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ABSTRACT 
 

The desire to reduce construction and operating costs of future SRF accelerators 
motivates the search for higher-performing alternative materials. Nb3Sn (Tc ~ 18.3 K and 
Hsh ~ 425 mT) is the front runner. The tin vapor diffusion process is currently the 
technique of choice to produce promising Nb3Sn-coated cavities. Understanding Nb3Sn 
nucleation and growth in this process is essential to progress. Samples representing 
different stages of Nb3Sn formation have been produced and studied to elucidate the 
effects of nucleation, growth, process conditions, and impurities. Nb3Sn films with 
thickness from a few hundred nm up to ~15 µm were grown and characterized. The 
microscopic examination of samples suggests the mechanisms of thin film nucleation 
and growth. Broadly, nucleation deposits tin as a thin surface phase and, under some 
conditions, a few hundred nanometer sized particles as well. Conditions that impair 
nucleation promote the formation of defects, such as “patches”, in subsequent coating 
growth. Analysis of coated samples is consistent with the model of Nb3Sn grown in 
which tin diffuses via grain boundaries to Nb3Sn-Nb interface, where the growth Nb3Sn 
into the niobium bulk takes place. Similar scaling laws are found for grain growth and 
layer thickness. Non-parabolic layer growth is consistent with significant grain growth, 
which reduces the number of Sn-transport channels. Examination of patchy region in 
Nb3Sn coating revealed it to be large single crystalline grains, pointing to impeded 
Nb3Sn layer growth due to low grain boundary density, resulting in a significantly thin 
coating in those areas. Examination of RF loss regions from a coated cavity, identified 
with a thermometry mapping system showed patchy regions and carbonus defects were 
associated with strong local field-dependent surface resistance. RF measurements of 
coated cavities were combined with material characterization of witness samples and 
coated-cavity cutouts to improve the coating process. Understanding obtained and 
applied to cavity coatings, resulted in single-cell Nb3Sn cavities with a quality factor of 
~2 ×1010 up to 15 MV/m accelerating gradient at 4 K, without "Wuppertal" Q-slope. We 
have also produced Nb3Sn-coated CEBAF 5-cell cavities with accelerating gradients 
useful for accelerator cryomodules. This dissertation will discuss the genesis of the 
Nb3Sn coating in a typical tin vapor diffusion process, effects of different process 
parameters, and its consequences to the coating of single-cell and multi-cell SRF 
cavities. 
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Introduction 

Particle accelerators are machines that produce energetic beams of electrically 

charged particles. They are used in many applications, from advanced light sources that 

provide unique analysis tools to biologists, chemists, and material scientists, to high-

energy colliders that probe subatomic particles revealing the fundamental laws of physics. 

Accelerators are also used in numerous medical, environmental, and industrial 

applications. Superconducting radio frequency (SRF) cavities are the leading technology 

to accelerate charged particle beams in modern particle accelerators that require 

continuous-wave (CW) operation at accelerating gradients on the order of ten megavolts 

per meter. These cavities are resonant metallic structures made of a superconductor, 

chiefly Nb. SRF cavities are designed to operate at a particular frequency (typically, 

200 MHz — 3 GHz). Electromagnetic fields are excited inside the cavity by coupling in RF 

power from an external source using an antenna. When driven at the right RF frequency, 

the resonant fields build to high amplitudes. For properly adjusted timing between the 

arrival of the charged particles and the oscillating electromagnetic field, particles are 

accelerated by the electric fields and deflected by the magnetic fields. RF cavities made 

of superconducting materials enable more powerful accelerators and reduces initial and 

operating costs compared to a normal conducting material. Some examples of existing 

large SRF technology-based accelerator facilities include Large Hadron Collider (LHC) at 

CERN in Switzerland, Continuous Electron Beam Accelerator Facility (CEBAF) at 
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Jefferson Lab in U.S.A., European X-Ray Free-Electron Laser Facility (European XFEL) 

at DESY in Germany. Some notable SRF based accelerators that are under construction 

or commissioning stages are the Facility for Rare Isotope Beams (FRIB) at Michigan State 

University in U.S.A., Linac Coherent Light Source (LCLS) II at SLAC in U.S.A, and 

European Spallation Source ERIC (ESS) in Sweden. The proposed Electron-Ion Collider 

(JLEIC) at Jefferson Lab, the next upgrade for LCLS-II (LCLS-II-HE) at SLAC, and the 

Proton Improvement Plan-II (PIP-II) at Fermilab are a few of the future facilities in U.S.A. 

which plan to use SRF technology. Besides these large scale science facilities, small scale 

compact SRF accelerators are operating or under development aiming at industrial, 

medical, and security applications [1]. The basic concept of RF superconductivity followed 

by the RF cavity fundamentals are outlined in Appendix A. 

Bulk Nb (Tc ~ 9.2 K, Hsh ~ 200 mT and ∆ ~1.45 meV) is almost the only material 

used so far to fabricate SRF cavities. The main reason is that Nb has the best 

superconducting properties (Type II superconductor with the highest Tc and Hc1) among 

all the pure elements. Also, mechanical properties of Nb make it more appealing for the 

fabrication of complicated shaped cavities. Even though SRF cavities made of Nb are 

significantly more efficient and cheaper compared to normal conducting copper cavities, 

optimum performance is often attained at about 2 K. Sophisticated cryogenic facilities 

based on superfluid liquid helium are required to achieve such low temperatures. They 

are costly to build, operate, and maintain. Over the past five decades, continuing research 

and development efforts have significantly advanced the Nb SRF cavity technology. Many 

extrinsic mechanisms limiting cavity performance were discovered, and adequate 

processes were developed to avoid them. Following these advances, the state-of-the-art 

Nb cavities are now approaching the performances set by the intrinsic material properties 

[2, 3]. Looking at the trend, the gap between the practical cavity performances and the 
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theoretical best performances is closing in the not so distant future. The desire for ever 

more energetic, economical, and efficient particle accelerators inspires the pursuit of 

alternatives based on other superconducting materials. 

Nb3Sn is an intermetallic compound with superconducting properties superior to 

Nb. A few other properties of this material restrict its application into a thin film or coating 

form for successful fabrication and operation of SRF cavities. Tin vapor diffusion is so far 

the most promising technique to obtain Nb3Sn coated SRF cavities. The present study 

investigated the growth of Nb3Sn during a typical vapor diffusion process via sample 

studies. Besides witness sample studies, a coated cavity was dissected, followed by 

materials analysis of cutout samples to understand the fundamental and technical 

limitations in a real SRF accelerator cavity coating. The effects of several post-coating 

treatments were also extensively explored. 

 Organization of the Dissertation 

This dissertation first presents an introduction to Nb3Sn focused on its properties 

and history related to the SRF field. Tin vapor diffusion coating of Nb cavity interiors via a 

nucleation-then-growth sequence is described next, including the Nb3Sn coating facility 

and protocol used at Jefferson Lab. Results of systematic studies of coated samples 

undertaken to elucidate the growth mechanism during the coating process are presented 

in the next two chapters. Chapter 2 mainly focuses on the nucleation stage of the coating. 

An investigation of the coating growth mechanism as well as the study of the variation of 

different coating parameters are presented in Chapter 3. RF and thermometry 

measurement results from a Nb3Sn-coated cavity are correlated with the surface science 

findings of the cutouts from the same cavity in Chapter 4. This chapter also include results 

from material studies of witness samples associated with cavity coating and RF 

performance. Chapter 5 presents sample studies of Nb3Sn subjected to several different 
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post-processing techniques. Finally, the dissertation concludes with a summary and 

outlook for the future in Chapter 6.  

  Nb3Sn Application for SRF Accelerator Cavities 

This section presents an introduction to Nb3Sn in reference to its application for 

SRF accelerator cavities. It begins with a brief discussion of its discovery and follows with 

the fundamental material properties of Nb3Sn. A brief history of the Nb3Sn application in 

the SRF field follows with emphasis on the widely-employed vapor diffusion technique. A 

typical protocol and a description of the facility used for Nb3Sn coating via tin vapor 

diffusion at Jefferson Lab are presented, together with the basic features of coated layers.  

 Discovery and Properties of Nb3Sn 

Superconductivity in the intermetallic compound Nb3Sn was first discovered by 

Matthias et al. in 1954 [4]. The discovery came just after the discovery of V3Si [5], the first 

superconductor with A15 crystal structure by Hardy and Hulm, which Hulm recalls in his 

memoir as [6] :  

"In the spring of 1952, I was working with a graduate student, George Hardy. We 

decided that the carbides and nitrides were more or less exhausted, so we moved down 

to silicides and germanides in the second and third periods. We also began arc-melting 

our samples. These were two very fortunate moves. Not only was the general quality of 

the samples improved over our earlier sintered materials, but we soon discovered a new 

high Tc superconductor, V3Si, at 17 K. It belonged to what was then known, erroneously, 

as the beta-tungsten structure; of course, this was subsequently changed to A15. I told 

this news to Bernd Matthias almost immediately. By then Bernd Matthias had teamed up 

with Ted Geballe, Ernie Corenzwit, and Seymour Geller at the Bell Laboratories. These 
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investigators proceeded to execute a tour-deforce in creative synthesis by discovering 

about 30 new A15's, including several new high Tc materials, most prominently Nb3Sn at 

18 K, in 1954.” 

Intermetallic compounds with A15 crystal structure have the chemical formula A3B, 

where A represents a transition metal and B can be either transition or non-transition 

element. Several of the potential alternative materials (Mo3Re, Nb3Al, and Nb3Sn) have 

the A15 crystal structure. The stoichiometric A15 crystal structure of Nb3Sn is shown in 

Figure 1.1. The Sn atoms form a body center cubic (BCC) lattice. Each face of the cubic 

lattice is bisected by mutually orthogonal one-dimensional chains of Nb atoms. This gives 

a closer Nb-Nb spacing of ~0.265 nm in A15 crystal structure with a lattice parameter of 

~0.529 nm compared to ~0.286 nm in BCC crystal structure of pure Nb. This proximity 

has an important influence on the physical properties, e.g., electronic density of state at 

the Fermi energy level, which is proposed to cause the higher critical temperature in Nb3Sn 

compared to Nb.  

When Nb is combined with Sn in thermal equilibrium, several different Nb-Sn 

compounds can form. According to the generally accepted phase diagram Nb-Sn system 

by Charlesworth et al. [7], Figure 1.2, the phase of interest (Nb1-βSnβ, 0.18 < β < 0.25) can 

form exclusively above 930 °C in the presence of Nb (s) and Sn-melt. In other phase 

diagrams suggested by Tofflon et al. and by Okamoto, the threshold temperature is 911 °C 

instead of 930 °C [8–10]. It is believed that an excess of Nb atoms occupies Sn sites of 

A15 crystal structure in Nb3Sn phases with composition parameter β < 0.25. Other weakly 

superconducting phases, Nb6Sn5 (Tc < 2.68 K) or NbSn2 (Tc < 2.8 K) can occur below this 

temperature.  
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Figure 1.1: Schematic A15 crystal structure of Nb3Sn. Yellow and blue spheres represent 

Sn and Nb, respectively. Adopted from [11]. 

 

Figure 1.2: Binary phase diagram of the Nb-Sn system by Charlesworth et al. [7]. Adapted 

from [12]. 
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Superconducting properties of the Nb3Sn phase depends critically on the Sn 

content. As the atomic concentration of tin decreases from 25% to 18%, Tc drops from 

approximately 18 K to 6 K. Figure 1.3 summarizes the literature data for the critical 

temperature as a function of Nb-Sn composition. The variation can be well approximated 

by a Boltzmann function [11]:  

𝑇𝑐(𝛽) = −
12.3

1 + exp (
𝛽 − 0.22
0.009

)
 + 18.3 (𝐾) 1.1 

From equation 1.1, deviation from stoichiometric Nb3Sn results in a lower transition 

temperature and a lower energy gap. So, stoichiometric Nb3Sn is needed to attain a high 

transition temperatures in an SRF cavity. 

 

Figure 1.3: Variation of the critical temperature of Nb3Sn with Nb-Sn composition. Tc (β) 

from equation 1.1 fits the available data [11]. 

Despite having superior superconducting properties, Nb3Sn has a thermal 

conductivity about 1000 times lower than that of Nb at low temperatures [13, 14]. Further, 
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it is very brittle and prone to develop cracks easily under stress. An example of the 

formation of such crack will be discussed in chapter 5. In SRF applications, therefore, the 

compound is typically used as coating deposited on the interior of a cavity structure for 

SRF application. Thankfully, Nb3Sn and Nb have similar thermal expansion coefficients 

(9.8 × 10-6 K-1 for Nb3Sn, 7.6 × 10-6 K-1 for Nb at 20 °C), which allows the use of Nb3Sn as 

a coating on Nb.  

 Potential for Future SRF Applications 

In a broad sense, Nb3Sn has a potential to enable the development of a new 

generation of more powerful, economical, and cryogenically simplified SRF accelerators. 

Significant advantages of Nb3Sn are: 

 Because of superior superconducting properties (Tc and Hsh both twice that of Nb), 

a maximum accelerating gradient of almost twice that of Nb and higher quality 

factors are predicted. 

 Nb3Sn cavities may deliver at 4.2 K a comparable RF performance to that of Nb 

cavities at 2 K. These cavities can be operated with atmospheric liquid helium, 

simplifying and reducing the cost of the cryogenic facilities. 

 Nb3Sn has attracted researchers since the early days of superconducting RF 

cavities. In terms of fabrication and performance, no other alternative material is 

as mature as Nb3Sn. The performance of R&D Nb3Sn cavities is already very 

promising, see section 1.2.4. Several laboratories are currently working to develop 

multi-cell Nb3Sn cavities for use in accelerators. 

 Cryocoolers can be used to operate these cavities at low fields, which can enable 

efficient small-scale accelerators suitable for industrial and environmental 

applications. Some of the proposed small-scale accelerators already plan to exploit 
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this opportunity, and research has been started to use cryocoolers to operate 

Nb3Sn cavities [15, 16].  

 Nb3Sn Application in SRF 

Attempts to apply Nb3Sn in SRF cavities date back to early 1970’s at Siemens AG 

in Germany, where researchers used the tin vapor diffusion technique to coat TE011 and 

TM010 (8–10 GHz, X-band ) Nb cavities. The best values of peak magnetic field achieved 

in TE011 (9.5 GHz) cavities were: Bc = 106 mT with Q0 = 2.3 × 109 at 1.5 K and Q0~109 at 

4.2 K and Bc = 80 mT [17]. Although the geometries of those cavities were not suitable for 

particle accelerators, attained peak surface magnetic field values correspond to the 

highest accelerating gradient reported so far. Around the same time, 

Kernforschungszentrum Karlsruhe (KfK) and Wuppertal University started exploring 

Nb3Sn for SRF cavities. They undertook sample studies to explore the effect of coating 

parameters and material properties, including transition temperature, penetration depth, 

pinning behavior, and surface morphology. There were also some studies on the 

frequency dependence of the surface resistance of the Nb3Sn layer using cylindrical 

cavities. A more systematic, decade-long study of Nb3Sn was carried out at Wuppertal 

University, including a collaboration with Jefferson Lab to coat 1.5 GHz (CEBAF) single-

cell and multi-cell cavities. Their best RF performance are shown in Figure 1.4 [18]. The 

best cavity gave a low-field Q0 of ~ 1011 at 2 K and >1010 at 4.2 K, significantly higher than 

those of Nb cavities at the time. The cavity performances were consistently limited by a 

strong Q-slope with increasing gradient. The magnetic field at the onset of the Q-slope 

was very similar among them and nearly corresponded to the lower critical field of Nb3Sn 

[19]. Temperature maps showed that the effect is not local, and hence could be a 

fundamental property of Nb3Sn [20].They also coated a five-cell 3 GHz cavity which 
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achieved Q0 ~ 109 and Eacc ~ 7 MV/m [21]. Despite these encouraging results, research 

efforts diverted in the mid-90s to the newly discovered high-temperature superconductors. 

The continual improvement in fabrication-friendly Nb cavities further overshadowed the 

development of Nb3Sn for the next several years. A research group at INFN-LNL, Italy 

attempted to produce Nb3Sn coated 6 GHz SRF cavities using a so-called hybrid liquid 

diffusion process in 2006 but reported no RF measurements [22]. Research on Nb3Sn was 

revived with the Nb3Sn program at Cornell University in 2008 [23]. Development efforts 

are now also in progress at Jefferson Lab, starting in 2012, and Fermilab since 2015 [24], 

[25]. In summary, Nb3Sn is the front-running alternative material to replace Nb in SRF 

cavities and is being pursued by several research groups using different techniques [26]-

[32]. Excellent reviews are available by Kneisel [33], Eremeev [34], and more recently 

from Posen and Hall [35]. 

 

Figure 1.4: RF measurements from 1.5 GHz Nb3Sn/Nb cavities coated at Wuppertal 

University and tested at Jefferson Lab [22].  
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 Recent Developments of Nb3Sn-coated Cavities 

Following the revival of Nb3Sn research in 2009, several SRF cavities were coated 

and tested at Cornell University, Jefferson Lab, and Fermilab. The first cavities coated at 

each lab showed quality factors (Q0) as high as > 1 × 1010 at 4 K but suffered a strong Q-

slope, limiting the attainable maximum gradient. The Q-slope was very similar to that 

observed by researchers at Wuppertal, Figure 1.4. However, cavities coated at Cornell in 

2013 were able to maintain Q0 > 1 ×1010 for accelerating gradient up to 14 MV/m without 

strong Q-slopes in several cavities. These results demonstrated that the characteristic Q-

slope seen before was not fundamental. Researchers in latest studies speculated that the 

reduction in Q-slope was due to the reduction in the quantity of low tin content material in 

the RF layer [35]. Around the same time, several cavities coated at Jefferson lab 

consistently suffered from strong Q-slope. Our material analysis of samples coated at 

Cornell University and Jefferson Lab did not show any significant differences except for 

the level of Ti impurity, which was notably higher in Jefferson Lab samples. We considered 

Ti-contamination, which could transfer from (typical) Nb-Ti flanges of a cavity during the 

coating, as a potential candidate to cause strong Q-slope. During the Jefferson Lab 

coating system upgrade in 2017, Ti-free hygiene was adopted for Nb3Sn coating, which 

we correlated with our first Q-slope free cavity. Several cavities coated later resulted in Q-

slope, but they were linked to the presence of Sn-residue, non-uniformity and to 

macroscopic defects in the starting Nb substrate. After recent modifications in the coating 

protocol to mitigate these issues, cavities with significantly improved performance were 

produced.  

At the time of writing this dissertation, the best-coated cavity at Jefferson Lab had 

Q0 ≥ 2×1010 at 4 K and > 3×1010  at 2 K before quenching at  ≥15 MV/m. Figure 1.5 

summarizes the state-of-the-art performance of 1.3 GHz single-cell Nb3Sn cavities. It 
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should be noted that one of the cavities coated at Fermilab recently had been reported to 

reach a record-setting gradient of ~ 23 MV/m with Q0 > 1×1010 up to ~ 20 M/m [36]. Each 

lab is attempting to reproduce the performances of 1.3 GHz Nb3Sn cavities in other 

cavities with different resonant frequencies: 952 MHz at Jefferson Lab, 650 MHz at 

Fermilab, and 2.6/3.9 GHz at Cornell [36, 37]. Besides single-cell cavities, researchers at 

Jefferson Lab and Fermilab are progressing with Nb3Sn multi-cell cavities, as a step 

toward application in practical particle accelerators. Recent multi-cell cavities coated at 

both labs appear to reach practical accelerating gradients >10 MV/m with Q0 > 5 ×109 

before quench.  

 

Figure 1.5: State-of-the-art performances of 1.3 GHz single-cell Nb3Sn cavity at different 

labs. Data from Cornell and Fermilab were extracted from [35, 36].  
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 Tin Vapor Diffusion Coating of Nb3Sn 

Several techniques to deposit Nb3Sn layers have been attempted: chemical vapor 

deposition, co-evaporation, tin bath dipping and annealing, pulsed laser deposition, 

electro-deposition, and sputtering [28, 30, 38–43]. However, vapor diffusion coating of 

Nb3Sn on Nb, attributed to Saur and Wurm [44], is the most favorable technique so far. 

Development began in the 1970s, producing the first successful results with RF cavities 

[45–48]. It is preferred by the majority of research institutions currently working to develop 

Nb3Sn coated cavities [45, 46, 49–52]. At the time of writing this dissertation, it is the only 

technique that produces promising RF performance, attaining quality factor >1010 

operating at 4.2 K with gradient more than 15 MV/m. The essence of the process is to 

generate and transport tin vapor to the substrate Nb at a temperature above 930 ºC to 

form the Nb3Sn phase exclusively, as determined by the binary phase diagram, Figure 1.2. 

At Siemens AG, Nb resonators were initially heated with Sn inside sealed-off quartz tubes. 

After Si contamination, presumably originating from the quartz tube, was discovered in 

coated layers of Nb3Sn, reaction chambers made of Nb were used instead [53]. Initial 

efforts appeared to have two major challenges: Sn droplets on the coated surface and the 

absence of complete coating coverage [17, 48]. Post-coating treatments such as 

annealing and HNO3/HCl/Acetic/HF acid treatment were attempted to remove those Sn-

spots. Since the success of those techniques was not clear, the best approach appeared 

to be avoidance of the Sn accumulation itself. This problem still appears in some of our 

recent coating, discussed in Chapter 4 and 5. The next issue was the non-complete 

coating coverage, which was linked to non-uniform nucleation at the beginning of the 

coating process. The problem was mitigated by anodizing the substrate before the coating 

or by application of tin halides [17, 48]. We will discuss this further in the next chapter. 
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The tin vapor diffusion technique was then adopted at Wuppertal University 

following Siemens AG. In the Siemens configuration, the coating system used only one 

heater; that is, the temperature of the substrate and the tin source remained the same 

during the coating process. Unlike the Siemens configuration, the coating system at 

Wuppertal was provided with a secondary heater, which independently controlled the 

temperature of the tin-containing crucible (made of tungsten) in a long tube underneath 

the cavity, Figure 12. The addition of a secondary heater presented an extra knob to adjust 

the vapor pressure of tin at the beginning and the end of the coating process, which helped 

to tackle both of the challenges discussed above. 

 

Figure 1.6: Nb3Sn coating configuration Wuppertal [49]. 



15 
 

The fabrication of Nb3Sn cavities at Wuppertal experimental was divided into four 

steps:  

1. The Nb cavity was manufactured, subjected to standard preparation treatments for 

surface optimization, and tested to ensure its RF performance in the 

superconducting state. 

2. The second step was the formation of Nb-Sn nucleation centers on the Nb cavity 

surface. An oxide layer was grown on the Nb surface by electrolytic anodization of 

the cavity before mounting in the coating furnace. A small tray was suspended 

from the top of the cavity and filled with a small amount of SnCl2 (~ 20 µm.cm2). 

The Sn chloride was assumed to evaporate at 500 °C to deposit Sn on the Nb 

surface. This temperature was typically held constant for 5 hours. Nb2O5 was 

believed to decompose, bringing Nb into contact with the deposited Sn to yield a 

uniform layer of Nb-Sn nucleation centers. 

3. The third step was to form a Nb3Sn layer of several microns. The temperature of 

the cavity and the tin source was typically raised to 1100 °C and 1200 °C, 

respectively, and held for 3 hours. The cavity heater was switched off half an hour 

later than the tin source to avoid surplus Sn on the final Nb3Sn layer. 

4. The fourth step is the cavity cooling down, during which it was speculated that the 

spurious low Tc Nb-Sn phases formed. To remove them, the Nb3Sn cavity surface 

was oxipolished. Here, the coated cavity was anodized, and the oxide layer was 

dissolved subsequently with 48% HF acid. This step was repeated several times 

until a thickness of (0.1–0.5) µm was removed. The cavity was rinsed with water 

and methanol.  

Present vapor diffusion processes mostly follow the Wuppertal or Siemens 

protocol, with some modifications to the setup. The coating systems at the Cornell and 
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Fermilab are provided with a secondary heater for the tin source: the Wuppertal 

configuration. The horizontal coating system at Fermilab has two separate sources aiming 

to coat the 9-cell 1.3 GHz cavities uniformly. The furnace design at Jefferson Lab, 

discussed in the next section, does not have a separate heater for the tin source: the 

Siemens configuration. The comparison of coating configurations at different coating 

facilities, adopted from [35], is shown in Figure 1.7. 

 

Figure 1.7: Schematic of Nb3Sn coating furnaces at different labs (adopted from [35]). 

Siemens AG had used two configurations A and B. 

 Jefferson Lab Coating System 

The vapor diffusion process was adopted at Jefferson Lab in 2012. It was initially 

designed to coat 1.3–1.5 GHz single-cell cavities [25]. The system consists of two main 

parts: the furnace that provides a clean heating environment to the coating chamber and 

the coating chamber (“insert”) that hosts the process vapors to coat Nb parts. The high 

vacuum furnace was procured from T-M Vacuum Products Inc.; the coating chamber was 

built in-house at JLab. The coating chamber and the furnace are provided with separate 

pumping systems for evacuation. The coating system has gone through several upgrades 

since its commissioning. A major upgrade was in 2017 when both the furnace and the 
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coating chamber were modified to accommodate original five-cell CEBAF cavities, Figure 

1.8 [26]. To replace the original coating chamber (32’’ long × 11.5’’ OD), a new coating 

chamber was fabricated out of a 4 mm Nb sheets into a 17’’ OD by 40’’ long cylinder via 

rolling half-cylinders and electron beam welding them. The bottom end of the hollow 

cylinder was closed by an electron beam welding a 4 mm Nb blank, which was deep-

drawn into a dome shape for mechanical stability. Following unsuccessful attempts to 

braze the top end of the cylinder to a stainless steel flange, the cylinder was TIG welded 

to a 21’’ OD titanium (grade 5) flange, which had half-dovetail 0.25" o-ring grooves on one 

side. 

It should be noted that the first choice was a stainless-steel flange to avoid having 

any titanium close to the chamber, as the titanium was speculated to cause Q-slope in the 

Nb3Sn-coated cavities [54]. Since the flange resides outside the heating zone, we were 

confident not to derive any Ti contaminations to the coating chamber, which was verified 

later by secondary ion mass spectroscopy (SIMS) analysis of coated samples in the new 

chamber. The bottom side of the Ti flange provided vacuum insulation via o-ring to the 

new furnace door, and the o-ring on the other side was sealed against a zero-length water-

cooled reducer. This zero-length reducer allowed to re-use instrumentation and to 

evacuate using the existing multiport spool piece and top plate. To accommodate larger 

cavities, the furnace volume had to be increased, which was accomplished by replacing 

the original flat furnace door with a dome-shaped door and extending the heat shields at 

the top. The door that sits on top of the furnace was procured from Kurt J. Lesker Company 

per specifications provided by Jefferson Lab. It interfaces with the furnace vacuum vessel 

on the bottom via an O-ring seal and has annother O-ring seal on the top, which mates to 

the reaction chamber titanium flange. The heat shields were built in-house out of 0.015" 

molybdenum and Nb sheets. Six heat shield layers were used, similar to the construction 
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in the existing furnace. The heat shields were supported by a stainless steel support 

cylinder around them. Three Nb rods were attached at the top to the multiport plate and 

extended downwards into the hot zone. Nb rods support a 4 mm Nb plate, to which the 

top flange of a cavity or the sample chamber is attached with molybdenum hardware. 

Figure 1.8[left] shows the latest sketch of the coating chamber. The coating facility is 

shown in Figure 1.8 [right]. 

 

   

Figure 1.8: A sketch of the upgraded coating chamber is shown in the image to the left. A 

CEBAF 5-cell cavity is shown loaded inside the hot zone of the furnace. A sample chamber 

replaces the cavity during the sample coating experiments. The coating system is shown 

at right.  

Several type C thermocouples extending into the hot zone were added to monitor 

the temperature of cavities during coating. The first run with the thermocouples showed 
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that a temperature gradient of about 70 °C exists from bottom to the top of the hot zone, 

while the three furnace thermocouples outside the coating chamber indicate uniform 

temperature within 0.3 °C. The furnace control relies on these temperatures measured by 

the thermocouples outside the chamber. The gradient was compensated to about 20 °C 

by adjusting the three independently controlled heating elements of the furnace. All the 

experiments presented in chapter 2 of this dissertation were conducted before the coating 

system upgrade and cited experimental temperatures were based on the temperatures of 

different heating zones. Elsewhere, we will explicitly refer to the upgraded coating system 

for experiments conducted following the coating system upgrade.  

 Nb3Sn Coating Process 

A “standard” procedure to coat samples and cavities is described here briefly. 

The substrate samples were 10 mm × 10 mm Nb coupons, cut by electrical 

discharge machining (EDM) from 3 or 4 mm thick, high RRR (~300) sheet material of the 

type used to fabricate SRF cavities. Most of the samples were subjected to buffered 

chemical polishing etch (BCP) using a solution of 49% HF, 70% HNO3, and 85% H3PO4 

in the ratio of 1:1:1 or 1:1:2 by volume for minimum removal of 50 µm. This etching process 

removes the “damaged” layer exposing a clean Nb surface. A subset of those samples 

further received metallographic polishing, also known as nanopolishing (NP), to obtain 

smoother surfaces. Nanopolishing typically removes >100 µm and produces smoother 

surfaces that are favorable to most material characterization techniques. The average 

roughness of NP samples was below 5 nm, measured from 50 µm × 50 µm scan areas 

using atomic force microscopy (AFM). Another subset of samples was electrochemically 

anodized in 15% NH4OH solution by applying a fixed cell voltage of 30 V. The thickness 

of the oxide layer was estimated to be ~60 nm for those samples using the thickness-
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voltage ratio from [55]. A few Nb samples received electropolishing (EP) using a 1:9 

mixture of 49% HF and 96% H2SO4 for one hour at room temperature with ~10 V DC 

voltage, removing about 30–40 µm.  

The coating chamber (insert) houses a sample chamber made of Nb with a shelf 

inside to mount coupon samples, Figure 1.9. One gram (~3 mg.cm-2) of 99.999% or better 

purity tin shots and an equal amount of 99.99% tin chloride powder (from American 

Elements) were packaged loosely in Nb foil and placed on the Nb foil which covered the 

bottom end of the sample chamber. Nb foil was commercial grade unalloyed Nb from 

Eagle Alloys. Sn and SnCl2 vapor are expected to exit from the package readily from the 

narrow openings. The top end was later covered by Nb foil after mounting the experimental 

coupon samples inside. The sample chamber, samples, chemicals, and the covering foils 

were assembled in the cleanroom to limit any contamination before installation into the 

coating deposition system. The setup described above best represents the experiments 

discussed in Chapter 2. Later experiments used Nb plates and molybdenum fasteners to 

cover both ends of the sample chamber. A Nb crucible was implemented to supply the 

required amount of Sn for the coating. The sample chamber is replaced with a cavity 

during cavity coating, with an adjusted amount of Sn and SnCl2, and will be discussed in 

Chapter 4. 

