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W.K. Brooks,44 D. Bulumulla,37 D.S. Carman,3 J.C. Carvajal,18 A. Celentano,23 P. Chatagnon,27 T. Chetry,32

G. Ciullo,21, 17 B.A. Clary,13 P.L. Cole,31, 20 M. Contalbrigo,21 V. Crede,19 A. D’Angelo,24, 40 N. Dashyan,52

R. De Vita,23 M. Defurne,11 A. Deur,3 S. Diehl,38, 13 C. Djalali,36, 42 M. Dugger,8 R. Dupre,27, 7 H. Egiyan,3, 34

M. Ehrhart,7 A. El Alaoui,44, 7 L. El Fassi,32, 7 L. Elouadrhiri,3 P. Eugenio,19 G. Fedotov,42, 41, § S. Fegan,48, 47

A. Filippi,25 G. Gavalian,3, 37 G.P. Gilfoyle,39 F.X. Girod,3, 11 D.I. Glazier,47 R.W. Gothe,42 K.A. Griffioen,51

L. Guo,18 K. Hafidi,7 H. Hakobyan,44, 52 M. Hattawy,37 D. Heddle,12, 3 K. Hicks,36 A. Hobart,27 M. Holtrop,34

Q. Huang,11 Y. Ilieva,42 D.G. Ireland,47 E.L. Isupov,41 D. Jenkins,49 H.S. Jo,30 K. Joo,13 S. Joosten,7

D. Keller,50, 36 A. Khanal,18 M. Khandaker,35, ¶ A. Kim,13, 30 F.J. Klein,10 A. Kripko,38 V. Kubarovsky,3 L.

Lanza,24 M. Leali,46, 26 P. Lenisa,21, 17 K. Livingston,47 I .J .D. MacGregor,47 D. Marchand,27 L. Marsicano,23

V. Mascagna,45, 26 B. McKinnon,47 Z.E. Meziani,7 T. Mineeva,44, 13 V. Mokeev,3, 41 A Movsisyan,21 E. Munevar,4, ∗∗

C. Munoz Camacho,27 P. Nadel-Turonski,3 K. Neupane,42 A. Ni,30 S. Niccolai,27 G. Niculescu,29 T.

R. O’Connell,13 M. Osipenko,23 A.I. Ostrovidov,19 M. Paolone,43, 42 L.L. Pappalardo,21, 17 R. Paremuzyan,3, 52

E. Pasyuk,3 O. Pogorelko,33 Y. Prok,37, 12, 50 D. Protopopescu,47 M. Ripani,23 B.G. Ritchie,8 J. Ritman,28
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We report measurements of π+ and π0 meson photoproduction from longitudinally spin-polarised
protons by an energy tagged (0.73-2.3 GeV) and linearly polarised photon beam. A close to com-
plete solid angle coverage for the reaction products was provided by the CEBAF Large Acceptance
Spectrometer at Jefferson Laboratory. The double-polarisation observable G is extracted from Max-
imum Likelihood fits to the data, enabling the first accurate determination for reaction ~γ~p→ π+n,
while also significantly extending the kinematic coverage for ~γ~p→ π0p. This large data set provides
an important constraint on the properties and spectrum of excited nucleon states decaying to Nπ
in the mass range from 1.4 to 2.2 GeV, as well as for background (non-resonant) photoproduction
processes. The considerable improvement achieved in the description of the observable G within
the SAID and Bonn-Gatchina approaches after implementation of our data, illustrates that the
partial wave analyses now significantly extend the knowledge on Nπ photoproduction amplitudes
at W > 1.8 GeV. A partial wave analysis using the new high-precision data set have a large impact
on the extracted properties of high-spin nucleon excited states.

