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Abstract

In electron scattering off a nuclear target, the Coulomb sum is defined as the

integration of the longitudinal response function 𝑅𝐿 over the energy loss of the inci-

dent electron in the quasi-elastic nucleon knock-out process. The Coulomb Sum Rule

states that at sufficient high three-momentum-transfer |𝑞⃗|, the Coulomb sum should

equal to the total number of protons in the nucleus: 𝑆𝐿 → 1. Previously, precision

data existed only up to |𝑞⃗| = 600 MeV/𝑐 due to the limited beam energy used, and

one data point existed for |𝑞⃗| = 1.14 GeV/𝑐 but with limited precision. During Jef-

ferson Lab experiment E05-110, electron scattering cross sections were measured in

the quasi-elastic region on 4He, 12C, 56Fe and 208Pb targets at four scattering angles

(15∘, 60∘, 90∘, 120∘). The longitudinal and transverse response functions 𝑅𝐿 and 𝑅𝑇

were extracted in the momentum transfer range 0.55 GeV/𝑐 ≤ |𝑞⃗| ≤ 1.0 GeV/𝑐 using

the Rosenbluth separation method. The Coulomb sum was formed in the same |𝑞⃗|

range. The focus of this thesis is the extraction of 𝑅𝐿,𝑇 from the 4He target data.

Preliminary results on 𝑅𝐿,𝑇 and the Coulomb sum 𝑆𝐿 for 4He will be presented. The

Coulomb sum for 4He is found to be in good agreement with previous data, and still

indicate quenching (𝑆𝐿 < 1) for the |𝑞⃗| region measured by this experiment.
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Chapter 1

Introduction

1.1 Electron Scattering

The building blocks of all visible matter are the nucleons. The properties of free

nucleons have been studied extensively. On the other hand, nucleons in nuclei are in

bound states and their properties are affected by the nuclear medium. Understanding

medium modification of the nucleon structure inside the nucleus is an essential topic

in nuclear physics.

To investigate the properties of nucleons in the nuclear medium, the electron is

often used as a probe because of several advantages over hadron probes: First, the

electromagnetic interaction between the electron and nuclei is much weaker than the

strong interaction, and the physics of the nucleus is easier to extract compare with the

more complicated hadron-probe system. In addition, the electromagnetic interaction

is very well understood through Quantum Electrodynamics (QED). Therefore, the

electron probe can provide the cleanest information about the nucleon and the nuclear

structure.

In electron scattering process off a nuclear target, as shown in Fig. 1-1, an electron

with initial energy 𝐸 and momentum 𝑘⃗ scatters off a nucleus of mass 𝑀𝐴 at rest. The

scattered electron is then measured by a detector package at angle 𝜃 with scattered

energy 𝐸 ′ and momentum 𝑘′. In the Born approximation, the process happens with
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the exchange of a virtual photon 𝛾 with energy 𝜔 = 𝐸 − 𝐸 ′ and 𝑞⃗ = 𝑘⃗ − 𝑘′. And

𝑄2 = |𝑞⃗| 2 − 𝜔2 (1.1)

gives the negative four momentum squared of the exchanged virtual photon.

  

e=(E , k⃗)

P=(M ,0)

θ

e '=(E , k⃗ ' )

q=(ω , q⃗)

W

Figure 1-1: Inclusive electron scattering in the Born Approximation.

1.2 Inclusive Electron Scattering Spectrum

Figure 1-2 shows the spectrum of scattering cross section for typical electron

inclusive scattering off a nuclear target. In inclusive scattering, only the scattered

electrons are measured by detectors.

As shown in Fig. 1-2, different nuclear response structures can be observed as the

energy loss of the electron 𝜔 varies. The nuclear response structures can be classified

from low to high 𝜔 as: elastic peak, nuclear excitation peaks, giant resonances, quasi-

elastic peak, contribution from meson exchange currents (MEC), Δ resonance peak,

higher resonances, and deep inelastic scattering (DIS).
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Figure 1-2: Nuclear responses to electron scattering. Figure reproduced from Ref. [1].

At small values of 𝜔, the first structure seen is the elastic peak at 𝜔 = 𝑄2/2𝑀𝐴

where 𝑀𝐴 is the nuclear mass, i.e, the electron’s energy loss equals to the recoil energy

of the nucleus. When the electron’s energy loss is larger than the recoil energy, the

nucleus enters excitation states, shown as the excitation peaks in the spectrum.