 Typical Characteristics of Diffusion Coating of Nb3Sn 

A shiny Nb surface develops a matte gray appearance following Nb3Sn coating. A 

representative microstructure of the Nb3Sn coating is shown in Figure 1.11 [left]. It typically 

features equiaxed grains of an average size of (2.2 ± 0.2) µm. Composition measurement 

with EDS shows (24 ± 1) at. %, Sn, close to a nominal Nb3Sn. An example of surface 
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topography of a coated surface can be seen in Figure 1.11 [right]. The surface develops 

a characteristic roughness at the surface following Nb3Sn coating.  

 
Figure 1.9: Sample chamber, samples, tin and tin chloride packages, and Nb foils before 

setting up for the coating. The coating chamber of the furnace is not shown. 

 
 

Figure 1.10: Temperature profile used for coating Nb3Sn on Nb samples at Jlab. The 

temperature of the insert during the process is monitored with three thermocouples outside 
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the reaction insert at different sections of the insert. Because of very similar temperature 

readings, the temperature curves overlap in the plot. 

 

Figure 1.11: Scanning electron microscopy (SEM) image of Nb3Sn-coated surface [left]. 

Atomic force microscopy (AFM) image of the same surface [right]. The average roughness 

was 150 nm. 

It is expected to produce 2–3 µm thick coatings following the coating process 

described above. Electron backscattered diffraction (EBSD) images from a cross-

sectional examination of the Nb3Sn-coated Nb sample are shown in Figure 1.12. Grains 

typically appeared to be columnar, extending from the surface to the Nb3Sn-Nb interface. 

Some smaller grains are also seen occasionally close to the interface. The Nb3Sn-Nb 

interface develops roughness even for a nanopolished starting substrate. Note that, 

different colors here represent the different orientation of Nb3Sn grains showing 

polycrystalline Nb3Sn with no apparent orientation dependency to the underlying Nb 

substrate. 
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Figure 1.12: Cross-section EBSD image from Nb3Sn coated surface. Note the larger size 

of Nb grains compared to Nb3Sn grains at the surface.  

The characteristics of the resultant Nb3Sn primarily depend on the coating protocol 

used. A proper understanding of how the coating evolves during the progression of the 

coating process is fundamental to tune the microstructure and properties of the final layer 

of Nb3Sn, which eventually determines the performance of Nb3Sn-coated SRF cavities. 

As suggested by Figure 1.10, two significant stages of the Nb3Sn coating “recipe” that 

require in-depth investigation are the end of the nucleation step and the progression of 

the Nb3Sn-layer during the deposition. The following chapter will now solely focus on the 

nucleation stage, presenting results from our experimental investigations 
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Nucleation 

Early attempts at vapor diffusion coating of Nb3Sn at Siemens AG resulted in 

regions which were not entirely covered [17]. The proposed cause was poor Sn coverage 

at the early stages of the coating process, i.e., an irregular nucleation. The first attempted 

solution was to anodize the Nb-substrate before coating and to set the temperature of the 

tin source about 200 °C higher than the substrate temperature. The devised solution help 

to improve the homogeneity of the coating, but the mechanism that caused improvement 

was never fully explained. Siemens researchers speculated that the nucleation was more 

uniform because of the higher amount of tin supply at a higher temperature [17]. They also 

reported the production of Nb3Sn coatings with good RF properties without introducing the 

measures discussed above, which they attributed to “uncontrolled small amounts of HF”. 

This attribution was also motivated by the observation of the isothermal chemical transport 

reaction in manufacturing of Nb3Sn multifilament wires, where 0.01–0.07 mbar HCl (g) 

was introduced into the chamber loaded with Cu-Nb wires coated with tin [56]. Motivated 

by wire manufacturing experience, Siemens researchers started adding a small amount 

of Sn-halide (SnF2 or SnCl2) into the reaction chamber, which improved the uniformity of 

Nb3Sn layers. Sn-halide evaporates and reacts with the substrate surface at a lower 

temperature to yield an increased Sn supply. The idea was also driven by the expected 

benefit from a higher vapor pressure of tin halide than that of elemental tin. For example, 
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the comparison of Sn vapor pressure to SnCl2 vapor pressure is shown in Figure 2.1. 

SnCl2 evaporates at the temperature of about 500 °C to deposit tin sites on the Nb surface, 

which were assumed to act as Nb3Sn nucleation sites. 

 

Figure 2.1: Vapor pressure of tin and tin chloride. The plot is reproduced from [33], which 

cites [57, 58]. 

Research institutions following a similar Nb3Sn coating process later preferred 

SnCl2, sometimes combined with substrate anodization or a temperature gradient between 

the tin source and the Nb substrate. Further studies suggested that substrate anodization 

is not mandatory, and it results in RRR degradation due to oxygen absorption from the 

anodic layer [49]. Application of Sn halide is especially helpful for coating systems that do 

not have a secondary heater to set up a temperature gradient between the Sn source and 

the substrate, as discussed above. 

While the inclusion of a nucleation step has a long history in practice, only limited 

research has been done to understand the fundamentals. The following sections are 

based on [59] and discuss our experimental studies to gain more insight into the nucleation 
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step that features SnCl2. Due to the design of the coating system, a temperature gradient 

between the Sn source and the substrate was not tried, but anodized Nb samples were 

included in a few experiments.  

 Experimental  

The samples here were mostly the nanopolished coupons. The experimental setup 

and the substrate preparation are already described in section 1.2.7. A selected few 

experiments also featured pre-anodized Nb samples along with regular Nb samples. In 

this process, the reaction chamber containing the sample chamber was evacuated to the 

10-5 Torr range, then the heating profile was initiated. The temperature was raised at the 

rate of 6 °C.min-1 to the target nucleation temperature (Table 2.1). The temperature was 

maintained constant for different durations (nucleation time) before ceasing the heating 

process. After the nucleation at given condition, the chamber was allowed to cool in 

vacuum. After reaching room temperature, the insert was purged with nitrogen to regain 

atmospheric pressure. The sample chamber was then taken out to remove the samples.  

Table 2.1: Nucleation Experiments 

Nucleation Temperature 300 °C 400 °C 450 °C 500 °C 

Nucleation Time 1 h, 4 h 1 h 1 h 5 min, 1h, 5 h 

Amount of SnCl2 1 g 1 g 1 g 5 mg, 1 g 

Amount of Sn 1 g 1 g 1 g 0 g, 1 g 

 Characterization 

A basic premise of materials science is that structure (composition, microstructure, 

topography, etc.) determines properties. It is important to understand how nucleation 
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affects structure of Nb3Sn. SRF cavity materials had not attracted widespread attention in 

the materials characterization community, so a consensus approach to characterization 

has not yet developed. We sought to take steps in that direction by applying several well-

established techniques, deferring novel and emerging techniques to the future. Probably 

the most familiar technique is scanning electron microscopy with elemental analysis. An 

Hitachi 4700 field emission scanning electron microscope (FE-SEM) equipped with an 

energy-dispersive X-ray spectroscopy (EDS) detector was used to examine the nucleated 

samples. SEM images were taken after each experiment, and elemental composition was 

analyzed with EDS. All SEM images were taken at 0° tilt angle, and used a 12/15 kV 

accelerating voltage. Under ideal conditions, SEM/EDS can measure element 

concentration down to approximately 0.1 atomic percent. As the primary beam enters the 

specimen, electrons lose energy so that they reach a limited depth while retaining enough 

energy to cause x-ray emission. They are also deflected outside the original beam path, 

so that lateral resolution decreases. The maximum penetration depth of 15 kV electron 

beam into Nb or Sn were estimated using an expression from Kanaya and Okayam[60]. 

The corresponding values of electron range were 1.0 µm and 1.3 µm for Nb and Sn, 

respectively. The X-ray generation depth is typically estimated by X-ray range equations 

from Castaing [61] or Andersen and Hasler [62]. The Castaing approximation permits 

estimation leading to X-ray generation depth of of 0.8 µm for Nb and 1.0 µm for Sn with a 

15 kV primary beam energy. For the same beam energy, Anderson and Hasler equation 

estimates X-ray ranges of 0.7 µm and 0.8 µm for Nb and Sn, respectively. 

Topographic examination used a Digital Instruments IV AFM in tapping mode with 

aluminum reflex coated silicon tips with diameter less than 10 nm, resonant frequency 190 

kHz and force constant 48 Nm-1. The selected samples were scanned for 5 µm × 5 µm 

and 1 µm × 1 µm sizes with 512 × 512 data points. The expected lateral resolution of AFM 
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is defined by the spacing of sampling points. For example, the expected lateral resolution 

for a 5 µm scan is ~10 nm (5 µm/ 512) under optimal conditions. AFM and SEM/EDS 

analysis was done at the Applied Research Center Core Labs, William and Mary. 

Surface sensitive elemental analysis was done by X-ray photoelectron 

spectroscopy (XPS), probing the elemental composition of the first few nanometers down 

to the concentration of approximately 0.1 atomic percent. The XPS measurements were 

carried out in an ULVAC-PHI “Quantera SXM” instrument equipped with a 

monochromated Al Kα X-ray source. Spectra were collected at 50 W/15 kV from a 200 μm 

spot size, 45° take-off angle. 

 Transmission electron microscopy (TEM) imaging of the cross-section of a 

nucleated sample was carried out by a JEOL 2100 operating at 200 kV. The specimen 

was prepared by a focused ion beam (FIB–Helios Nano Lab 600) sectioning using the lift-

out technique. To preserve the surface of a nucleated sample and create an intact cross-

section, a protective layer of Pt was deposited on the sample surface over the area of 

interest prior to sectioning. Initial material removal steps were performed at the highest 

removal rate with a beam energy of 30 kV. The final polishing step was done with 2 kV Ga 

ions at an angle of 7°. More details are available in [63]. XPS and TEM analysis was 

performed by J. Tuggle at Nanoscale Characterization and Fabrication Laboratory 

(NCFL), Virginia Tech. 

Scanning Auger microscopy (SAM) using a PHI 680 system was employed for 

several samples. The SAM consists of an FE-SEM with a Schottky emission cathode, a 

secondary electron detector, and an axial cylindrical mirror analyzer with a multi-channel 

detector to collect Auger electrons produced during electron imaging. Very small spot 

sizes can be realized with this instrument, down to 7 nm. The measurement was done at 

Swagelok Center for Materials at Case Western Reserve University. 
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  Results and Discussion 

 Temperature Dependence of nucleation 

Temperatures of 300 °C, 400 °C, 450 °C, and 500 °C were chosen to study the 

effect of nucleation temperature. Since the vapor pressure of SnCl2 drops rapidly 

below 300 °C, see Figure 2.1, this was chosen as the lower bound. The treatment time 

was kept constant at one hour, and the amount of SnCl2 was fixed at 1 g. Residual SnCl2 

was found inside the Nb foil containing supplied SnCl2, only after 300 °C and 400 °C. 

Variation in the treatment parameters resulted in different surface features. After 

300 °C nucleation, a significant portion of SnCl2 was found inside each package. SEM 

images revealed nanometer-sized particles, assumed to be tin, on the Nb surface, Figure 

2.2(a). However, only Nb was detected with EDS, possibly due to the shallow coverage of 

a very small amount of deposited tin. The nucleation temperature of 400 °C produced 

distinct features on the surface, Figure 2.2(b). Besides micron-sized spherical particles, 

extended interconnected ‘mud-crack’ like features were seen in SEM images. Several 

SEM images, not shown here, suggested that the big particles were formed by the 

accumulation of those features. Both Nb and tin signals were detected with EDS not only 

at the spherical particles, which we assume are tin but also between the particles, where 

the irregular structures can be seen in the SEM image. 

Nucleation temperatures of 450 °C and 500 °C created similar looking surfaces 

with sub-micron sized spherical particles visible in the SEM, appearing as bright features 

in Figure 2.2(c) and Figure 2.2(d). The size and distribution of the particles were slightly 

varied between these two temperatures. Spherical particles were examined with EDS, 

showed 40–70 at. % Sn depending on size. Larger particles showed more tin, as would 

be expected since the spatial resolution limit of EDS is larger than the particle size for 
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small particles. Therefore, the data from individual particles included more or less Nb 

signal as well from the adjacent or underlying material. EDS was unable to detect any tin 

in between those particles.  

 

Figure 2.2: SEM images obtained from samples nucleated at temperatures of (a) 300 °C, 

(b) 400 °C, (c) 450 °C, and (d) 500 °C for one hour. Circular bright features are Sn particles, 

as revealed by EDS [30]. 

 Samples from each experiment were examined using XPS (Table 2.2). Carbon 

and oxygen were found, which is expected from post-experiment exposure to the ambient 

atmosphere. The samples were then sputtered lightly (1 kV Ar, 30 s) to reduce the 

contaminants contribution and scanned again. Pre-sputtering resulted in an increased 

amount of oxygen and reduced carbon in each XPS analysis. Removing the carbon 

increased the ratio of Nb to Sn, raising the possibility that tin may be present as a very 

thin surface layer, which was slightly sputtered. Alternatively, tin may have been 

preferentially sputtered compared to niobium. Sn and Nb were present only as an oxide. 
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This is expected since both are highly reactive and the samples were handled in air. The 

data obtained from samples with nucleation temperature above 400 °C showed (20–30)% 

total tin. A typical XPS scan is shown in Figure 2.3. Note the absence of chlorine peaks: 

no chlorine was ever found in any of the nucleated samples. The amount of tin found with 

XPS on the surface is clearly more than what can be expected from the very low surface 

coverage by tin particles alone (Table 2.3). For example, tin coverage of the sample 

surface after 450 °C nucleation was estimated at about (3.9 ± 0.6)%, but XPS 

measurements indicated 22.3% of Sn surface coverage. 

 

Figure 2.3: XPS data obtained from a sample after one hour at 500 °C. 

This discrepancy of tin content between SEM and XPS analysis indicated the 

presence of more tin than the particles visible in SEM. To gain insight into the form of tin 

on the surface, we adopted a model for calculation, consisting of the visible particles and 

a thin surface layer. The particles are treated as pure tin hemispheres, consistent with the 
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SEM images and the AFM results presented later. The tin signal comes only from the 

surface of the particle. The surface layer is treated as a pure tin film, one atomic layer 

thick. The layer is too thin to be revealed by SEM/EDS but can be detected by XPS. A 

rough intensity ratio of Sn/Nb in XPS was then estimated considering a homogeneous Sn 

layer of monoatomic thickness in between tin particles on the Nb surface. For the case 

when there is a thin layer of Sn on top of bulk Nb, the layer and substrate intensities are 

given by [64], 

Table 2.2: XPS elemental analysis of nucleated samples at different temperatures. The 

nucleation time for each sample was one hour. 

Nucleation 
Temperature 

(ºC) 

Sample C 
(at. %) 

O 
(at. %) 

Nb 
(at. %) 

Sn 
(at. %) 

𝑆𝑛

𝑁𝑏 + 𝑆𝑛
 𝑥100 

 

300 U55 48.5 32.5 13.7 5.3 27.9  

6.1 61.5 28.5 3.9 12.0 With pre-
sputtering 

400 U73 35.0 41.5 9.4 14.1 60.0  

4.9 57.8 25.1 12.2 32.7 With pre-
sputtering 

450 U59 62.5 25.5 5.7 6.3 52.5  

U47 9.0 54.2 28.6 8.2 22.3 With pre-
sputtering 

500 U90 56.8 31.2 7.3 4.7 39.2  

13.3 52.5 25.3 8.9 26.0 With pre-
sputtering 

 

Table 2.3: Calculated Fractional Surface Coverages 

Nucleation 
Condition 

1 h at  500 °C 1 h at 450 °C 4 h at  
500 °C  
(section 2.2.2) 

5 h at 
 500 °C 
(section 2.2.3) 

Coverage by particles (%) 2.8 ± 0.6 3.9 ± 0.6 10.0 ± 0.8 1.9 ± 0.4 

 

𝐼𝑆𝑛 = 𝐼𝑆𝑛
∞  [1 − exp (−

𝑑

𝜆𝑆𝑛,𝑆𝑛 cosθ
)] (2.1) 

𝐼𝑁𝑏 = 𝐼𝑁𝑏
∞ exp(−

𝑑

𝜆𝑁𝑏,𝑆𝑛 cosθ
) (2.2) 
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where 𝐼𝑆𝑛
∞  and 𝐼𝑁𝑏

∞  are the intensities of the pure bulk tin and Nb. 𝜆𝑆𝑛,𝑆𝑛 and 𝜆𝑁𝑏,𝑆𝑛 are the 

attenuation length (inelastic mean free path) of the electrons in tin emitted by the first 

subscript element to the second subscript element. Emission angle, θ  is the angle 

between the surface normal and direction of measured electron emission. 

Dividing equation (2.1) by (2.2), 

𝐼𝑆𝑛

𝐼𝑁𝑏
= 

𝐼𝑆𝑛
∞  [1 − exp (−

𝑑
𝜆𝑆𝑛,𝑆𝑛 cos θ

)]

𝐼𝑁𝑏
∞ exp (−

𝑑
𝜆𝑁𝑏,𝑆𝑛 cos θ

)
(2.3) 

The intensity ratio of bulk tin and Nb is given by [65], 

𝐼𝑆𝑛
∞

𝐼𝑁𝑏
∞ =

𝑁𝑆𝑛𝜎𝑆𝑛𝜆𝑆𝑛𝑇𝑆𝑛

𝑁𝑁𝑏𝜎𝑁𝑏𝜆𝑁𝑏𝑇𝑁𝑏

(2.4) 

where 𝑁 is atomic density, 𝜎 is photo-ionization cross-section for observed photoelectron 

line, and 𝑇 is the transmission factor of the instrument. From (2.3) and (2.4), 

𝐼𝑆𝑛
𝜎𝑆𝑛𝜆𝑆𝑛𝑇𝑆𝑛

𝐼𝑁𝑏
𝑁𝑁𝑏𝜎𝑁𝑏𝜆𝑁𝑏𝑇𝑁𝑏

=
𝑁𝑆𝑛  [1 − exp (−

𝑑
𝜆𝑆𝑛,𝑆𝑛 cos θ

)]

𝑁𝑁𝑏 exp (−
𝑑

𝜆𝑁𝑏,𝑆𝑛 cosθ
)

(2.5) 

The ratio on the left-hand side gives the corrected intensity ratio 𝜂, that is, the ratio 

of tin to Nb, 

η𝑆𝑛

η𝑁𝑏
=

𝑁𝑆𝑛  [1 − exp (−
𝑑

𝜆𝑆𝑛,𝑆𝑛 cosθ
)]

𝑁𝑁𝑏 exp (−
𝑑

𝜆𝑁𝑏,𝑆𝑛 cos θ
)

 (2.6) 

Let us use the 3d5/2 photoelectron line for calculation. For 𝐸 (𝐴𝑙 𝐾𝛼)  =  1486.7 𝑒𝑉, 

𝐾. 𝐸. (3𝑑5
2
) 𝑆𝑛 =  𝐸 (𝐴𝑙 𝐾𝛼) – 𝐸𝑏  =  1486.7 –  484.9 =  1001.8 𝑒𝑉 (2.7) 

 where 𝐾. 𝐸. (3𝑑5

2

)  and  𝐸𝑏 , respectively are the kinetic energy and binding energy of 

emitted 3d5/2 photoelectrons. 
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For simplicity, 𝜆𝑆𝑛,𝑆𝑛 = 𝜆𝑁𝑏,𝑆𝑛 = 𝜆𝑆𝑛, which can be extracted from NIST electron 

inelastic mean free path (IMFP) database, [66], using the kinetic energy of emitted 

photoelectrons. The required parameters to calculate the ratio of tin to Nb, in equation 2.6, 

are shown in Table 2.4. θ = 45°, as used in XPS measurements was chosen. 

Table 2.4: Model parameters. 

NSn 

(atoms/cm3) 
NNb 

(atoms/cm3) 
𝜆𝑆𝑛  for 3d5/2 

(nm) 
Monolayer thickness d 

(nm) 

3.708 × 1022 5.555 × 1022 2.316 nm 0.290 nm 

 

Table 2.5 presents calculations for 0, 3%, 5%, and10 % coverage by tin particles 

thick enough to shield all the photoelectrons from underlying Nb. The representative 

Sn/(Sn+Nb) ratio for 10% surface coverage was found to be ~20%, obtained by taking the 

weighted average of contributions from Sn particles (10%) and a monolayer of Sn on bulk 

Nb (90%). This ratio is consistent with the Sn concentration range of XPS analysis above, 

which supports the notion of a thin Sn layer on nucleated surfaces.  

To further corroborate the finding, angle-resolved XPS (ARXPS) was attempted 

on a few samples. XPS data were collected by varying the angle between the XPS 

detector and sample surfaces (Table 2.6). XPS intensity from a thin film is expected to 

vary depending on the emission angle, since the angle changes the effective information 

depth, see equation 1.1. The shallower angles increase signal contribution from the 

topmost layer. ARXPS results are summarized in Table 2.6. While all four samples were 

nucleated at 500 °C, M46 and U90 were subjected to standard protocol (1 h of nucleation 

time with 1 g of SnCl2). Two other samples, U101 and U66, were prepared with 5 mg (~10 

µgcm-2) of SnCl2 and 5 h of nucleation time. A detailed description of the preparation and 

analysis of similar samples will be presented later. 
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Table 2.5: Ratio of Sn to (Nb + Sn) obtained from the model calculation of dependence of 

intensity on the emission angle 

 
Model 

Angle between the surface normal and direction of 
electron emission (°) 

30 45 60 75 

Monolayer only 0.09 0.11 0.16 0.29 

With 3% particles 0.12 0.14 0.18 0.31 

With 5% particles 
0.14 0.16 0.20 0.33 

With 10% particles 
0.18 0.20 0.24 0.36 

 

The model calculations indicate that a continuous film is expected to give a tin ratio 

at 75° at least twice that at 30° for all particle coverages. Sample U66 is an example. A 

surface covered by separated nanoparticles (not the SEM visible particles) will show no 

such variation with angle since the information depth is not changing with rotation. U101 

and M46 offer examples. U90 evidence some measure of the expected angle 

dependence, but not to the degree that would support any firm conclusion. Results from 

several other samples, not shown here indicates that the two-dimensional species on the 

surface after nucleation are rather variable.  

Table 2.6: ARXPS ratio of Sn to (Nb+Sn). 

 
Samples 

Angle between the surface normal and direction of electron emission (°) 

30 45 60 75 

U101(5 mg SnCl2) 0.15 0.15 0.14 0.12 

M46 (1 g SnCl2) 0.19 0.18 0.22 0.19 

U66(~5 mg SnCl2) 0.31 0.35 0.42 0.50 

U90 (1 g SnCl2) 0.16 0.18 0.20 0.22 

 

To gain more insight, a few samples were examined with a scanning auger 

microscopy (SAM). In SAM, 10 kV primary electron beam bombards the sample surface 

producing Auger, secondary and backscattered electrons. Auger electrons are used to 
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identify the elements present; secondary and backscattered electrons are used for 

imaging at the same time, thus providing an opportunity for surface-sensitive elemental 

mapping in an SEM image. Results from a sample nucleated at 500 °C for one hour are 

shown in Figure 2.4. Large and small bright features are evident in the secondary electron 

image (top left). The large features (red box) are consistent with the tin particles seen in 

the SEM and show expectedly high tin content in the spectral scans (top right). The 

intervening area shows small bright features and the presence of tin, (blue scan) at a much 

lower level. Elemental mapping of Sn and Nb appears in the lower images. More 

investigation with a higher resolution instrument is needed to learn if these are an imaging 

artifact or tin nanoparticles. 

An AFM image from a sample prepared under similar conditions (Figure 2.6 (a)) 

showed the presence of tin particles as islands. More features, see area enclosed by a 

rectangle in Figure 2.6(a), were seen in between tin islands. These features appeared 

following the nucleation; they are absent from a typical nano polished sample. A height 

profile of a section from Figure 2.6(a), passing through a big particle is shown in Figure 

2.6(b). The diameter of the largest particle in this scan was ~200 nm with a height of 

~ 60 nm. Note that the largest particles observed were ~300 nm in diameter. 

The initial growth mode of thin films is commonly divided into three categories 

(Frank-Van Der Merve: two-dimensional (2D) layer growth; Stranski-Krastanov: layer plus 

three dimensional (3D) islands and Volmer-Weber: 3D island growth). Our data 

qualitatively resemble Stranski-Krastanov mode; the tin film is formed in addition to 

distributed tin particles. Similar growth has been reported before during the growth of tin 

on Al or Nb [67, 68]. The formation of a thin film, i.e., Frank-Van Der Merve growth, during 

nucleation was suggested from the early days of Nb3Sn diffusion coating [17, 69]. The 

growth of such a continuous layer has been suggested to be crucial to establish uniform 
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coating of Nb3Sn, and the role of SnCl2 and the anodic oxide layer was to retard Nb-Sn 

reaction until a uniform tin film is formed. However, previous studies of the nucleated 

surface only indicated the formation of tin particles like in Volmer-Weber mode on the 

surface following nucleation [47]. The presence of a tin film was not previously established. 

 

Figure 2.4: SAM elemental mapping of Sn coverage after sputtering for thirty seconds is 

shown in the image (lower left). The brighter areas are richer in Sn than darker areas, as 

shown in the intensity scale. Equivalent data for Nb appear at the lower right. Elemental 

composition comparison of particle and background is shown in spectra at the top right.  



38 
 

 

 

Figure 2.5: (a) TEM cross-section of a sample nucleated at 500 °C for 5 h with EDS spectra 

from a line scan that follows a solid red line is superimposed on top of the TEM image. Nb 

signal is left out to make scaling reasonable for other signals. (b) Only the Sn spectra 

along the scan line. Note the jump of the Sn and O signals near the surface.  

(

a) 

(

b) 
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Figure 2.6: AFM image obtained from a sample treated at 500 °C for an hour is shown in 

(a). Note that the scan size is only 1 µm ×  1 µm. Sn particles appear to be three-

dimensional clusters forming islands. Height profile along the line passing through the tin 

island is shown in (b). Triangles of the matching color are reference points for the height 

measurements. 

(a) 

(b) 
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 Time Dependence of nucleation at 500 °C 

The nucleation period was varied while keeping the temperature constant at 

500 °C. It was found that five minutes at 500 °C was not enough to evaporate all the Sn 

chloride (1 g), but it was sufficient to produce some Sn particles already. The surface was 

covered with ‘curly’ features, as shown in Figure 2.7(a). Results obtained after an hour at 

the same temperature were discussed already in the previous section. The surface 

produced after four hours at 500 °C is shown in Figure 2.7(b) Comparing with the result 

obtained after an hour at 500 °C, four hours at the same temperature appears to produce 

additional small Sn particles resulting in more coverage on the surface. EDS was only able 

to detect Sn from large Sn particles, but once again, XPS analysis showed more Sn than 

SEM/EDS analysis reported. A comparison of XPS analysis is presented in Table 2.7. 

The AFM image captured from a sample prepared at the nucleation temperature 

of 500 °C for 4 hours is shown in Figure 2.8(a). Note that tin particles (see height profile 

of a section in Figure 2.8(b)) are thicker when compared to that obtained after an hour at 

500 °C (Figure 2.6). 

  

Figure 2.7: SEM images from samples obtained from experiments with a nucleation 

temperature of 500°C for (a) 4 hours and (b) 5 minutes. 

 

(a)  (b) 
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Table 2.7: XPS elemental analysis of nucleated samples for different durations at 500°C. 

Nucleation 
Temperature  

Time Sample C 
(at. %) 

O 
(at.%) 

Nb 
(at. %) 

Sn 
(at. %) 

𝑆𝑛

𝑁𝑏 + 𝑆𝑛
 𝑥100 

 

500 °C 4 h U1 7.2 56.8 23.9 12.0 33.43 With pre-
sputtering 

500 °C 1 h U90 56.8 31.2 7.3 4.7 39.17  

13.3 52.5 25.3 8.9 26.02 With pre-
sputtering 

500 °C 5 
min 

U9 39.9 42.0 11.9 6.2 34.25  

2.4 42.7 51.3 3.6 6.55 With pre-
sputtering 

 

 

2.8 (a) 
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Figure 2.8: AFM image of the surface after 4 hours of nucleation at 500 °C is shown in (a). 

(b) shows height profile along a line passing through tin particles. The largest particle is 

~ 300 nm in diameter with height of ~ 175 nm. The triangles of the matching color are for 

the height measurements. 

 Low vs. High Amount of tin chloride 

The recipe for diffusion coating of Nb3Sn first developed at Siemens AG used a 

small amount of tin halide (20 µg.cm-2). Recent recipes in practice at different research 

facilities use different amounts of tin chloride. We compare the nucleated surfaces 

produced using the Jlab protocol (~3 mg.cm-2) of tin chloride, 500 °C for an hour, with the 

temperature ramp of 6 °C.min-1, to a protocol using much less tin chloride (~10 µg.cm-2), 

reported by Cornell University, 500 °C for five hours, with the temperature ramp of 

3 °C.min-1 [37]. SEM images, in Figure 2.9, show a uniform distribution of particles 

2.8 (b) 
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produced with a low amount of tin chloride. They are tiny compared to the nucleation 

provided with a higher amount of tin chloride. EDS examination showed only Nb indicating 

that these particles are thin. XPS analysis (Table 2.8) shows comparable tin coverage in 

nucleated samples obtained from both experiments. Notice that removal of carbon by pre-

sputtering revealed significant Nb, but reduced the tin, consistent with the notion of a very 

thin surface layer. More tin chloride produces bigger tin particles with similar tin coverage 

on a Nb surface. The longer nucleation time in the latter recipe may have an important 

role to produce such good coverage of tin with a small amount of tin chloride. 

 

Figure 2.9: (a) SEM image of a nucleated surface obtained by using low tin chloride. (b) 

SAM elemental mapping of tin.  

Table 2.8: XPS elemental analysis of nucleated sample U66 treated for 5 hours at 500 °C 

with a reduced amount of SnCl2.  

