. Equation 5.3 defines the current between 2 scaler events. To determine the

total charge delivered, Qtot, one must integrate the current over the total time,

Qtot =

∫
Idt . (5.4)

The overall stability of the BCMs during the experiment, and in particular, the dnew

receiver, allowed for the determination of a single gain and an offset value, which

could easily be applied over the entirety of the MARATHON experiment. These two

coefficients were determined from a global fit to the calibrations performed during

the experiment.

5.4 Target Density

When the electron beam interacts with the target, it can cause local heating and

induce density reductions of the gas in the target cell. This effect, often referred to as

“target boiling”, is both target configuration and beam current dependent. A thor-

ough study of the effect for the gas targets was made during the run period previous

to MARATHON, and an additional set of data was taken during MARATHON to

confirm the results. To quantify the effect, data were taken over a series of currents

ranging between 2.5 and 22.5 µA for each gas target as well as the solid carbon target.
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The solid target should exhibit no density fluctuation with current variations so it

can be used as a benchmark to ensure the method applied is correct. For a given

target, charge-normalized yields were calculated at each current setting. The data

sets were taken at the same kinematic setting and over the same time period. Thus

any changes in the normalized yields are due to density fluctuations of the target [57].

Figure 38 illustrates the effect of each of the four gas targets. The density reduction

for each target was parameterized in terms of a second-order polynomial fit given by:

ρcor = p0 + p1I + p2I
2 , (5.5)

where p0, p1 and p2 are the fit coefficients and I is the average current for a given run,

calculated from Equation 5.3. This fit function was then applied to correct for the

density fluctuation of each target on a run-by-run basis. The vast majority of data

taken for MARATHON was with a current near 22.5 µA, indicating that tritium and

deuterium would experience approximately a 10% reduction in density.

5.5 Dead Time

Due to finite limitations of the Data Acquisition System (DAQ), not every event

that produces a trigger will be recorded. Thus the total yield needs to be corrected

to account for these missing events. When an event produces a trigger, the Trigger

Supervisor will issue a Level 1 Accept (L1A) signal, which is distributed to each

Readout Controller (ROC). While the trigger is being processed and the L1A signal

is still latched, no new triggers can be processed by the Trigger Supervisor. Thus, a

certain number of events that occur during this time frame will not be read out by

the ADCs and TDCs. To determine the number of events that are lost, each trigger
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Figure 38: Beam-induced target density change along with the least-squares fit for
each target. The majority of data was taken at 22.5 µA, for which an approximately
10% density reduction can be seen for both 3H and 2H gases.

is also sent to and recorded by a scaler, which acts as a counter to record the total

number of triggers during each data run. A direct comparison between the total

number of the triggers counted by the scaler to the total number of triggers that were

recorded by the DAQ will indicate the dead time of the DAQ. Therefore, the dead

time for the T2 trigger is defined by the following formula:

DTT2 =
PST2N

DAQ
T2

N scaler
T2

, (5.6)

where PST2 is a prescale factor for the T2 trigger, NDAQ
T2 is the number of T2 triggers

recorded by the DAQ, and N scaler
T2 is the total number of T2 triggers recorded by the
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scaler. As mentioned in Section 3.6.2, T2 was the production trigger used during

MARATHON. The prescale factor PST2 was 1 for the entirety of the MARATHON

experiment. The live time for each data run is then given by:

LTT2 = 1−DTT2 . (5.7)

The live time was kinematic dependent, as can be seen in Figure 39. The difference

in live time among kinematics is due to overall event counting rate, which decreased

at higher kinematics. The live time ranged between 94 and 100%.
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Figure 39: The DAQ live time for each kinematic. Shown are the live times for both
the 3H and 2H targets.
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5.6 Background Processes

Measuring electrons that have scattered off of the gas inside the target cell is

the ultimate goal but one must ensure that the events recorded did not originate

from a different physics process. Those events which were the result of an undesired

reaction should be subtracted from the final sample. Since the detectors cannot

discriminate the type of interaction that resulted in the electron event, we must use

other techniques to estimate the amount they contribute to the final sample. In the

following section, the general procedures for studying and quantifying the amount

that these sources contaminate the final electron sample will be discussed.

5.6.1 Charge Symmetric Production

In the field of a nucleus, an electron can emit a photon which can subsequently

decay into an electron-positron pair (γ → e+e−), which is a charge symmetric process.

Similarly, an electron-positron pair can be produced by electroproduction of a neutral

pion (π0), as the latter decays into photons. If this should occur inside the target

cell and an electron reaches the detector hut, it would be wrongly classified as a good

event, contaminating the sample of true scattering events. The contamination of such

background events to the electron yield can be expressed as:

Y e−

csb

Y e−
Total

, (5.8)

where Y e−

csb is the electron yield from charge symmetric background and Y e−

Total is the

total measured electron yield given by:

Y e−

Total = Y e−

csb + Y e−

DIS , (5.9)

where Y e−
DIS is the total number of scattered electron events. While there is no way to

directly discriminate between an electron scattering event and an electron produced
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via photon decay, other ways can be used to estimate the amount of this background.

Typically, this is done by measuring e+ events by reversing the polarity of all of the

magnets. This was done during MARATHON by flipping the polarity of the LHRS

spectrometer magnets to positive polarity, and measuring positron rates at kinematics

in which charge symmetric background are known to be the largest. The positron and

electron yields are calculated for each kinematic, following the same procedure, which

includes applying identical acceptance and PID cuts as well as the same systematic

corrections. The symmetric nature of the background implies that Y e−

csb = Y e+

csb , where

Y e+

csb is the positron yield. Thus, by measuring the positron yield we can determine

the contamination Y e−

csb to the measured electron yield Y e−
meas from

Y e−

DIS = Y e−

meas

(
1− Y e+

csb

Y e−
Total

)
. (5.10)

A plot of Y e−

csb /Y
e−

Total for both 2H and 3H can be seen in Figures 40 and 41 re-

spectively. To extrapolate the correction to higher kinematics, a fit of the data was

performed, which is also shown in Figures 40 and 41 . The fit has the functional form:

Y e+

csb

Y e−
Total

= eA+Bx , (5.11)

where A and B are constants determined from each fit.
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Figure 40: Ratio of e+ and e− yields for the 2H kinematics. The red dashed line is the

exponential fit used to subtract the charge symmetric background for the 2H targets.
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Figure 41: Ratio of e+ and e− yields for the 3H kinematics. The red dashed line is the

exponential fit used to subtract the charge symmetric background for the 3H targets.