I. INTRODUCTION

Hadrons are composite strongly-bound systems, whose
fundamental properties derive from the internal dynam-
ics between their constituents, quarks and gluons. As
with any composite system the excitation spectrum has
the potential to reveal details of the dynamics and inter-
actions of their constituents, providing new insights into
their structure and more generally, our detailed under-
standing of the nature and validity of non-perturbative
Quantum ChromoDynamics (QCD). Phenomenological
constituent quark models and, more recently, lattice
QCD calculations [1, 2] predict a rich spectrum of nucleon
resonances, in contrast to the more limited spectrum of
states that have (currently) been established experimen-
tally [3]. The cause of this so-called “missing resonance”
problem [4] has been a major focus for contemporary ex-
perimental hadron physics and on the theory side has led
to alternative interpretations of nucleon structure [5–8]
that reduce the number of predicted states. Several miss-
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ing resonances were discovered in the multichannel analy-
sis of exclusive meson photo- and hadro-production with
a decisive impact from the CLAS exclusive photoproduc-
tion data [9]. In addition, another missing resonance was
recently observed in the combined analysis of the π+π−p
photo- and electro-production data [10]. Furthermore,
new results [11, 12] on the nucleon resonance spectrum
are consistent with the symmetry driven expectations,
which predict many other missing resonances in the mass
range above 2.0 GeV. These studies have demonstrated
sensitivity of the Nπ photoproduction data to the contri-
butions from the missing resonances in this mass range.

The photoproduction of mesons from nucleon targets
provides an excellent tool to better determine the exci-
tation spectrum of the nucleon. The main complication
for experimental studies of this spectrum arises from the
strong overlap of many of the excited states. Due to their
short lifetime the states have widths larger than their
separation, a problem that is exacerbated for the more
densely packed higher-lying states. With the exception
of the lowest-lying states, clear resonance signals are not
evident in cross section data. Meson photoproduction of-
fers the possibility of measurement of an extensive set of
polarisation observables, information that is mandatory
for partial wave analysis to disentangle the underlying
spectrum.

The photoproduction of single pseudo-scalar mesons
can be fully described using four complex reaction ampli-
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tudes [13]. To constrain these amplitudes without model
assumptions in a “complete” measurement, we require
a precise and kinematically complete determination of
at least eight well-chosen observables [14, 15], involving
single- and double-polarisation observables from combi-
nations of polarised beam, target nucleon, as well as a
determination of polarisation of the recoiling (final state)
baryon at fixed energy and production angle. Each com-
bination has a different sensitivity to the magnitudes and
phases of these complex amplitudes. The number of mea-
surements required to unambiguously extract multipole
amplitudes, meaning a separation of the reaction into
the contributions from different photon angular momenta
and distinguishing their electric or magnetic character, is
a related problem, as discussed in Ref. [16]. The differ-
ent spins and parities of the excited states mean their
contributions will be separated into different multipole
amplitudes, which offers the possibility to determine res-
onance properties.

As part of a world programme to provide the neces-
sary experimental data, single and double meson photo-
production experiments from polarised and unpolarised
nucleon targets are of high scientific priority at the lead-
ing electromagnetic-beam facilities, with recent and on-
going programmes at CLAS at JLab, A2 at MAMI,
CBELSA/TAPS and BGO-OD in Bonn, as well as LEPS
at SPring-8 and ELPH in Japan.

The current data set for pion photoproduction from the
proton is the most extensive of the various possible final
states (see Ref. [17] for a recent summary), with quality
data obtained for both final states (π+ and π0) in their
unpolarised differential cross sections and polarised beam
single polarisation observables. Measurement of single
polarisation observables relating to the recoiling nucleon
(Py) have also been achieved with limited acceptance.

Precision measurements of double-polarisation observ-
ables in pion photoproduction are limited to the π0 final
state. Measurements of G, F (linearly polarised photons
on longitudinally and transversely polarised targets, re-
spectively), and E (circularly polarised beam on a lon-
gitudinally polarised target) have been achieved [18–20].
Kinematically sparse measurements of Cx and Cz (cir-
cularly polarised photons with recoil polarisation) along
with the single polarisation observable Py (recoil polar-
isation) have been obtained with spectrometers [21, 22]
with only one large acceptance measurement obtained for
Cx in π0 photoproduction [23]. The situation for double-
polarisation measurements in the π+ reaction is compar-
atively poor. Specifically, only the E observable [24]
has been determined with large kinematical coverage and
only one beam-target measurement of the G observable
was performed in 1980 [25], with very limited statistical
accuracy and kinematical coverage.