Nucleation 
Temperature 

Time C 
(at. %) 

O 
(at. %) 

Nb 
(at. %) 

Sn 
(at. %) 

𝑆𝑛

𝑁𝑏 + 𝑆𝑛
 𝑥100 

 

500 ºC 5 h 30.5 
 

40.7 
 

11.1 17.7 61.45  

6.0 45.5 39.7 8.8 18.1 With pre-sputtering 

(a) (b) 
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 Nucleation on Anodized Surfaces 

Substrate anodization was introduced in the 1970s to overcome non-uniformity 

and was often combined with the setup that maintains a higher temperature of the tin 

source compared to the substrate [17]. Despite the expected RRR loss, recent coating 

experiments with anodized substrates using the “standard” nucleation protocol indicated 

a positive effect on coating uniformity [70, 71]. The effect of tin chloride on anodized and 

non-anodized Nb surfaces following the nucleation step was compared. To prepare 

samples, a fixed cell voltage of 30 V or 50 V was applied to grow anodic oxide layers on 

BCP treated Nb samples with a 15% NH4OH solution as an electrolyte. The thickness of 

the oxide layers was estimated to be ~ 60 nm and ~ 100 nm for the samples using the 

reported thickness-voltage ratio [55]. These samples were subjected to 5 hours of 

nucleation at 500 °C with the usual ~ 3 mg.cm-2 of Sn/SnCl2. SEM images of the obtained 

surfaces are shown in Figure 12. Features were present on the surface following 

nucleation in each sample, but the appearance and distribution of these features 

(presumably tin) were different from those observed for non-anodized samples. The 

features were more prominent and more sparsely distributed in a 50 V anodized sample 

compared to those in a 30 V anodized sample. Our result appears to be different from 

recent results from similar studies [72], which report the formation of big tin particles on 

the surface after pre-anodization, unlike non-anodized Nb. Note that, a smaller amount of 

tin chloride and different anodization parameters were used in the latter studies compared 

to our experiments. 
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Figure 2.10: Nucleation on anodized Nb. The appearance and distribution of particles on 

the surface are different from those obtained on non-anodized samples.  

 Variation of Tin Particle Density 

During the course of nucleation studies, the accumulation of visible tin particles 

was observed to vary for different grains of Nb in some cases. Here we particularly present 

two examples. The first one was from a sample treated at 500 °C for 1 h, shown in Figure 

13. The size and shape of tin particles on different Nb grains visibly varied in this case. 

Area A1 appears to have fewer particles that appear to be near-circular under SEM 

whereas area A2 seems to have more particles with noncircular shape. Surface defects 

in substrate Nb appeared to be the favorite location for particle accumulation in many 

cases. One example of such defect is a surface scratch, as shown with arrows in Figure 

13, developed during the polishing of the Nb sample. Each scratch line is decorated with 

a higher density of particles following the nucleation.  
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Figure 2.11: Variation of tin particles in different Nb grains. The arrows at the top figure 

indicate the direction of some scratches next to them. Particle distributions in areas A1 

and A2 are evidently different. 

The second example is shown in Figure 2.12. Here, the sample was pre-anodized 

(30 V, 15% NH4OH solution) prior to the experiment, then nucleated at 600 °C for 1 h 

during an exploratory experiment. The image displays similar characteristic of decoration 

variation on the surface. Figure 2.12(c) shows a clear transition boundary between the two 

A

1 

A2 

A2 A1 

A1

1 
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areas having significantly different particle density. The appearance of Sn particles here 

was different from others discussed in previous sections. They appear mostly triangular, 

Figure 2.12(d), having a faceted shape similar to a pyramid. The appearance of these 

triangular islands looks similar to the appearance of Nb-Sn triangular crystals at 800 °C, 

reported by Hall et al. following 5 h of nucleation at 500 °C [72]. The appearance of Sn 

particles was very similar on regular sample when treated at 600 °C, suggesting that the 

hemispherical particle evolves to triangular pyramid following nucleation at higher 

temperature.

 

Figure 2.12: a) Particle density variation in an anodized sample treated for 1 hour 

at 600 °C. (b) A zoom view of an area showing areas with different density of particles. (c) 

A clear transition line between the two regions. (d) The triangular appearance of deposited 

particles. 

(a) 

(d) (c) 

(b) 
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Following the examination of nucleated samples, a set of different nucleation 

profiles were employed to grow the complete Nb3Sn coatings by a further coating step, as 

illustrated in Figure 1.10. Other experiments included interruption of the process at 

different stages with/without nucleation to understand its effect further in the subsequent 

coating. Results and discussions from these experiments are presented next. 

 Nb3Sn Coatings with Different Nucleation Profiles 

A selected few nucleation profiles were used for complete Nb3Sn coating. The 

temperature profile used during the coating was similar to Figure 1.10, except for the 

variation in nucleation parameters. There were no evident differences in terms of structure 

and composition in SEM/EDS between the coatings produced with different nucleation 

profiles: 400 °C for an hour, 500 °C for an hour and 500 °C for 4 hours for a similar amount 

(3 mg.cm-2) of tin and tin chloride. SEM images are shown in Figure 2.13, which also 

include the coating produced by applying a relatively small amount (~ 10 µg cm-2) of tin 

chloride for nucleation.  
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Figure 2.13: Nb3Sn coatings obtained by applying different nucleation profiles. U146, 

U105, U149, and U153 involved nucleation step 400 °C for 1 h, 500 °C for 1 h and 500 °C 

for 4 h and 500 °C for 5 h respectively. U153 was coated with only ~ 10 µg.cm-2 of SnCl2 

and involved an additional coating time of 6.5 h at 1100 °C. 

 Role of Nucleation in Coating Genesis 

The coating process with or without tin chloride was interrupted at different times 

while following the standard temperature profile, as shown in Figure 2. The heat was 

turned off after approximately 5 min, 1 h, or 3 h after reaching the coating temperature. 

SEM images obtained from each experiment are presented in Figure 2.14 and Figure 2.15. 

Five minutes after reaching 1200 °C, a uniform coating with grain sizes of few tens of 

nanometers was developed on the whole Nb surface, when tin chloride was included. 

U105 

U149 U153 

U146 
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Some tin particles were visible. Similar experiments for one minute at 1200 °C without tin 

chloride resulted in a coating that included many patchy areas with irregular grain 

structures. These patchy areas appeared both after 1 h and the complete coating for 3 h 

at 1200 °C. On the other hand, coatings obtained from similar experiments with provided 

tin chloride demonstrated little to no patchy regions. Repeated complete coating 

experiments without tin chloride often produced patchy regions with irregular grain 

structure. This indicated that the inclusion of a nucleation step with tin chloride helps to 

assure a uniform Nb3Sn coating compared to that without tin chloride. Note that patch-free 

coatings were also obtained in an experiment without tin chloride. This may have been 

due to higher tin evaporation rate than normal, since the supplied tin was not packaged in 

Nb foil, thus providing relatively more surface area for evaporation. Taken together with 

previous observations, the notion emerges that patch-free coatings are promoted by 

increased tin supply obtained by tin chloride, more open tin source, and increased tin 

source temperature (secondary heater). 

Finally, we attempted to grow the complete coating without any tin, i.e., only SnCl2 

was used. The coating process included nucleation (500 °C  for  5 h) and growth 

(1200 °C for 3 h) profile with ~ 6 mg.cm-3 of tin chloride. An SEM image of the coating is 

shown in Figure 2.16 [left]. Complete coverage of coating was observed with some patchy 

areas and elongated grains. However, this observation indicates that SnCl2 plays an 

important role to establish a continuous tin layer before tin evaporation during the growth 

process. An EDS analysis showed only about 16 at. % of Sn, possibly because of a thin 

coating due to a small amount of tin deposited via SnCl2. Further examination with X-ray 

diffraction (XRD, Minflex II, Rigaku) using CuKα radiation (λ= 1.504056 Å) showed well-

defined Nb3Sn phase, Figure 2.16 [right]. 
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Figure 2.14: Different stages of Nb3Sn coating evolution during the coating process, 

including tin chloride. The bigger tin particles are still visible after 5 min at 1200 °C.  

    

Figure 2.15: Different stages of Nb3Sn coating evolution during the coating process, 

excluding tin chloride. Coatings obtained after 1 min, 1 h, and 3 h at 1200 °C are shown 

from left to right respectively. 

1200ºC × 1 min 1200ºC × 1 hr 1200ºC × 3 hr 
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Figure 2.16: Coating prepared with the only SnCl2 [left]. Complete coverage of coating was 

obtained, including some irregular grain structures. A corresponding X-ray diffraction 

pattern showing Nb3Sn phase. 

 Mechanism of Tin Deposition via SnCl2 

The as-prepared Nb surface is naturally covered with a (4–6) nm thick oxide layer 

because of its high chemical reactivity [73]. Nb2O5 is the dominant form of oxide because 

of its higher free energy of dissociation compared to other oxide forms. The presence of 

other suboxides (NbO2, NbO, Nb2O, and Nb2O3) was inferred from Nb binding energy 

observed by XPS [74, 75]. The thermal stability of the native oxide layer has been studied 

for SRF cavities. These works generally agree that the typical Nb2O5 layer reduces to 

NbO2, and then to NbO following UHV baking at temperature >300 °C [74]. The studied 

nucleation temperatures are in the range where the reduction of the native Nb2O5 layer 

progresses. 

The deposition of tin-rich features at the surface following each experiment 

involves some interchange or reduction reaction with SnCl2, which may happen in three 

different ways here. First, SnCl2 can react with some small amount of hydroxyl present in 

the nucleation chamber. Second, the possible interaction with Nb oxide covering the 
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surface. Another possibility is a direct reaction between SnCl2 and the Nb surface. 

Representative possible reactions are 

𝑆𝑛𝐶𝑙2  +  𝐻2  →  𝑆𝑛 +  2𝐻𝐶𝑙 (𝑎) 

3𝑆𝑛𝐶𝑙2 +  2𝑁𝑏𝑂 →  2 𝑁𝑏𝑂𝐶𝑙3  +  3𝑆𝑛 (𝑏) 

𝑥 𝑆𝑛𝐶𝑙2  +  2 𝑁𝑏 →  2 𝑁𝑏𝐶𝑙𝑥  +  𝑥 𝑆𝑛 (𝑐) 

Gibbs free energy data [76] show that reaction (a) happens at ~ 1500 °C under 

standard conditions, which indicates that it is less favored thermo-chemically for our 

nucleation temperatures. 

On the other hand, reduction of SnCl2 with hydrogen had been reported before to 

deposit Sn on copper in a similar scenario, where they mention that it is necessary to keep 

HCl pressure at a low level by removing it for such reaction [77]. We can expect a level of 

HCl in our experiment to be low as it was constantly pumped during the experiment. As 

both hydrogen and HCl were observed with a residual gas analyzer (RGA) during some 

of our nucleation experiments, we believe that the tin deposition during the nucleation 

process arises by reduction of SnCl2 with already available hydrogen in the reaction 

chamber. Since possible chlorination of Nb2O5 at low temperature through an intermediate 

step involving the formation of Nb oxychloride has been suggested before [78–80], we 

consider the possible interaction of SnCl2 with Nb oxide. X-Ray Reflectivity (XRR) studies 

on Nb(110) claim that Nb2O5 and NbO2 both reduce to NbO following 30 minutes of 

vacuum annealing at 300 °C [81]. Therefore, we only illustrated equation (b) here, but the 

thermodynamic data are not all available to check its feasibility. In reaction (c), 𝑥 can be 

3, 4, or 5. It is found that NbCl3 is favored the most for any temperature < 500 °C compared 

to NbCl4 under standard conditions. NbCl5 is not thermodynamically favored at our 

experimental temperatures [76]. Besides the possible reactions producing tin, concomitant 

reduction of Nb oxide layer upon the arrival of SnCl2 vapor, the mobility and surface 



54 
 

diffusion of tin, Nb surface properties (e.g., defects, orientation) are other factors to be 

considered to explain the produced nucleated surfaces from different experiments. 

Evaporation of SnCl2 is expected to start at ~ 250 °C and the known transformation 

of the native Nb2O5 surface in this temperature range also occurs. We assume that as we 

heat the Nb surface, oxide dissolution results in randomly distributed defects. These sites 

are favorable to trap tin early. Because of a small amount of SnCl2 evaporation at a lower 

temperature (~ 300 °C), these particles are only of few nanometers in size. Further heating 

increases both the defect population and the SnCl2 partial pressure. Such locations 

enhance SnCl2 interaction with the Nb surface producing more tin, bringing in features 

shown in Figure 4(b) at ~ 400 °C. Raising nucleation temperature further to (450–500) °C 

is expected to produce more defects in the oxide layer leading to more particles. The 

native Nb oxide layer would have reduced to mostly NbO at these temperatures. A reaction 

between SnCl2 and Nb may take place uniformly, as suggested by reaction (c) at this point; 

forming a tin film by the direct reaction between SnCl2 and Nb. Longer nucleation may add 

further tin to the thin film and particles. The equilibrium surface composition is influenced 

by tin arrival as well as tin-tin and tin-surface interaction. 

Surface defects, like the scratch discussed here, have different surface diffusion 

rates from the flat surface [82]. Sn atoms bond well to these less coordinated sites, and 

they serve as sinks for Sn during Sn vapor deposition favoring the formation of tin particles. 

The different density of particles on different grains points to an orientation-dependent 

adatom-surface interaction. One can expect the anisotropy in tin adsorption because of 

anisotropic surface energy. For example, Nb (110) has the lowest surface energy because 

of the bcc structure [83]. 
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 Conclusions 

Several materials characterization tools, notably XPS, TEM SAM, SEM, and AFM, 

were used to investigate the nucleation process commonly used in diffusion coating of 

Nb3Sn. Several samples were prepared under many different nucleation conditions. 

Despite the fact that the nucleation is primarily the action of SnCl2, no chlorine was 

detected in any of nucleated samples. Nucleation yields two tin forms. Three-dimensional 

tin particles are generally deposited on Nb at a nucleation temperature of 450 °C and 

higher. Especially at higher loadings, these particles are quite visible to scanning electron 

microscopy and atomic force microscopy. At all loadings; XPS analysis, SAM elemental 

mapping and TEM analysis of the cross-section reveal a clear presence of two-

dimensional phase of extra tin between tin particles, which resembles the surfaces 

produced by the Stranski-Krastanov growth mode. A comparison of Nb3Sn surfaces grown 

with and without nucleation clearly shows that the exclusion of nucleation seemingly 

increases the chances of forming patchy regions with irregular grain structure. Despite 

some patchy areas and irregular grain structure present at the surface, SnCl2 alone was 

able to produce continuous coating, which shows the importance of nucleation for 

coverage. A thin-film of tin deposited during the nucleation appears to be crucial for such 

coverage. Even though the variation of nucleation parameters was able to produce 

drastically different surfaces, no evidence of any significant impact on the microstructure 

and composition of the final coating was found with SEM/EDS, which indicates that the 

final structure of Nb3Sn coating is most likely determined by the tin deposition at elevated 

temperature rather than the nucleation. The following chapter will discuss how the 

parameters at elevated temperature affect the final structure of the coating and what the 

mechanism behind it. 
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Growth 

The performance of Nb3Sn-coated cavities depends mainly on the quality of the 

coating, which is defined by the material properties (composition, microstructure, 

topography, crystallography, etc.). The material properties could be contingent on several 

process parameters which may include substrate preparations, nucleation and coating 

conditions, and post-coating treatments, to which the surface is before the RF testing. A 

few material studies were conducted in the past to analyze the effects of those parameters 

on the resulting Nb3Sn coating. Wuppertal researchers studied the growth kinetics at 

1160 °C. Focused on thickness measurements, they investigated the dependence of the 

thickness of the coated layers on the tin vapor pressure, determined by the temperature 

of the Sn-source [84]. They found only a weak dependence of vapor pressure on the 

thickness. Siemens researchers studied the thickness and surface morphology of Nb3Sn 

coatings prepared at coating temperatures of 1050 °C, 1500 °C and 1850 °C [85]. 

Researchers at Cornell performed studies on the substrate quality, initial chemistry, 

annealing time, and some post-processing treatments of Nb3Sn [86]. They revisited the 

substrate pre-anodization and investigated its effect on Nb3Sn growth [72]. 

The effect of nucleation parameters and their relevance to the final coating were 

discussed in the previous chapter. We now investigate the other coating parameters to 

optimize the process and to overcome the current limitations on the performance of 
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Nb3Sn-coated SRF cavities. The first portion of this chapter will present the study of 

coatings prepared under different conditions to determine the effect of these parameters. 

The second portion will address some fundamental deposition mechanisms, shedding 

light on the kinetics and growth of the coating. For simplicity, we first describe several 

material characterization techniques used throughout the studies of Nb3Sn-coated 

samples.  

Local composition and microstructure were examined with Hitachi 4700 FESEM 

equipped with the EDS detector, described in section 2.1.2. Topographic characterization 

was carried out with a Digital Instruments IV AFM in tapping mode using silicon tips with 

a resonant frequency of 300 kHz, a force constant of 40 N/m, and a tip radius of < 10 nm. 

Several areas from each sample were scanned at 50 μm × 50 μm, 10 μm × 10 μm or 5 μm 

× 5 μm with point resolution of 512 × 512. Four to five areas from several samples were 

scanned and analyzed in terms of surface height power spectral density (PSD) as 

described in [87, 88]. The PSD is calculated by the Fourier transform of the scan data to 

reveal the average contribution by features at different lateral scales. PSD was calculated 

for each of the 512 scans in each data set and averaged to obtain one-dimensional 

average PSD. PSD profiles measured at different locations under the same scan condition 

were then averaged to get a representative PSD profile of each sample. Another feature 

of these profiles is that the area under each PSD curve corresponds directly to root mean 

square (RMS) roughness.  

XPS depth profile data was collected at 50 W/15 kV with a spot size of 200 μm, 

45o take-off angle and 280 eV pass energy with a PHI Quantera SXM. Sputtering was 

accomplished via an argon ion source at 5 kV over a 2 × 2 mm2 area. 

Focused ion beam (FIB) cross-sections were first prepared with the FEI NanoLab 

600 dual beam. The NanoLab is equipped with a Ga source capable of 1–30 kV beam 
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energy with a maximum of 21 nA of current. A surface protective layer of platinum (~ 2 µm) 

was deposited prior to material removal with the FIB. Initial material removal was 

performed at 30 kV to remove material quickly. Subsequent polishing steps were 

performed by decreasing the FIB to a final polishing voltage of 2 kV, which yields optimal 

EBSD indexing conditions. The EBSD data were collected using an integrated EDS/EBSD 

collection system, including an EDAX TSL EBSD camera and Octane Elite EDS with a 

25 mm2 detector. Typical EBSD conditions range from 10 to 30 kV and beam current of 

1–50 nA at a 20° incidence angle. Details on FIB cross-section preparation and EBSD 

data collection are available in [63]. 

 Coatings prepared under different coating conditions 

 Variation of substrate preparation 

The success of Nb cavities relies on surface preparation techniques that produce 

“smooth and clean” surfaces, typically with BCP or EP. These techniques were used to 

prepare Nb substrates before coating, as described in section 1.2.7. Several samples 

were coated according to a typical process described in the same section. SEM/EDS 

examination showed no notable differences in the composition and microstructure of 

coating grown on differently prepared Nb substrates. This appears to correspond with 

cavity measurements at Cornell showing similar performances of the cavities prepared 

using BCP or EP [35]. 

AFM images in Figure 3.1 show similar post-coating topography on samples that 

received BCP, EP, or NP before coating. A comparison of representative PSD profiles 

obtained from coated surfaces grown on differently prepared substrates is shown in Figure 

3.2. The coating process generates a characteristic topography that is independent of pre-
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coating topography (see Figure 3.2). The nature of the PSD obtained here qualitatively 

resembles a PSD profile from BCP-treated Nb surface [88], as characterized by a sharp 

slope in the high-frequency regime.  

 

Figure 3.1: Topography of Nb3Sn surfaces grown on substrates prepared with NP (top-

right), EP (top-left), and BCP (bottom). Each sample was coated under the standard 

coating conditions described in section 1.2.7.  

 Coating with a low amount of tin 

Existing Nb3Sn coating protocols begin with loading tin into the furnace sample 

chamber along with the Nb samples or a cavity. The amount of tin provided usually is more 

than what would be consumed during the coating process. While coating facilities at 

Cornell University and Fermilab use an open crucible for tin loadings, at Jefferson Lab, 

the required amount of tin was supplied by packaging it inside Nb foil at the beginning, as 

shown in Figure 1.9. The amount of tin consumed during the coating process was 
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monitored by weighing the tin packages before and after the experiment. It was found that 

the amount of tin evaporated during the experiments was varying under similar coating 

conditions. The low consumption of tin was imputed to Sn packaging inside the Nb foil. 

Evaporative surface area varied between different packages, which was causing variation 

in tin evaporation. This variability was used to study surface properties of Nb3Sn coating 

associated with low tin evaporation.  

 

Figure 3.2: Average PSDs from Nb3Sn coating grown on differently prepared Nb 

substrates. Note the evolution of roughness compared to pre-coating nanopolished Nb 

surface. The cavity sample was obtained from a coated cavity that received BCP prior to 

the coating. 

SEM images in Figure 3.3 compare the two Nb3Sn coatings prepared with identical 

coating parameters except the Sn consumptions were lower than usual. For the given 

coating condition, 1 hour nucleation step at 400 °C and a 3 hour deposition step at 

1200 °C, ~ 40% (Sn-flux ~ 200 atoms.nm-2.min-1) consumption of the total Sn supply was 
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found to produce usual Nb3Sn. For the case of 12% tin consumption (Sn flux 

~ 60 atoms nm-2 min-1) (Figure 3.3), thread-like structures developed on the surface. 

However, 17% (Sn flux ~ 80 atoms.nm-2.min-1) of tin consumption resulted in a patchy 

region with relatively small grain sizes. In both cases, EDS analysis showed ~ 20 at. % of 

tin, indicating a thin layer of coating. 

  

Figure 3.3: Coating obtained with Sn flux of about 80 atoms.nm-2.min-1 [left] and Sn flux of 

about 60 atoms nm-2 min-1 [right] of supplied tin consumption during the coating process. 

Similar results were obtained during the examination of a sample that was 

accidentally dropped from the shelf of the sample chamber onto the Nb foil covering its 

bottom end. Various locations on the bottom side of the fallen sample were examined from 

the edge to the center. The coating near the edge shows small grains with occasional 

patches. At ~ 2.5 mm away from the edge, the coating had thread-like structures, similar 

to one described above. EDS analysis revealed ~ 20 at. % tin. At 5 mm away from the 

sample edge, close to the center, no structures were present. Only Nb was detected with 

EDS. SEM images representing coating from edge to center are shown in Figure 3.4. 

Since the coating was normal at the top side of the sample that was exposed to Sn vapor, 

the different appearances of the coating at the bottom come from the gradient of available 

Sn vapor. 
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Figure 3.4: Variation of the coating at the bottom side of the sample that was dropped 

during the installation of the sample chamber into the coating chamber. Images were taken 

from 1 mm, 2.5 mm, and 5 mm from the edge. 

 Inspection of samples coated at different facilities 

Even though the tin vapor diffusion technique is common, there are variation in 

coating protocols between different facilities. Whereas the Jefferson Lab furnace 

maintains both the tin source and the Nb substrate approximately at the same temperature, 

the Cornell heating system can hold the tin source at a higher temperature than the 

substrate [35]. The typical Cornell coating process includes an initial temperature ramp up 

at 3 °C/min to attain the nucleation temperature of 500 °C. The process has a 5-hour long 

nucleation step, which is followed by a temperature ramping of the substrate at 10 °C/min 

to reach the coating temperature of 1100 °C. The temperature of the tin source 

simultaneously undergoes a separate ramping such that the temperature of tin reaches 
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1250 °C at the same time the Nb reaches 1100 °C.  After one hour, heating of the tin 

source terminates while the substrate temperature is maintained at the coating 

temperature for one additional hour. In contrast, the standard Jefferson Lab coating 

process consists of an hour nucleation step at 500 °C followed by a 3-hour deposition step 

at 1200 °C. With Siemens-type configuration of the furnace at JLab, it was not possible to 

reproduce the Cornell protocol to examine relative properties of the coating prepared by 

two different protocols. The study at the time was prompted by the fact that Nb3Sn cavities 

produced at Cornell were free from the Q-slope, whereas the cavities coated at Jlab were 

consistently showing strong Q-slopes. Prof. M. Liepe and Dr. D. Hall provided samples for 

this study, which were witness samples coated alongside a cavity during the coating at 

Cornell University’s coating facility 

Samples coated at both facilities were examined using SEM/EDS, AFM, and SIMS. 

Samples coated at JLab was produced by a typical coating procedure discussed in section 

1.2.7. Several samples coated at JLab were compared with Cornell samples. SEM/EDS 

results from each sample exhibited mostly uniform coatings with the usual stoichiometry 

of Nb3Sn, ~ 24 at. % tin. As shown in Figure 3.5 and Figure 3.6, the grain structure and 

topography of the Cornell sample were found similar to that of JLab samples. Four areas 

from each sample, shown in Figure 3.6, were examined. For 10 µm × 10 µm scans, the 

average roughness of JLab sample and Cornell sample were (114 ± 17) nm and (105 ± 

13) nm, respectively. 
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Figure 3.5: Coatings prepared at JLab [left] and Cornell [right]. All the samples were BCP 

treated before coating.  

 

Figure 3.6: Topography of samples coated at Jlab [left] and Cornell [right]. 

Nb3Sn-coated samples from both facilities were analysed by SIMS with a CAMECA 

IMS7fGEO magnetic sector instrument for possible sources of trace contamination in the 

coatings. A detailed description of the data collection and analysis is available in [13]. A 

SIMS depth profile showed the presence of carbon and oxygen on the surface of the 

coatings, but these elements were not detected deeper within the Nb3Sn layer. Even 

though significantly more tin chloride is used during the coating of Nb3Sn at Jefferson Lab, 

no chlorine was detected. On the other hand, titanium was found in Jefferson Lab 

samples. Because the depth profile of titanium was similar to that of tin, it was speculated 
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that it might have been deposited during the coating process. From a comparison of the 

tin and titanium depth profiles in Figure 3.7, it is clear that the Jefferson Lab sample 

contained a significantly higher level of titanium. 

 

Figure 3.7: SIMS depth profile of Ti before the coating system upgrade. JLab sample has 

shown significantly higher levels of Ti than the Cornell sample. 

The source of titanium contamination in JLab samples was residual tungsten inert 

gas (TIG) weld spots in the sample chamber flanges, which used titanium feed wire. 

Titanium contamination in SRF cavities can originate from Nb-Ti flanges [89]. These 

issues were addressed during a recent upgrade of the Jefferson Lab coating system by 

commissioning a new insert and sample chamber fabricated entirely from Nb, section 

1.2.6. A SIMS analysis of samples coated after the coating system upgrade showed that 

titanium levels in JLab samples were then comparable to that of Cornell samples. Low 
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levels of titanium appearing in these samples could be traced from past treatments done 

in the same furnace, but a more thorough investigation is required. 

 Variation of coating time and temperature 

The coating time and the coating temperature are the critical parameters that 

significantly affect the properties of the final coating. We investigated Nb3Sn coatings 

prepared at the temperature range of 900 °C to 1200 °C and durations of up to 12 h. Each 

coating included the standard nucleation step of 500 C for 1 hour. The lower bound of 

temperature was chosen as 900 °C, which we believed may produce surfaces resembling 

the transition stage from nucleation to deposition in a usual coating. Nb samples used in 

this study had received BCP, BCP with anodization, or NP prior to the experiment. The 

coating temperature and durations used are summarized in Table 3.1. Unless specified, 

the nucleation step was fixed as usual, and identical experimental setups were used for 

each experiment. The present experiments were conducted after the coating system 

upgrade. The temperatures were measured with thermocouples attached to the sample 

chamber. The duration of deposition was accounted from when the sample chamber 

reaches the target deposition temperature. A fixed amount of SnCl2 (~1 mg/cm2) and Sn 

(~ 3 mg/cm2) was supplied for each experiment. Tin was loaded in a Nb crucible, whereas 

SnCl2 was packaged in Nb foil similar to past experiments. 

Table 3.1: Investigated temperatures and durations of Nb3Sn diffusion coating. 

Temperature (°C) 900 1000 1100 1200 

Duration (hr) 3, 12 3, 12 3, 12 0.1, 3, 6 

 

The consumption of tin was very low (<10 mg) at 900 °C, most remained in the 

crucible. Coatings obtained after 12 hours on NP and BCP samples appeared very similar, 
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which had thread-like structures and a very few pronounced grain boundaries (not visible 

in the image) on the surface. Pre-anodized samples, on the other hand, show well-

connected usual Nb3Sn grains (Figure 3.8). EDS analysis found 16 ± 1 at. % tin in each 

sample. The lower Sn-content may be explained with a shallow coating produced with a 

small amount of tin consumption. A similar result was obtained for 3 hours of coating at 

1000 °C, except the BCP sample lacked a thread-like structure compared to the NP 

sample, and showed the usual grains. EDS shows 21±1 at % tin.  

 

Figure 3.8: SEM images from pre-anodized [right] and regular BCP sample coated at 900 

°C for 12 hours [left]. 

The adjacent SEM and AFM images in Figure 3.9 compare the structure and 

topography of coatings prepared at 1000 –1100 °C. After 12 hours of deposition at 1000 °C, 

the coating matches the usual appearance of Nb3Sn. NP samples showed some abnormal 

grains, potential patchy areas of 20–40 µm in size and voids, but such structures were 

absent in the case of pre-anodized and regular BCP samples. Patches showed ~20 at. % 

tin, less than usual Nb3Sn composition of 24 ± 0.5 at. % Sn from adjacent areas. These 

patchy regions are discussed in detail later in this chapter. AFM images showed some 

potential tin residue at the surface. In some cases, patchy areas appeared to have 

relatively more residue compared to areas with regular grains, but the relevance could not 

900°C x 3 h 
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be confirmed. Similar coatings were obtained with deposition temperature of 1100 °C for 

only 3 hours, but with relatively small grains. The NP sample still showed some patch-like 

structures, but less frequently compared to similar samples coated at 1000 °C. A 

significant increase in grain sizes without any patches was noticed following the extended 

coating duration of 12 hours at 1100 °C. EDS analysis shows the usual Nb3Sn composition. 

A few near-surface voids were found in some areas.  

A short deposition of 5 minutes at 1200 °C resulted in some patchy regions in the 

NP sample once again. Occurrences of such areas were less frequent in BCP treated pre-

anodized and untreated samples. No tin chloride was included in this experiment. The 

coating produced after 3 hours of deposition at similar conditions resulted in a larger grain 

size. The grain size further increased with a longer coating of 6 hours.  

The AFM images in Figure 3.9 and Figure 3.10 show an apparent variation in 

roughness. The roughness of coated NP samples from each experiment was compared 

in terms of the power spectral densities (PSD) from surface height data obtained from 

50 µm × 50 µm and 10 µm × 10 µm AFM scans from 4–5 randomly selected areas. The 

log-log plot of calculated PSD is shown in Figure 3.11. The samples in the legend are on 

the order of increasing grain size. The average grain size of U183 was the smallest and 

that of P14 was the greatest. Since the area under the PSD gives the square of root mean 

square roughness, this analysis shows that surface micro-roughness decreases with an 

increase in grain size. While roughness at high-frequency regime is only slightly affected, 

more extended coating at any temperature appears to increase the macro-roughness. 
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Figure 3.9: Microstructure and topography of Nb3Sn prepared at 1000–1100 °C for 

different durations. All the samples received NP before coating. Scale for AFM images is 

2 µm/div along x-direction and 1 µm/div for z-direction.  