81



5.6.2 Target Cell Subtraction

As can be seen in Figure 15, the target cells have thick aluminum endcaps through

which the electron beam must pass in order to interact with the gas inside the target.

Due to this fact, the vast majority of electrons that are detected in the spectrometer

resulted from scattering off either the upstream or downstream endcap, which is

illustrated in Figure 42. Even with tight target z cuts, tails from the endcaps can

extend into and contaminate events originating from the gas. To quantify this effect,

data was taken at each kinematic with an empty target cell, which is the same cell

used for the gas targets, except evacuated of gas [46]. This allows for a comparison

of the gas and empty target frame and thus the determination of the contamination

due to the target endcaps. Figure 42 shows a comparison of gas cells with the empty

target cell. To determine the amount of contamination to each gas target from the

endcaps, the standard acceptance and PID cuts were applied to both empty target

and gas target data. For empty target data, the z target cut applied associated events

with either the upstream or downstream endcap. As an example, for kinematics 1,

the z target cut applied to the gas target was -0.08 m < z < 0.10 m while for the

empty target the same cut was divided such that:

• -0.08 m < z < 0.00 m : Events are associated with the upstream endcap.

• 0.00 m < z < 0.10 m : Events are associated with the downstream endcap.

The charge normalized yield is a function of the target thickness for which the up-

stream and downstream endcaps of each target cell have different thicknesses, requir-

ing the division above.

82



0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
z vertex [m]

100

101

102

103

104
Ev

en
ts

Empty Cell
3H
2H

Figure 42: Comparison of events from cells filled with 3H and 2H gases and the empty

cell (for kinematics 1). A small number of events from the endcaps can be seen to

extend beyond the nominal z target cuts.

Table 7 lists the thickness for the upstream and downstream endcaps for each

target as well as the reference empty target. The final empty cell yield is then the

sum of the upstream and downstream yields:

Yempty = Yup + Ydown . (5.12)

From the normalized yields for both the gas target and the empty cell, the endcap
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Position Empty 3H 3He 2H 1H

Upstream 0.254±0.005 0.253±0.004 0.203±0.007 0.215±0.004 0.311±0.001
Downstream 0.279±0.005 0.343±0.047 0.328±0.041 0.294±0.056 0.330±0.063

Table 7: Endcap thickness for gas and empty cell targets. All units are in [mm].

contamination (ECC) for a single target is then given by:

ECCtarg = 1− Ygas − Yempty
Ygas

. (5.13)

The correction applied to the cross section ratios is the ratio of contamination from

respective targets

δECC =
ECCtarg(1)
ECCtarg(2)

. (5.14)

A fit of δECC as a function of x was performed for each cross section ratio of MARATHON

, which is shown in Figure 43. Each fit gives the corresponding endcap contamination

correction for each cross section ratio, and for each bin in x.
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Figure 43: Fit of the Endcap correction factor which is applied to cross section ratios
measured by MARATHON.

5.7 3H Decay

The 3H nucleus has a half-life, τ , of 4500±8 days [58]. The decay of 3H proceeds

via the β-decay reaction:

3H→3 He + e− + ν̄e . (5.15)

Over the lifetime of the experiment, a portion of 3H in the target will be converted

to 3He, introducing a source of contamination for the 3H electron sample. Figure 44

shows the percentage of tritium remaining in the target cell as a function of time.
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Figure 44: Percentage of tritium gas remaining in the 3H target cell. The open
circles indicate recorded data runs. The plot begins at the start of the MARATHON
experiment. The tritium target was filled ≈ 80 days before the start of MARATHON.

Taking into account the initial amount of 3H and 3He present in the cell at the

fill date [46], one can extrapolate to determine the amount of 3H and 3He in the 3H

target cell at a given time, using the following formulas:

n3H(t) = n0
3H e

−t/τ (5.16)

n3He(t) = n0
3He + n0

3H

(
1− e−t/τ

)
, (5.17)

where n0
3H and n0

3He are the initial number densities (t=0) for 3H and 3He respectively
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in the 3H target cell. The corrected 3H yield can then be found to be [59]:

Y C
3H = Y raw

3H

(
Qtot

Qtot − 〈f3He〉

)
− Y3He

(
〈f3He〉

Qtot − 〈f3He〉

)
, (5.18)

where Y C
3H and Y raw

3H are the corrected and raw 3H yields respectively, Y3He is the 3He

yield, Qtot is the total beam charge, and 〈f〉 is the charge-weighted helium fraction.

To account for the time dependence of the effect, this correction was applied on a

run-by-run basis.

5.8 Radiative Corrections

The cross section depicted in the Feynman diagram in Figure 1 is the lowest order

interaction in α, referred to as the Born cross section. Experimentally, the measured

raw cross section is a convolution of higher order processes, beyond the Born cross

section, as well as additional processes due to electromagnetic interactions [60]. These

are typically separated into external radiative effects that occur before and after the

scattering of the electron, and internal radiative effects that occur at the scattering

interaction vertex.

The above effects can introduce elastic, quasi-elastic, and inelastic tails to the

measured cross section. These processes need to be estimated to accurately report

the Born cross section. Figure 45 illustrates terms beyond the Born approximation

which can contribute to the measured cross section. These terms include vacuum

polarization, electron self-energy, and the electron vertex correction [60]. Along with

these, bremsstrahlung radiation both before and after scattering are accounted for

and are visualized in Figure 46.
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Figure 45: Higher order processes to the single photon exchange approximation for

electron nucleus scattering.

Figure 46: External bremsstrahlung radiation processes.

A package in the Hall A Single Arm Monte Carlo (SIMC), “T2 Externals” [61],

was used to calculate the fully radiated and Born cross section based on the seminal

work of Mo and Tsai [60]. Reasonable model cross sections for each target are re-

quired to implement the correction.
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Figure 47: Radiative correction factor for the helium and deuteron DIS cross sections.

A comparison of the Born and fully radiated cross section allows for the determi-

nation of the radiative correction factor (RC) according to:

RC =
σBorn
σRadiated

. (5.19)

The Born and radiated cross sections were calculated for each kinematics. Figure

47 shows the radiative correction factors for the 3H and 2H DIS cross sections respec-

tively, as a function of x. Finally, in order to determine the uncertainty associated

with the radiative correction due to cross section input, several realistic cross section

input models were used to calculate the correction. From a comparison of the correc-

tions using different models, an uncertainty of ± 0.5% on the radiative correction is

included in the final cross section ratios.