Here we report a new measurement of the double polar-
isation observable G for ~γ~p → π0p and ~γ~p → π+n. The
experiment provides the first precise measurements up to
2.280 GeV center-of-mass (c.m.) energy for the reaction
~γ~p→ π+n, while significantly extending the kinematical

coverage up to 2.265 GeV for the reaction ~γ~p → π0p.
The simultaneous determination for both states provides
new and powerful constraints on the isospin dependence
of the amplitudes contributing to pion photoproduction.

II. EXPERIMENTAL SETUP

The experiment [26] was conducted in Hall B at the
Thomas Jefferson National Accelerator Facility (JLab)
utilising the CEBAF Large Acceptance Spectrometer
(CLAS) [27] and the Tagger spectrometer [28]. CLAS,
which was a toroidal magnetic-field analysing spectrom-
eter, provided an efficient detection and reconstruction
of charged tracks over a large fraction of the full solid
angle (covering polar angles between 8◦ and 140◦ and
about 83% of the azimuthal angle) using a variety of
tracking, time-of-flight and calorimeter systems. The
Tagger spectrometer, upstream of CLAS allowed the
production of a linearly polarised photon beam using
the coherent bremsstrahlung technique, with the pro-
duced photons being tagged by the detection of the
post-bremsstrahlung electrons in a magnetic spectrom-
eter. The determination of the degree of linear beam po-
larisation involved comparing the shape of the coherent
bremsstrahlung spectrum to a spectrum obtained from
theoretical bremsstrahlung calculations (details can be
found in Refs. [29–31]). Specifically, the enhancement
distributions, obtained from the ratio of the photon-
energy distribution using the crystalline (diamond) radi-
ator to the spectrum from an amorphous radiator, were
used to constrain the relative contribution of the coherent
and incoherent processes. This allowed a reliable deter-
mination of the energy-dependent degree of photon po-
larisation from fitting a theoretical spectrum produced
by the analytical bremsstrahlung calculation [30].

Three incident electron beam energies (2.751, 3.539,
and 4.599 GeV) and various settings of the orientation of
the diamond radiator allowed the production of photons
with a high degree of linear polarisation in the energy
range between 0.7 and 2.3 GeV (achieved with 9 differ-
ent configurations of beam energy and diamond radiator
orientation). The degree of photon polarisation achieved
was of the order of pγ = 0.70. For each configuration,
the direction of the linear photon polarisation was ro-
tated between two orthogonal directions, which allowed
a reliable determination of observables without detailed
studies of the detector acceptance [32].

The polarised photon beam impinged on the FRozen
Spin polarised proton Target (FROST) [33]. This com-
prised frozen beads of butanol (C4H9OH) inside a 50 mm
long target cup. The protons from the hydrogenic com-
ponent of the butanol were dynamically polarised, by
transfer of polarisation from polarised electrons using mi-
crowaves in a strong magnetic field. This procedure was
carried out once every ∼ 7 days during the run, with
the polarisation of the target within CLAS maintained
with a magnetised holding coil installed around the tar-
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get cell. The direction of the target polarisation was rou-
tinely changed between two orientations: pointing along
and against the beam direction, with its magnitude de-
termined on a run-by-run basis using an NMR probe.
An average target polarisation of pz = 0.82 ± 0.05 was
achieved in this experiment. A carbon target was placed
downstream of the butanol and was used to assess the
contribution of events originating from the unpolarised
nuclear components (C, O, 4He, and 3He) of the butanol
target, which would “dilute” the signal.

III. POLARISATION OBSERVABLE G

The polarised cross section for single pion photopro-
duction using a linearly polarised photon beam and a
longitudinally polarised proton target for a specific kine-
matic bin in W and cos θc.m.π is given by [32]

dσ

dΩ
(W, θc.m.π , η) =

dσ

dΩ
(W, θc.m.π )

∣∣∣
0
(1− (1)

pγΣ cos(2η) + pγp
eff
z G sin(2η)),

where dσ
dΩ

∣∣
0

is the unpolarised differential cross section,
pγ is the degree of linear polarisation of the photon beam
and peff

z is the effective degree of target polarisation. The
azimuthal angle, η, is the angle from the reaction plane
(defined by the incident photon beam and the pion) to
the vector polarisation of the photon, as indicated in
Fig. 1. The beam-spin asymmetry Σ and the double
polarisation observable G are functions of the centre-of-
mass energy, W , and the polar production angle of the
pion, θc.m.π as indicated in Fig. 1.