1000°C x 12 h 

1100°C x 3 h 

1100°C x 12 h 
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Figure 3.10: SEM and AFM images from NP samples coated at 1200 °C for 5 min, 3 hours, 

and 12 hours.  

1200°C x 5 min 

1200°C x 3 h 

1200°C x 12 h  
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Figure 3.11: PSD comparison of samples coated with different deposition parameters. 

XPS depth profile data was collected from pre-anodized and untreated BCP 

samples coated as discussed above. Those obtained from anodized samples are shown 

in Figure 3.12. There is a plateau of almost constant tin concentration close to the surface, 

which is similar for coatings prepared under different conditions and followed by a steady 

concentration drop before the tin signal vanishes. Such steady drop of Sn concentration 

could be caused by roughness of the Nb3Sn-Nb interface. The thickness of the coating, 

defined as the distance between the surface and the depth at which the Sn signal dropped 

below 2 percent, varied from a few hundred nm to several µm depending on the deposition 

conditions. 

The standard coating procedure yielded very similar coatings on Nb surfaces 

prepared differently (BCP, EP, and NP). Several previously described experiments 

indicate NP samples have a higher chance of developing patchy regions than BCP 



72 
 

samples. For any given condition, anodized substrates appear to have a lower chance of 

producing non-uniform coatings, which is consistent with the previous studies [17, 71].  

 

Figure 3.12: XPS depth profile from samples prepared as indicated. 

The deposition temperature could affect the coating in several ways. First, it 

determines the tin evaporation rate, which affects the arrival flux of tin vapor onto the Nb 

surface. Second, it affects the rate of Sn diffusion. Coating deposited at low temperatures 

(900 °C for 3 or 12 h and 1000 °C for 3 h) resembled our previous coatings produced with 

low tin evaporation in the previous section, which indicates the association of low tin 

availability with the thread like structures during the deposition. Smaller grains and patchy 

areas appeared on the surface with slightly higher tin availability. XPS depth profile 

indicates a little to no plateau region of Nb3Sn close to the surface for such coatings with 

a sharp drop of tin content at the Nb3Sn-Nb interface. Coatings deposited at higher 

temperatures seem to avoid patchy region, possibly because of a higher rate of tin arrival 

at the initial stage of the experiment. Tin vapor at higher temperatures may also have 

higher kinetic energy required to promote a uniform nucleation site density until well-
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connected Nb3Sn grain networks are established. It had been recommended in the early 

days of Nb3Sn coating to have a higher temperature for the tin source than for the 

substrate temperature to improve coating uniformity [17]. The coating time is crucial to 

determine the thickness of the coating. It is not clear yet quantitatively how the roughness 

and grain boundaries affect the performance of the cavity, but it appears that the increase 

of one leads to the decrease of the other or vice versa. More extended coating at any 

temperature increases the macro-roughness by reducing the grain boundary density with 

grain growth, as shown in Figure 3.13. The following section presents the research carried 

out mainly to understand the growth mechanism. 

 

Figure 3.13: Observed relationship between grain size, coating thickness, and surface 

roughness. Average roughness values (50 µm × 50 µm scan) here were averaged values 

from five different locations of the sample. Average grain sizes were estimated from 5–6 

SEM images of 2000–3500 magnification. Thickness was estimated from XPS depth 

profiles shown in Figure 3.12. 
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 Growth of Nb3Sn in vapor diffusion Process 

The quality of coated Nb3Sn layers is contingent on understanding the coating 

formation and growth. Past studies have shown that the coating thickness (y) of the Nb3Sn 

layers grown via the widely used vapor diffusion process, does not follow a parabolic 

relationship with respect to the deposition duration (t). The square of layer thickness does 

not scale linearly with the coating time (y2 ≁ t) [84]. Non-parabolic growth indicates that 

the growth process is not purely diffusion-controlled [18]. Studies have shown a similar 

growth behavior with other preparation techniques, e.g., bronze processes and Nb(s)-Sn(l) 

annealing [90–93]. The deviation from the parabolic growth was often explained by the 

influence of the grain boundaries [90, 91]. At the same time, researchers proposed 

alternate interpretations, e.g., “solution-deposition” mechanism for the non-parabolic 

growth exponent [92, 93]. Other explanations included the multiphase diffusion during 

Nb3Sn formation, a reduced concentration of tin in the bronze matrix, and Kirkendall void 

formation [94]. Some studies also indicated a significantly slower growth rate (a lower 

value of the growth exponent) at 1200 °C, the coating temperature in practice, compared 

to lower temperatures [93]. 

Further studies with the contemporary characterization tools are merited to reveal 

the growth mechanism of Nb3Sn in the vapor diffusion process. To gain insight into the 

mechanism of Nb3Sn grain size and thickness growth at the temperatures of interest, we 

systematically coated samples for a range of durations and repetitions as described below. 

 Overcoat experiments 

 A set of fine-grain Nb samples treated with BCP was first coated for 1 hour at 

1200 °C following a typical Nb3Sn coating procedure. After the run, several samples were 

removed from the coating chamber, and the remaining samples with several new Nb 
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samples were then coated (“overcoated”) for 1 hour again (without SnCl2). The overcoat 

procedure was repeated for 1, 1, 3, 12, and 60 hour coating durations, respectively, as 

shown in Table 3.2.There was always residual Sn in the crucible after each coating run. 

Table 3.2: Overcoat experiments. Note that each experiment included new uncoated Nb 

samples along with samples from the previous run. 

Experiment Coating time 

(h) 

Total coating time 

(h) 

Single coat 1 1 

1st overcoat 1 2 

2ndovercoat 1 3 

3rd overcoat 3 6 

4th overcoat 12 18 

5th overcoat 60 78 

 Results 

EDS examination shows (24 ± 0.5) at. % Sn and no notable change in surface 

composition following each overcoat. Microstructure evolution for sequentially overcoated 

samples is shown in Figure 3.14. Note that longer coatings resulted in larger grains. The 

total coating time for these samples varied between 1 and 78 hours. The average surface 

grain sizes were estimated for both the single-coat and overcoat samples from each 

coating run of the sequential overcoat series using the linear intercept method [95]. Here, 

SEM images were captured from 8–10 different locations on each sample, using a 

magnification where grains were distinctly visible. 4–6 lines were drawn across each 

image, and the number of intersections between the lines and grain boundaries was 
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manually counted. The average grain size was determined as the average distance 

between intersections.  

 

Figure 3.14: SEM images of the sequentially overcoated samples coated at 1200 °C for 

different durations. Note that all images were captured at the same magnification. 
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Table 3.3 shows the average grain sizes calculated for different cumulative coating 

durations. The measurement variation for each sample is expressed as the standard 

deviation (± SD). 

Table 3.3: Average grain sizes for the various total coating times. Note that there are two 

data sets for 3 hours of the coating. The first data set was obtained from the sample 

sequentially overcoated in the first three experiments (1+1+1 hour). The second data set 

was obtained on a new sample coated for 3 hours in the fourth experiment. 

Total Coating Time 

(h) 

Average grain size 

(µm) 

1 1.60 ± 0.15 

2 1.72 ± 0.18 

3 2.23 ± 0.18 

3 2.20 ± 0.20 

6 3.06 ± 0.23 

12 3.67 ± 0.26 

18 4.41 ± 0.30 

60 6.09 ± 0.46 

78 6.58 ± 0.54 

 

Figure 3.15 shows the grain sizes obtained after different coating times for single-

coat and overcoat samples as a function of the coating duration. The error bars are the 

measurement errors tabulated in Table 3.3. Those errors were used as the weighting 

factors to obtain fitted lines using nonlinear least square fitting, which is used throughout 

the chapter to fit nonlinear data. The fitted power law dependence of the grain size on the 

coating time is given by, 
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𝑧 = (1.55 ± 0.06)𝑡0.34±0.01 (3.1) 

where z and t are the grain size (µm) and the coating time (hour) respectively. 

 

Figure 3.15: Grain size as a function of the coating time at 1200 C. 

Coated samples from each overcoat run were examined with the XPS sputter 

profile to reveal the composition and thickness of the coating. Tin concentration from the 

surface to Nb3Sn-Nb interface, see Figure 3.16, was similar among the overcoat samples, 

and qualitatively resembles XPS depth profiles from the single-coat samples, as shown in 

Figure 3.12. A near-constant tin concentration exists from the surface through the 

thickness of the coating and ends with a steady drop near the Nb3Sn-Nb interface. The 

thickness of the coating increased with each overcoat. The depth of the tin concentration 

plateau from the surface increased with each overcoat. Also, the depth over which tin 

concentration dropped at Nb3Sn-Nb interface was found to increase with each overcoat. 
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Figure 3.16: XPS depth profiles from the sequentially overcoated samples. OC1 to OC5 

represents overcoat samples sequentially coated for 1, 1, 3, 12, and 60 hours, 

respectively. 

Several cross-sectional EBSD images were captured from a sample for each 

overcoat experiment. EBSD data on samples coated for 1 hour at 1200 °C with SnCl2 

shows columnar grain structures with deep cupping, a depression in the middle of Nb3Sn 

grains at Nb3Sn-Nb interface, see Figure 3.17(a). Grains are elongated next to Nb3Sn 

grain boundaries into the Nb substrate in several locations. Following the first overcoat for 

one hour, see Figure 3.17(b), new grains were seen next to the intersection of Nb3Sn grain 

boundaries and Nb3Sn-Nb interface. Locations where no new grains were formed mostly 

showed cupping at the Nb3Sn-Nb interface. Similar observations were made from the 

sample subjected to another one-hour overcoat, as shown in Figure 3.17(c). The next 

overcoat for 3 hours resulted in more grains at the interface with cupping in the larger 

grains, Figure 3.17(d). The black regions within the Nb3Sn layer are thought to be cracks 
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produced during the specimen preparation. The EBSD cross-section obtained from a 

sample with an additional 12 hours of overcoat, Figure 3.17 (e), shows smaller grains at 

the interface and/or cupping. In some areas, two layers of smaller grains (marked with a 

black rectangle) were seen. EBSD image from the 60 hours overcoat sample is shown in 

Figure 3.17 (f). The longest coating resulted in large columnar grains traversing the 

thickness of the Nb3Sn layer. At the Nb3Sn-Nb interface, small Nb3Sn grains were always 

observed in between these columnar grains at the end of grain boundaries. Here almost 

all the grains had depressions at the Nb3Sn-Nb interface, that is, a thicker coating close 

to the grain boundaries. 

Nb3Sn layer thicknesses were estimated from XPS depth profile data shown in 

Figure 3.16. Several EBSD and optical images collected on the representative overcoat 

samples from each experiment were also used to measure the layer thickness. Average 

layer thicknesses estimated from different characterization techniques are summarized in 

Table 3. The layer thickness from the XPS depth profile was defined as the distance 

between the surface and the depth at which the intensity of the Sn signal drops below 2%. 

The depth resolution of XPS, which by convention corresponds to the distance over which 

an 84% to 16% change in the maximum signal is measured [96, 97], was used to estimate 

the accuracy of the thickness value for each sample and is listed as the measurement 

error in Table 3.4. The discrepancy between the estimated thicknesses obtained from XPS 

sputter profiles and other measurements is expected because of the surface and interface 

roughness. Additionally, the preferential sputtering and the roughness induced by 

sputtering itself can impact the measurement resolution.  
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Figure 3.17: Cross-sectional EBSD images from sequential overcoat samples. Note that 

the different colors here are associated with different crystallographic orientations. Nb3Sn 

grains are significantly smaller than Nb grains, which are represented by a single color at  
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the top of each image, e.g., (a). The total coating time at 1200 °C is shown at the bottom 

right corner of each image. 

Table 3.4: Estimated average thicknesses for the sequential overcoat samples using 

different characterization techniques. 

Total 
coating  
time (h) 

Thickness estimated from 

XPS depth profile (µm) EBSD images 
(µm) 

Optical images 
(µm) 

1 2.25±0.85 2.03±0.37 2.33±0.28 

2 3.41±1.00 3.04±0.33 3.10±0.16 

3 3.63±1.05 4.86±0.42 4.74±0.41 

6 4.94±1.61 5.44±0.63 5.42±0.31 

18 7.69±2.06 7.67±0.55 7.76±0.38 

78 12.83±3.40 15.06±1.29 14.26±0.39 

 

Estimated coating thicknesses as a function of the coating time are shown in 

Figure 3.18.Note that the time dependence of thickness follows a power law with an 

exponent close to 0.40 for data obtained from different characterization techniques. 

Compared to XPS and EBSD, thickness estimates from optical images are more accurate 

as they come from direct examination of cross-sections. Thickness measurements from 

optical images, as represented by equation (3.2) is considered here for further discussion. 

𝑦 = (2.48 ± 0.15)𝑡0.40±0.02 (3.2) 

where y (µm) and t (hour) are layer thickness and total coating time respectively. 
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Figure 3.18: Thickness variation with coating time. Note that the error bars are the 

measurement errors tabulated in Table 3.4. Those errors were used as the weighting 

factors to fit the data using nonlinear least square fitting. 

After 78 hours of the total coating time, the Nb3Sn layer appears to be one of the 

thickest coatings reported so far at the temperature range for the vapor diffusion 

technique. The thickest coated layer of 14 µm presented an opportunity to compare the 

Sn concentration obtained from the XPS depth profile to that obtained from EDS cross-

sectional line scans. Following EBSD data collection, EDS line scans were performed on 

the thickest coated layer at three different locations, as shown in Figure 3.19(a) and Figure 

3.19(b). The line scans start from the protective layer of platinum over Nb3Sn coating and 

run perpendicular to the surface until reaching into the Nb substrate. EDS line scans in 

Figure 3.19(c) show that Sn concentration starts to go up as it approaches the coating 

surface, and the concentration is almost constant throughout the coating thickness before 
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it starts to decline close to Nb-Nb3Sn interface. Compared with XPS data in Figure 3.16, 

where Sn concentration is constant up to ~9 µm from the surface, EDS scans show near-

constant concentration up to ~14 µm for the thickest areas. Note that EDS data appears 

to show a gradual drop in Sn concentration from the surface to the reaction interface. 

Since XPS data shows no Sn deficiency on the Nb3Sn surface, the actual Sn concentration 

should be zero in the Pt layer and close to nominal in the Nb3Sn surface. The extended 

rise of Sn concentration at Pt-Nb3Sn interface is likely due to the interaction volume: the 

region of X-ray excitation sampled by the EDS instrument. The depth of X-ray generation 

is expected to be about a micron (section 2.1.2) for an accelerating voltage of 15 kV. The 

corresponding lateral spread should be well over a micron. It is seen that the rise of Sn 

concentration at Pt-Nb3Sn interface and its fall at the Nb3Sn-Nb interface look very similar. 

The spatial resolution of EDS is likely the leading cause of the extended Sn drop at Nb3Sn-

Nb interface, while the actual Sn drop from nominal to zero happens over much shorter 

distances with a near-constant composition of tin throughout the coating layer. 

 

Figure 3.19: Locations of EDS line scans are shown in EBSD images (a) and (b). The 

measured Sn concentration along the scan line is shown in (c). 



85 
 

 Growth kinetics 

In the first overcoat experiment, single-coat samples were inserted into the coating 

chamber and coated again under the same conditions. The overcoat did not result in a 

new Nb3Sn layer either below or above the existing one. The existing grains grew 

transversely and laterally during each overcoat. Smaller grains occasionally observed at 

the Nb-Nb3Sn interface in single-coat samples frequently appeared in the overcoat 

sample, indicating a new grain formation, as shown in Figure 3.17(b). Note that smaller 

grains almost always formed at the end of Nb3Sn grain boundaries next to the Nb 

substrate, and they are comparatively smaller than the columnar grains seen in single-

coat samples. Similar observations were made repeatedly for sequential overcoat 

samples. Furthermore, grain growth appeared faster next to Nb3Sn grain boundaries, 

where it intersects the substrate Nb, and less rapidly at the grain center. This can be seen 

as “cupping” at the base of many Nb3Sn grains, as shown in Figure 3.17(a). The 

appearance at the interface seems consistent with the concentration contour suggested 

in [98], reproduced in Figure 3.20. According to [99], an excess of diffusing atoms may 

build up in the vicinity of grain boundaries of polycrystalline compound layers adjacent to 

the other phase, resulting in interface roughening. These observations suggest the grain 

boundary diffusion as the primary mode for Sn transport to the Nb3Sn-Nb interface, where 

Nb3Sn forms. 

Single-coat samples in the first overcoat experiment show several grains with V-

shaped cupping at the Nb3Sn-Nb interface. Five subsequent overcoats for an additional 

1, 1, 3, 12, and 60 hours produced similar cross-sections, including small grains at the 

interface and cupping in the large grains, but at a different scale. Grains grew both laterally 

and transversely with each overcoat. Note that triangular micron-sized grains appeared at 

the end of grain boundaries at the Nb3Sn-Nb interface after the final overcoat, Figure 



86 
 

3.17(f). These observations again indicate that the grain boundary diffusion primarily 

controls the growth process. 

 

Figure 3.20: The concentration contour produced by grain boundary diffusion in a 

columnar structure, adapted from [30]. Note that for the vapor diffusion process, Nb3Sn 

formation is simultaneously in progress. 

Estimated coating thickness dependence on time is compared with similar 

measurements reported from Wuppertal University [12] in the log-log plot in Figure 3.21. 

Note that the coating preparation discussed in our work is very similar to the protocol 

followed there. Our growth exponent (0.40) was close to the one they reported (0.38), but 

the prefactor (specific growth rate at t=0) was higher in our case. [Note that the actual 

Wuppertal data from [100] appears to have a growth exponent of 0.36 instead of 0.38]. 

The semi-log plot, Figure 3.22, shows the prefactor, reported here together with 

the prefactors reported by other researchers [49]. There is a considerable spread in 

measured prefactors. Our prefactor appears to be consistent with previously reported 

values when the data spread is taken into account. 
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Figure 3.21: Growth kinetics observed in single-coat and overcoat samples compared to 

the Wuppertal data [12]. 

 

Figure 3.22: The reported values of prefactors at different temperatures. The prefactor 

value measured in the present study is shown in red. Data from other studies are 

reproduced from [49]. 
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The higher specific growth rate, prefactor (2.48 vs. 1.377) in the present 

experiment probably stems from the higher coating temperature (1200 °C vs. Wuppertal’s 

coating temperature of 1160 °C) and higher tin vapor pressure. The vapor pressure 

variation which primarily depends on the temperature and the surface area of the tin 

source, may explain the spread in the prefactor values for the similar coating temperature 

in Figure 9. Note that the vapor pressure of tin at 1200 °C is almost twice that of the vapor 

pressure at 1150 °C. It is expected that the coating growth rate k follows an Arrhenius 

dependence on temperature [101, 102]: 

l n 𝑘 = −
𝑄

𝑅𝑇
+ C (3.3) 

where Q and R are the activation energy and the ideal gas constant, respectively, and C 

is a constant. The dependence of the coating thickness on time may be expressed as, 

𝑑 = 𝑘(𝑇) 𝑡𝑛 (3.4) 

where d is the thickness of the coating. Here the reported value for n varies between 0 to 

1 for Nb3Sn growth [23]. When n is equal to 0.5, it is the parabolic growth, which is 

expected for pure bulk diffusion. Similar growth is also expected for the coating growth via 

the grain boundary diffusion through a fixed array of grain boundaries [103]. Reported 

values of grain boundary diffusivity of tin in Nb3Sn up to 800 °C are several orders of 

magnitude higher than the bulk diffusivity [94] 

Coating thickness values obtained from 1–6 hours of coating (first four data points) 

are compared with that obtained from 3–78 hours of coating (last four data points) in Figure 

3.23. The measured growth exponent, (0.49 ± 0.09), shows a parabolic relationship 

between the layer thickness and the coating time for a shorter coating up to 6 hours. The 

growth exponent declined to (0.37 ± 0.02) for a relatively longer coating of 3–78 hours. 

This indicates that the coating growth is initially diffusion-controlled, but it slows down for 

longer durations. We suggest that with a higher density of grain boundaries (small Nb3Sn 
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grains) and a thinner coating (short diffusion length) in the beginning, enough tin is 

supplied to maintain the parabolic growth rate at Nb-Nb3Sn interface via bulk and grain 

boundary diffusion. The growth rate slows down for a longer coating time because of the 

reduction in grain boundary density (larger grains) and the thicker coated layers (longer 

diffusion length). It appears that the bulk diffusion in Nb3Sn essentially freezes and the 

grain boundary diffusion dominates for the longer coating times as suggested in [104].  

 

Figure 3.23: Growth kinetics observed in single-coat and overcoat samples. Two straight 

lines here represent growth kinetics for coating times of 1–6 hours and 6–78 hours. 

Several researchers have reported growth exponent n close to 0.35 for Nb3Sn 

coatings prepared via different processes [90–93, 103]. Such deviation from the parabolic 

growth was mainly attributed to the grain boundary diffusion in the case of Nb3Sn layers 

prepared by the bronze process. The growth exponent of 0.35 measured by Farrel et al. 

for multifilamentary Nb3Sn was explained theoretically by grain boundary diffusion 



90 
 

combined with a dynamic grain growth [90, 91]. Other explanations for the slower growth 

rate included the multiphase diffusion during Nb3Sn formation, the reduced concentration 

of tin in the bronze matrix, Kirkendall void formation and the solution-dissolution process 

[93, 94]. The latter explanations may not necessarily apply to Nb3Sn coatings prepared by 

the tin vapor diffusion since we have never observed any phases other than Nb3Sn. A 

model for the A15 layer growth based on experimental results was also proposed by Reddi 

[105], who suggested a growth exponent between 0.25 and 0.5, when a significant grain 

growth is superimposed on the GB diffusion. An identical conclusion was drawn before by 

Baird [98]. 

The present data show a similar power law dependence for both the average grain 

size, Figure 3.15, and the thickness of the coating, Figure 3.18, indicating grain boundary 

diffusion plays a major role during the growth process. With a substantial increase in the 

grain size, the number of diffusion paths is reduced, depleting the tin supply at the growth 

interface. The length of the diffusion path also increases with increasing thickness of the 

coating. Comparing the average grain size before and after the overcoat experiment 

(reported before) shows that the grain growth rate varied inversely with pre-overcoated 

grain size, supporting a faster growth with a higher density of grain boundaries [36].  

Within the framework of the grain boundary diffusion model, it is possible to 

understand the commonly observed patchy regions. Patchy regions, Figure 3.24, are thin 

regions in the coatings also reported by other researchers [106]. Although patchy regions 

have been observed commonly, the cause of their formation is not yet established. It is 

believed that patches form in areas where the nucleation is not as sufficient. The use of a 

nucleation agent (e.g., SnCl2) and/or anodization of the Nb substrate before the coating 

were found to be advantageous to reduce or eliminate patchy regions [17, 70, 72, 84], 

which is consistent with our observations. Typically, patches are seen to form in the early 



91 
 

stages of coating and are often associated with low tin fluxes as discussed in the previous 

section 3.1. 

 

Figure 3.24: SEM image of a patchy area observed in Nb3Sn coated sample. 

EBSD analysis shows that patchy regions are monocrystalline Nb3Sn [63]. An SEM 

image of a patchy region is shown in Figure 3.25(a). The corresponding EBSD image in 

Figure 3.25(b) depicts patches as large monocrystalline Nb3Sn grains, as indicated by the 

single-colored regions. Cross-sectional SEM and EBSD images are shown in Figure 

3.25(c and d). The patch thickness was measured to be 194 ± 59 nm, roughly an order of 

magnitude thinner than that of a well-coated area: 1.6 ± 0.10 μm. It should be noted that 

such a thin coating layer could adversely impact RF performance because the RF 

penetration depth for the Nb3Sn material is on the order of 100 nm [107]. 
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Figure 3.25: (a) SEM image and (b) the corresponding EBSD image of a patchy region. 

Black areas arise from a combination of grain topography and the low electron beam 

incident angle (20°). (c) SEM image of FIB cross-section and (d) the corresponding EBSD 

image of the patchy area. 

Note that this substrate was nanopolished prior to coating, that is, the surface 

roughness before the coating was on the order of a few nanometers. The bulk Nb below 

the thin Nb3Sn coating is thicker than the Nb on either side of the patch where “normal” 

Nb3Sn coating is located, see Figure 3.25(c or d). That is the bulk Nb under the patch was 

consumed less than elsewhere. Since the starting Nb surface was nanopolished, the 



93 
 

evident roughening indicates that tin diffuses downward into the Nb bulk where it reacts 

to form a Nb3Sn layer at the Nb3Sn-Nb interface. Subsequent coating growth progresses 

downward, consuming Nb as Sn is transported through the Nb3Sn layers via grain 

boundaries to the Nb3Sn-Nb interface. Tin is a faster diffusing species in the Nb3Sn layer 

than Nb [102]. Patchy regions are deprived of grain boundaries to facilitate Sn-flux to the 

growth interface underneath. As discussed above, coating growth is significantly hindered, 

so the patchy area, once it forms, grows more slowly than grains elsewhere, leading to a 

thin film compared to the thicker coating in neighboring regions. 

 Grain growth 

Nb3Sn coating produced by the vapor diffusion process typically displays equiaxed 

grains (Figure 3.14), which results in a lognormal grain size distribution on the surface 

[108]. As the coating layer thickness increases with the coating time, Nb3Sn grains grow 

as well. Observed grain structures for each overcoat appear self-similar. Normal grain 

growth is defined as the uniform increase in the average grain size, due to grain boundary 

migration. The kinetics of the normal grain growth is generally represented by [109, 110], 

< 𝑅 >𝑛−< 𝑅0 >𝑛= 𝛾𝑡 (3.5) 

where < Ro > and < R > are the average grain sizes at time 0 and t respectively; n is grain 

growth exponent; γ is the kinetic coefficient. It can be expressed as, 

𝛾 = 𝛾𝑜. 𝑒𝑥𝑝 (
𝑄

𝑘𝑇
) (3.6) 

where Q is the activation energy for grain boundary mobility, and 𝛾𝑜 is a constant. 

The grain growth exponent (Figure 3.15) measured here was 𝑛 ≈ 3 indicating the 

normal grain growth. The estimated grain size growth is comparatively slower than the 

thickness growth, see equation 3.1 and 3.2. The grain growth results in the reduction of 

grain boundaries. The reduction in the number of grain boundaries due to grain growth 
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reduces the number of diffusion channels for tin transport to the growth interface and thus 

imposes the comparable exponent on the layer growth dependence. The prefactors in the 

time dependence are different between grain growth and layer growth because different 

diffusion/reaction rates drive them. The layer growth prefactor is defined by the Sn 

diffusion rate across the grain boundary and the reaction at the Nb3Sn-Nb interface. The 

grain growth prefactor is driven by the Nb/Sn diffusion across the grain boundaries 

between the grains. 

Very few studies have been reported connecting grain growth with layer growth 

kinetics. According to the dynamic grain size model proposed by Farrel et al. [91], there 

exists a relation between the layer thickness and the grain growth exponents for 

substantial growth in grain size: 

𝑧 = 𝛽(𝑇)𝑡0.5(1−𝑚) (3.7) 

where m and z represent the grain growth and the layer thickness exponents, 

respectively;  β(𝑇) is a temperature-dependent prefactor. For m ~ 0.34, equation (3.7) 

gives 𝑦 ∝ 𝑡0.33, which is close to what we obtained experimentally. 

Regarding normal grain growth, two main mechanisms of the grain growth are 

suggested in the literature: GB curvature driven and rotation-coupled grain coalescence 

(RCGC) [111, 112]. Grain growth takes place via migration of the grain boundaries toward 

their center of curvature, driven by the decrease in energy associated with the reduction 

in the length of the grain boundaries. In the RCGC model, grain rotation takes place, 

resulting in the coalescence of nearby grains, which eliminates the common grain 

boundary between them. Since both mechanisms can be responsible for grain growth, it 

is challenging to discern which is dominant for a given material. In the longer coating run 

of 60 hours, several locations with relatively longer grain boundaries were noticed. Those 

grain boundaries were pronounced, faded, or almost disappeared between different 
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locations as shown in Figure 3.26, pointed by arrows. Note that the neighboring grains 

with a common grain boundary discussed here appear modestly elongated. This 

observation is consistent with the occurrence of RCGS. Observations made here seem 

very similar to the grain-coalescence event suggested in [111, 112] as shown in Figure 

3.27. 

 

Figure 3.26: SEM image from sample coated for 60 hours at 1200 °C. Note the grain 

boundaries indicated by yellow arrows. 

 

Figure 3.27: Elimination of two triple junctions by a single rotation-coalescence event, 

adapted from [111]. Topology before (a) and after (b) the coalescence of grains A and B. 
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 Conclusions 

Nb3Sn coatings prepared by varying several different coating parameters were 

analysed. It has been found that it is essential to provide sufficient Sn flux (~ 200 atoms 

nm-2 min-1 or higher) to ensure the coating uniformity. Due to lower tin vapor pressure, the 

coating temperatures of (900–1000) °C are more prone to produce patchy regions with 

irregular grain structures compared to those at higher temperatures. Besides the coating 

temperature, coating durations are important parameters that could significantly affect the 

properties (grain size, thickness, roughness) of Nb3Sn coating. Longer deposition time 

produces thicker coating and larger grain size. Larger grain size correlates with increased 

surface macro-roughness and thickness of the coating. A similar coating composition was 

found independent of the deposition temperature within the accuracy of the XPS detector. 

NP samples showed patches more frequently than other samples which could potentially 

result from the higher mobility of tin on the smooth surface. Pre-anodization of the 

substrate reduced the occurrence of non-uniformity significantly for any given coating 

condition. 

Results from the overcoat experiments indicate that tin primarily diffuses towards 

the Nb3Sn-Nb interface through the grain boundaries, resulting in Nb3Sn growth into the 

Nb bulk. The observed non-parabolic growth is consistent with the significant grain growth, 

which is superimposed on the grain boundary diffusion. The grain size growth can also be 

fitted with a power law. Fits to the grain growth and thickness growth show that the grain 

growth rate is slower than the thickness growth rate. Nb3Sn layers produced in overcoat 

experiments seem similar to the continuous layers obtained in the single-coat 

experiments. Patchy regions in Nb3Sn coatings are large single crystalline grains. They 

are significantly thinner due to fewer grain boundaries available for tin transport. 
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So far, we discussed the results obtained from sample studies. These studies 

provided crucial insights into the growth and properties of Nb3Sn. The larger volume can 

pose additional challenges to coat and characterize the coating inside a practical SRF 

cavity. It is essential to study samples that are coated with the cavity to recognize and 

mitigate those challenges. It can greatly help to understand the limiting factors to the 

attainable performance of the cavity and could provide pathways to performance 

enhancement. The study of witness samples and the cutouts from the coated cavity are 

necessary to correlate material properties with the performance of Nb3Sn-coated cavities. 