5.9 Coulomb Correction

The interaction of the incident electron with the Coulomb field of the target

nucleus will shift the initial and scattered energies of the electron from the values

calculated at the reaction vertex. To account for this shift, a “Coulomb correction”
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needs to be applied to the cross section ratio. The Coulomb correction applied used

is the “effective Q2 approximation”. In this approximation, it is noted that while the

initial and scattered energies will change by some amount, they will change in the

same proportion leaving the energy transfer ν (E-E ′) unchanged. Recalling from the

definition of Q2 and x given in Equations 1.4 and 1.28, the Q2 and x of the interaction

at the vertex will change due to these shifts. An effective Q2
eff at the vertex can be

determined using [62]:

Q2
eff =

(
1 +

3Zα~c
2RE

)
Q2 , (5.20)

where

R =

√
5〈r2〉

3
, (5.21)

is the hard-sphere-equivalent radius of the nucleus, Z is the number of protons, E is

the beam energy, and the quantity 〈r2〉 is the mean square radius of the nucleus and

is given in Table 8 [63]:

Nucleus 〈r2〉 [fm]
3H 1.68
2H 2.14

Table 8: Mean square radius of the 3H and 2H nuclei [63].

With Q2
eff , one can then determine the corresponding xeff . Using a reliable

model, the cross section can be determined at both the standard (x,Q2) and shifted

(xeff ,Q
2
eff ) kinematics.
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In the effective Q2 approximation, the Coulomb correction factor (CCoulomb) is found

from a direct comparison of both cross sections, given by:

CCoulomb =
σ (x,Q2)

σ
(
xeff , Q2

eff

) . (5.22)

Figure 48 shows the Coulomb correction factor for each of the 2 gas targets. As one

can see, the Coulomb correction for both 3H and 2H increases with x to at most a

0.3% value per target.
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Figure 48: The Coulomb correction factor for 3H and 2H gas targets as a function of
x. The largest correction is at high x where it reaches a maximum value of 0.3%.

5.10 Bin Centering Correction

Each spectrometer has a finite acceptance through which scattered electrons can

make it to the detectors. The final yield is binned in x and is reported at each bin

center. Depending on how strongly the cross section falls across the acceptance of the
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spectrometer, the average value may differ significantly from that at the bin center.

Unlike the elastic cross section which is known to fall drastically, the DIS cross section

is not expected to vary so dramatically, but the variation must be accounted for. To

investigate this effect on the final ratio, a model cross section was used to determine

the magnitude of the bin centering correction needed to be applied. By integrating

the cross section over the width of a given bin, one can determine the average cross

section value in comparison with the cross section at the bin center. The difference

in these cross sections, results in a bin center correction factor (BCC) which should

be applied to the final cross section ratio. The correction factor for a single target is

given by:

BCC =
σCenter
σAverage

, (5.23)

where σCenter and σaverage are the model cross section at the bin center, and the average

cross section over the bin of width ∆x. Therefore, one can apply the correction to

the measured yields as:

YBC = YAverage ∗BCC , (5.24)

where the YBC is the yield reported at the bin center and YAverage is the measured

yield.
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CHAPTER 6

Results and Discussion

6.1 3H/2H Results

The final 3H/2H cross section ratio values were analyzed from 12 different kine-

matic settings, with several of the spectrometer settings taken in different time peri-

ods. Table 9 lists the central kinematic values (E, E ′, Q2, θ, and x) for each kinematic

setting. After ensuring consistency, these coinciding kinematics were eventually com-

bined. Likewise, due to the large acceptance of the HRS spectrometers, there was

considerable overlap in x among different kinematics, especially at lower x. Figure

49 is a plot of Q2 versus x and illustrates the x overlap between adjacent kinematics.

Each kinematic is analyzed separately but overlapping x bins need to be combined in

order to report the final cross section ratio for each bin. These bins are combined by

taking the weighted average of the corresponding data yields:

Y =

∑
i

Yi∑
i

wi
, (6.1)

where the weight factor wi is given by

wi =
1

σ2
i

, (6.2)

and the σi’s are the statistical errors associated with each bin.
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Kin E E ′ Q2 θ x
(GeV) (GeV) [(GeV/c)2] (deg)

0 10.59 3.1 2.79 16.90 0.19
1 10.59 3.1 3.06 17.58 0.22
2 10.59 3.1 3.61 19.12 0.26
3 10.59 3.1 4.19 20.58 0.29
4 10.59 3.1 4.76 21.93 0.34
5 10.59 3.1 5.31 23.21 0.38
7 10.59 3.1 6.47 25.59 0.46
9 10.59 3.1 7.56 27.77 0.54
11 10.59 3.1 8.71 29.92 0.62
13 10.59 3.1 9.84 31.73 0.70
15 10.59 3.1 10.96 33.56 0.78
16 10.59 2.9 11.83 36.12 0.82

Table 9: Kinematic settings of the MARATHON experiment.

From these weighted average yields, the per nucleon cross section ratio can be formed

3H
2H
≡ Y (3H) /3

Y (2H) /2
, (6.3)

where Y (3H) and Y (2H) are the final yields per bin for tritium and deuterium re-

spectively. Figure 50 shows the raw 3H/2H per nucleon cross section ratio. Statistical

and systematic errors have been added in quadrature. Table 10 in Appendix C lists

the raw cross section ratio along with the statistical and systematic uncertainties for

each bin. Finally, recalling Equation 2.4, the final cross section ratio reported can be

interpreted as the structure function ratio of F
3H
2 /F

2H
2 .

6.2 Normalization

Along with the EMC effect of tritium, MARATHON also measured the EMC effect

of helium-3, as well as the 3H/3He cross section ratio to extract the F n
2 /F p

2 ratio. Each

experimental cross section ratio depends on several quantities as discussed in chapter

5, including the individual target densities. A possible source of uncertainty revolved
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Figure 49: A plot of Q2 versus x to illustrate the x overlap between adjacent kinemat-
ics. Overlapping x bins were combined from the weighted average of corresponding x
bins.

around the target densities of both tritium and helium-3. As can be seen in Table

4, the uncertainties for tritium and helium-3 are twice that of the deuterium and

hydrogen. This was anticipated and the experimental proposal outlined a method of

normalizing MARATHON’s 3H/3He cross section ratio by comparing the extracted

F n
2 /F p

2 from the 3H/3He cross section ratio to F n
2 /F p

2 extracted from the 2H/1H cross

section ratio at x ≈ 0.3 where nuclear effects are small and tend to cancel in the cross

section ratio. For this reason, MARATHON took high statistics hydrogen data in this

low x region. With the additional 1H data, we could first compare MARATHON’s

raw 2H/1H cross section ratio with that of established results from the Stanford
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Figure 50: Raw 3H/2H cross section ratio. No isoscalar correction has been applied
to the ratio. Statistical and systematic uncertainties have been added in quadrature.