When 𝜔 is large enough the electron can knock out a single nucleon from the

nucleus. This corresponds to the quasi-elastic peak in the spectrum. The quasi-

elastic peak is a broad peak located slightly above 𝜔 = 𝑄2/2𝑀𝑁 , where 𝑀𝑁 is the

mass of the nucleon and 𝑁 can be either the proton or the neutron. The shift

of the center of the quasi-elastic peak from 𝑄2/2𝑀𝑁 is due to nucleon separation

energy. The width of the quasi-elastic peak is due to the motion of nucleon in the

nucleus, which is characterized by the Fermi momentum 𝑘𝐹 and magnitude of the

three-momentum-transfer |𝑞⃗|.

If the energy loss continues to increase, the knocked out nucleon is excited into

the Δ resonance state. Above the Δ resonance, there are higher resonances and then

the deep inelastic scattering region.
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1.3 Elastic Electron Scattering off the Nucleon

The differential cross section of electrons elastic scattering off a nucleon target can

be expressed as:

𝑑𝜎2

𝑑Ω
=

𝛼2

4𝐸2 sin4(𝜃/2)

𝐸 ′

𝐸

(︂
𝐺2

𝐸 + 𝜏𝐺2
𝑀

1 + 𝜏
cos2

𝜃

2
+ 2𝜏𝐺2

𝑀 sin2 𝜃

2

)︂
, (1.2)

where 𝜃 is the electron scattering angle, 𝛼 is the fine-structure constant, 𝜏 is given by

𝜏 =
𝑄2

4𝑀𝑁

, (1.3)

and 𝐺𝐸(𝑄
2) and 𝐺𝑀(𝑄2) are the nucleon electric and magnetic form factors, respec-

tively. In the absence of relativistic effects, 𝐺𝐸(𝑄
2) and 𝐺𝑀(𝑄2) can be interpreted

as Fourier transforms of the internal charge and magnetic moment distributions of

the nucleon 𝜌(𝑟) and 𝜇(𝑟), respectively:

𝐺𝐸(𝑄
2) ≈

∫︁
𝑒𝑖𝑞·𝑟𝜌(𝑟)𝑑3𝑟, (1.4)

𝐺𝑀(𝑄2) ≈
∫︁

𝑒𝑖𝑞·𝑟𝜇(𝑟)𝑑3𝑟, (1.5)

where 𝑄2 = 𝑞2 − 𝜔2.

The form factors 𝐺𝐸(𝑄
2) and 𝐺𝑀(𝑄2) are connected to the Dirac and Pauli form

factors 𝐹1(𝑄
2) and 𝐹2(𝑄

2):

𝐺𝐸(𝑄
2) = 𝐹1(𝑄

2) +
𝑄2

4𝑀2
𝑁

𝜅𝑁𝐹2(𝑄
2), (1.6)

𝐺𝑀(𝑄2) = 𝐹1(𝑄
2) + 𝜅𝑁𝐹2(𝑄

2), (1.7)

where 𝜅𝑁 is the anomalous magnetic moment: 𝜅𝑝 = 𝜇𝑝−1 = 1.793 and 𝜅𝑛 = 𝜇𝑛−0 =

−1.913 with 𝜇 the magnetic moment of the proton or the neutron.
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1.4 Quasi-Elastic Electron Scattering

In the Born approximation, the differential cross section of unpolarized electrons

scattering can be written as:

𝑑2𝜎

𝑑Ω𝑑𝜔
= 𝜎𝑀

[︂
𝑊2(𝑄

2, 𝜔) + 2𝑊1(𝑄
2, 𝜔) tan2

(︂
𝜃

2

)︂]︂
, (1.8)

where

𝜎𝑀 =
4𝛼2 cos2(𝜃/2)

4𝐸2 sin4(𝜃/2)
(1.9)

is the Mott cross-section for electron scattering off a point-like and infinitely heavy

target. 𝑊1 and 𝑊2 are structure functions of the target. One can also separate

contributions from longitudinal and transverse polarized virtual photons:

𝑑2𝜎

𝑑Ω𝑑𝜔
= 𝜎𝑀

[︂
𝑄4

𝑞⃗4
𝑅𝐿(𝑄

2, 𝜔) +
𝑄2

2𝑞⃗2𝜀
𝑅𝑇 (𝑄

2, 𝜔)

]︂
(1.10)

where

𝜀(𝑄2, 𝜔, 𝜃) =

[︂
1 +

2𝑞⃗2

𝑄2
tan2 𝜃

2

]︂−1

(1.11)

is the virtual photon polarization, 𝑅𝐿 is the longitudinal response function, and 𝑅𝑇

is the transverse response function of the nucleus. Eqs. 1.10 is called Rosenbluth

formula.