The following chapter presents studies of witness samples and cutouts from a Nb3Sn-

coated cavity to understand the growth of Nb3Sn coating inside a cavity, and to correlate 

material properties with RF performance of Nb3Sn-coated cavities. 
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Studies of Samples Coated with SRF Cavity 

Limiting RF fields and the best quality factors of the state-of-the-art Nb3Sn cavities 

are lower than the predicted limits for the ideal Nb3Sn [19, 107]. The accelerating gradients 

are constricted below about 100 mT that corresponds to less than 25% of the theoretical 

superheating field (~400 mT). RF limits in Nb3Sn-coated cavities seem to be caused not 

by the intrinsic RF properties of Nb3Sn superconductor, but by “extrinsic” factors such as 

localized defects in Nb3Sn coatings. Research efforts are presently focused on the 

characterization of such defects, understanding their formation, and eventually, their 

reduction or elimination, e.g., see [35, 113, 114]. Large surface area of RF cavities (e.g., 

~0.1 m2 for a 1.5 GHz single-cell cavity) can experience variation in the Nb3Sn growth 

environment, which leads to variation in film structure throughout the surface. Several 

factors, including the geometry, orientation, distance from the Sn source, contamination 

inclusion, Sn consumption, residual Sn at the termination of the process, etc. affect coating 

growth and could result in defect formation. Understanding these technical aspects can 

guide the improvements in the coating protocol, resulting in better cavity performance. It 

is important to correlate the coating defects and their formation inside a cavity to RF 

performance, which will lead to improvements in the coating process and reduction in the 

number of defects and their severity. 
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The best approach to correlate the materials properties with RF performance 

would be to examine samples cut from a coated cavity after RF testing. Although it 

provides an excellent opportunity to examine the actual cavity coating, it is not always 

possible to dissect cavities because of the cost, effort, and the time needed to prepare 

and analyze cavity cutouts. An alternative approach would be to coat witness samples 

along with each SRF cavity and correlate sample analysis to RF test results. The first part 

of this chapter will present the analysis of RF losses and materials characterization of 

cutout samples from a coated cavity. Studies of witness samples linked with the coating 

process and RF performances of single-cell and multi-cell cavities are discussed 

afterwards. 

 RF and material analysis of cutouts from a Nb3Sn-coated 

single-cell cavity  

This study investigated lossy regions from a coated cavity which were identified 

using JLab thermometry system during the RF testing. The lossy regions of interest were 

cut out of the cavity after the test and inspected with several characterization techniques.  

 Cavity Coating 

“C3C4” was a 1.5 GHz single-cell cavity made from high purity (≈ 300) fine-grain 

Nb. It was subjected to buffered chemical polishing (BCP) using a solution of 49% HF, 

70% HNO3, and 85% H3PO4 in the ratio of 1:1:2 for removal of about 20 µm inside and 

5 µm outside. It then received high pressure rinsing (HPR) with ultra-pure water, was 

assembled, and evacuated before the baseline test at 2 K. The cavity was limited by high 

field Q-slope at Eacc ≈ 27 MV/m in the baseline test [107]. The low field quality factor was 

about 1.6 × 1010 at 10 MV/m. After the baseline test, the cavity was removed from the test 
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stand in the cleanroom, high pressure water rinsed, and allowed to dry in the cleanroom. 

For the Nb3Sn coating, Sn and SnCl2 were packaged in niobium foil. Three packages 

contained 1±.0.1 g of Sn each and six packages contained 0.5±.05 g of SnCl2 each. These 

packages were placed inside the cavity onto the niobium foil covering the bottom flange. 

The top flange of the cavity was covered with Nb foil as well. The cavity was assembled 

in the cleanroom for coating and double bagged in plastic bags before being transferred 

to the thin film lab. The cavity was then coated following a typical procedure (500 °C for 

1 h for nucleation, then, 3 h of coating at 1200 °C), as described in section 1.2.7. It was 

the first cavity coated in the newly commissioned furnace that was upgraded later. In 

Figure 4.1(a) the cavity is shown sitting on the table after removal from the insert. When 

the Nb cover foils were removed, several features were observed: discoloration was seen 

on NbTi flanges (b), residues were observed on the bottom Nb cover, and on the Nb foils 

that contained Sn and SnCl2 (c). Further, Sn condensation was seen on the top foil (d). 

 

Figure 4.1: Cavity C3C4 after the coating run. Note discoloration on the NbTi cavity flange 

(b) and ’tin’ droplets on the niobium foil from the cavity top flange (d). 

(

a) 

(

b) 

(

c) 

(

d) 
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 Optical Inspection 

After the coating, the cavity interior was optically inspected with a KEK-style optical 

inspection bench [115]. The optical inspection of C3C4 revealed complete coverage of 

coating on the surface. In one place at the equator area of C3C4, we found several 

~ 100 µm-size features, Figure 4.2 (marked with red ellipses). 

 

Figure 4.2: Optical inspection pictures of C3C4. (a) shows the coated surface of the cavity 

viewed via one of the beam tubes. (b) and (d) show characteristic equatorial weld regions 

of the coated cavity. (c) shows an equatorial region with several observed unusual 

features marked with red ellipses. 

 RF Test Results 

After optical inspections, the cavity was RF tested at 4.3 K and 2.0 K. Typically, 

four Lakeshore DT-670 diodes were attached to the cavity to monitor the temperature 

(

a) 

(

b) 

(

c) 

(

d) 
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spread across the cavity during cooldowns: one diode attached to the bottom beam tube, 

one to the bottom half cell, one to the top half cell, and the last diode was attached to the 

top beam tube, 90 degrees apart azimuthally each. A network analyzer was used to 

monitor the resonance frequency and the quality factor (based on 3 dB measurement) of 

the cavity during cooldowns. The superconducting transition temperature of C3C4 was 

found to be 17.9 ± 0.25 K. We did not observe any transition at 9 K, which indicates 

complete Nb3Sn coverage on the Nb. After coating, the cavity performance was limited by 

a strong slope in Q0 at low fields at both 2.0 and 4.3 K helium bath temperature, Figure 

4.3. The cavity was then re-tested with a temperature mapping array installed around the 

cavity. The Q0 vs. Eacc curve was similar, and the cavity was limited again at low gradients 

by a strong Q-slope. The low-field Q0 was better in the re-test, which is attributed to a 

different cooldown condition. Due to the higher low-field quality factor, a “knee” at about 

Eacc = 4 MV/m is more evident than in the first test. 

 

Figure 4.3: Q0 vs. Eacc for cavity C3C4. 
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During the latest test, temperature maps of the cavity surface were acquired at 

different field levels with the JLab temperature mapping system [116]. The system is 

comprised of 36 boards surrounding the cavity at the equally spaced interval, as seen in 

Figure 4.4[left]. Each board has 16 temperature sensors mounted on spring-loaded pins 

that push against the outer surface of the cavity, Figure 4.4 [right]. The temperature 

difference between the outer cavity surface and the Helium bath at the highest gradient 

showed three locations of strong heating at (15, 3), (7, 8), and (2, 7). The X-axis and Y-

axis here represent board number and sensor number, respectively. For example, (15, 3) 

represents the location at board 15 and sensor 3. Sensor 1 is at the top iris, sensor 16 at 

the bottom iris and sensor 8 is at the equator. To assess the heating in other areas, the 

maximum of the color scale is reduced to 20 mK in Figure 4.5. The three hottest areas 

mentioned above are now off scale and became white squares. The white square at (26, 5) 

is an artifact of a malfunctioning sensor. The areas which were cut out are marked with 

red lines. The number next to the marked areas indicated the number assigned to the 

extracted sample. This temperature map shows that the heating on the surface is not 

uniform, with some distributed areas, e.g., at (35, 7), showing more heating than others, 

e.g., (29, 7). This temperature map was sectioned into areas with different heating 

behavior to guide the extraction of characteristic samples from different locations. 
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Figure 4.4: Temperature mapping system on a single-cell cavity [left]. The image to the 

right shows a board with temperature sensors. 

 

Figure 4.5: Temperature map of C3C4 at Eacc = 6 MV/m shows the temperature increase 

on the outer cavity surface due to RF fields. 

  Sample Extraction 

After the RF test with temperature mapping, the outside surface of the cavity was 

marked with an engraver according to the temperature map in Figure 4.5. Each area 
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marked for extraction was encircled with engraver roughly following the contour of the 

thermometers. Several samples were then milled out with a 3/32 two-flute OSG Exomini 

TiN-coated end mill running at 3200 rpm as illustrated in Figure 4.6. The cut was cooled 

with helium gas flowing through 1/4” Tygon tubing. The helium gas nozzle was set 

approximately 5 cm from the end mill. The temperature of the niobium surface at the cut 

was checked with an infrared thermometer and never exceeded 40 °C during milling. 

During the milling, attempts were made not to cut through, but to leave a thin layer of 

material, to reduce contamination and damage to the internal surface from the milling 

process. This was not always possible due to cavity curvature, but some material was left 

when the milling was finished. The samples were then removed with pliers and de-burred.  

 

Figure 4.6: Setup used to mill out marked areas from the cavity C3C4 noted in Figure 4.5. 
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The samples were rinsed with acetone, then with methanol, and dried with ionized 

nitrogen. The samples were then ultrasonically cleaned in an ultra-pure water bath with 2% 

of micro-90 followed by ultra-pure water rinse. The samples were rinsed again with 

acetone, then methanol, and finally dried with ionized nitrogen. Figure 4.7 shows a photo 

of sample #14 before surface analysis. The edges of the samples were inspected for 

cutting artifacts with SEM. The artifacts included cracks and contamination largely 

localized near the edge of each cutout. The appearance of cracks and contaminants was 

consistent with the inference that these features developed during the cutting process. An 

example of such artifacts is shown in Figure 4.8. Cracks were found to have a preferential 

direction and were intergranular, spreading up to several hundreds of micrometers. These 

cracks are about 100 nm wide extending all the way to the niobium substrate, as shown 

in Figure 4.9. Contamination was mostly the pure niobium that was probably transferred 

during the cutting process. Traces of Al and Cu, found occasionally, were confirmed to be 

derived from the tooling used to prepare cutouts. C and O, which are common handling 

contaminants, were also observed. 

 

Figure 4.7: Sample #14 (CVT14) following each cleaning step prior to the analysis. 
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Figure 4.8: Cutting artifacts in CVT8. Note that the cracks are aligned in the same direction. 

Some traces of contamination can be seen, which was found to be niobium. 

 

Figure 4.9: Cross-sectional view of a crack observed in CVT14. Note that the crack 

extends all the way down to the Nb-Nb3Sn interface. 
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 Temperature Mapping Data Analysis 

The typical measurement of the quality factor as a function of field is a measure of 

the average surface resistance and its field dependence for the cavity as a whole. 

Temperature mapping during the cryogenic RF test, on the other hand, allows measuring 

local temperature rise and associate field-dependent loss with specific areas of the cavity. 

Temperature sensors similar to the ones used here were found to be η ≅ (35 ± 13)% 

efficient [115, 117]. That is, the temperature delta indicated by the sensor is η times 

smaller than the actual surface temperature. The temperature rise of the outside the cavity 

surface can be related to the RF power dissipated on the inside via the steady-state heat 

flow equation: 

1

2
𝑅𝑠𝐻

2 =
1

𝑅𝐾𝑎𝑝𝑖𝑡𝑧𝑎(𝑇𝑠, 𝑇𝐵)
(𝑇𝑠 − 𝑇𝑏) (4.1) 

where Rs is the RF surface resistance on the RF side of the cavity, H is the surface 

magnetic field amplitude, RKapitza is the Kapitza resistance at the helium-cavity exterior 

interface, Ts is the temperature of the outside surface of the cavity, TB is the helium bath 

temperature. Since the exterior surface of C3C4 was not coated with Nb3Sn, the Kapitza 

resistance at the helium-niobium (uncoated) interface can be used here. If ∆T is the 

temperature rise measured by the temperature sensors, then 𝑇𝑠 − 𝑇𝑏 =
ΔT

𝜂
 and the 

previous equation can be re-written: 

𝑅𝑠 =
2

𝑅𝐾𝑎𝑝𝑖𝑡𝑧𝑎 (𝑇𝑠, 𝑇𝐵)𝜂

Δ𝑇

𝐻2
(4.2) 

The surface resistance can be calculated from the equation above, if one knows 

the Kapitza resistance. It, however, is very dependent on the material and its preparation. 

Values of Kapitza resistance at 2 K, varying by almost two orders of magnitude have been 
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reported [118–120]. For chemically polished Nb, the typical value is RKapitza = 1 cm2 K/W 

[119], which will be used in the analysis with an understanding that this value could be a 

factor of two or three different for the actual C3C4 surface. While there could be a 

significant variation in the Kapitza resistance between the cavities, the variation between 

different areas of C3C4 is expected to be small, since the cavity was always treated as a 

whole. This assumption implies that, while the surface resistance curves may shift up or 

down, depending on the Kapitza resistance of the actual surface, the relative position of 

the curves and the field dependence will be the same. 

With this caveat, the average RF surface resistance of the cavity can be calculated 

from the temperature map of the whole cavity surface. Averaging the temperature rise 

adjusted for the local field amplitude over the entire surface of the cavity, the average 

surface resistance of the cavity can be calculated from the last equation. The average 

surface resistance can be calculated this way for each temperature map for each field 

level. The resulting field dependence of the surface resistance can be converted to the 

quality factor via 𝑄0 =
𝐺

< 𝑅𝑠>
, where G = 273 is the geometry factor for this cavity shape. In 

Figure 4.10, the intrinsic quality factor derived this way is shown along with the quality 

factor measured during RF testing using the standard phase-lock loop (PLL) technique. 

The error bars for the quality factor calculated from the thermometry data are derived from 

the temperature sensor efficiency spread of 37% and the sensor noise floor, which was 

assumed to be 50 µK. The typical Q0 error bars for PLL RF measurements are about 10% 

(not shown in the plot). Considering different areas of the cavity, a difference in the 

average surface resistance between the top and the bottom half cells can be evaluated. 

For example, since the Sn source is located at the bottom flange, a tin vapor pressure 

gradient may exist along the cavity axis of symmetry possibly resulting in a coating 

gradient. In Figure 4.10, the average surface resistance of the top half cell vs. the bottom 
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calculated using thermometry data as a function of field is shown. The analysis shows the 

top half cell has a higher surface resistance, but the difference is within the error of the 

analysis. The same analysis applied to the cutouts in Figure 4.5 is shown in Figure 4.12. 

The temperature rise adjusted for the local field is averaged over the temperature sensors 

covering the specific cutout area. Figure 4.12 summarizes the data for all the cutouts.  

All cutouts were broken down into three groups by the field dependence of their 

average surface resistance. The first group consists of the samples having weak field 

dependence; that is, the surface resistance stays constant with the applied field up to the 

highest field. The second group consists of the cutouts, which have a weak field 

dependence until Eacc = 4.5 MV/m, but have a surface resistance switch and a stronger 

field dependence above this field. The last group of cutouts comprises the surfaces that 

have a strongly field-dependent surface resistance from the lowest field. In Figure 4.13, 

the average surface resistance for the cutouts that have field independent loss is shown. 

The surface resistance for these samples stays constant with the field. There is an 

increase in the surface resistance at the accelerating gradients above about 5 MV/m. The 

increase is within errors, but is evident for all the thermometers in this group, suggesting 

a systematic effect. In Figure 4.14, the average surface resistance for the cutouts that 

have a resistance switch at Eacc = 4.5 MV/m. This effect is suspected to be caused by a 

weakly superconducting defect or defects becoming normal conducting at this field level. 

In Figure 4.15, the average surface resistance for the cutouts that have a strong field-

dependent loss increases exponentially with the field at all levels. The temperature at the 

highest field is an order of magnitude higher than the temperature rise measured at the 

lowest field. 
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Figure 4.10: The intrinsic quality factor derived from both RF and temperature mapping 

data. 

 

Figure 4.11: The average surface resistance of the top and bottom half cells derived from 

temperature mapping data. 
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Figure 4.12: The calculated surface resistance dependence with the field for all cutouts. 

 

Figure 4.13: The average surface resistance for cutouts that show a nearly field-

independent loss. 
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Figure 4.14: The average surface resistance for cutouts that have a resistance switch near 

Eacc = 4.5 MV/m. 

 

Figure 4.15: The average surface resistance for the cutouts that have a strongly consistent 

field-dependent loss. 
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  Surface Analysis 

Six cutouts from the cavity, two samples representing each category of different 

trend of surface resistances, and two more cutouts representing the top and bottom beam 

pipes were analyzed with the surface analytical techniques. These were examined with 

FESEM/ EDS for microstructure and local composition, and AFM was used for surface 

topography. Focused ion beam (FIB) cross-sections of cutouts were prepared and 

examined with EBSD and SEM for the crystal structure and the thickness of the coating. 

Instrument descriptions are available in the previous chapter. 

4.1.6.1 Microstructure and Local Composition 

SEM images captured from multiple locations of each sample showed a mostly 

uniform coating coverage. Observed microstructures were very similar, as shown in Figure 

4.16. Images in the first, second and third columns belong to sets of samples that showed 

field-independent loss (Figure 4.13), strong field-dependent loss (Figure 4.15), and 

resistance switch near Eacc = 4.5 MV/m (Figure 4.13), respectively. The composition was 

measured at several locations of each sample. The average compositions of each sample 

were found to be very similar, as shown in Table 4.1, with slightly lower tin content than 

the nominal Nb3Sn.  

On the other hand, cavity samples revealed several voids, including microscopic 

pits in the coating, as shown in Figure 4.17(a). Note that the term pit here refers to the 

void with well-defined sharp edges at the perimeter. Pit diameters were found to vary 

between 200 nm to 600 nm. Pits were found typically at vertices, where multiple grain 

boundaries meet as shown in Figure 4.17(b) and (c). In uncoated Nb, the presence of 

these voids with sharp edges is understood to be harmful to RF performance of a cavity 

due to local current and magnetic field enhancement [121, 122]. SEM images with a 

magnification of 3500–5000 were obtained from 15–20 randomly selected areas of each 
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cutout. Voids were counted from those images to get an estimate of void density in each 

cutout. The estimated average number of voids for all the samples was found to be (11 ± 2) 

per thousand square micron area, see in Table 4.1. Approximately one-third of the 

observed voids were pits, similar to those in Figure 4.17(b) or 17(c). 

 

Figure 4.16: SEM images from cutouts representing different field dependence of average 

surface resistance. Images in the first, second, and third columns belong to sets of 

samples showing field-independent loss, strong field-dependent loss, and resistance 

switch near Eacc = 4.5 MV/m, respectively. 

 

Figure 4.17: Several voids (enclosed by ovals) from sample CVT3 are shown in the SEM 

image to the left. The other two images show pits found in CVT11 (center) and CVT12 

[right]. Bright outlines indicate sharp edges. Note that the diameter of the pit in CVT11 is 

about 600 nm. 
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The microstructure of samples extracted from the top and bottom beam pipe 

appeared different from those obtained from cavity regions, as shown in Figure 4.18. It is 

evident that the grain size in the beam pipe cutouts is smaller than that of the cutouts from 

the cell. No voids were observed in beam pipe cutouts. Local composition of coatings from 

beam pipe cutouts was similar to that of cutouts from cavity regions. Note that the cavity 

material had higher RRR (≈ 300), while beam pipes were made out of reactor-grade 

niobium (RRR ≈ 40). The average grain size was determined for cutouts with different 

surface resistance characteristics by counting the number of grains in several SEM 

images. The estimated average grain size for cavity cutouts was (4.07 ± 0.40) µm2 per 

grain, which appeared significantly larger than those for beam pipes cutouts, see Table 

4.1. Furthermore, the average grain size for the top beam pipe, 1.35 µm2 per grain was 

smaller than that of the bottom beam pipe, 2.16 µm2 per grain. 

 

Figure 4.18: SEM images obtained from CVT10 (a), bottom beam pipe (b), and top beam 

pipe (c).  

“Patches” with larger irregular grain structures were found in CVT2, CVT4, CVT8, 

CVT12, and CVT14 and more rarely in beam pipe cutouts. We already discussed the 

characteristics of patchy regions in section 3.2.3. These features were not very common. 

The size of individual patches varied from a few tens to a few hundred square microns. 

Small patches were seen on the CVT2, CVT4, and beam pipes. Most of those areas had 

a size equivalent to the area covered by a few regular grains, as shown in Figure 

4.19[right]. Larger patches with the size of a few hundred square microns, as shown in 
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Figure 4.19[left] were encountered in CVT12 and CVT14. Note that these samples showed 

more coverage of patches than any other cutouts. A few large patches were also observed 

in CVT8, mostly localized in an unusual area, which will be discussed later. EDS 

measurement on these smooth areas shows slightly less tin (≈ 21 atomic percent tin) than 

regular areas (≈ 24 atomic percent tin), possibly because of a thinner coating. 

Patches were frequently observed close to niobium grain boundaries. Such 

patches are often large or appear to have many small patches close together, as shown 

in Figure 4.20. In many cases, the occurrences of patches run parallel to a specific niobium 

grain boundary for several hundred microns (CVT12 and CVT14). SEM images with a 

magnification of 300–500 were captured from several randomly selected areas of cutouts. 

Table 4.1: Summary of estimated materials and RF parameters for different cutouts 
 

Sample 
# 

Distance 
from 

equator 
(cm) 

Sn 
(at %) 

Void count 
(per 1000 

µm2) 

Patch 
coverage 

(%) 

Average 
grain 
size 
(µm) 

Average 
thickness 

(µm) 

Max. 
Rs 

(µΩ) 

Rs trend 

2 4.8 23.35 NA 0.09 NA 2.42±0.30 0.31 Field 
independent 4 4.2 23.66 8 0.06 4.10 NA 0.10 

8 0.6 23.69 12 0.34 NA NA 1.34 Field 
dependent 10 5.4 23.34 9 - 4.02 2.67±0.34 4.33 

12 0 23.62 11 0.5 NA NA 3.95 Field 
dependent 
with switch 

at 4.5 MV/m 

14 0.6 23.56 12 0.29 4.08 2.58±0.44 3.59 

BP 
Bottom 

10 23.54 0 NA 2.16 2.37±0.19   

BP top 10 24.53 0 NA 1.35 2.03±0.26   

 

  

Figure 4.19: SEM image of patchy areas obtained from CVT14 [left] and CVT2 [right]. 
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The images were then used to locate and measure the size of patchy regions. Table 4.1 

shows the estimated average area covered by patchy regions for each cavity cutout. 

Patchy regions contribute less than 0.5% surface coverage in any cutout. 

 

Figure 4.20: Patchy areas near grain boundaries. Yellow lines indicate the grain 

boundaries. Patchy regions are marked with ellipses. 

4.1.6.2 Topography 

AFM was only usable on a few samples due to the curvature of the cutouts. AFM 

results were consistent with SEM/EDS results to locate pits and irregular grain structures 

in the coating. A typical illustration of coating topography on the cavity is shown in Figure 

4.21. Figure 23 shows the average surface height PSD obtained from different samples. 

Since the area under a PSD curve corresponds directly to root mean square (RMS) 

roughness, roughness variation was found not to be very significant. AFM was attempted 

to obtain the depth profile of a pit. Pits were located in the AFM scans, and depth profile 

along a line was extracted from different directions as shown in Figure 4.23. It has a very 

different profile than evident in Figure 4.17. This can also be an artefact caused by the 

sharper edges of the void compare to the profiling tip. It was found that the depth of these 

pits varies between 0.5 µm to 1 µm.  
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Figure 4.21: AFM image of regular Nb3Sn coatings on CVT2. Roughness is evident with 

curved convex facets. 

 

Figure 4.22: Comparison of average PSDs of cutouts calculated using AFM data. CVT4 

and CVT10 were rougher in the high-frequency domain (lateral scale 0.1 µm and smaller) 

than CVT2 and CVT3. 

𝟓𝟎 µ𝒎 × 𝟓𝟎 µ𝒎 → 

𝟓 µ𝒎 × 𝟓 µ𝒎 → 

x: 2 µm/div 

z: 1 µm/div 
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Figure 4.23: Profile of a pit observed in CVT2. Pit appears to be ≈ 750 nm deep. 

 

4.1.6.3 Cross-section Analysis 

Cross-sections from samples were prepared using a focused ion beam (FIB), as 

discussed in section 3.1. SEM images of cross-sections were then captured to measure 

the coating thickness, as shown in Figure 4.24[left]. Coating thickness was measured at 

several locations of the cutout samples obtained from the cavity region and beam pipes. 

The coating thickness was found to be greater in cavity regions compared to beam pipes. 

The coating appeared to be thicker in the bottom beam pipe compared to that in the top 

beam pipe. The thickness of the coating was found to be as little as 400 nm in patchy 

areas; see Figure 4.25[right]. 

EBSD images were captured from cutout cross-sections to examine the structure 

of the coating further. Representative orientation image maps (OIM) obtained are shown 

in Figure 4.25. As presented in the previous chapters, columnar grains were normally 

observed, going from the surface at the top to the Nb3Sn-Nb interface at the bottom. We 

also observed the formation of non-columnar small grains at the Nb3Sn-Nb interface. 
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Figure 4.24: SEM image of a FIB cross-section obtained from CVT 10 on the left. 

Thickness varied from 2.34–2.96 µm. FIB cross-section of a patchy area similar to Figure 

4.19 on the right. The coating is significantly thin (400–600 nm) compared to the 

neighbouring area (> 1.3 µm). 

 

Figure 4.25: EBSD image from sample CVT 10 at the top, which is cut from the cavity 

region. Image at the bottom is from beam pipe cutout. Beam pipe has a thinner coating 

with more columnar grains than CVT10. Some instrumental artefacts (dark area in 

between Nb-Nb3Sn grains) are present. 
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4.1.6.4 Other Defects 

Besides patches and pits, other defects were found in some samples. One such 

defect is bright spots observed by SEM on coated surfaces (Figure 4.26). The contrast 

difference might have arisen due to the difference in topography. These features were 

found sometimes on CVT2 and CVT4, but frequently seen in CVT10. These spots were 

found to have different shapes with carbon-enriched boundaries, as shown in Figure 4.27. 

Note that the ratio of Nb to Sn was not altered within these bright spots when examined 

with EDS, suggesting that the SEM signature is due to very thin surface contamination. 

Unlike other cutouts, CVT10 had a large area with a different appearance than usual 

coating as shown in Figure 4.28. It comprises the usual Nb3Sn grains, but dark spots 

appear in each of those grains. Similar dark areas were also noticed in intergranular spots. 

EDS found an excess of carbon and oxygen from dark spots. An AFM image collected 

from CVT10, see Figure 4.29, also shows the presence of residues on the surface. 

 

Figure 4.26: Bright spots observed in different cutouts. 
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Figure 4.27: Bright spots observed in CVT10. Note EDS examination of dark boundaries 

of these features shows a clear presence of carbon. 

 

Figure 4.28: An unusual appearance of coating in CVT10. 
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Figure 4.29: AFM image from CVT 10. Note the residue covering the surface. 

A circular feature of 100um diameter was present in CVT14, as shown in Figure 

4.30. The circular area was found recessed compared to its adjacent areas, considering 

the contrast in the SEM image. The edge of this feature showed a significant presence of 

carbon and oxygen. The composition and grain structure were found similar inside and 

outside of this feature. Another noticeable area was discovered in CVT8. The area, which 

appeared relatively dark in SEM images is shown in Figure 4.31(a). Note that the area 

covered by this constituent was more than 40000 µm2; that is, the diameter was ≈ 700 µm. 

SEM images show well-defined boundaries, Figure 4.31(b, c, and e), that distinguish this 

area from areas with usual looking coating. Large patches were also seen at the boundary, 

as shown in Figure 4.31(f). Figure 4.31(d) and (e) respectively show grains from the 

unusual area under discussion, and nearby area with usual appearances. Corresponding 

EDS spectra show significant amounts of carbon from dark areas compared to regular 

areas. This unusual area of CVT8 has similar characteristics of the unusual area found in 

CVT10, Figure 4.28. 
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Figure 4.30: Defect found in CVT14. 

 

Figure 4.31: Detailed structure within the defect found in CVT8. (a) shows the unusual 

area marked with yellow lines. (b), (c) and (e) shows the transition from unusual area to 

regular area. (d) and (f) show close-up views of grains from unusual and regular areas, 

respectively. Note the patchy region found close to the transition. 

  Discussion 

SEM examination of cutout samples obtained from different areas of the cavity 

showed that the coating was mostly uniform. The measured value of superconducting 

transition temperature (~ 18 K), close to the value expected for the nominal composition 

of Nb3Sn (18.3 K) also indicated a good coverage of Nb3Sn. Patchy areas containing 

irregular grains were present in several cutouts. Cross-section measurements revealed 
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that such irregular Nb3Sn grains are significantly thinner than those elsewhere, Figure 4.24. 

Since RF field penetration in Nb3Sn is in the order of a few hundred nanometers, the 

thickness of such patchy areas is not large enough to fully shield the underlying Nb3Sn-

Nb interface and underlying niobium from the RF field. Underlying niobium has higher 

surface resistance and will cause additional RF losses compared to the regular Nb3Sn 

grains. A correlation between the relative abundance of the irregular grains and stronger 

RF field dependence is seen in the thermometry data. Thermometry data for the CVT8, 

CVT12, CVT14 cutouts indicates average surface resistance above 1 µΩ at Eacc = 6 MV/m 

and a field dependence exponent above 3, and patchy areas in these samples exceed 

0.2%. Inefficient RF shielding patchy regions contribute to the additional RF loss in these 

samples. One observation is that all three cutouts CVT8, CVT12, and CVT14 are from the 

equator region of the cavity, which seems to be more likely to develop such features, 

Figure 4.32. 

 

Figure 4.32: Defect density as a function of distance from the equator. Note the negative 

correlation; defects are more likely to occur in the regions close to the equator. 
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Electron beam welding areas feature larger grains that form during the 

solidification process of the weld seam. The cavity equator region is also the region, 

furthermost out-of-sight from the tin evaporation source. Since tin flux to such regions is 

supplied via scattering and surface diffusion, the equator regions may see less tin flux 

than the in-sight areas, and the formation of thin regions may be linked to low tin flux. With 

less tin supplied to these regions, one expects overall less tin content and hence a thinner 

Nb3Sn layer thickness. Thickness measurements of the Nb3Sn films in different cutouts 

did not show significant variation with the cutout position on the cavity surface, and the 

films both on in-sight and out-of-sight surfaces have similar thicknesses (Table 4.1). This 

suggests that the amount of tin available for grain boundary diffusion and Nb3Sn formation 

during the coating growth is similar or exceeds the diffusion rate for both in-sight and out-

of-sight cavity regions during the film coating process. The amount of available tin in the 

out-of-sight areas will depend on the sticking coefficient and surface ad-atom mobility. 