1 Introduction

This note describes the analysis of photoproduction data from the CLAS g9a experiment in the ~g~p ! p+n
reaction with circularly polarized photons incident on longitudinally polarized protons. The polarized cross
section in this reaction is proportional to the unpolarized cross section [1] (ds/dW)0,

✓
ds
dW

◆
=

✓
ds
dW

◆

0
(1�PzP�E) , (1)

where P� and Pz are the degrees of polarization of the photon beam and target, respectively. The goal of
the analysis is the extraction of the double-polarization observable E. The reaction in the center-of-mass
frame is illustrated in Figure 1. The polar angle q cm

p is measured between the incident photon momentum
direction, z axis, and the pion momentum direction.

γ

p

π+

n

θcm
π

Figure 1: Schematic of the g p ! p+n reaction in the center-of-mass frame.

Longitudinally polarized electrons with an energy of 1.645 GeV and 2.478 GeV were incident on the thin
radiator of the Hall-B Photon Tagger [2] and produced circularly tagged photons in the energy range between
0.35 GeV and 2.35 GeV. The collimated photon beam irradiated a frozen-spin butanol target (FROST) [3].
Data were taken simultaneously from additional carbon and CH2 targets downstream of the butanol target
to allow for the determination of the bound-nucleon background from the butanol production target and to
allow for systematic studies. Final-state p+ were detected in the CLAS detector [4]. Characteristics of the
data are summarized in Table 1.

Table 1: Experimental parameters and running conditions.

Run period g9a
Electron-beam energies 1.645 GeV and 2.478 GeV
Tagged photon-beam-energy range 0.35 GeV to 2.37 GeV
Target Frozen-spin butanol
CLAS Torus magnetic field +1918.6 A
Range of run numbers 55521 – 56233
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(p)
<latexit sha1_base64="5Xu6TqDDRgWEla3B2me3e2PK3Vs=">AAAB6nicdVBNS0JBFL3Pvsy+rJZthiSwjcxYpO6kNi2N8gP0IfPGeTo474OZeYGIP6FNiyLa9ova9W+apwYVdeDC4Zx7ufceL5ZCG4w/nMzK6tr6RnYzt7W9s7uX3z9o6ShRjDdZJCPV8ajmUoS8aYSRvBMrTgNP8rY3vkr99j1XWkThnZnE3A3oMBS+YNRY6bYYn/bzBVzCGBNCUEpI5QJbUqtVy6SKSGpZFGCJRj//3htELAl4aJikWncJjo07pcoIJvks10s0jykb0yHvWhrSgGt3Oj91hk6sMkB+pGyFBs3V7xNTGmg9CTzbGVAz0r+9VPzL6ybGr7pTEcaJ4SFbLPITiUyE0r/RQCjOjJxYQpkS9lbERlRRZmw6ORvC16fof9Iql8hZqXxzXqhfLuPIwhEcQxEIVKAO19CAJjAYwgM8wbMjnUfnxXldtGac5cwh/IDz9gntuo2T</latexit>

x
<latexit sha1_base64="5N5vXGU2TJ3AeihCnWvyr/37MPg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU8OIxAfOAZAmzk95kzOzsMjMrhpAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781iMqzWN5b8YJ+hEdSB5yRo2V6k+9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpexflSv2yVL3J4sjDCZzCOXhwBVW4gxo0gAHCM7zCm/PgvDjvzseiNedkM8fwB87nD+UfjPg=</latexit>

y
<latexit sha1_base64="pKu1P9BPEULi1aABwnC9ZTI1IB4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoHgqePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWak765Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtGtV76Jaa15W6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AeajjPk=</latexit>

z
<latexit sha1_base64="tFgTaNRapgsT3naA3D48AqBgMBo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU8OIxAfOAZAmzk95kzOzsMjMrxJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781iMqzWN5b8YJ+hEdSB5yRo2V6k+9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpexflSv2yVL3J4sjDCZzCOXhwBVW4gxo0gAHCM7zCm/PgvDjvzseiNedkM8fwB87nD+gnjPo=</latexit>

FIG. 1. The reaction ~γ~p → π+n (and ~γ~p → π0p) in the c.m.
frame. The z-axis is along the photon direction and the y
axis is perpendicular to the reaction plane. The angle η is
measured from the reaction plane defined by the photon and
meson to the photon polarisation.