Linear Accelerator Center (SLAC). Such a comparison would provide confidence in

the extracted F n
2 /F p

2 , given a reliable model, from the 2H/1H cross section ratio. This

could then be used to normalize the 3H/3He cross section ratio. Along with F n
2 /F p

2

extractions from the 2H/1H and 3H/3He cross section ratios, extraction from the

3H/2H and 3He/2H cross section ratios is also possible, albeit with larger uncertainties.

In the region of x ≈ 0.3, within uncertainties, all four ratios should give similar results.

The same procedure could then be used to normalize the 3H/2H cross section ratio

as well.

A theoretical input is required to extract the F n
2 /F p

2 . For this purpose, MARATHON
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utilized a model provided by Sergey Kulagin and Roberto Petti (KP) [64]. This

model provides reliable predictions suitable for the MARATHON experiment, and

in particular for 1H, 2H, 3H, 3He DIS cross sections as well as F n
2 and F p

2 structure

functions. Also, the KP model has made predictions for a variety of other EMC

ratios which have been shown to be in excellent agreement with experimental data.

Using the KP model, the extraction of F n
2 /F p

2 from 2H/1H, 3H/3He, and 3H/2H can

be shown to materialize through the equations:

F n
2

F p
2

=
R
(

3H
2H

)
R2

− 1

F n
2

F p
2

=
2R32

R31
−R

(
3H
2H

)
2R
( 3H

2H

)
− R32

R31

F n
2

F p
2

=

3R2

2R31
R
(

3H
2H

)
− 1

2− 3R2

2R31
R
( 3H

2H

) ,
(6.4)

where R
(

2H
1H

)
, R

(
3H
3He

)
, and R

(
3H
2H

)
are the experimentally measured cross section

ratios and R2, R31 and R32 are theoretical inputs from the KP model, and are defined

as:

R2 =
F

2H
2

F n
2 + F p

2

R31 =
F

3H
2

2F n
2 + F p

2

R32 =
F

3He
2

F n
2 + 2F p

2

,

(6.5)

where F
2H
2 , F

3He
2 , and F

3H
2 are the model F2 structure functions for deuterium, helium-

3, and tritium, respectively, while F n
2 and F p

2 are the model neutron and proton F2

structure functions. From the above formalism, one can determine both R2, R31, and
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R32 for the experimentally binned x values and thus extract F n
2 /F

p
2 . The 2H/1H cross

section ratio data were shown to be consistent with the SLAC 2H/1H data [8] as well

as the prediction from the KP model. Likewise, F n
2 /F

p
2 extracted from the 2H/1H

cross section ratio was also consistent with the expected F n
2 /F

p
2 at low x, providing

a reasonable benchmark to which other observables can be compared to. When

comparing F n
2 /F

p
2 extracted from both the 3H/3He and 2H/1H cross section ratios,

it became apparent that there was an inconsistency in the yield of either 3H, 3He, or

of both targets. A self-consistent check to determine the source(s) of the differences,

involved the extraction F n
2 /F

p
2 from 3H/2H and 3He/2H cross section ratios using the

method detailed above. This procedure indicated that the helium-3 yield needed to

be normalized up approximately +2.4 % and the tritium yield down approximately

-0.4%, as can be seen in Figure 51. With these normalizations, the extracted F n
2 /F

p
2

ratio from all four ratios are mutually consistent and agree with published SLAC

data. All 3H/2H cross section ratio results shown hereafter have been normalized

down by 0.4%.

6.2.1 Isoscalar Correction

The EMC ratio is defined as the per nucleon structure F2 function ratio to deu-

terium. For nuclei with an equal number of protons and neutrons, the per nucleon

ratio has a straightforward interpretation but for non-isoscalar nuclei where Z 6= A/2,

a correction needs to be applied to account for differences in the proton and neutron

F2 structure functions.
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Figure 51: F n
2 /F

p
2 extracted from 3H/3He and 3H/2H after normalizations of -2.8%

and -0.4% were applied to 3H/3He and 3H/2H respectively.

The form of the isoscalar correction can be determined by considering first the case

of isoscalar nuclei (Z= A/2). For any isoscalar nuclei, it can be shown that

1

2
(F n

2 + F p
2 ) =

1

A
[ZF p

2 + (A− Z)F n
2 ] . (6.6)

By substituting Z = A/2 on the right side of Equation 6.6, one finds an isoscalar

correction of fiso = 1.
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Thus, the isoscalar correction can be written as

1

2
(F n

2 + F p
2 ) = fiso

1

A
(ZF p

2 + (A− Z)F n
2 ) , (6.7)

and by rearranging terms and dividing through by F p
2 :

fiso =

1
2

(
1 +

Fn2
F p2

)
1
A

(
Z + (A− Z)

Fn2
F p2

) . (6.8)

The only input needed for the isoscalar correction is the F n
2 /F

p
2 ratio. As mentioned

in Section 6.2, F n
2 /F

p
2 was also measured in the MARATHON experiment. Figure 52

shows the fit of the normalized F n
2 /F

p
2 extracted from the MARATHON 3H/3He cross

section ratio [65] and used in the isoscalar correction. Figure 53 shows the magnitude

of the isoscalar correction applied to the 3H/2H cross section ratio.
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Figure 52: F n
2 /F

p
2 extracted from MARATHON and used in the Isoscalar correction.

The grey band is the fit uncertainty.
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Figure 53: Isoscalar correction applied to 3H/2H data. The F n
2 /F

p
2 ratio came from

MARATHON’s extraction from 3H/3He. The grey band is the isoscalar uncertainty.