Nb3Sn growth is done typically at temperatures above 1000 °C in the vapor diffusion 

process, where the sticking coefficient can be lower, and the surface ad-atom mobility is 

higher than those at the nucleation temperature [123, 124], helping coating uniformity. The 

nucleation process is done at about 500 °C, where the sticking coefficient is higher, and 

surface ad-atom mobility is lower, impeding uniformity of tin coating. During the nucleation 

stage, some out-of-sight areas may remain poorly covered with tin. Once the process 

progresses to the growth stage, such areas will present large bare niobium areas to 

arriving tin atoms with higher mobility at this stage. Due to the absence of pre-nucleated 

centers and high tin mobility, such areas will promote the growth of large single-crystal 

grains, which will subsequently grow slower due to the absence of grain boundaries. This 

model indicates that film nucleation is critical to growing film without thin regions, and the 

film grown on cavity C3C4 may have suffered from low tin flux during the nucleation phase. 
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In the past, researchers also linked such thin areas to the substrate grain 

orientation [125]. They reported that single crystal substrate with (111) and (531) planes 

resulted in more patchy areas than the substrates with (110) and (100) orientation. Beam 

welding areas are likely to have large grains, on the order of 100 µm, resembling single 

crystal substrates, which may include similar crystal orientations favorable for non-

uniformity. It has been reported recently that the accumulation of tin particles during the 

nucleation stage can vary for different grains of niobium [59]. A finding of patchy areas in 

a large grain sample was reported before [86]. As we discussed in the previous chapter, 

substrate pre-anodization was found to reduce these areas. The pre-anodization 

technique was recently utilized at Cornell University to overcome these patchy regions 

[72]. The average coverage of patchy regions in our dissected cavity (< 0.25%), which 

was not pre-anodized, is very similar to the result obtained with pre-anodizing by 

researchers at Cornell University. It is possible that the larger amount of SnCl2 used in 

JLab may provide higher Sn vapor pressure to uniformly nucleate the large surface area 

of a cavity. Also, the coating temperature of Nb3Sn at Jefferson Lab, 1200 °C, is higher 

than that used at Cornell, 1100 °C, providing higher flux of tin during the coating. As per 

our discussion in section 3.2.3, patches have thinner coating because of fewer grain 

boundaries and longer grain boundary diffusion paths to supply fresh Sn to mid-grain at 

the Nb-Nb3Sn interface.  

The average RMS roughness was found close to 100 nm in the cutout samples for 

5 µm × 5 µm scans, slightly higher than 70 nm in samples coated before [31]. The 

difference is expected because of relatively larger grains and thicker coating in cavity 

cutouts, see section. The variation of roughness between examined samples was not very 

significant when average PSDs from the data obtained with AFM were compared. 
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Microscopic pits were observed in all the cutouts except those from beam pipes. 

Average number of pits between different cutouts were very similar. Grain growth 

competition and rapid coalescence of small grains during the deposition step are 

speculated to create such structures. These defects, reported first here, may affect the RF 

performance as the magnetic field can enhance locally at sharp edges of these structures. 

 Coating thickness and grain size were found to vary between the cavity region 

and beam pipes. One obvious difference between them was the RRR value of the 

fabrication material. There has been limited research to understand the relationship 

between RRR of substrate niobium and the Nb3Sn growth process. Peiniger et al. reported 

that the density of Nb3Sn nucleation centers was strongly reduced if one uses medium 

RRR niobium (RRR = 120) compared to low RRR niobium (RRR ≈ 40) [32]. The 

phenomenon causing the differences has not yet been established. Considering the 

potential for more nucleation sites in beam pipe (low RRR niobium) compared to cavity 

cell areas (high RRR), the observed difference in the number of grains or the average 

grain size may be understood. Grain size variation between cavity cutouts was not 

significant, but the difference in grain size between the top beam pipe and bottom beam 

pipe was significant. One possible reason for such a difference could be the distance from 

the tin source during the coating. The top beam pipe, which is farther from the tin source, 

may have received a lower flux of tin during the coating process compared to the bottom. 

Since we did not see such an asymmetry between cavity cutouts, another potential reason 

for smaller grains in the top beam pipe could be the proximity to the top heat shield and 

pump line. The temperature of the top beam pipe during the coating may have been lower 

than the beam pipe, if the heat shield was not perfect. Note that we have seen condensed 

tin on the niobium foil covering the top beam pipe during the coating. 
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Other carbon-enriched defects, similar to those depicted in Figure 4.28 and Figure 

4.29 may indicate that some contaminant may already present at these spots on the 

starting substrate niobium. If that is the case, it appears that impurity segregation to the 

surface can happen without a dramatic influence on Nb3Sn growth. Unusual and big 

carbon enriched areas present in CVT8 and CVT10 are strong candidates for localized 

heating. The circular defect found in CVT14, Figure 4.30, could be another similar case 

where the niobium might have a circular depression, susceptible to retaining 

carbonaceous impurities prior to the coating. Residue, observed in CVT10 with AFM, 

Figure 4.29, may not appear in SEM image because of the limited sensitivity of SEM/EDS, 

but it could be something that can also impair the RF performance. The higher density of 

patchy regions in CVT12 and CVT 14 appear to be well correlated with the observed 

surface resistance switch at ~ 4.5 MV/m. The carbon-rich features seem to correlate with 

strong field-dependent resistance. The absence of such features results in a material with 

relatively field-independent surface resistance. 

Since intermetallic A15 compounds are extremely brittle, Nb3Sn is vulnerable to 

fracture. It is known that brittle fractures can propagate faster along the direction 

perpendicular to the applied stress. Cracks observed in cutouts typically started from the 

edge and propagated in the same direction away from the edge, indicating that they were 

formed due to the applied mechanical stress during dissection.  

The following section presents witness sample analysis with RF performances of 

several single-cell and five-cell cavities. It will provide more insight into the coating 

properties relative to the coating process and RF performance. 
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 Witness Sample analysis linked with coating process and 

cavity performances 

During the cavity coatings, witness samples were included to provide a proxy for 

the cavity interior surface. Their analysis revealed interesting features of the Nb3Sn 

coating process. Together with whole cavity RF test results, these analyses guided 

continuing improvements in the coating process. This section presents analyses of several 

witness samples coated with single-cell and five-cell cavities. Results from the analysis 

relevant to cavity performance prompted changes in the coating process, which we will 

discuss along with cavity results.  

 Witness sample studies and single-cell cavity coatings 

As we discussed in section 1.2.6, the coated cavities at JLab initially had low-field 

quality factors (Q0) as high as > 1 × 1010 at 4 K but suffered strong Q-slope, limiting the 

attainable maximum gradient. This Q-slope, very similar to the one seen in early cavities 

coated at Wuppertal University, was consistently observed in several cavities [20, 47]. 

From the cutout studies presented in the previous section, the coating inside the cavity 

could have lossy regions because of the localized defects. One important question to ask 

here is, are these defects solely responsible for the signature Q-slopes seen in several 

Nb3Sn cavities? Our samples showed a significantly higher level of Ti in the Nb3Sn layer 

compared to the witness sample obtained from Cornell, where Q-slope free cavities were 

produced at the time (section 3.1.3), it hinted at the possible Ti migration from NbTi flanges 

of cavities during cavity coating. We often observed (yellowish or purplish) discoloration 

of the niobium cover next to NbTi flanges after the cavity coating, as in the C3C4 coating 

discussed above (Figure 4.1). The notable discoloration was also seen in alumina 

hardware used during the coating, see Figure 4.33. EDS examination of such discolored 
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alumina hardware shows a significant amount of Ti confirming Ti loss from the NbTi 

flanges. Ti from NbTi flanges was found to affect the field dependence of Q0 in Nb cavities 

[89, 126]. At Wuppertal, the potential source of Ti could be Ti foils, which were used as 

getter material on the outside of coated cavities to maintain the purity of niobium during 

the Nb3Sn coating. So, Ti was considered as a potential culprit for the observed Q-slope.  

 

Figure 4.33: Alumina hardware before [left] and after [right] the coating of a cavity with 

NbTi flanges. EDS examination shows a significant amount of Ti (Al : Ti = 2 : 3) following 

the coating. 

Following the coating system upgrade in 2017, Ti-free hygiene was adopted for 

Nb3Sn coating by avoiding cavities with Nb-Ti flanges. Witness sample analysis had 

confirmed the reduction of the Ti-level. Almost a Q-slope free Nb3Sn cavity was then 

produced for the first time, but Q was below 1 × 1010 at 2 K [26]. Since then several cavities 

were coated and tested, and still encountered Q-slopes.  

Witness samples were typically analyzed to understand the causes and their 

remedies. We will mainly focus on two experimental single-cell cavities, RDT10 and RDT7, 

which were coated several times with witness samples. Unlike C3C4 cavity, which had 

NbTi flanges, RDT10 and RDT7 were fabricated entirely of niobium. The performance of 
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each (uncoated Nb) cavity was limited to ~ 30 MV/m by a high field Q slope during the 

baseline test at 2 K. Each cavity was coated individually according to a typical Nb3Sn 

coating process as discussed for C3C4 in section 4.1.1. Unlike the C3C4 coating, Sn was 

loaded in an open-top Nb crucible that is expected to enhance the evaporation rate by 

increasing the active surface area of Sn. Both ends of the cavity were closed with Nb 

plates before installation into the furnace. A witness sample was typically hung inside the 

cavity by attaching it to the top cover using a Nb wire. The temperature profile included a 

nucleation step at ~ 500 °C for an hour and a coating step of three hours at ~ 1200 °C. 

The temperature was monitored with sheathed type C thermocouples attached to the 

cavity at different locations. There was a temperature gradient of ~20 °C between the top 

and bottom of the cavity.  

 Figure 4.34[right] shows post-coating pictures from RDT7 and RDT10. Post-

coating inspection indicated uniform coatings inside both of cavities. Samples obtained 

from each cavity coating were examined with SEM/EDS. These images, Figure 4.34[left] 

showed uniform coating in both samples. EDS analysis of both samples revealed (24.5 ± 

0.5) at. % Sn, close to the nominal composition of Nb3Sn. However, high-resolution SEM 

images from each sample revealed residues on the surface. Note that the C3C4 cavity 

had no such residues. These residues were a few tens of nanometers in diameter, as 

shown in Figure 4.35. Precise probing of those features was not always possible with EDS 

resolution, but some of the larger residues showed ~ 30 at. % Sn compared to ~ 24% in 

neighboring areas. This indicated them to be Sn-rich particles. Sn is known to be a 

superconducting material with a transition temperature (Tc) of only ~ 3.7 K [127]. Since 

the intrinsic surface resistance, i.e., the BCS resistance varies as RBCS ~ exp(-1.76Tc/T), 

Sn has higher surface resistance than Nb3Sn at 2 K and it is already normal conducting at 
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4 K. Because of higher surface resistance, it will exhibit higher dissipation and will lead to 

a stronger thermal feedback effect, degrading the cavity performance. 

 

Figure 4.34: Top left and bottom left images are SEM images captured from witness 

samples coated with RDT7 and RDT10, respectively. Images to the right show the interior 

appearance of the cavities after coating. 

 

Figure 4.35: Sn residue on Nb3Sn coating. 
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RF testing at both 4 K and 2 K showed precipitous Q-slope in each cavity. Low 

field Q0 at 4 K was ≥ 1 × 1010, but dropped sharply before quenching at ~ 11 MV/m. The 

coating experiments were repeated twice more on RDT10 with some variation in coating 

temperature, and all consistently produced a similar performance. Since Sn-residues 

appeared on the witness sample from each coating, they were considered as a potential 

causative of observed Q-slope. The witness samples were subjected to acid treatments 

and annealing to remove residues from the surface. We will be discussing these in the 

next chapter. Despite SEM images showing improved surface following some post-

treatments, cavity performance was not improved.  

4.2.1.1 Two-cavity setup 

Another approach pursued was to avoid residue formation on the cavity surface 

during the coating. We speculated that the Sn-rich residues were the result of Sn 

condensation from residual Sn vapor, which is present inside the cavity at the end of the 

coating. In an attempt to reduce Sn condensation in the cavity of interest, another single-

cell cavity was added on top, and maintained temperature gradient between two cavities 

to re-distribute residual Sn-condensation  

Cavity to be coated (RDT7 or RDT10) was connected to another single-cell cavity, 

RDT2, which had microscopic pits and was planned to be colder during coating and to act 

as a getter for residual Sn vapor, as shown in Figure 4.36. About ~ 3.4 g of tin and 3 g of 

SnCl2 were placed at the bottom similar to the first set of experiments. Since coating 

volume was increased, the coating setup also included a secondary tin crucible, which 

was loaded with 1.4 g of Sn. It was attached to the top cover with a Nb rod and hung inside 

the bottom beam pipe of RDT2. A witness sample was suspended from the secondary Sn 

crucible with Nb wire. The heat profile was similar to the previous experiments in a single-

cavity setup, except there was a temperature gradient of ~ 85 °C between the top and 
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bottom of the whole setup, as shown in Figure 4.37. This was made possible by adjusting 

the temperature of the separate heat zones of the furnace. The bottom tin container was 

mostly covered with a diffuser, which was a thick molybdenum disk with holes. 

 

Figure 4.36: Two-cavity setup for RDT7 coating. 

 

 

Figure 4.37: Temperature profile used to coat cavities in a two-cavity setup. 
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RDT7 and RDT2 were paired first and coated. The interior surface of RDT7 

appeared uniformly coated during visual inspection. SEM examination of the witness 

sample exhibited Sn-residues again. Note that the witness sample here was inside RDT2. 

Since it was suspended from the secondary Sn-crucible, which was attached to the Nb 

rod hung from the top cover, it could have a lower temperature than the cavity, and would 

thus be more likely to have Sn-residues. RF test results obtained from the RDT7 are 

shown in Figure 4.38. The measured value of low field Q0 was 3 × 1010 at 4 K and 1 × 1011 

at 2 K without any significant Q-slope. The cavity maintained a Q0 of ~ 2 × 1010 at 4 K and 

> 4 × 1010 at 2 K before quench at > 15 MV/m. The cavity performance of RDT7 showed 

noteworthy improvement in the typical Q-slope, compared to data previously reported from 

Wuppertal and Jefferson Lab. 

 

Figure 4.38: Comparison of RF results from RDT7 with previous data with Q-slopes 
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Next, RDT10 was coated together with RDT2 with a similar setup and parameters 

used for RDT7. Another witness sample was installed next to RDT10, which more likely 

represents the cavity coating. Some non-uniformity was visible in the cavity, see Figure 

4.39[right]. SEM images from the witness sample, next to RDT10, revealed some patchy 

regions, as shown in Figure 4.34 [left]. The RF test result of this cavity (not shown here) 

was very similar to the previous test result of RDT10 exhibiting a Q-slope. Despite having 

a similar temperature profile compared to the prior coating of RDT7, it is found that the 

consumed amount of tin was almost half (1.7 g vs. 3.3 g) during RDT10 coating compared 

to the tin consumed during the previous RDT7 coating. This is consistent with the previous 

study presented in section 3.1.2 that low flux of tin appeared to result in patchy Nb3Sn 

coating. The reasons behind the lower tin evaporation are not understood completely. We 

speculate that the reduction in the active surface area of the molten tin pool reduced the 

evaporation rate. Note that the Mo diffuser used in RDT7 coating broke and was replaced 

with a new one, which had smaller holes. Also, it was also suspected that the new diffuser 

has shifted from its original position during the installation into the furnace. Another attempt 

was made to coat RDT10 again without the diffuser to allow maximum tin evaporation. 

The cavity was coated uniformly this time, but it was found that Sn was splattered and 

carried over to the cavity. SEM/EDS analysis of the witness sample confirmed the 

splattering of tin. The cavity was not tested. The diffuser made from Nb foil, which almost 

replicated molybdenum diffuser used in RDT7 coating was used in the third attempt to 

coat RDT10. Supplied tin was reduced based on the RDT7-RDT2 coating experiment, to 

limit tin vapor at the end of the coating process. Note that each cavity receives ~15 µm 

removal EP removal between the two coatings to renormalize the substrate surface. 

Post-coating inspection showed uniform coating inside the cavity. The Sn 

consumption was very similar to RDT7 coating. Examination of witness samples, one from 
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the bottom and another next to the bottom beam pipe of RDT2 showed uniform coating 

without any tin residue or patches, shown in Figure 4.40. EDS examination showed the 

usual Nb3Sn composition. RF test results from RDT10 now appeared similar to RDT7 

except for the quench field, which was lower in RDT10. The latest test results from RDT10 

and RDT7 are compared to the ones after their first coating in Figure 4.41. 

 

Figure 4.39: RDT10-RDT2 coating. SEM image [left] shows patchy regions observed in 

the witness sample. Non-uniformity in the coating can be seen in the right picture. Note 

that the top half cell had less non-uniformity than the bottom. 

 

Figure 4.40: SEM images from RDT10-RDT2 coating. Note that there is no Sn residue on 

the surface [right]. 
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Figure 4.41: Comparison of the latest RF test results from RDT10 and RDT7 with those 

after their first coating. RDT10 is expected to have higher Q0 at 4 K than presented here 

as we expect losses on the flanges because of shorter beam pipes. 

 Witness sample studies and five cell cavity coatings 

Besides the progress made in single-cell cavity coating, an important goal is 

translating single-cell results into five-cell CEBAF cavities. Nb3Sn-coated five-cell CEBAF 

cavities are suitable to test them at JLab upgraded injector test facility (UITF), which will 

use one quarter cryomodule to deliver 10 MV energy gain to electron beam. Nb3Sn cavities 

are yet to be tested under an actual accelerator environment. Significantly larger volumes 

of multi-cell cavities makes it challenging to obtain uniform coatings. Initial attempts to coat 

five-cell cavities using a protocol similar to that used to coat single-cell cavities revealed 

an up-down asymmetry in the cavity coating. Cells at the top of the cavity, which were 

away from the Sn and SnCl2 source during the process had developed a non-uniform 

coating, as shown in Figure 4.42. Non-uniformity was mainly seen in the out-of-sight 

regions of top-cells, farther from the tin source at the bottom. Cells at the bottom were 
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uniformly coated. For further insight, a witness Nb rod was coated with a five-cell cavity. 

The rod was located along the cavity axis inside the cavity. Visual inspection of the witness 

rod was consistent with the non-uniformity inside the cavity surface with a shiny 

appearance next to top cells of the cavity. The rod was cut into pieces and samples next 

to each cell were examined with SEM. The coating was uniform up to the center cell of the 

cavity as shown in Figure 4.43. The density of patches increased progressively from the 

center to the top. 

 

Figure 4.42: Post-coating appearance of IA110. The view from the bottom (next to the Sn 

source) is on the left. The picture at the left is the view from the top. Up-down asymmetry 

is evident. 

 

Figure 4.43: SEM images from the witness rod coated with a five-cell cavity. Note the 

absence of patchy regions in the first few cells.  
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The visual appearance of the non-uniformity had features similar to those observed 

in some of the samples produced in previous studies. Such non-uniformity was seen in 

the “sitting edges” of the sample, where it was supported inside the sample chamber, as 

shown in Figure 4.44. The examination of witness samples often revealed that the non-

uniformity is often correlated with large patchy regions. This observation is consistent with 

our discussion in section 3.1.2. It indicated that a single source of Sn/SnCl2 is not sufficient 

to maintain uniform tin flux inside the cavity.  

 

Figure 4.44: Optical and SEM images from a coupon sample. The non-uniform 

appearance was seen in the sitting edge of the sample. The optical appearance and SEM 

images are consistent with the non-uniformity seen in the five-cell cavity coatings.  

4.2.2.1 Setups with supplementary Sn sources 

The problem of non-uniformity was mitigated by the addition of a secondary Sn 

source, which hung at about the middle of the cavity by a Nb rod attached to the top cover. 

It was found that the cavity with up-down asymmetry had a lower Q0 compared to that of 

a uniformly coated cavity (Figure 4.45). Quality factors above 3×1010 at 4 K and in excess 

of 1011 at 2 K were measured in a nearly evenly coated cavity. Accelerating gradients were 

limited to 2–5 MV/m. Secondary Sn source reduced the non-uniformity, but also resulted 
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in Sn nano-residues in witness samples (Figure 4.46). However, the gradient limitations 

were linked to the pre-existing macroscopic defects in the multi-cell cavities initially used 

for these studies.  

 

Figure 4.45: Results from the first few five-cell cavities coated at JLab. IA320 was coated 

uniformly, whereas IA110 and IA114 had up-down asymmetry.  

 

Figure 4.46: Sn residue seen on the surface following the coating with two Sn sources. 

Two (C-75 CEBAF) five-cell cavities [128] , 5C75-RI-NbSn1 and 5C75-RI-NbSn2, 

were recently purchased from RI Research Instruments GmbH with a purpose to have a 

good quality, defect-free Nb substrate. As-received cavities were first subjected to optical 
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inspection and followed by 120 µm EP and 800 °C baking for 2 h. They further received 

25 𝜇m EP before the final HPR. Cavities attained maximum gradients of about 23 MV/m 

(5C75-RI-NbSn1) and 28 MV/m (5C75-RI-NbSn2), both maintaining Q0 > 1010 up to 23 

MV/m.,cf., previously coated 5-cell cavities had reached ~10 MV/m with Q0 < 1010 in 

baseline tests.  

5C75-RI-NbSn1 was coated first. A few modifications were introduced in the 

coating process. The supplied amount of tin for the coating was reduced based on our 

previous experiments to reduce excess tin that would be left at the end of the coating 

process, which we had concluded was the source of Sn nano-residues on the surface. 

The coating time was reduced to 6 h instead of 24 h. It was expected to produce a 

relatively smoother coating with shorter coating time, as discussed in section 3.1.4. 

Another reason for this change was linked to another study presented in chapter 6, in 

which Sn-loss from Nb3Sn coating was discovered following the annealing of coated 

samples without Sn. Simialr treatment given to a coated cavity also degraded the cavity 

performance. A temperature gradient of about ~85 °C was maintained by adjusting the 

heating zones, similar to two-cavity coating. The pictures from the interior surface of the 

cavity are shown in Figure 4.47. Note that the fundamental power coupler side of the cavity 

resides at the bottom during the coating. The cavity appeared to have a visible non-

uniformity in the view from the top. SEM images from a witness sample that was close to 

the top cell showed patchy regions, as expected for such appearances. Sn residues were 

still found on the surface, but their density appeared less than those observed in previous 

five-cell cavity coatings. 

A new tin source was added to avoid non-uniformity in the next coating of C75-RI-

NbSn2. There were three tin sources inside the cavity: first at the bottom, second around 

the center, and the third close to the top. The amount of supplied tin was further adjusted. 
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The coating process otherwise was similar to the previous coating of the C75-RI-NbSn1 

cavity. The cavity was coated uniformly this time, as seen in Figure 4.48. SEM examination 

of witness samples showed no Sn-residues at the surface, Figure 4.49[right]. A witness 

sample that was close to the top cell showed only a few patchy regions occasionally with 

otherwise uniform Nb3Sn coating, as shown in Figure 4.49[left]. 

  

Figure 4.47: Pictures C75-RI-NbSn1 taken from the bottom [left] and the top [right]. The 

coating looks non-uniform from the top. 

  

Figure 4.48: Pictures from C75-RI-NbSn2 taken from the bottom [left] and the top [right]. 

The coating looks mostly uniform from each side. 
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Figure 4.49: SEM images from the witness sample coated with C75-RI-NbSn2. Note the 

absence of patchy regions [left] and tin Sn-residues [right]. 

Both cavities were tested at about 4 K and 2 K following a typical cold RF 

procedure, described in [129]. Test results from both cavities are presented in Figure 4.50. 

The low field Q0 is about 7 × 109 at 4 K and 2 × 1010 at 2 K for 5C75-RI-NbSn1. 5C75-RI-

NbSn2 has a low field Q0 of about 1 × 1010 at 4 K, and 2.5 × 1010 at 2 K. 5C75-RI-NbSn1 

and 5C75-RI-NbSn2 were limited to 9 MV/m and 13 MV/m respectively, both exhibiting a 

mild Q-slope. The lower quality factor of 5C75-RI-NbSn1 is linked to the presence of 

patchy regions and Sn-residues. The performance of these cavities shows significant 

improvements compared to previous results obtained with coated older cavities, Figure 

4.45. Both cavities reached accelerating gradients useful to accelerator applications. 

 Discussion  

Despite the potential for promising quality factor and accelerating gradient, Nb3Sn 

cavities are vulnerable to precipitous Q-slope. Reported first by Wuppertal University in 

the 1980s, the cause of such slope, also known as “Wuppertal slope,” has not yet been 

established completely. Jlab followed Siemens configuration with a single heater and 

active pumping during the coating, which is different from Wuppertal or Cornell setup, but 

still intially resulted in Q-slopes similar to Wuppertal’s at the beginning. Early studies of 



147 
 

control samples, as well as cutouts from the coated cavity with Q-slope, indicated mostly 

uniform coatings with a composition close to nominal Nb3Sn and it seemed that localized 

defects were responsible for the slope. The Ti-contamination from Nb-Ti flanges was 

another potential candidate responsible for the Q-slope. Several (all niobium) cavities 

coated later resulted in Q-slope, but as discussed above, they were linked with the 

presence of Sn-residue, patchy regions associated with non-uniformity, and also with 

macroscopic defects in the starting Nb substrate. Most of those recognized factors were 

reduced by modifying the coating process optimizing the evaporation, consumption, and 

distribution of Sn during the coating process. 

 

Figure 4.50: Test results from C75-RI-NbSn1 and C75-RI-NbSn2 at 4 K and 2 K. 
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 Conclusions 

Several areas with different RF loss characteristics were located with thermometry 

mapping measurements during the RF test of a Nb3Sn-coated cavity. Samples from these 

areas were extracted and analyzed with materials characterization techniques. RF 

analysis of the cutout regions showed three systematic trends in surface resistance with 

increasing accelerating field: weak field-dependent, strong field-dependent, and field-

dependent switch (at 4.5 MV/m). Each cutout had similar microstructures, thickness, and 

composition of Nb3Sn. Voids were commonly seen in each cutout extracted from the cavity 

region but not in the samples from the beam pipes, which also had relatively smaller grain 

sizes. This indicates that the purity of the niobium substrate influences the growth and 

microstructural properties of Nb3Sn. Several cutouts possess patchy regions with a thinner 

coating. A higher density of patchy regions was observed in the equator region and seems 

to result in a surface resistance switch at 4.5 MV/m and strong field dependency. The 

presence of large regions with carbon contamination also appears to contribute to strong 

field-dependent surface resistance. 

Analysis of witness samples coated with single-cell cavities revealed Sn-rich 

residues on the surface. In an attempt to reduce Sn residues formation during the coating 

process, changes were made in to single-cell cavity coating process, which resulted in 

nearly Q-slope free cavities. The best-coated cavity had a Q0 ≥ 2 × 1010 at 4 K and 

> 3 × 1010 at 2 K before quenching at Eacc ≥ 15 MV/m. Q-slope free results were 

reproduced in both experimental cavities, which had Q-slope before. Besides the issues 

discussed for single-cell cavities, five-cell cavities suffer non-uniformity with the single Sn-

source because of larger volume. The addition of extra Sn-source improved the coating 

uniformity, but also increases the chance to deposit Sn-residue on the surface. With the 

addition of supplementary Sn sources, quality substrate, and optimum Sn supply, it was 
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possible to produce a five-cell cavity reaching Eacc above 10 MV/m without a significant Q-

slope. 

Nb3Sn cavities are vulnerable to precipitous Q-slope, which appeared to be caused 

by several factors, including possible Ti-contamination, non-uniformity, and accumulation 

of Sn-residues on the surface. The coating uniformity and residual accumulation at the 

surface were reduced by modifying the coating process, which improved the performance 

of both single-cell and multi-cell cavity. Evaporation, consumption, and distribution of Sn 

during the coating delicately affect the resulting coating, which can significantly impact the 

RF performance of the cavity. The significant performance difference between the old five-

cell cavities (with pre-existing defects) and the new five-cell cavities (without obvious 

defects) points out to have quality substrates for better RF performance. 

We discussed the characteristics of the coating process and produced coatings so 

far. As it was exposed, it is challenging to engineer near-perfect coating surfaces, 

favorable for an excellent RF performance, without some kind of post-coating treatments 

that could improve the surface quality. We will explore several post-processing techniques 

developed for Nb cavities in the next chapter to improve surface properties, mainly to 

produce clean and smooth surfaces. 
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Post-coating Treatments of Nb3Sn-coated Nb 

It has been pointed out that the peak surface magnetic field in an RF cavity can 

locally exceed the critical field due to field enhancement at microstructures on the RF 

surface [121, 130, 131]. Sharp changes in topography such as those at step edges, 

terraces, grain boundaries, and peaks and valleys, are sources of the field enhancement. 

The continuous distribution of nano-defects can suppress the superheating field 

everywhere [122]. The cleanliness is equally important as the smoothness of the RF 

surfaces [130, 131]. State-of-the-art cavity fabrication and processing of Nb cavities 

emphasizes obtaining a very smooth as well as clean surfaces. Several post-processing 

techniques (EP, BCP, baking, impurity doping, etc.) have been developed for Nb cavities 

to enhance cavity performance [132–135]. Some provide control over cleanliness and 

topography of the final RF surface, and others help to have chemically favorable 

conditions near-surface for better performance.  

The vapor diffusion process used here produces somewhat rough surfaces of 

Nb3Sn because of the microstructure. The typical appearance of grains is faceted, and 

grooved grain boundaries are present throughout the surface. In previous chapters, we 

described several topographic characteristics of coated surfaces resulting from different 

processing conditions. The characteristic roughness appears to have no dependence on 

the initial substrate treatments. We found that reduction of grain boundaries (larger grain 
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size) correlates with an increase in average surface roughness. The AFM image in Figure 

5.1 highlights the topography of a Nb3Sn-coated surface. The presence of pits with sharp 

edges seen here is most likely detrimental to RF performance.  

Another problem we encountered was the accumulation of Sn-residues on RF 

surface during the coating of single-cell and multi-cell cavities. Analysis of C3C4 cutouts 

(Section 3.2) revealed that contamination present on the substrate surfaces could transfer 

to the coated surface. The controlled removal of the top few layers of a coated surface 

may also reduce surface defects and contamination by exposing a good quality Nb3Sn 

underneath. The development of post-coating treatments that can help to manage the 

topography of Nb3Sn coated surfaces, leading to smoother, cleaner, or both, is highly 

desirable. Such treatments are expected to improve the quality of as-coated surfaces 

resulting in better RF performance.  