A simultaneous determination of the double polarisa-
tion observable G and the beam-spin asymmetry Σ for
each kinematic bin was performed by applying a Maxi-
mum Likelihood (ML) approach using the dependencies
illustrated in Eq. (1)1. The likelihood function for each

1 The determined single polarisation observable Σ reflects contri-
butions from the free and the bound protons within the butanol
target. The calculation of the contributions from free protons,
therefore, requires a precise knowledge of Σ from bound protons,

event is given by

Li = ci

[
1− pγ,iΣ cos(2ηi) + pγ,ip

eff
z,iG sin(2ηi)

]
A,

where ci is a normalization coefficient and A is the de-
tector acceptance2. The log-likelihood function that was
maximised to obtain the observables of interest is given
by

logL = b+
∑

i

log [1− pγ,iΣ cos(2ηi)

+pγ,ip
eff
z,iG sin(2ηi) ] , (2)

where the constant b is an observable-independent con-
stant, which absorbs the normalization coefficient and
detector acceptance. The summation (i) accounts for all
events within a given kinematic bin. The extraction was
carried out for ∼200 kinematic bins of W and cos θc.m.π .

IV. DATA ANALYSIS

For each kinematic bin the event sample was analysed
to remove the effects of backgrounds arising from un-
polarised components of the target material and from
background reaction processes. To achieve this, the
missing-mass distributions of the reactions γp → π+X
and γp→ pX were obtained from the events originating
from the butanol target, as well as from events originat-
ing from the carbon target3.

Figure 2 shows the missing-mass distributions of γp→
π+X of events originating from the butanol (unshaded-
blue histogram) target. The distribution exhibits the ex-
pected peak around the neutron mass, corresponding to
events originating from the ~γ~p → π+n reaction. How-
ever, this desired peak occurs on top of a broad back-
ground arising from reactions on (unpolarised) bound
protons produced from the non-hydrogenic components
of the polarised target. Also shown in the figure is the
missing mass distribution extracted from the carbon tar-
get for the same kinematic bins (shaded histogram). This
distribution has been scaled by a factor α to fit the back-
ground in the butanol missing-mass distribution. It is

which could be obtained from nuclear targets. A more precise de-
termination of Σ can be directly determined using an unpolarised
hydrogen target. Because of this, the beam-spin asymmetry Σ is
not reported.

2 In the construction of the log-likelihood function, an approxima-
tion was made concerning the detector acceptance. Specifically,
an acceptance that is largely independent of the kinematic vari-
able η was assumed, which resulted in a normalization coefficient
that is independent of the polarisation observables. This approx-
imation significantly simplifies the extraction of the observables,
but the assumption could potentially result in systematic biases.
However, extensive simulation studies with the CLAS acceptance
showed the effect of this to be negligible.

3 The analysis focused on events where only the positively charged
track was detected – either a proton or a pion – with the remain-
ing neutral track reconstructed via the missing-mass technique.
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seen that the data from the carbon target provides a
good agreement with the shape of this unpolarised back-
ground, and was therefore used as the basis for estab-
lishing its relative contribution 4. The blue line in Fig. 2
indicates the simultaneous fit performed on the carbon
and the sidebands of the butanol distributions (outside
3σ of the free nucleon peak) that accounts for the bound
nucleon contributions, whereas the red line includes con-
tributions from hydrogen contamination within the car-
bon target. More details are provided in the online sup-
plementary material.
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FIG. 2. Example of butanol missing-mass distribution over-
laid with a scaled distribution from the carbon target for a
specific kinematic bin (W = 1740 MeV, θc.m.π = 80◦) for the
reaction γp → π+X. The carbon and the sidebands of the
butanol distributions were fitted simultaneously with a func-
tion used to determine the dilution factors, as described in
the text.