6.2.2 Tritium EMC Effect

After including the normalization factor determined from the comparison of ex-

tracted F n
2 /F

p
2 values as well as the isoscalar correction, all corrections have been

applied to the 3H/2H cross section ratio. Figure 54 shows the first measured EMC

effect of 3H along with the predictions from the KP model. Table 11 in Appendix C

lists the isoscalar-corrected data along with uncertainties. One key feature to note is,

as with all measured EMC effects, there is a unity crossing at x ≈ 0.3 for the 3H EMC

effect, as can be seen in Figure 54. Also, there is a very good agreement between the

data and the KP model. The new EMC measurement of 3H will allow for further

investigations, into the source of effect, and will be discussed later in this chapter.
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Figure 54: Isoscalar Corrected 3H/2H cross section ratio from the MARATHON ex-
periment. Error bars include statistical, systematic, and isoscalar uncertainties added
in quadrature.

6.3 Cross Section Ratio Uncertainties

According to Equation 2.3, the ratio of cross sections reduces to the ratio of F2

structure functions, resulting in

σa
σb

=
F a
2

F b
2

. (6.9)

The advantage of looking directly at the cross section ratio is that many of the sys-

tematic errors associated with cross section results will cancel in the direct ratio.

Those systematic errors which cancel include the detector, trigger, and tracking effi-

ciencies. Still, not all of the errors will cancel in the ratio, such as those associated
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with the systematic corrections discussed earlier, which must be included. These

include the target density, charge symmetric background, endcap contamination, 3H

decay, Coulomb correction, bin centering, and radiative corrections. Uncertainties

from corrections such as bin centering were negligible (less than 0.1 %) and were not

included. The following section will give a brief overview of the error propagation for

the dominant sources of uncertainty.

6.3.1 Target Density

The target density correction applied to the data comes from a fit to the normal-

ized yields measured at several different beam current values. The uncertainty for

these fits must be included in the overall systematic uncertainty. The form of the fit

for both 2H and 3H is given by:

Tcor = p0 + p1I + p2I
2 . (6.10)

where I is the beam current and p0, p1, and p2 are to-be-determined coefficients. The

uncertainty in the correction factor is given by:

∆Tcor =

√(
∂Tcor
∂p0

)2

δ200 +

(
∂Tcor
∂p1

)2

δ211 +

(
∂Tcor
∂p2

)2

δ222 + ∆cov , (6.11)

where δ00, δ11, and δ22 correspond to the diagonal elements of the covariance matrix.

Likewise, ∆cov represents the terms due to the off-diagonal elements, namely δ01, δ02,

and δ12. The uncertainty must be propagated through to the yields via Equation 5.1,

∆YTcor
=

√(
∂ Y

∂Tcor

)2

∆2
Tcor . (6.12)
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6.3.2 Charge Symmetric Background

The charge symmetric background correction is a fit to e+/e− normalized yields

at low x and extrapolated to higher x values. The fit is of the form:

CS =
e+

e−
= eAx+B . (6.13)

where A and B are fit coefficients. The uncertainty can be shown to be written as:

∆CS =

√(
∂CS

∂A

)2

δ2A +

(
∂CS

∂B

)2

δ2B +

(
∂CS

∂A

)(
∂CS

∂B

)
δAB , (6.14)

where δA and δB are the diagonal terms of the covariance matrix and δAB is the off-

diagonal term. Similarly, as in the density correction, the uncertainty is propagated

to the yield by

∆YCS =

√(
∂ Y

∂CS

)2

∆2
CS . (6.15)

6.3.3 Isoscalar Correction

In order to correct for the non-isoscalarity of 3H, an isoscalar correction is applied,

using the F n
2 /F

p
2 extracted from the MARATHON 3H/3He cross section ratio. The

F n
2 /F

p
2 ratio has an associated error that needs to be included in the 3H/2H isoscalar

corrected cross section ratio. The uncertainty ∆fiso is propagated via Equation 6.8

as follows:

∆fiso =

√√√√√
 ∂fiso

∂
(
Fn2
F p2

)
2

δ2
Fn2 /F

p
2
. (6.16)

6.4 Discussion

As mentioned in Chapter 2, it has become commonplace to discuss the EMC effect

in terms of the slope of the effect between 0.3 < x < 0.7. The slope provides a unique
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comparison among different experiments, each of which has normalization uncertain-

ties which cause an overall shift of the data but will not change the magnitude of the

slope. Correlations between the strength of the EMC effect with a series of calculated

or experimentally measured quantities have been investigated to illuminate possible

connections. These quantities include the atomic mass number (A), average nuclear

density, scaled average nuclear density, average nucleon separation energy < ε >, and

short-range correlation scaling factor a2.

The next step is to extract the slope of the EMC effect of 3H, and to include it in

the correlation plots mentioned above, where available results or calculations for 3H

exists. Figure 55 shows the slope extracted from the Tritium EMC effect. The slope

was determined from a linear fit to the data between 0.35 ≤ x ≤ 0.7 and is of the

form:

y = mx+ b , (6.17)

where m is the slope and b is the intercept of the fit. The extracted slope of the

tritium EMC effect is -0.105±0.042. The uncertainty of the slope is calculated by

adding the fit and target density uncertainties in quadrature. With the extracted

slope, one can now compare all the EMC slopes from published data.

For a comparison of experimental results, data from SLAC experiment E139 [27]

and JLab experiment E03-103 [66] were used. The results from these experiments are

of high quality, with relatively small total uncertainties. One possible source of dis-

agreement when comparing results is that each experiment reports their final EMC

cross section ratios with a slightly different isoscalar correction. This difference is

mainly due to the choice of F n
2 /F

p
2 parameterization used. In order to ensure con-

sistency, each isosclar correction was first removed and then applied with a common
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isoscalar correction utilizing the MARATHON F n
2 /F

p
2 parameterizations. The slopes

were then recalculated between 0.35 ≤ x ≤ 0.7. As a final note, since there is an

overlap of measurements from different experiments, the slopes are shown for each

experiment as opposed to combining a weighted average result. This is to visualize

the agreement between data sets.
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Figure 55: Slope of 3H EMC Effect. The grey band signifies the uncertainty of the

slope. The uncertainty is calculated from the fit and target density uncertainty added

in quadrature.

6.4.1 Atomic Mass Number

Results from experiment E139 at SLAC [27], shown in Figure 8, indicate that the

magnitude of the depletion in the EMC region increases with the total number of
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protons and neutrons in nuclei, otherwise known as the atomic mass number (A).

Figure 56 is a plot of the EMC slope versus the atomic mass number. One can

see what appears to be a logarithmic dependence of the effect with increasing mass

number.
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Figure 56: EMC slope versus atomic mass number. Error bars include both statistical

and systematic uncertainties. The MARATHON 3He datum is from Reference [54].