Oxypolishing was explored both at Siemens and Wuppertal [47, 51, 53]. Siemens 

researchers had often seen remarkable improvement of Q0 at 1.5 K, in the regime of 

residual resistivity compared to that at 4.2 K [53]. One of the explanations was that the 

treatment was able to remove the contaminated layer of Nb3Sn (from sealed-off quartz 

ampulla) which resulted in better performances. In other studies, they observed pitting 

within the grains and grain boundaries following oxypolishing treatments with a total 

anodization voltage of about 200 V [69]. Performance degradation of about 50% for Q0 

and the onset Ep was reported from Wuppertal after 20 V oxypolishing [47]. Several cycles 

of HF immersion followed by water rinsing and mechanical polishing (CBP) at Cornell 

resulted in a substantial increase in Q-slope, limiting both the Q0 and Eacc [86]. Sample 

studies were started recently at JLab and Cornell to understand the effect of different post-

coating treatments, including EP, BCP, and oxypolishing [136–139]. 
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Figure 5.1: Typical topography of a Nb3Sn coating. 

The thin film coating poses unique challenges in applying any material removal or 

surface processing techniques. Many established techniques developed typically for pure 

bulk metals may not produce the same action because of the compound nature of Nb3Sn. 

The limited thickness of the coating layer is another significant challenge as it allows only 

a few microns thick materials to process. 

We have explored several techniques on as-coated Nb3Sn coating, aiming at 

smooth and clean surfaces. We primarily analysed the effect of several techniques (BCP, 

EP, and oxypolishing) used on Nb cavities. We also investigated the effect of annealing 

and acid treatments (HF, HNO3, and HCl) on coated surfaces. Nb3Sn samples to be 

discussed in this chapter were produced in several different coating experiments, 

discussed in previous chapters. 

 BCP 

Standard BCP solution, a mixture of 49% HF, 70% HNO3, and 85% H3PO4 by 

volume ratio of 1:1:1 or 1:1:2 was applied to Nb3Sn coated samples. The treatments were 

done for 5 seconds at 17 °C, which corresponds to the Nb removal rate of ~ 8 or 3 µm/min 
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for 1:1:1 or 1:1:2 BCP solution respectively [140]. BCP (1:1:1) was done for 16, 32, or 50 

s on Nb3Sn coated samples to observe stripping of the coating substrate for re-use in next 

coating. 

The surfaces resulting from 5 s flash BCP experiments are shown in Figure 5.2. It 

is evident that the BCP solution rapidly attacked the Nb3Sn surfaces. The surfaces are 

rougher because of non-uniformly etching. The distinct appearance of the surface 

obtained after 5 s of 1:1:1 BCP compared to that with 1:1:2 BCP solution may stem from 

the higher etching rate with 1:1:1 BCP solution. Note that, the sample U128 was given 

extra HF rinse for 30 minutes after 1:1:2 BCP as it appeared dark brownish after the initial 

treatment. HF rinse did not change that visual appearance. Some grains in U128 showed 

features consistent with HF rinsed samples, discussed later. EDS measurement shows a 

similar composition prior to the treatment indicating residual Nb3Sn layers on the surface. 

XPS ratios of Nb to Sn were found to be 3.08 and 3.52 for U128 and U162, shown in 

Figure 5.2. 

 

Figure 5.2: SEM images of Nb3Sn coated samples before and after flash BCP for 5 

seconds. Note that darker areas represent the concave structures in sample U162, which 

were confirmed with AFM. Bright curves are sharp edges.  
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Evolution of surfaces following longer 1:1:1 BCP (for 16, 32, or 50 s) is shown in 

Figure 5.3. The structure seen after 5 s of 1:1:1 BCP appeared to evolve into a honeycomb 

structure after 16 s. Sub grain faceting was observed after 32 s, and these structures get 

bigger after longer BCP for 50 s. EDS shows complete removal of the coating layer 

following 32 s 1:1:1 BCP. It indicates that a minimum of 10 µm BCP may be needed to 

renormalize the substrate Nb. 

 

Figure 5.3: Evolution of Nb3Sn coated Nb following BCP. 

 Electro-chemical Treatment 

Electropolishing (EP) is another successful technique used on Nb cavities for 

material removal and for smoothening of the surface [141–143]. Typical EP for Nb consists 

of 1:9 or1:10 volume ratio of the mixture of 49% HF and 95–98% H2SO4 with current 

density 30–100 mA/cm2 [140, 143]. A typical I-V curve for electropolishing treatment, 

shown in Figure 5.4, consists of three major regions that depend on the applied cell voltage 

[144]. The first region from Va –Vb results in etching. The plateau between Vb and Vc is the 

region where the polishing effect is achieved. Higher voltages beyond Vc involve the 

evolution of gaseous oxygen. The area around Vb often has an oscillating current. 
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Figure 5.4: Typical I-V characteristics for electropolishing [144]. 

Nb3Sn coated samples were treated first in a standard 1:10 EP solution at room 

temperature for 15 and 30 minutes without applied voltage. Subsequent SEM/EDS 

examination of the samples revealed no apparent change in composition or microstructure 

of the surface, indicating the stability of Nb3Sn in the electropolishing solution. An 

exploratory electrochemical treatment was given to a sample in a standard EP solution 

with a cell voltage of 8.5 V at 6 °C for one minute, similar to the one that is used to polish 

Nb samples. The surface appeared smoother compared to untreated sample in SEM 

images (not shown here). Non-uniform etching pits that were obtained with flash BCP were 

absent from this surface. EDS examination did not find any difference in composition 

following the treatment. XPS measurement shows Nb to Sn ratio of about 2.95, which was 

similar in another sample dipped in EP solution without applied voltage. These initial 

observations motivated for further experimental investigations described below. 

The experimental setup for electrochemical treatments consisted of an electrolyte 

solution in a polytetrafluoroethylene (PTFE) container, an aluminum or graphite cathode, 

and the Nb3Sn-coated sample as an anode. A schematic of the experimental setup is 
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shown in Figure 5.5. Similar to typical electropolishing of Nb, a 1:10 volume ratio of the 

mixture of 49% HF and 98% H2SO4 was used as an electrolytic solution. Since the first 

goal of this work was to determine the possibility of electropolishing Nb3Sn coatings, 

current-voltage (I-V) characteristics of the process were measured using Gamry 

Instruments Reference 3000 potentiostat controlled with a commercial software package. 

 

Figure 5.5: Experimental setup used for electro-chemical treatment. 

A cylindrical Nb sample and an identical Nb3Sn-coated sample coated at 1200 °C 

for 6 hours were used to measure the I-V characteristics at 21 °C. The comparison of 

current densities for applied voltages from 0 to 8 volts is presented in Figure 5.6. This 

measurement was limited to 8 volts to avoid complete removal of Nb3Sn. Data acquisition 

time was 80 seconds for this measurement. SEM/EDS examination of the sample 

following the measurement of the I-V characteristics confirmed that the Nb3Sn layer was 

not stripped completely. As shown in Figure 5.6, both the Nb and Nb3Sn-coated sample 

have similar I-V characteristics. The constant current density plateau suggests a possible 

polishing region beyond 3.5 V. This measurement was found to be reproducible. The 

extended I-V characteristics measurement up to 20 V appeared like that of Nb. 
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Figure 5.6: I-V characteristics for Nb and Nb3Sn-coated Nb samples.

Following the I-V measurement, Nb3Sn-coated samples U187, U199, and U202 

(BCP Nb coated for 6 hours at 1200 °C) were electropolished at 6.5 V for 1 minute, 2 

minutes and 3 minutes, respectively. The surfaces obtained for each sample following the 

treatments, along with as-coated reference sample U208, are shown in Figure 5.7 and 

Figure 5.8: Nb3Sn-coated samples after 2 min (U199–first row) and 3 min of 

electrochemical treatment (U202–second row) at 21°C. The first rows of images represent 

50 µm × 50 µm scan areas whereas second rows images represent 10 µm × 10 µm scan 

areas. Note that the reference sample U208 had tin residues on the surface. Topographic 

modification from each treatment was evident, with a smoother appearance of treated 

surfaces compared to untreated surfaces, when examined with SEM. Grain boundaries 

were less prominent, and grain facets were less steep after each treatment. AFM 

measurements of roughness are tabulated in Table 5.1. A roughness reduction is evident 

after the treatment. The measured Rq from a 50 µm × 50 µm scan area decreased from 

300–500 nm for the as-coated sample to 225–350 nm after one minute of treatment, 180–

220 nm after 2 minutes of treatment and 130–290 after 3 minutes of treatment. A similar 

trend also emerged in 10 µm × 10 µm scans, indicating a roughness reduction. Measured 

current density during these experiments was ~ 30 mA/cm2. Note that the estimated rate 
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of removal for Nb3Sn (14.5 nm/minute per mA/cm2) was slightly higher than Nb (13.5 

nm/minute per mA/cm2). The estimation assumes the nominal composition of Nb3Sn, and 

it does not change the stoichiometry following a treatment. 

 

 

Figure 5.7: Nb3Sn-coated samples before (U208–first row) and after 1 min of 

electrochemical treatment (U187–second row) at 21 °C. 
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Figure 5.8: Nb3Sn-coated samples after 2 min (U199–first row) and 3 min of 

electrochemical treatment (U202–second row) at 21°C. The first rows of images represent 

50 µm × 50 µm scan areas whereas second rows images represent 10 µm × 10 µm scan 

areas. 
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Table 5.1: Roughness of samples before and after electrochemical treatment at 21 °C. 

 U208 
As coated  

U187 
1 min EP 

U199 
2 min EP 

U202 
3 min EP 

R
q
 n

m
 

(5
0
µ

m
 ×

 5
0
 µ

m
) 296 225 179 286 

340 310 199 183 

285 261 159 129 

474 346 220 150 

R
q
 n

m
 

(1
0
 µ

m
×

1
0

 µ
m

) 162 112 80 144 

224 142 133 156 

168 175 88 103 

177 117 108 81 

 

In the second set of experiments, the electrolytic solution was cooled down to 1 °C 

in an ice bath in order to lower the current density. The current density varied between 

15–20 mA/cm2 during the second set of experiments. That gives the removal rate of 220 

–290 nm per minute. Samples U107, U152, U208, and U214 were electropolished with an 

applied voltage of 6.5 V for 1, 1.5, 2 and 2.5 minutes at 1 °C, 3 °C, 4 °C and 5 °C, 

respectively. Note that samples U208 and U214 were coated in the same experimental 

run as U187, U199, and U202. U107 and U152 were nanopolished and coated with the 

usual protocol (1 h of nucleation at 500 °C and 3 h of coating at 1200 °C). In contrast to 

the samples that received BCP treatment prior to the coating, there appears to be no 

significant roughness variation location to location in coated nanopolished samples. 

Figure 5.9 shows the AFM images of as-coated and treated samples. Treated surfaces 

appeared smoother than as-coated surfaces like the first set of experiments. As shown in 

Table 2, the roughness measurements from the two scan sizes are similar. Comparing 

nanopolished samples, the range of measured values for Rq of a 50 µm x 50 µm scan 
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decreases from 175–198 nm for the as-coated sample to 109–131 nm after 1.5 minutes 

of electropolishing. Significant roughness reduction was also observed in U208 and U214 

following the treatment. 

 

 

 

Figure 5.9: Nb3Sn-coated samples before and after electrochemical treatment at < 6 °C. 

Images obtained from as-coated samples U107 and U208 are shown in the first row. 
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Samples in the first and second columns respectively received NP and BCP before the 

coating. Samples U107, U152, U208, and U214 received 1, 1.5 and 2 and 2.5 minutes of 

treatments, respectively. 

PSD was calculated for 3 of each 50 µm × 50 µm scans from samples prepared in 

identical conditions following the treatment. The obtained log-log plot is shown in Figure 

5.10. Note that the area under the PSD curve corresponds directly to root-mean-square 

(RMS) roughness. The reduction of roughness usually is evident for each spatial 

frequency, but some scans had some deviation (e.g. U208 in high-frequency regime, 

Figure 5.10). Each sample was examined using EDS following the experiment. Following 

electrochemical treatment, 24 ± 1 atomic percent tin was still found in each sample, 

indicating no significant change in composition. Note that the lateral and depth resolution 

of EDS are on the order of a micron, so minor variations in composition at the surface may 

not be discernible. Some residue-like surface features were seen on some samples 

following treatment.  

Table 5.2: Roughness of samples before and after electrochemical treatment < 6 °C. 

 U107 
No EP  

U107 
1 min EP  
at 1 °C 

U152 
1 min  
EP at 3 °C 

U208 
2 min  
EP at 4 °C 

U214 
2.5 min 
 EP at 5 °C 

R
q
 n

m
 

(5
0
µ

m
 ×

 5
0
 µ

m
) 196 148 109 242 182 

192 87 109 273 157 

175 142 111 306 162 

198  131 237  

R
q
 n

m
 

(1
0
 µ

m
×

1
0
 µ

m
) 194 130 109 131 102 

197 57 111 128 94 

164 123 97 104 75 

181  110 148  
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Figure 5.10: Comparison of PSDs from Nb3Sn coated samples before and after EP. Note 

that all the samples were coated in the same run. 

Next, the volume ratio of 49% HF and 98% H2SO4 in the electrolytic solution was 

varied as 1:49, 2:48, 3:47, or 4:46. Since, decreasing of HF volume ratio results in lower 

anodic current density, it was expected to lower the removal rate, making it suitable to 

process a thin layer of coating. The expected removal rate for each electrolytic solution 

was estimated from the anodic current density data reported elsewhere for Nb 

electropolishing with different ratios of acid solution [141]. The anodic plateau current 

density falls approximately linearly with the reduction of the HF/H2SO4 volume ratio. 

Nb3Sn coated samples were electropolished in each solution for the approximately 

targeted removal of 50–500 nm. Expected removal rates were ~70, 130, 200 or 240 

nm/min with 1:49, 2:48, 3:47 and 4:46 volume ratio of 49% HF and 96% H2SO4 

respectively. A fixed voltage of 6.5 V was used for each treatment. The temperature of 
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electrolyte was within 22–25 °C at the beginning, which occasionally changed by 1–2 °C 

by the end of the experiment. 

The first set of samples prepared in the same coating run was subjected to 

electropolishing in 1:49, 2:48, 3:47 EP solution for ~ 50 nm and 200 nm removal. A 

comparison of roughness before and after treatments is presented in Table 5.3. It appears 

that the roughness slightly increased or stayed the same following each treatment. 

Surfaces after the EP treatment in 1:49 solutions are shown in Figure 5.11, see (b) and 

(c). Grains appeared to develop some new features following the procedure, which may 

have increased the roughness. Similar removal was attempted in another set of coated 

samples, prepared in the same coating run with a 4:46 EP solution. XPS examination 

revealed Nb to Sn ratio of 3.54 and 3.55 following 200 nm and 500 nm removal. The 

roughness reduction here after each treatment as evident in 50 µm × 50 µm scans is 

shown in Table 5.3. It indicated a modest surface smoothening. AFM images from these 

treatments are shown in Figure 5.11, see (e), (f), and (g). Note that the suspected tin 

residue disappeared after 50 nm EP in this case. A similar set of coated samples was also 

electropolished for ~ 500 nm material removal in each mixture of acid solution. The 

roughness presented in Table 5.3 shows a roughness reduction in each case. Minimum 

roughness was achieved with a 4:46 EP solution. 

Table 5.3: Averaged root mean square roughness (Rq) of samples after ~ 50nm, 200 nm, 

and 500 nm EP removal. Note that the Rq value of similar untreated sample was (251 ± 

39) nm and (328 ± 10) nm for 10 µm × 10 µm and 50 µm × 50 µm, respectively.  

  50 nm removal 200 nm removal 500 nm removal 

HF:H2SO4 Rq nm 
(10×10 µm2) 

Rq nm 
(50×50 µm2) 

Rq nm 
(10×10 µm2) 

Rq nm 
(50×50 µm2) 

Rq nm 
(10×10 µm2) 

Rq nm 
(50×50 µm2) 

1:49 285 ± 64 326 ± 7 222 ± 25 303 ± 29 239 ± 42 292 ± 9 

2:48 213 ± 37 312 ± 21 245 ± 23 324 ± 13 265 ± 32 293 ± 7 

3:47 203 ± 17 296 ± 16 235 ± 27 323 ± 10 239 ± 42 285 ± 10 

4:46 197 ± 12 281 ± 10 224 ± 20 272 ± 9 209 ± 15 263 ± 26 
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Figure 5.11: Topography of surfaces after electropolishing. (a) and (e) are as coated 

reference Nb3Sn surfaces. (a), (b) and (c) were coated together, showed no tin residues. 

Others were from another coating run showing potential tin residues as seen in (e). (b), 

(c) and (d) respectively received ~ 50 nm, 200nm, and 500 nm EP removal in 1:49 volume 

ratio mixture of 96% HF and 48% H2SO4. (f), (g) and (h) subjected to EP for similar removal 

of ~ 50nm, 200 nm, and 500nm in 4:46 volume ratio of 96% HF and 48% H2SO4.  

 Oxypolishing 

For oxypolishing, an oxide layer is grown on the Nb3Sn coated surface via 

electrochemical anodization and subsequently removed by rinsing with HF. Multiple cycles 

of anodization and HF rinsing may be needed to achieve the desired amount of material 

removal. The thickness of the oxide layer can be controlled by applying a fixed voltage. A 

fixed cell voltage of 10, 20, 30, 40, or 50 V was applied to grow anodic oxide layers on 

Nb3Sn coated samples. A setup similar to that shown in Figure 5.5 was used with a 15% 

NH4OH solution electrolyte. The corresponding oxide layer thicknesses were then 
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determined by XPS sputter profiles, and calibrated by FIB cross-section combined with 

SEM [145]. It was found that ~ 2.4 nm/V of an oxide layer was grown on the surface, see 

Figure 5.12. This thickness-voltage relation is close to Stimmell’s observation, 2.8 nm/V, 

who used 3% H2SO4 solution electrolyte [48].  

 

Figure 5.12: Thickness-voltage relation for the oxide layer grown in Nb3Sn. The image next 

to the x-axis, obtained by sequentially anodizing a Nb3Sn-coated Nb foil, shows the colors 

of the oxide layer for different voltages. 

Each anodized sample was then given an HF rinse for 10 minutes. After a few 

seconds of exposure to HF, the color of each sample changed to grey, the typical 

appearance of Nb3Sn coating. SEM examination showed some new features on the 

surface. Similar observation was made when 30 V anodized samples were rinsed for 5 

and 10 minutes, as shown in Figure 5.13. Those features were absent when the sample 

was exposed shortly for 1–2 minutes. Note that similar but smaller features were also 
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developed on the surface after one hour of HF rinse, discussed later. Residue formation 

on an oxypolished Nb3Sn surface had also been reported before [48]. 

 

Figure 5.13: Surfaces obtained by HF rinsing of 30 V anodized samples for different 

intervals. Note that new features, indicated by bright grainy appearance in SEM image 

were developed on the surface after 5 minutes. 

In another set of experiments, four samples coated with Nb3Sn were subjected to 

1, 2, 3 and 4 cycles of 50 V anodization followed by 90 s HF rinsing. EDS analysis of 

oxypolished samples shows the usual composition (~ 24 at. % Sn), whereas XPS analysis 

showed Nb to Sn ratios to of 3.22, 3.70, 3.30, and 3.56 for oxypolished samples for 1 to 4 

cycles respectively. The obtained surface following 4 cycles of oxypolishing is shown in 

Figure 5.14. It qualitatively resembles the electropolished Nb3Sn surfaces, presented in 

Figure 5.8. 
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Figure 5.14: AFM image from sample U111, which received 4 cycles of 50V anodization 

followed by 90 s HF rinse. Small features (like in the black rectangle) appear on the 

surface.  

A final set of samples was subjected to 2, 8, and 12 cycles of oxypolishing (30 V 

anodization and 30 s HF rinse each time) in successive experiments for an approximate 

expected removal of 50 nm followed by an additional 200 nm, and then 300 nm removal. 

AFM images in Figure 5.15 show surfaces following each treatment. Surface roughness 

was found to be a little less or similar following each treatment compared to the reference 

as-coated sample. Table 5.4 summarizes AFM roughness measurements. As reported 

before by Siemens researchers [69], pitting on the surface was not observed here, but 

irregularly etched spots or features that look like residue were noticed, within grains after 

~ 500 nm EP or oxypolishing removal, as shown in Figure 5.16. XPS surface analysis 

showed Nb to Sn ratios of 3.51 and 3.54, respectively, following 8 and 12 cycles of 

oxypolishing. 
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Figure 5.15: (a), (b) and (c) received 2, 8 and 12 cycle of 30 V oxypolishing for ~50 nm, 

200 nm and 550 nm removal successively. 

 

Table 5.4: Estimated roughness for sequentially oxypolished samples. 

Oxypolishing Expected removal 
(nm) 

Rq nm 
(10 µm × 10 µm) 

Rq nm 
(50 µm × 50 µm) 

0 V 0 251 ± 39 328 ± 10 

30 V × 2 50 213 ± 12 291 ± 7 

30 V × 8 + 200 244 ± 47 302 ± 12 

30 V × 12 + 300 196 ± 17 311 ± 11 
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Figure 5.16: SEM image SEM image from sample after 22 successive oxypolishing 

(~ 550 nm removal). Note new features, as in inside yellow boxes. 

 Acid Immersion 

 HF Immersion 

XPS analysis of Nb3Sn coated samples shows that the surface is largely covered 

with Nb2O5 and SnO2 [52, 146]. HF is well-known to dissolve Nb2O5 and expected to 

remove SnO2. Four coated samples were dipped in bottle-strength, 49% HF solution for 

1, 5, 30, and 60 minutes at room temperature. Samples were then rinsed with de-ionized 

water before SEM/EDS analysis. SEM examination of samples rinsed for 1 and 5 minutes 

did not show any notable changes on the surface. However, new features emerged after 

prolonged HF immersion for 30 or 60 minutes. A comparison of AFM images before and 
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after 30 minutes in HF are shown in Figure 5.17. Grain facets appeared sharper after 60 

minutes of HF rinsing indicating a gradual etching of the coated surface. SEM images 

shown in Figure 5.18 shows sharp grain boundaries, which was also confirmed with AFM.  

EDS did not show any significant differences in the composition following HF 

dipping for any duration. Note that the depth resolution of EDS measurement (~ 1 µm) 

may not be sensitive enough to evaluate the change in composition at the surface. XPS 

surface analysis showed Nb to Sn ratios of 3.46, 2.98, 3.59, and 3.60 for 1, 5, 30, and 60 

minute rinsed samples, respectively. Note that XPS measurements for as-coated Nb3Sn 

coated samples show Nb to Sn ratios close to 3, typically a bit lower than what we 

observed in oxypolished, electropolished, or HF rinsed samples. 

 

Figure 5.17: AFM images of Nb3Sn coated sample U153 before [left] and after [right] 30 

min HF immersion. Note the rough appearance of each grain that after the treatment.  
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Figure 5.18: SEM images from samples after 5 min and 1 h dipping in HF. Note small 

features developed in the grains following 1 h treatment.  

 HNO3 Immersion 

Sn-residues can potentially deposit on Nb3Sn-coated surfaces at the end of the 

coating process. Reported before by early researchers [48], these residues are one of the 

recurrent issues discovered in our coating experiments, as discussed in Chapter 4. 

Several Nb3Sn-coated samples with Sn-residues on the surfaces were immersed in 

magnetically stirred HNO3 solution at conditions described below. The desired outcome 

was to remove these residues from the surface. Each sample was examined with 

SEM/EDS following the treatment. Results from various HNO3 immersion conditions are 

summarized in Table 5.5. The best outcome for the removal of Sn-residues was obtained 

with 22% HNO3 at ~110 °C, as shown in Figure 5.19. 

 HCl Immersion 

We dipped several Nb3Sn-coated samples with Sn-residues in 38% or 5% HCl for 

durations described below aiming to remove the Sn-residues. The first set of samples 

were soaked for 5 min to 6 h in 38% HCl at room temperature. SEM examination showed 
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no notable changes on the surface following these treatments. Another set of similar 

samples was then dipped in dilute 5% HCl at room temperature for 15 min to 3 h. The Sn-

residues in each sample were reduced significantly. Almost complete removal of Sn-

residues was observed following a one-hour soak in 5% HCl at room temperature (Figure 

5.20).  

Table 5.5: SEM result from coated samples immersed in HNO3 solution at different 

conditions 

HNO3 
Concentration 
(%) 

Immersion 
Time  
(min) 

Immersion 
Temperature 
(°C) 

Results 

70 5–15 Room Temp No effect in Sn-residues or the 
coating 

70 ≥ 5  ~ 100 °C Notably reduced Sn-residues 

22 5  ~ 110 °C Completely removed Sn-residues 

5 5–5 Room Temp Notably reduced Sn-residues 

 

  

Figure 5.19: SEM images of witness sample coated with RDT10 before [left] and after 

[right] 22% HNO3 soak at ~110 °C. Bright features are Sn-rich residues.  
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Figure 5.20: SEM images of witness sample coated with RDT7 before [left] and after [right] 

5% HCl soak for one hour  

 Annealing 

Annealing of Nb3Sn-coated cavities has been previously investigated. Siemens 

researchers annealed coated cavities for some hours at 1050 °C without Sn to “clean” the 

grain boundaries. Since grain boundaries play a vital role in transporting tin into Nb during 

the growth of the coating, they were considered as potential “weak links” between the 

grains [69]. While yet to be confirmed, grain boundaries were speculated to have different 

stoichiometry than Nb3Sn. The annealing was expected to improve the off-stoichiometric 

nature of grain boundaries. Cornell researchers pursued annealing of the cavities (at ~ 

1100 °C for 0.5–6.5 h with the tin heater turned off) to increase the grain size of the 

material [86]. Both studies showed no dramatic improvement in the RF performance 

following the annealing. The results were even a little worse than those before annealing. 

The primary goal of annealing in our studies was to evaporate potential Sn-residues from 

the coated cavity surface for potential improvement in cavity performance.  

First, we annealed a coated cavities, which had Q-slope, for 2 hours at 1100 °C. 

Both ends of the coated cavity were closed with Nb covers which were freshly etched with 

BCP. Witness samples, one previously coated and the other a new (not coated) Nb were 
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also placed inside the cavity before annealing. Post-annealing inspection showed some 

discoloration in Nb covers exposed inside the cavity, possible indication of a thin coating 

layer deposited during the process. RF test at both at 2 K and 4.2 K showed degradation 

of Q0 following the annealing. Figure 5.21 compares cavity performance at 4 K before and 

after annealing. Almost constant Q0 was measured up to ~ 4 MV/m unlike the as-coated 

cavity but followed by a sharp Q-slope.  

 

Figure 5.21: RF performance of the cavity before and after annealing. The test was limited 

by input RF power. 

SEM/EDS examination showed no tin residues on the previously coated witness 

samples, indicating the disappearance of Sn residues. The Sn content appeared ~ 1 at. 

% less than before, which is within the instrumental error. However, the other Nb sample, 

not coated before, appeared coated in SEM image, Figure 5.22. EDS analysis showed 

~ 10 at. % Sn, which indicates that the Sn was transferred from the Nb3Sn coating inside 

the cavity during the annealing. The loss of Sn from the coating may explain the 

degradation of the cavity performance. The depletion of Sn upon annealing at 950–
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1000 °C was reported before [38, 147]. They estimate an evaporation rate of ~ 0.50 

monolayers of Sn per second at 950 °C [38]. We have also seen Sn loss from Nb3Sn films 

grown by multilayer sequential magnetron sputtering during the annealing process [148]. 

 

Figure 5.22: SEM image from Nb sample after annealing at 1100 °C for 2 hours with a 

coated cavity. 

Since the loss of Sn from the coating was somewhat unexpected, we annealed 

three Nb3Sn coated samples for 12 h at 1200 °C. They were prepared at 1200 °C with a 

coating times of 1 h, 12, and 60 h, as discussed in Chapter 3. SEM images captured from 

these samples showed unusual grain structures (Figure 5.23). In some cases crack-like 

structures developed after the annealing. EDS examination of each sample showed only 

1–2 at. % Sn remaining, confirming the evaporation of Sn from Nb3Sn layers. 
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Figure 5.23: SEM image at the top was from the sample that was coated for 1 h, and 

annealed for 12 h at 1200 °C. Other images are from another sample coated for 12 h, 

before (bottom-left) and after (top-right) annealing at the same conditions. 

 Conclusions 

Chemical, electro-chemical, and thermal treatments were applied to Nb3Sn 

surfaces aiming to clean and smooth them. BCP treatment appears to attack rapidly 

producing a very rough surface, forming depressions with sharp edges. In 

electropolishing, the measurement of the I-V characteristics indicated the polishing of 
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Nb3Sn surface may be possible. The topography of coated coupon samples before and 

after electropolishing shows smoothening. In contrast to BCP treatment, material removal 

in electropolishing is more controllable and uniform. The actual mechanism of polishing is 

not yet understood, but observed current-voltage characteristics suggest a diffusion-

limited process similar to Nb. HF contents in the standard EP electrolyte were reduced in 

different ratios to allow longer treatment time for a given thickness removal. Data 

suggested that the standard EP electrolyte had a better smoothening effect than HF-

reduced electrolytes, which has not yet been understood. Although oxypolished surfaces 

were similar to electropolishing-produced surfaces, only a light smoothening was evident. 

In general, electropolishing or oxypolishing did not increase the roughness or damaged 

the surface notably. XPS measurement typically showed Nb to Sn ratio slightly higher than 

3 after each treatment. It is possible that the as-coated sample may contain a tin-rich layer 

on the surface, resulting in lower Nb/Sn ratios, but this requires further examinations. 

Irregularly etched spots or residues-like features were observed in several samples 

following HF rinsing, oxypolishing, or electropolishing. The genesis of these features is not 

yet understood. It could be a result of different etching rates for Nb and Sn or the 

precipitation of reaction products. Under certain conditions, HNO3 or HCl removes Sn-

residues from the coated surface. We annealed a coated cavity with a witness Nb sample 

in another attempt to evaporate Sn residue from the surface. The niobium witness sample 

was covered with Nb-Sn coating following the annealing. Since the only source of tin was 

the Nb3Sn layer on the cavity in this setup, Sn transfer to the witness samples indicates 

tin evaporation from Nb3Sn films, leading to Sn loss from the coating layer. RF testing of 

the cavity also showed significant degradation of performance following the annealing 

potentially from the Sn loss. The dedicated experiment with coated coupon samples 

confirmed the Sn loss following annealing.  
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Summary and Outlook 

Nb3Sn is a prospective material for future SRF accelerator cavities. Tin vapor 

diffusion is a promising and successful technique to fabricate them in which the interior 

surface of Nb cavities is reacted with Sn vapor to grow a few-micron-thick surface layers. 

This dissertation has presented results from numerous experiments that provide important 

insight into different aspects of growth and properties of Nb3Sn coatings. Important 

conclusions drawn from each study are already presented at the end of each chapter. In 

this chapter, we will summarize them together before presenting an outlook. 