The unpolarised contributions result in a dilution of
the target polarisation pz by a factor of DF : peff

z = pzDF .
The dilution factor DF was determined from the scaled-
carbon missing-mass distribution and butanol missing-
mass distribution using

DF = 1− αNcarbon
Nbutanol

, (3)

where Ncarbon/butanol is the number of events under the

missing neutron peak for the reaction γp → π+X or
the missing pion peak for the reaction γp → pX. The
range of integration in the missing-mass was taken as
±3σ, where σ is the standard deviation of the peak. In
the analysis the dilution factor (obtained on a bin-by-bin
basis) was on average 0.40.

The statistical uncertainty of G was determined com-
bining the uncertainties from the ML technique and the

4 Note that a small fraction of the data originating from the carbon
target produces a peak at the mass of the neutron, indicating a
contribution from reactions on hydrogen. This was identified
as arising from the formation of ice on the downstream target
surface within the cryostat. Its effect was accounted for when
calculating the dilution.

uncertainty associated with the dilution factor determi-
nation, which was of the order of 2%. The relative sys-
tematic uncertainty was dominated by uncertainties as-
sociated with the determination of the photon and tar-
get polarisations, which contribute a 6% uncertainty. An
extensive list of systematic sources was studied, includ-
ing particle identification, reaction reconstruction, and
acceptance effects, with a total absolute contribution of
0.017 for ~γ~p → π+n and 0.026 for ~γ~p → π0p, which
was added to the relative systematic uncertainties. For
a complete list of systematic uncertainties and further
details on the analysis procedure see the supplementary
material online.

V. RESULTS AND DISCUSSION

The results for the double polarisation observable G
as a function of the pion polar production angle in the
c.m. frame for selected W bins for both reactions are
shown in Fig. 3 (left panels for ~γ~p→ π0p and right pan-
els for ~γ~p → π+n). The curves represent the previous
phenomenological solutions from SAID MA19 [34] (blue
solid), Bonn-Gatchina [11] (black dashed) and MAID [35]
(magenta dashed-dotted) are also illustrated.

The agreement between the CLAS and previously pub-
lished data for the reaction ~γ~p→ π0p is well within sta-
tistical uncertainties (see left panels of Fig. 3), providing
further confidence in the analysis procedure. Previously
published data provide measurements for the full angu-
lar coverage with c.m. energies up to W = 1820 MeV 5.
At low c.m. energies, W , forward-going pions correspond
to protons with energies below the CLAS acceptance and
thus the angular coverage for the CLAS data is more lim-
ited. However, the current analysis significantly extends
the energy coverage for ~γ~p→ π0p up to W = 2235 MeV.
PWA solutions, which only included previously published
data, describe well the angular dependence of G up to
W = 1740 MeV. At higher energies, both PWA analysis
solutions predict the features in the angular dependence
of G for ~γ~p→ π0p, but do not describe well their magni-
tude.

The agreement between the CLAS and previously pub-
lished data for the reaction ~γ~p → π+n, are also well
within statistical uncertainties for all but one kinematic
bin. The previous measurements from the NINA facility
for the kinematic bin with c.m. energies W = 1490 MeV
indicate a positive value of G, where the new precise
measurement from CLAS shows negatives values at the
same pion production angles (see right panels in Fig. 3).
The phenomenological curves indicating the previous so-
lutions from SAID, Bonn-Gatchina, and MAID do pre-
dict the rich features seen in the angular dependence of

5 Data from CLAS were binned in larger W bins than the results
from CBELSA and thus the two sets of points in specific panels.
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FIG. 3. A subset of the measured double polarisation observable, G, from this work for the reactions ~γ~p → π0p (left) and
~γ~p → π+n (right) as a function of the pion angle in the c.m. frame. The different panels denote bins in c.m. energy W .
Experimental data from this work are shown with full red circles and from previous work with full blue diamonds. The error
bars represent the combination of statistical and systematic uncertainties. The previous data for ~γ~p → π0p came from the
CBELSA Collaboration [18], and the previous data for ~γ~p → π+n came from the NINA facility [25]. The blue solid curves
correspond to predictions by SAID (MA19) [34], the black dashed to predictions by Bonn-Gatchina [11], and the magenta
dash-dotted curves to predictions by MAID [35].