6.4.2 Average Nuclear Density

Beyond the atomic mass number, one can instead consider the EMC effect in terms

of the average density of each nucleus. Experiment E139 noted a possible relationship

between the EMC effect and the average nuclear density but focused on the entire x
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range measured [27]. The average nuclear density, ρ, is given by

ρ =
3A

4π R3
, (6.18)

where R is the hard-sphere equivalent radius of the nucleus given by Equation 5.21.

Figure 57 shows the EMC slope |dREMC/dx| versus the average nuclear density.

There does not seem to be good agreement between the slope and the average density.

If instead, we look at the “scaled” nuclear density, where the density is scaled by a

factor of A/(A-1), the correlation appears to improve as shown in Figure 58.
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Figure 57: EMC slope versus average nuclear density. Error bars include both statis-

tical and systematic uncertainties. The MARATHON 3He datum is from Reference

[54].
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Figure 58: EMC slope versus average scaled nuclear density. Error bars include

both statistical and systematic uncertainties. The MARATHON 3He datum is from

Reference [54].

6.4.3 Average Separation Energy

The average nucleon separation or removal energy, 〈ε〉, is the average amount of

energy needed to remove a nucleon from a given nucleus. Calculations of the average

separation energy for different nuclei have been performed [64] and Figure 59 shows

the relationship between the slope of the EMC effect versus 〈ε〉. There is currently

no available calculation for the average separation energy of 3H. In Figure 59 the

assumption made is that 〈ε〉 for 3H is the same 3He. A positive correlation between
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the quantities appears to exist. A future calculation of 〈ε〉 for 3H could help to provide

further evidence of the possible relationship.
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Figure 59: EMC slope versus average nucleon separation energy. Error bars include

both statistical and systematic uncertainties. The MARATHON 3He datum is from

Reference [54].

6.4.4 Short-Range Correlations

The most recent observation has been of the correlation between the slope of the

EMC effect and Short-Range Correlations (SRCs). SRCs were discussed in Section

2.2.2. SRC Experiments performed at SLAC [67] and JLab [68] have measured the

scaling behavior of nuclei with respect to deuterium, using inclusive quasielastic scat-

tering. The cross section is given by Equation 2.9 in Section 2.2.2, where the ratio of

110



cross sections corresponds to the probability to find high momentum nucleons in the

nucleus [34]. The quantity a2(A) is referred to as the “scaling factor”. In the region x

> 1, the cross section ratio in Equation 2.9 plateaus and is independent of x. Figure

60 shows the compilation of data for the slope of the EMC effect versus the scaling

value a2(A) [69]. For the purpose of the plot, the a2(A) quantity for 3H is assumed

to be the same as that of 3He. A recent experiment at JLab has measured a2(A)

for 3H. With the addition of the EMC slope of 3H from MARATHON, the positive

correlation between the slope of the EMC effect and a2(A) is still apparent.
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Figure 60: EMC slope versus SRC scaling factor. Error bars include both statistical

and systematic uncertainties. The MARATHON 3He datum is from Reference [54].
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6.5 Conclusions

The 3H/2H deep inelastic cross section ratio was measured in the MARATHON

experiment in the Hall A facility of Jefferson Lab, which provided the first measure-

ment of the EMC effect of tritium. The cross section ratio measured over 12 different

kinematic settings. The range of Q2 and W was 3 < Q2 < 12 (GeV/c)2 and 1.8

< W < 3.25 GeV/c2, respectively. The cross section results are of high precision

with total uncertainties below 2.0%. The addition of the new tritium EMC effect

result, along with the complementary helium-3 MARATHON result [54], provides

an opportunity to further test the current proposed explanations for the effect. A

detailed study was performed by compiling existing results to extract EMC slopes

using the MARATHON isoscalar correction. This reinforced the consistency among

the existing data sets and provided the opportunity to utilize the newest extraction

of F n
2 /F

p
2 , a complementary result from the MARATHON experiment. The tritium

result, overall, appears to agree with previous results, but more data are needed to

further discern between possible sources of the effect. Finally, future experiments

aimed at measuring the spin-dependent EMC effect will be vital in further discerning

between the possible sources of the EMC effect, due the differences in the predictions

of the effect between the competing models.
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APPENDIX A

HRS Coordinate System

A.1 HRS Coordinate System

Each High Resolution Spectrometer in Hall A has a defined coordinate system,

referred to as the target coordinate system (TCS) [70]. The description of the TCS

for both the LHRS and RHRS is similar and is illustrated in Figure 61 [71].

Figure 61: High Resolution Spectrometer Coordinate System.
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The TCS is a right handed coordinate system, with the ẑtg axis pointing in the

direction of the central ray of the spectrometer and intersecting with the central sieve

hole and the x̂tg axis pointing vertically down. In this formulation, the in-plane and

out-of-plane angles, φtg and θtg, respectively can be expressed as:

φtg =
dy

dz

θtg =
dy

dz
.

(A.1)
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APPENDIX B

KP Model

B.1 Kulagin and Petti Model

The model used for comparisons of data ratios as well as used in the determination

of systematic corrections applied to data (bin centering and Coulomb correction) was

provided by Kulagin and Petti [64]. This model has been extensively compared to the

world DIS data and is used to make reliable a prediction for the unknown EMC effect

of the 3H nucleus. Also, experiments have compared their results to the predictions

made by the model [72]. The following will be a brief description of the Kulagin and

Pettit (KP) model.

B.2 Overview

The model provides a comprehensive treatment of nuclear effects, incorporating

contributions from the exchange of pions (strong force), off-shell effects of bound nu-

cleons, and nuclear shadowing due to the possible hadronic intermediate states of

the virtual photon (γ∗) [64]. Deuteron and more complicated nuclei are described

in terms of their spectral functions. The dependence on the deuteron wavefunction

ΦD was checked by using different wavefunctions. The spectral function for compli-

cated nuclei incorporates the mean-field spectral function (PMF ) as a model spectral

function to account for nucleon-nucleon correlations (PNN). The model requires the

determination of 3 parameters, related to the nuclear effect corrections mentioned

above, which are deduced from fits to combined data sets for the same target ratios

115



(FA/FD). These parameters should be common to each ratio and a weighted average

of the coefficients was found to describe all nuclei. The data sets used for the pa-

rameter extraction include data from a number of fixed target experiments, covering

a large range in x and Q2. Electron and muon beam experiments were included.