 Summary 

We discussed results from samples prepared under many different nucleation 

conditions in Chapter 2. The nucleation step was found to give two forms of tin on the Nb 

surface: the two-dimensional phase of extra tin deposits on the surface between three-

dimensional tin particles, resembling the Stranski-Krastanov growth mode. Omitting the 

nucleation step in the coating process increases the chances of forming patchy regions. 

Varying nucleation parameters resulted in various surface structures, but that alone had 

no significant impact on the subsequent final coating, at least as seen in SEM/EDS 

examination. Chapter 3 presented experimental outcomes of the growth of the coating at 

elevated temperatures. Coating temperatures of (900–1000) °C resulted in more patchy 
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regions than those at higher temperatures. A similar observation was made for the coating 

grown with lower flux (< 100 atom.nm-2.min-1) of tin, indicating the need for sufficient Sn 

flux (~200 atom.nm-2.min-1 or higher) at the initial stage of the coating to ensure uniformity. 

Besides the coating temperature, coating durations can significantly affect the coating 

properties (grain size, thickness, roughness). Extending the coating time was found to 

produce thicker and rougher coatings with larger grain sizes. The average coating 

thickness and grain size varied ~ (2–15) µm and ~ (2–7) µm, respectively, for the total 

coating time ranging from 1 h to 78 h. Increased grain size correlates well with increased 

surface macro-roughness and thickness of the coating. Pre-anodization (30 V, 15% 

NH4OH solution) of the substrate reduced the occurrence of non-uniformity at any given 

coating condition. Material analysis hinted at possible Ti-contamination from Nb-Ti flanges 

and was considered as a major culprit to recurrent Q-slopes in Nb3Sn cavities at JLab. 

We also introduced overcoat experiments (sequential growth of multiple coating 

layers) in Chapter 3 to investigate the growth and kinetics of Nb3Sn during the process. 

The results indicated that the coating grows primarily by tin diffusion to the film-substrate 

interface via Nb3Sn grain boundaries, where it reacts with Nb to form Nb3Sn. That explains 

why the patchy regions are significantly thinner. Since patchy areas are large single 

crystalline grains, the coating growth is hindered due to fewer grain boundaries available 

for tin transport. The observed non-parabolic growth is consistent with the significant grain 

growth resulting in the reduction of grain boundary diffusion. Accordingly, the grain size 

growth can also be fitted with a power law. Overcoat experiments resulted in equiaxed 

and columnar grains, which scaled with coating time. The microstructure and composition 

appeared similar to those obtained from single-coat experiments.  

Chapter 4 presented results from the studies of witness samples and cutouts from 

preparing a Nb3Sn-coated cavity. These studies provided firsthand information to 

understand the growth of Nb3Sn coating inside a practical SRF cavity, and to correlate 
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materials findings with RF properties of coated cavities. Thermometry mapping 

measurements identified several locations with different RF loss characteristics during a 

testing of a Nb3Sn-coated cavity. These were excised. Each cutout fitted one of the three 

systematic surface resistance trends: weak field-dependent, strong field-dependent, and 

field-dependent switch (at 4.5 MV/m). No notable differences in thickness and composition 

were found between the cutouts that had different trends of surface resistance. We 

discovered voids, which were not reported before, in each cutout extracted from the cell 

region. No voids were present in the samples from the beam pipes, which also had 

relatively smaller grain sizes indicating the possible influence of Nb purity on the 

microstructure of Nb3Sn. A higher density of patchy regions near the equator seems to be 

associated with surface resistance switch at 4.5 MV/m and strong field dependency. The 

presence of unusual large regions with carbon contamination appears to associated with 

regions showing strong field-dependent surface resistance. This highlights the need for 

assured cleanliness of substrate cavities. 

Chapter 4 also reported the results from the examination of several witness 

samples coated with single-cell and multi-cell cavities that led to modifying the coating 

protocols. Analysis of witness samples coated with single-cell cavities revealed a 

distribution of Sn-rich residue on the surface. The two-cavity setup with a temperature 

gradient ~ 85 °C was adopted to avoid Sn residue on the surface (of the cavity to be 

coated) by promoting the condensation of residual tin on the colder (dummy) cavity. These 

changes made in the coating process reduced the Q-slope significantly. The best-coated 

cavity had a Q0 of ~ 2 × 1010 at 4 K and ~ 5 × 1010 at 2 K before quenching at ≥ 15 MV/m. 

Analysis of witness samples coated with the first five-cell cavities that resulted in up-down 

asymmetry showed large patchy regions. The non-uniformity was once again attributed to 

the lower flux of tin to the upper cells, in “out of sight” areas. The addition of secondary 

Sn-source improved the coating uniformity but deposited Sn-residue on the surface as in 
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single-cell cavity coatings. The uniformity was correlated with a higher value of quality 

factor, but the limited accelerating gradient is attributed to macro defects present in the 

substrate prior to the coating. With the addition of supplementary Sn sources, quality 

substrates, and adjusted Sn supply, it was possible to produce a five-cell cavity reaching 

Eacc > 10 MV/m without significant Q-slope. 

Several mechanisms were linked to a strong quality factor degradation in Nb3Sn 

cavities. Those include possible Ti-contamination, non-uniformity, and accumulation of 

Sn-residues on the surface. The coating uniformity and residual accumulation at the 

surface were reduced by modifying the coating process, which improved the performance 

of both single-cell and multi-cell cavities. Evaporation, consumption, and distribution of Sn 

during the coating play important roles defining the quality of the resulting coating, which 

significantly impacts the RF performance of the cavity. Results from C3C4 and several 

five-cell cavities affirm the need to have a quality substrate to achieve best RF 

performance. 

We explored several electrochemical, chemical, and thermal treatments to 

improve the smoothness and cleanliness of coated surfaces in Chapter 5. While BCP 

harshly attacked Nb3Sn surfaces, electropolishing appears to be a potential technique for 

surface smoothening. Oxypolishing is another technique to be considered. We applied 

several acid treatments to the Nb3Sn coated surfaces. HCl or HNO3 immersion at certain 

conditions appears to remove Sn-residues from the surface. 

 Outlook and Future Work 

In this dissertation, we mainly investigated two major stages of the coating 

process: nucleation and growth. The intermediate stage between the two still needs an in-

depth investigation. It is particularly important as the first layers of the coating form here. 
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Since further growth of Nb3Sn happens at the coating-Nb interface, the defects that could 

form on the coating at the early stage could carry over to the RF surface.  

In several instances, we have reported the formation of patchy regions associated 

with a low-flux of tin. Below a certain threshold the coating seemed to vary depending on 

the distance from the Sn source. It is essential to have a sufficient flux of Sn, delivered 

uniformly all over the surface. The addition of well-engineered “smart” Sn-sources, 

equipped with independent temperature control, would help to produce uniform coating 

without any residues throughout the cavity surface. Another potential option would be to 

inject a small amount of inert gas to enhance vapor-phase scattering. The latter option 

may especially benefit larger (bigger diameter) and multi-cell cavity coating, where even 

the addition of Sn-sources may not adequately distribute Sn in out-of-sight areas.  

It is not yet clear how the Nb3Sn grain boundaries affect the RF performance of 

the cavity. It is essential to study the composition and possible grain boundary 

segregation. As we presented, one way to reduce grain boundary density is to increase 

the coating time, and worth trying in actual cavity coatings. Since these coatings are 

thicker, they could be suitable for electropolishing in further studies. 

In this dissertation, we have explored several coating conditions resulting in 

coatings with different properties (grain size, roughness, thickness, etc.). We used typical 

coating parameters (1 or 5 h nucleation at 500 °C and 3–6 h coating at 1200 °C) to coat 

the majority of cavities. The main focus has been to grow uniform coatings optimized for 

these conditions. Since we better understand now how to deposit coating uniformly, it 

worth applying different sets of coating parameters resulting in different surface properties 

(e.g., smaller grain, thin coating, and lower roughness vs. larger grain, thick coating, and 

higher roughness). The study of different surface properties linked with RF performance 

can lead to coating conditions or surface properties, which may push the current 

performance limit of Nb3Sn cavities further. 
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Our initial investigation of EP and oxypolishing of coated samples indicates 

smoothening on Nb3Sn surfaces. The surface composition and post-treatment surface 

residues need further investigation. Understanding the electropolishing mechanism could 

help to optimize the EP process for suitable topographic modifications. Post-processing 

studies with thicker coating could be beneficial to understand and apply them for RF 

cavities. 

In closing, Nb3Sn is currently the leading alternative material that could potentially 

replace Nb in SRF cavities. Several labs have demonstrated useful cavity performances 

in R&D single-cell cavities. Accelerator five-cell Nb3Sn cavities have already achieved 

accelerating gradients that are useful for accelerator application. The logical next step is 

Nb3Sn cryomodule test in an accelerator environment. Nb3Sn material is drawing attention 

from small compact accelerator applications, aiming to employ cryo-coolers for cavity 

cooling. The future of Nb3Sn relies upon further material studies in conjunction with 

process optimization and RF performance. Looking at the trend of recent progress, 

broadened applications, and growing attention, Nb3Sn could be the SRF material for the 

future. 
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Appendix A 

The goal of this section is to present fundamental concepts regarding the 

superconducting radio frequency (SRF) technology, broadly used for particle accelerators. 

A brief introduction of RF superconductivity is presented first summarizing some of the 

most important theories. The concept of surface resistance under the RF field is explained 

next, which is then followed by an introduction to SRF accelerator cavities. The chapter 

progresses describing the basic working principle and important figures of merits of SRF 

cavities. Following this, the dominance and limitations of niobium as almost the only one 

SRF cavity material are explained, which in turn justify the pursuit of alternate 

superconducting materials to niobium. The basic features that an ideal alternate 

superconducting material preferred to possess are outlined next, and finally, the potential 

SRF cavity materials are introduced.  

 Readers seeking an in-depth understanding of the contents presented in this 

chapter are referred to [149–153].  

A.1 Superconductivity 

The superconductivity was discovered in 1911 by Kamerlingh Onnes when he 

observed a sudden drop in the resistance of mercury to zero at 4.2 K [154], as shown in 

Figure A.1.1. Superconductivity is the property of materials to conduct DC electric current 

with apparently zero resistance. All superconductors exhibit this property at a particular 

temperature known as critical or transition temperature, Tc. It implies that if a current is 

passed through the superconducting material, the current should flow forever without any 
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dissipation. Meissner and Ochsenfeld discovered another characteristic property of 

superconductors in 1933, while measuring the magnetic field distribution outside 

superconducting tin and lead samples [155]. Known as the Meissner effect, the property 

of superconductors is to expel magnetic field, Figure A.1.1 [right]. 

 

Figure A.1.1: Historic plot of resistance (Ω) versus temperature (K) by Kamerlingh Onnes 

showing drop in resistivity of mercury at 4.2 K, signifying the superconducting transition 

[left] [154]. Graphic representation of the Meissner effect [right]. 

There are two types of superconductors: type I and type II. The zero resistance 

property is similar in both cases, but they behave differently in the presence of a magnetic 

field. Type I superconductors remain in a perfect Meissner state, i.e., expel the magnetic 

field until a critical applied field Hc reached. Type I superconductors become normal 

conductors above the critical field Hc. Most of the superconducting elemental metals with 

relatively low critical temperature Tc fall into this class. Type II superconductors completely 

expel a magnetic field below the lower critical field Hc1. Above the lower critical field, they 

are favorable to enter into a third state known as mixed or vortex state Figure A.1.2 [left]; 

whereby normal conducting cores form in the superconductor. Each of these cores carries 

a quantum of magnetic flux and is circled by a vortex of superconducting current, see 
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Figure A.1.2 [right]; thus these cores are often known as Abrikosov vortices, fluxoids, or 

fluxons. Above the upper critical field Hc2, type II superconductors become normal 

conductors. Superconducting materials used in SRF applications, such as Nb and Nb3Sn, 

are type II superconductors. 

  

Figure A.1.2: Critical magnetic fields as a function of temperature for a type II 

superconductor is shown in Figure to the left. A schematic diagram of a type II 

superconductor in the vortex state is shown in the image to the right. The sample contains 

normal conducting cores, unshaded regions through which magnetic flux lines can 

penetrate. Figure adapted from [156]. 

Since the discovery of superconductivity, many theories were proposed to explain 

the mechanism that could match and predict the characteristics of these materials. Some 

of the important theories, still in the application are London theory, the Ginzburg-Landau 

theory, and the BCS theory. Derivations of these theories are beyond the scope of this 

dissertation, but a brief discussion on the fundamental aspect of each of them are 

presented here. 
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Fritz and Heinz London brothers proposed an equation, which provided a 

phenomenological description of magnetic field expulsion in a superconductor in 1935 

[157]. The equation related the supercurrent density Js to the magnetic field given by, 

∇⃗⃗ × Js⃗⃗ =  −
𝑛𝑠𝑒

2

𝑚𝑒 
𝐵⃗ a. 1 

where ns is the density of the super-electrons. In combination with the Maxwell 

equation,  ∇⃗⃗ × 𝐵⃗ =  𝜇𝑜𝐽𝑠⃗⃗ , we get the following equation for the magnetic field in a 

superconductor 

∇2𝐵⃗ −
𝜇𝑜𝑛𝑠𝑒

2

𝑚𝑒
𝐵⃗ = 0 a. 2 

For a simple geometry where the boundary between a superconducting surface 

and vacuum is normal to the x-axis, and magnetic field is parallel to the surface along the 

y-axis, Eq. (2) becomes 

𝑑2𝐵𝑦

𝑑𝑥2
−

1

𝜆𝐿
2 𝐵𝑦 = 0 a. 3 

where 𝜆𝐿 = √
𝑚𝑒

𝜇𝑜𝑛𝑠𝑒
2 is a very important length parameter in superconductivity known as 

the London penetration depth. The solution of the differential equation is, 

𝐵𝑦(𝑥) = 𝐵𝑜𝑒
−

𝑥
𝜆𝐿 a. 4 

This implies that the magnetic field does not drop to zero abruptly at the 

superconducting surface, but penetrates into the material with exponential attenuation. 

London penetration depth, λL gives the distance over which there is an interaction of the 

superconductor with an applied magnetic field. Despite the theory was successful to 

explain the Meissner effect, the theory was only correct for weak fields.  

A theory that rectified the pitfall of London theory was proposed by Vitaly Lazarevic 

Ginzburg and Lev Davidovich Landau in 1950 [158]. The Ginzburg-Landau theory was a 

phenomenological theory based on Landau theory of second order phase transitions. It 
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allowed the calculation of macroscopic quantities of the material in the superconducting 

state if one assumed the phase transition to be of second order. The estimated results 

from Ginzburg-Landau theory were able to accurately match the experimental results of 

the time. The theory predicted another important length parameter, 𝜉, known as coherence 

length in addition to the London penetration depth λ. Another important dimensionless 

parameter known as the Ginzburg-Landau parameter, 𝜅 was proposed. 𝜅 defined as the 

ratio of λ and 𝜉, which predicts the magnetic behavior of superconductors categorizing 

them. Type I superconductors are those with  0 <  𝜅 <  1/√2 , and Type II 

superconductors those with  𝜅 >  1/√2 . While useful and accurate for macroscopic 

quantities close to the superconducting transition temperature, GL theory did not provide 

the microscopic understanding of the superconductivity.  

Here we should introduce two important parameters: the thermodynamic critical 

field and the superheating field. As discussed at the beginning, when we cool down a 

superconductor below Tc the material enters into the superconducting state from the 

normal conducting state. This phase transition is comparable to the transition from water 

to ice below the freezing temperature and can be analyzed from a thermodynamic point 

of view. The relevant thermodynamic energy here is the so-called Gibbs free energy (G). 

According to the Meissner effect, the magnetic energy is expelled out from the material 

when it goes to the superconducting state, which raises the free energy in the 

superconducting state. The energy balance can be expressed as, 

𝐺𝑠(𝑇, 𝐻) = 𝐺𝑠(𝑇, 0) +
1

2
𝜇0𝐻

2 a. 5 

where 𝐺𝑠 is the free energy density. The second term is the energy density due to a 

magnetic field. The material is in superconducting state only if the free energy in the 

superconducting state,𝐺𝑠(𝐻), is less than that in the normal state, 𝐺𝑛(𝐻). At the critical 
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field, the free energies in the superconducting and normal state should be equal. So 

thermodynamic critical field 𝐻𝑐 is given by, 

𝐻𝐶 = √
2

𝜇0
(𝐺𝑛(𝑇, 0) − 𝐺𝑠(𝑇, 0)) a. 6 

For type II superconductor, Hc1 < Hc < Hc2. Theoretically, the critical RF magnetic 

field is considered to be the so-called superheating field 𝐻𝑠ℎ, Similar to the superheating 

phenomenon in which a liquid is heated to a temperature higher than its boiling point 

without boiling, the maximum field can persist beyond 𝐻𝑐  (Type I superconductor) or 𝐻𝑐1 

(type II superconductor) in the metastable state up to 𝐻𝑠ℎ . The superheating field is 

estimated within Ginzburg-Landau theory, depends on Ginzburg-Landau parameter 𝜅 in 

the various limits, and is given by, 

𝐻𝑠ℎ =
0.89

𝜅
𝐻𝑐 

𝐻𝑠ℎ = 1.20 𝐻𝑐 

𝐻𝑠ℎ = 0.75 𝐻𝑐 a. 7 

for 𝜅 ≪ 1, 𝜅 ≈ 1, and 𝜅 ≫ 1 respectively. 

It wasn’t until 1957, when John Bardeen, Leon N Cooper and John R. Schrieffer 

(BCS) proposed a successful theory that explained the microscopic origins of 

superconductivity that could quantitatively predict the properties of superconductors [159]. 

Superconductivity was explained by a bound state formed between two electrons, known 

as Cooper pair, which can move without dissipation, and provide the zero resistance of 

superconductor. The electrons in a Cooper pair are entangled over the coherence length 𝜅. 

Below the critical temperature of the superconductor, the phonon-mediated attraction 

between electrons condenses them to into Cooper pairs, bosonic (integer spin) 

quasiparticles. In a superconductor, the DC current is conducted by these Cooper pairs, 

rather than individual electrons. The pairing process brings the electrons into a 
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significantly lower energy state, such that there exists an energy gap, ∆ between the 

superconducting and normal conducting states. At 𝑇 =  0 𝐾, almost all electrons condense 

into pairs, but they break up at higher temperature. The fraction of unpaired electron will 

increase exponentially with increasing temperature as 𝑒𝑥𝑝(−∆/𝑘𝑇). In order to break a 

Cooper pair, an energy of 2∆, the energy gap of a superconductor is required. BCS theory 

relates the energy gap to the Tc of the material by 

1.76𝐾𝐵𝑇𝐶 = Δ(T = 0) a. 8 

Above the critical temperature, all the electrons are unpaired and superconducting 

state disappears. Under the DC field, the pairs carry all the current shielding field from 

unpaired electrons offering a zero-resistance, the hallmark of superconductors. Although 

cooper pairs move without friction, they possess finite inertia. When AC or RF field is 

applied, they are unable to screen unpaired electron completely, resulting in non-zero 

resistivity below the critical temperature. Such resistance, significantly smaller compared 

to the normal conducting state, at temperature T below Tc/2 and frequency 𝑓 << 𝑘𝑇𝐶/ℎ is 

given by [153],  

𝑅𝑠 = (
𝐴𝑓2

𝑇
)𝑒

−
Δ

𝑘𝐵T + 𝑅𝑟𝑒𝑠 a. 9 

where 𝐴  is the factor, which depends on material purity, ℎ  and 𝑘𝐵 are the  

Plank and Boltzmann constants respectively. The temperature-dependent first term on the 

right-hand side is known as BCS resistance. When a superconductor is cooled below Tc, 

BCS resistance gets exponentially small, and the surface resistance 𝑅𝑠 approaches to 

residual resistance 𝑅𝑟𝑒𝑠. Several factors can contributes to 𝑅𝑟𝑒𝑠 which include: 

 Trapped magnetic field 

 Normal conducting residue near the surface 

 Grain boundaries 

 Metal-oxide interface 
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 Surface defects 

The temperature dependence of the low-field surface resistance of bulk niobium 

at 1.3 GHz is shown in Figure A.1.2. The data shows a deviation of Rs from exponential 

dependence as the temperature decreases close to 0 K to Rres. For niobium, the BCS 

surface resistance at 1.3 GHz amounts to about 800 nΩ at 4.2 K and drops to 15 nΩ at 

2 K. The exponential temperature dependence is the reason that operation at ~ 2 K is 

essential for achieving high accelerating gradients in combination with very high quality 

factors. We will introduce accelerating gradient and quality factor of a cavity next.  

 

Figure A.1.2: Variation of low-field surface resistance of bulk niobium (1.3 GHz 9-cell 

TESLA cavity) with the temperature, shows saturation to a temperature-independent value 

of Rs, Rres at low temperatures [160]. 
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A.2 SRF cavity 

Radiofrequency cavities (RF) are resonators capable of storing electromagnetic 

energy. They are used to accelerate charged particle beams in accelerators. RF cavities 

are made from normal conducting materials (typically water-cooled copper operating near 

room temperature) or from the superconducting materials (most commonly niobium 

operating at cryogenic temperatures cooled by liquid helium). As discussed in the previous 

section, superconducting materials have the advantage of having much smaller surface 

resistance Rs, reducing the RF dissipation in the cavity walls by 5–6 order of magnitude 

compared to that normal conducting cavities. This allows SRF cavities to operate at high 

fields in continuous wave mode, that is, the RF power is continuously applied with 100% 

duty factor. Copper cavities would overheat and melt if operated in CW at these fields. It 

should be noted that the copper cavities offer higher accelerating fields (≥ 100 MV/m) for 

short pulse (microsecond) and very low duty factor (0.1%). 

Operating mode of acceleration is normally chosen with the lowest frequency, i.e., 

TM010 mode with a longitudinal electric field. The electromagnetic field is distributed inside 

a cavity in such a way that the electric field is maximum along the beam axis (iris), where 

the magnetic field is minimum. Similarly, the equatorial region has the maximum magnetic 

field and the minimum electric field. SRF cavity is designed as a single resonator, single-

cell, or coupled resonators, multi-cell. SRF cavities are installed in a section of particle 

accelerators called cryomodule, which is cooled down to very low operating temperatures 

(around 2 K or 4 K). These temperatures are essential to attain minimal surface resistance 

see Figure A.1.3. A simple schematic diagram of a multi-cell cavity in a cryomodule is 

shown in Figure A.2.1. 
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Figure A.2.1: Schematic diagram of the cross-section of a multi-cell SRF cavity excited in 

TM010 mode inside a cryomodule. The electric field oscillates back and forth along the 

beam axis. Correct timing of the beam arrival will result in acceleration. The cryomodule 

is equipped with an antenna that couples external RF power from an external RF source. 

There are two main parameters to characterize the performance of a resonant 

cavity namely the accelerating gradient and the quality factor. The performance of a 

superconducting RF cavity is typically presented by a plot of the quality factor (𝑄0) as a 

function of the accelerating field (𝐸𝑎𝑐𝑐 ). The accelerating gradient 𝐸𝑎𝑐𝑐  represents the 

energy gain of the beam per unit length of the cavity. It determines the length of an 

accelerator required to achieve particular energy, that is, increasing 𝐸𝑎𝑐𝑐  reduces the 

length of the accelerator. If 𝑉𝑐 is the accelerating voltage per unit particle’s charge across 

a cavity cell of length 𝑙𝑐 , 

𝐸𝑎𝑐𝑐 =
𝑉𝑐
𝑙𝑐

a. 10 

𝑙𝑐  is determined in such a way that the charged particle beam gain maximum energy for 

its velocity. 

The quality factor 𝑄0 represents the efficiency with which the RF energy is stored 

in the cavity. The higher value of 𝑄0 results in reduction of required power for the operation 
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of particle accelerator. It is quantified by the ratio of electromagnetic energy stored to the 

dissipation in the cavity wall per RF cycle. 

𝑄0 =
𝜔𝑈

𝑃𝑐
= 

𝜔𝜇0 ∫ | 𝐻⃗⃗ |
2
𝑑𝑣

𝑉

∫ 𝑅𝑠|𝐻⃗⃗  |
2
𝑑𝑠

𝑆

a. 11 

where 𝑈 =
1

2
𝜇0 ∫ |𝐻⃗⃗ |2𝑑𝑣

𝑉
 and 𝑃𝑐 =

1

2
∫ 𝑅𝑠|𝐻⃗⃗ |

2𝑑𝑠
𝑆

 are stored energy and dissipated power 

respectively. Here the RF magnetic field 𝐻 (𝑟 , 𝜔)  for the excited mode with angular 

frequency 𝜔 = 2𝜋𝑓 is integrated over the cavity volume 𝑉 and surface 𝑆. Since 𝑅𝑠 is the 

only material-dependent factor, the equation can further condense into 

𝑄0 =
𝐺

< 𝑅𝑠 >
 a. 12 

Where the geometry factor G is given by 

𝐺 =
𝜔𝜇0 ∫ | 𝐻⃗⃗ |

2
𝑑𝑣

𝑉

∫ |𝐻⃗⃗  |
2
𝑑𝑠

𝑆

a. 13 

Geometry factor is determined by the shape of a cavity. Here it will be useful to 

compare the values of 𝑅𝑠 for the normal conductor and superconductor. The value of 𝑅𝑠 

at about 1 GHz for cavity grade superconducting niobium at 2 𝐾 is approximately 10 𝑛𝛺 

compared to that of copper close to 7𝑚𝛺 [161]. It indicates that application of niobium 

achieves five orders of magnitude gain in Q0.  

The ratio of peak surface fields to the accelerating field, 
𝐸𝑝𝑘

𝐸𝑎𝑐𝑐 
 and 

𝐻𝑝𝑘

𝐸𝑎𝑐𝑐
 are two other 

important factors useful to optimize the cavity shapes depending on accelerator 

application. The high surface electric field could lead to performance degradation by 

electron field emission. The surface magnetic field defines the ultimate limit of accelerating 

gradient. 
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A.3 Niobium for SRF cavities 

There are several superconductors that may be considered for SRF accelerator 

cavities. Bulk niobium (Tc  ~  9.2 K, Hsh  ~ 200 mT and ∆ ~ 1.45 meV) is dominant because 

of the best superconducting properties among all the pure elements. The material is more 

appealing for the fabrication of complicated shaped cavities because of its mechanical 

properties. Other than Nb, only lead has been rarely used in SRF accelerators. However, 

since it is mechanically soft it must be coated on a substrate such as copper or stainless 

steel to give the cavity sufficient mechanical strength. Over the past five decade, continual 

research and development efforts had been invested to advance the Nb SRF cavity 

technology. Many extrinsic mechanisms limiting the cavity performance were discovered, 

and adequate processes were developed to avoid them. Following these advances, the 

state-of-the-art niobium cavities are now approaching the performances set by the intrinsic 

material properties [2], [3].One of such examples, A.2.1 shows the performance of an R&D 

cavity reaching close to the maximum theoretical gradient. This naturally quests for 

exploration beyond the bulk niobium. 

Recent developments with impurity doping/infusion shows some room available to 

enhance the quality factor [89, 162], but magnetic field limitation indicates only a limited 

margin is available to push accelerating fields further. It should also be noted that niobium 

cavities often require to operate at ~ 2 K for optimal performance, which demands 

complicated cryogenic facilities, and it is one of the major cost drivers for SRF-based 

accelerators. Those limitations urge for new innovations, which may require the pursuit of 

other forms of niobium or other superconductors.  
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Figure A.2.2: RF performance of 1.3 GHz single-cell cavity. The attained maximum 

gradient here close to the fundamental limit to the accelerating gradient (57 MV/m) 

predicted for the Nb [107].  

A.4 Alternate SRF cavity materials to bulk niobium 

Two major factors merit consideration: potential to surpass the state-of-art niobium 

cavity performance and/or the major cost reduction for potential alternate materials to bulk 

niobium. That presents three options, in progress currently: a thin film of niobium, 

superconductors other than niobium and superconducting multilayer structures. If one can 

obtain the similar RF performance to that of bulk Nb from a thin Nb layer of few hundreds 

on nm (penetration depth of Nb ~ 40 nm) on fabrication-friendly, less expensive metal with 

higher thermal conductivity, e.g. Cu, it promises cost savings in materials and possibly 

provide conveniently better cooling option, e.g. channel cooling instead of bath cooling. 

The concept of superconducting multilayer structures, proposed by A. Gurevich requires 
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the deposition of alternating superconductor and insulator layers (S-I-S layers) of 

thickness smaller than the penetration depth λ inside a cavity, which allows retaining the 

Meissner state higher than the bulk 𝐻𝑐1  resulting in a significant enhancement in the 

achievable accelerating gradient [163].  

An application of alternate superconductors is an appealing option to move passed 

niobium in SRF cavity application. It should be noted that a good material candidate for 

SRF application should possess superior superconducting properties, and also satisfy the 

technical aspects of fabrication and operation of SRF cavity defined by non-

superconducting properties. Some of the important features to qualify a new 

superconductor as a potential SRF material are: 

 High Tc; High ∆; low surface resistance, also a low residual resistance at T → 

0 for the high quality factor 

 A high superheating magnetic field which determines the theoretical limit of 

the SRF breakdown  

 S-wave superconductor: 

 High thermal conductivity to transfer the RF dissipated power through the 

cavity wall 

 Good mechanical properties and malleability favorable to cavity fabrication 

(forging, deep drawing, etc.) 

 Preclude non-superconducting or poor-superconducting phases 

Since all the possible candidates beyond Nb are compound, it is technically 

challenging to create them, which is the reason why they were given less attention in the 

past. There does not exist an ideal superconductor that would meet all the criteria listed 

above, but there are several potential materials with the potential to surpass niobium in 
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SRF cavities are shown in Table 1. A recent review, [163], provides an overview of the 

development of different materials. 

Table A.1: Potential alternate SRF cavity materials with superconducting parameters 

[164]. 

Material Tc 
(K) 

ρn 

(µΩcm) 
Hc(0) 
(T) 

Hc1(0) 
(T) 

Hc2(0) 
(T) 

λ 
(nm) 

∆ 
(meV) 

ζ 
(nm) 

Nb 9.2 2 0.20 0.18 0.28 40 1.5 35 

NbN 16.2 70 0.23 0.02 15 200350 2.6 3-5 

NbTiN 17.3 35  0.03 15 150-200 2.8 5 

Nb3Sn 18 8-20 0.54 0.05 28 80-100 3.1 4 

V3Si 17 4 0.72 0.07 24.50 179 2.5 3.5 

Nb3Al 18.7 54   33 210 3  

Mo3Re 15 10-300 0.43 0.03 3.50 140   

MgB2 40 0.1-1 0.43 0.03 3.5-60 140 2.3/7.2 5 
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