G but fail to describe the magnitude, in particular at
higher W bins and backward angles.

The new data on G have a significant effect on the
amplitudes especially at center-of-mass energies above
1800 MeV, where no previous precise G data on either
reaction exists. As was found in the study of Ref. [11],
recent high-precision polarisation data have resulted in
a closer agreement of multipole analyses, particularly at
intermediate energies. In this regard, the comparison of
fits to π+n G data in Fig. 3 at 1490 MeV is interest-
ing. The Bonn-Gatchina, SAID, and much older MAID
solutions all agree with the present measurements even
though the existing data from the NINA facility, of much
lower precision, suggested an opposite sign. At the high-
est energies large differences in the predictions are appar-
ent. However, this can occur without large differences at
the multipole level, resulting instead from delicate can-
cellations.

Figures 4 and 5 show the full CLAS results from this
work for the reactions ~γ~p → π0p and ~γ~p → π+n, re-
spectively, illustrating the new solutions from SAID and
Bonn-Gatchina. This analysis provides the first precise
result on the double polarisation observable G for the re-
action ~γ~p → π+n for the full angular coverage between
c.m. energies W = 1440 MeV and W = 2240 MeV, which
significantly enhances the database for this reaction. The
new phenomenological solution from SAID (ZA19) are in-
dicated with black solid curves and three solutions from
the Bonn-Gatchina group are shown with the blue dot-
ted, cyan dashed dotted-dotted and magenta dash dotted
curves.

In terms of the Bonn-Gatchina approach, the descrip-
tion with the solution from Refs. [11, 12] failed to de-

scribe the new data on charged pion photoproduction in
the mass region above 1800 MeV (the total χ2 was found
to be 64.6 per data point). The solution presented in
Ref. [36], which described well the helicity asymmetry
data measured by the CLAS and CBELSA Collabora-
tions, gave a much better description of the data although
it was still far from being satisfactory. The refit of all
data allowed us to obtain a good description of these new
G data. We refer to this as Solution 1 and is indicated
by the blue dotted curves in Figs. 4 and 5. Contributions
from high-spin states were investigated by removing such
states and refitting the data set. Contributions from the
∆(2400)9/2− state (solution 2, not shown in figures) was
first established. In this fit, the χ2 for the description of
other pion photoproduction data increased slightly, how-
ever, the description of the new polarisation data for the
~γ~p → π+n reaction did not change, and a slight im-
provement was observed in the description of G for the
reaction ~γ~p → π0p. This indicates that this state does
not play a direct role in the description of the new data,
although it provides better consistency between the old
and new data. In solution 3 (cyan dash dotted-dotted
curves), the N(2220)9/2+ state was also removed (in ad-
dition to the ∆(2400)9/2−). This solution resulted in a
small increase of the χ2 from 2.10 to 2.13. From Figs. 4
and 5 it is evident that the N(2220)9/2+ state has some
influence on the high energy tail of the G distribution,
however, both of the 9/2 states do not contribute notably
to the description of the data. Finally, solution 4 (ma-
genta dashed dotted curves) was obtained by removing
the ∆(2200)7/2− in addition to the ∆(2400)9/2−. The
χ2 for G for the reaction ~γ~p→ π+n increased from 2.10
to 2.32 and for reaction ~γ~p→ π0p increased from 2.10 to
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FIG. 4. Double polarisation observable, G, for the reaction ~γ~p → π0p as a function of the pion angle in the c.m. frame. The
different panels denote bins in center-of-mass energy W . The experimental data from this work are shown by the red circle
with error bars denoting the total uncertainties. The new SAID ZA19 description (black solid curve), and the Bonn-Gatchina
solutions (solution 1 - blue dotted, solution 3 cyan dash dotted-dotted, and solution 4 magenta dash-dotted) are also indicated
in the panels (solution 2 not shown). Differences between the four Bonn-Gatchina solutions are only evident at higher W .

2.74. This is a notable effect since it affects only a few
high-energy bins and we can conclude that contributions
from the ∆(2200)7/2− are much stronger.