The Data sets used came from the NMC, SLAC E139, BCDMS, and FNAL E665

experiments.
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APPENDIX C

Data

C.1 Data Tables

x W 2 Q2 3H/2H ∆stat ∆syst

(GeV/c2)2 [(GeV/c)2]
0.195 12.2 2.75 0.963 ±0.003 ±0.007
0.225 11.6 3.16 0.953 ±0.003 ±0.006
0.255 11.3 3.58 0.939 ±0.004 ±0.006
0.285 10.9 3.98 0.931 ±0.004 ±0.006
0.315 10.5 4.36 0.922 ±0.004 ±0.006
0.345 10.1 4.82 0.921 ±0.005 ±0.007
0.375 9.66 5.23 0.927 ±0.007 ±0.007
0.405 9.25 5.64 0.891 ±0.008 ±0.007
0.435 8.82 6.05 0.884 ±0.008 ±0.007
0.465 8.40 6.59 0.886 ±0.009 ±0.007
0.495 7.98 6.95 0.894 ±0.008 ±0.007
0.525 7.56 7.30 0.881 ±0.009 ±0.007
0.555 7.14 7.83 0.863 ±0.009 ±0.007
0.585 6.71 8.20 0.858 ±0.009 ±0.007
0.615 6.30 8.62 0.857 ±0.010 ±0.007
0.645 5.88 9.07 0.859 ±0.010 ±0.006
0.675 5.45 9.44 0.842 ±0.011 ±0.006
0.705 5.04 9.86 0.860 ±0.011 ±0.006
0.735 4.63 10.5 0.862 ±0.010 ±0.006
0.765 4.21 10.8 0.862 ±0.011 ±0.006
0.795 3.80 11.2 0.867 ±0.012 ±0.006

Table 10: Raw 3H/2H cross section ratio results and associated uncertainties.
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x W 2 Q2 (3H/2H)iso ∆Total

(GeV/c2)2 [(GeV/c)2]
0.195 12.2 2.75 1.010 ±0.009
0.225 11.6 3.16 1.010 ±0.009
0.255 11.3 3.58 1.001 ±0.009
0.285 10.9 3.98 0.997 ±0.010
0.315 10.5 4.36 0.993 ±0.010
0.345 10.1 4.82 0.998 ±0.011
0.375 9.66 5.23 1.010 ±0.012
0.405 9.25 5.64 0.976 ±0.014
0.435 8.82 6.05 0.974 ±0.014
0.465 8.40 6.59 0.981 ±0.014
0.495 7.98 6.95 0.995 ±0.014
0.525 7.56 7.30 0.985 ±0.015
0.555 7.14 7.83 0.969 ±0.015
0.585 6.71 8.20 0.967 ±0.015
0.615 6.30 8.62 0.970 ±0.015
0.645 5.88 9.07 0.975 ±0.016
0.675 5.45 9.44 0.959 ±0.017
0.705 5.04 9.86 0.981 ±0.016
0.735 4.63 10.5 0.985 ±0.016
0.765 4.21 10.8 0.986 ±0.016
0.795 3.80 11.2 0.992 ±0.017

Table 11: Isoscalar Corrected 3H/2H cross section ratio results and associated uncer-
tainty.

118



REFERENCES

[1] B. Povh, K. Rith, C. Scholz and F. Zetsche, Particles and Nuclei: An Introduc-
tion to the Physical Concepts, Springer-Verlag, 6th edition (2008).

[2] M. Strickland, Relativistic Quantum Field Theory, Volume 3, Morgan & Claypool
Publishers (2019).

[3] F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in
Modern Particle Physics, Wiley (1984).

[4] F. E., Close, An Introduction to Quarks and Partons, Academic Press, London
(1979).

[5] P. Renton, Deep inelastic scattering and quantum chromodynamics, In Elec-
troweak Interactions, An Introduction to the Physics of Quarks and Leptons,
Cambridge University Press (1990).

[6] D. Cheng and G. O’Neil, Elementary Particle Physics: An Introduction,
Addison-Wesley (1979).

[7] I. J. R. Aitchison and A. J. G. Hey, Gauge theories in particle physics: A practical
introduction. Vol. 1: From relativistic quantum mechanics to QED, CRC Press
(2012).

[8] A. Bodek et al., Phys. Rev. D20, 1471 (1979).

[9] L. N. Hand, Phys. Rev. 129, 1834 (1963).

[10] R. Hofstadter, Nobel Lecture, nobelprize.org (1961).

[11] R. E. Taylor, Rev. Mod. Phys. 63, 573 (1991).

[12] R. W. Mcallister and R. Hofstadter, Phys. Rev. 102, 851 (1956).

[13] J. I. Friedman, Rev. Mod. Phys. 63, 615 (1991).

[14] J. D. Bjorken, Phys. Rev. 179, 1547 (1969).

[15] K. A. Olive, Chinese Physics C38, 090001 (2014).

[16] O. Nachtmann, Nucl. Phys B38, 397 (1972).

[17] R. J. Holt and C. D. Roberts, Rev. Mod. Phys. 82, 2991 (2010).

119



[18] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

[19] R. Devenish and A. Cooper-Sarkar, Deep Inelastic Scattering, Oxford University
Press, 1st edition (2003).

[20] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory,
Addison-Wesley (1995).

[21] G. Sterman et al. (CTEQ Collaboration), Handbook of perturbative QCD, Rev.
Mod. Phys. 67, 157 (1995).

[22] J. J. Aubert et al. (EMC Collaboration), Phys. Lett. B123, 257 (1983).

[23] K. Rith, Subnucl. Ser. 51, 431 (2015).

[24] V. Tvaskis et al., Phys. Rev. Lett. 98, 142301 (2007).

[25] S. Dasu et al., Phys. Rev. D49, 5641 (1994).

[26] I. R. Afnan, F. Bissey, J. Gomez, A. T. Katramatou, S. Liuti, W. Melnitchouk,
G. G. Petratos and A. W. Thomas, Phys. Rev. C68, 035201 (2003).

[27] J. Gomez et al., Phys. Rev. D49, 4348 (1994).

[28] P. Amaudruz et al. (The New Muon Collaboration), Nucl. Phys. B441, 3 (1995).

[29] S. J. Brodsky, I. Schmidt and J. Yang, Phys. Rev. D70, 116003 (2004).

[30] J. Seely, Ph.D. Thesis, Massachusetts Institute of Technology (2006).