The most notable change in solution 4 was con-
nected with re-determination of the properties of the
N(2190)7/2− state. In the main solution 1, the mass
of this state was found to be 2120±20 MeV, which is
30 MeV lower than in the analysis [12] and a width of
380±25 MeV, which is larger by 15%. Although the elas-
tic residue and its phase practically did not change, the
A1/2 helicity coupling in the pole was found to be −40±
8 [GeV−1/210−3] (−68±5 [GeV−1/210−3] [12]) with phase
15◦ ± 10◦ (10◦ ± 12◦ [12]). The A3/2 helicity coupling

increased and was optimized at 67 ± 15 [GeV−1/210−3]
(25 ± 10 [GeV−1/210−3] [12]) with a phase of 0◦ ± 15◦

(22◦ ± 10◦ [12]). The new values are very close to those
obtained in the analysis [37]. This analysis clearly indi-
cates that the contribution of both states (N(2190)7/2−

and ∆(2200)7/2−) are important for the description of
the current data. The ∆(2200)7/2− is an important state
for checking for chiral restoration at high energy. In the
case of chiral restoration its mass should be close to the
mass of the ∆(1950)7/2+ state, however it appeared to
be 200-250 MeV higher. In the present analysis the pole
position was found to be 2120 ± 30 MeV with a width
of 430 ± 30 MeV. This indicates that the present solu-
tion finds a notably broader state than the solution pre-

sented in Ref. [36]. The A1/2 helicity coupling at the

pole was found to be 100±15 [GeV−1/210−3] with phase
−20◦±20◦ and A3/2 at 25±10 [GeV−1/210−3] with phase
−10◦± 20◦, which presents an increase by a factor of 1.6
for the helicity coupling for the A1/2, whereas the helic-
ity coupling A3/2 changed its sign. This sign could not
be defined on the basis of the other observables and the
measurement of the G observable provided the critical
information needed to establish it.

Interestingly, the N(2190)7/2− pole position from
Bonn-Gatchina has moved into closer agreement with
the SAID determination [38]. The helicity amplitudes
for this state are now also in closer agreement with those
found in Ref. [37]. These two 7/2− states are found in
both the Bonn-Gatchina and Jülich-Bonn analyses [39],
but the ∆ state is absent from the SAID fit. From the
SAID analysis, the N(2190)7/2− partial waves have re-
mained fairly stable with a tuning of lower-spin states,
resulting in an improved fit to data. It should be noted
that the SAID fits, by construction, cannot include states
undetected in their analyses of pion-nucleon scattering
data.

VI. SUMMARY

We present the first precise measurement of the double-
polarisation beam–target observable G, employing a
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FIG. 5. Double polarisation observable, G, for the reaction ~γ~p → π+n as a function of the pion production angle in the c.m.
frame. The different panels denote bins in center-of-mass energy W . The experimental data from this work are shown by
the red circle with error bars denoting the total uncertainties. The new SAID ZA19 description (black solid curve), and the
Bonn-Gatchina solutions (solution 1 - blue dotted, solution 3 - cyan dash dotted-dotted, and solution 4 - magenta dashed
dotted) are also indicated in the panels (solution 2 not shown). Differences between the four Bonn-Gatchina solutions are only
evident at higher W .

linearly-polarised photon beam and a spin-polarised tar-
get, for ~γ~p → π+n up to c.m. energies W = 2240 MeV,
while significantly extending the available kinematic cov-
erage for ~γ~p → π0p. The new G data are an important
addition to the world database and have a large effect on
the determined amplitudes, especially at c.m. energies
above 1800 MeV. Furthermore, the unprecedented quan-
tity of the data impose tight constraints on partial-wave
analyses, particularly for high-L multipoles and at high
c.m. energies, where missing resonances are expected to
exist. The new data were fit in the frameworks of the
SAID and Bonn-Gatchina partial wave analyses, which
resulted in tightly constrained amplitudes. The Bonn-
Gatchina analysis has illustrated the importance of the
N(2190)7/2− and ∆(2200)7/2− states in describing the
data, while further constraining their masses and widths,
whereas the SAID analysis allowed us to fine tune the
lower-spin states. A more detailed analysis in the SAID
and Bonn-Gatchina frameworks will be presented in a
later paper.
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