[31] F. E. Close, R. G. Roberts, and G. G. Ross,, Nucl. Phys. B296, 582 (1998).

[32] S. Malace, D. Gaskell, D. W. Higinbotham and I. Cloet, Int. J. Mod. Phys. E23,
1430013 (2014).

[33] P. R. Norton, Rept. Prog. Phys. 66, 1253 (2003).

[34] L. B., Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen and R.
Shneor, Phys. Rev. Lett. 106, 052301 (2011).

[35] D. W. Higinbotham, G. A. Miller, O. Hen, and K. Rith, CERN Courier, April
2013.

[36] D. Nguyen, Ph.D. Thesis, University of Virginia (2018).

[37] J. Arrington, A. Daniel, D. B. Day, N. Fomin, D. Gaskell, and P. Solvignon,
Phys. Rev. C86, 065204 (2012).

[38] K. de Jager, Nucl. Phys. A737, 301 (2004).

120



[39] J. Alcorn et al., (Jefferson Lab Hall A Collaboration), Nuclear Instruments and
Methods 522, 294 (2004).

[40] https://www.jlab.org/physics/gev.

[41] https://hallaweb.jlab.org/equipment/beam/energy/arc web.html.

[42] D. W. Higinbotham, Using Polarimetry To Determine The CEBAF Beam En-
ergy, PoS, PSTP2013, 014 (2013).

[43] J. Denard, A. Saha and G. Lavessiere, IEEE Conf. Proc. C0106181, 2326 (2001).

[44] W. C. Barry, J. W. Heefner, G. S Jones, J. E. Perry and R. Rossmanith, Beam
position measurement in the CEBAF recirculating linacs by use of pseudorandom
pulse sequences, In Proceedings, 2nd European Particle Accelerator Conference
(EPAC 90), 723 (1990).

[45] https://webbook.nist.gov/chemistry/fluid/.

[46] D. Meekins, Hall A Tritium Target Configuration, Jefferson Lab Target Group,
https://logbooks.jlab.org/files/2018/11/3619916/TGT-CALC-17-020.pdf.

[47] L. Ou, Ph.D. Thesis, Massachusetts Institute of Technology (2019).

[48] K. G. Fissum et al., Nucl. Instrum. Meth. A474, 108 (2001).

[49] S. Tavernier, Experimental Techniques in Nuclear and Particle Physics, Springer,
Berlin (2010).

[50] C. Grupen and B. Shwartz, Particle Detectors, Cambridge University Press, 2nd
edition, 2008.

[51] https://coda.jlab.org/drupal/.

[52] H. Dong, Description and Instructions for the Firmware of Processing FPGA of
the ADC250 Boards Version 0x0C0D.

[53] J. Bane, Ph.D. Thesis, The University of Tennessee (2019).

[54] T. Hague, Ph.D. Thesis, Kent State University (2020).

[55] Hamamatsu Photonics K. K., Photomultiplier Tubes: Basic and Applications,
Third Edition.

[56] A. Ketikyan, H. Voskanyan and B. Wojtsekhowski, About Shower Detector Soft-
ware, JLab Internal Report (1997).

[57] S. N. Santiesteban et al., Nucl. Instrum. Meth. A940, 351 (2019).

[58] https://www.nist.gov/pml/radionuclide-half-life-measurements-data.

121



[59] T. Kutz, https://hallaweb.jlab.org/wiki/images/2/27/Tritium decay doc.pdf.

[60] L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).

[61] https://hallcweb.jlab.org/wiki/index.php/simc monte carlo.

[62] A. Camsonne et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. Lett.
119, 162501 (2017).

[63] H. de Vries, C.W. de Jager, and C. de Vries, Atomic Data and Nuclear Data
Tables 36, 495 (1987).

[64] S. A. Kulagin and R. Petti, Phys. Rev. C82, 054614 (2010); and references
therein; and private communication (2018).

[65] T. Su, Ph.D. Thesis, Kent State University (2020).

[66] J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009).

[67] L. L. Frankfurt, M. I. Strikman, D. B. Day, and M. Sargsian, Phys. Rev. C48,
2451 (1993).

[68] N. Fomin et al., Phys. Rev. Lett. 108, 092502 (2012).

[69] P. Solvignon et al., Precision measurement of the isospin dependence in the 2N
and 3N short range correlations, Jefferson Lab PAC 38 Proposal (2011).

[70] N. Liyanage, Optics Calibration of the Hall A High-Resolution Spectrometers
using the new C++ Optimizer, JLab-TN-02-012 (2002).

[71] Z. Ye, Ph.D. Thesis, University of Virginia (2013).

[72] K. A. Griffioen et al., Phys. Rev. C92, 015211 (2015).

122


	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	Electron Scattering
	Introduction
	Overview
	Electron Scattering
	QED and Deep Inelastic Scattering
	Virtual Photoproduction

	Scaling and The Quark-Parton Model
	QCD Scaling Violations

	EMC Effect
	Cross Section Ratios
	EMC Effect in Nuclei
	EMC Effect Experiments 
	EMC Models

	MARATHON Experiment

	Experimental Setup
	CEBAF
	Hall A
	Beam Line
	Beam Energy
	Beam Current Monitor
	Beam Position Monitors
	Raster

	Target System
	High Resolution Spectrometers
	Detector packages

	Data Acquisition
	Flash ADCs
	Triggers


	Calibrations
	Calibrations
	Unser and Beam Current Monitors
	Beam Position Monitor
	Raster
	Vertical Drift Chambers
	Gas Cherenkov Detectors
	Electromagnetic Calorimeter


	Data Analysis
	Cross Section Ratios
	Event Selection
	Acceptance and Momentum Cuts
	Particle Identification
	z Target Reconstruction

	Charge Calculation
	Target Density
	Dead Time
	Background Processes
	Charge Symmetric Production
	Target Cell Subtraction

	3H Decay
	Radiative Corrections
	Coulomb Correction
	Bin Centering Correction

	Results and Discussion
	3H/2H Results
	Normalization
	Isoscalar Correction
	Tritium EMC Effect

	Cross Section Ratio Uncertainties
	Target Density
	Charge Symmetric Background
	Isoscalar Correction

	Discussion
	Atomic Mass Number
	Average Nuclear Density
	Average Separation Energy
	Short-Range Correlations

	Conclusions

	HRS Coordinate System
	HRS Coordinate System

	KP Model
	Kulagin and Petti Model
	Overview

	Data
	Data Tables

	REFERENCES