The functions 𝑅𝐿 and 𝑅𝑇 are related to 𝑊1 and 𝑊2 as:

𝑅𝑇 (𝑄
2, 𝜔) = 2𝑊1(𝑄

2, 𝜔), (1.12)

and
𝑄2

|𝑞⃗|2
𝑅𝐿(𝑄

2, 𝜔) = 𝑊2(𝑄
2, 𝜔)− 𝑄2

|𝑞⃗|2
𝑊1(𝑄

2, 𝜔), (1.13)

One can interpret 𝑅𝐿 as a measure of the charge component and 𝑅𝑇 the magnetic

component of the electromagnetic current of the nucleus. For quasi-elastic scattering
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and in a non-relativistic frame, 𝑅𝐿 can be expressed in the form:

𝑅𝐿(𝑄
2, 𝜔) =

∞∑︁
𝑓

|⟨𝑓 |𝜌|𝑖⟩|2𝛿(𝜔 − 𝐸𝑓 + 𝐸𝑖), (1.14)

where |𝑖⟩ and |𝑓⟩ are the initial and final states of the nucleus and 𝜌 is the nuclear

charge operator:

𝜌 =
𝑍∑︁

𝑘=1

𝐹 𝑝
1 (𝑞

2)𝑒𝑖𝑞·𝑟
′
𝑘 +

𝑁∑︁
𝑘=1

𝐹 𝑛
1 (𝑞

2)𝑒𝑖𝑞·𝑟
′
𝑘 , (1.15)

where 𝑍 and 𝑁 are the atomic and the neutron numbers of the nucleus, respectively.

In Eq. 1.15, 𝑟′𝑘 is the intrinsic coordinate operator for the individual nucleons:

𝑟′𝑘 = 𝑟⃗𝑘 −
1

𝐴

𝐴∑︁
𝑖=1

𝑟⃗𝑖, (1.16)

with 𝐴 = 𝑍 + 𝑁 the nuclear mass number. Because the charge effects of neutrons

are small and are usually neglected, we can write 𝜌 as:

𝜌 =
𝑍∑︁

𝑘=1

𝐹 𝑝
1 (𝑞

2)𝑒𝑖𝑞·𝑟
′
𝑘 . (1.17)

Experimentally, 𝑅𝐿 and 𝑅𝑇 can be extracted by measuring cross sections at a

given (𝑄2, 𝜔) at two or more angles as follows: If one plots 𝜀 𝑑𝜎2

𝑑Ω𝑑𝜔
/𝜎𝑀 versus 𝜀, the

data measured at different angles should fall on a straight line. The slope of this line

is (𝑄4/𝑞⃗4)𝑅𝐿, and the intercept is (𝑄2/2𝑞⃗2)𝑅𝑇 . This technique is called Rosenbluth

separation.

1.5 Coulomb Sum Rule

The Coulomb sum rule can be used to compare experimental results with theo-

retical predictions at high enough momentum transfer. The non-relativistic Coulomb

sum [2] is defined as the integration of the ratio of the longitudinal response function

𝑅𝐿(|𝑞⃗|, 𝜔) to the nucleon charge form factor over the full range of energy loss 𝜔 and
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at a constant three-momentum-transfer magnitude 𝑞 ≡ |𝑞⃗|:

𝐶𝑁𝑅(𝑞) =

∫︁ 𝑞

𝜔𝑒𝑙

𝑅𝐿(|𝑞⃗|, 𝜔)
𝐹 2
1 (𝑄

2)
𝑑𝜔 +Δ𝐶

=
∑︁
𝑓

|⟨𝑓 |𝜌|𝑖⟩|2,
(1.18)

where 𝐹 2
1 (𝑄

2) is the nucleon charge form factor and 𝜔𝑒𝑙 = 𝑄2/2𝑀 corresponds to

the elastic peak. The 𝑞 in the integral upper limit is constrained by the virtuality of

the exchanged photon: 𝜔 ≤ |𝑞⃗|. Δ𝐶 is the contribution from outside the physically

accessible region (𝜔 > 𝑞), which is small except at small 𝑞.

Using Eqs. 1.14-1.15 and the closure relation

∑︁
𝑓

|𝑓⟩⟨𝑓 | = 1, (1.19)

and neglecting Δ𝐶 and elastic peak contribution, one can write:

𝐶𝑁𝑅(𝑞) =

∫︁ 𝑞

𝜔+
𝑒𝑙

𝑅𝐿(|𝑞|, 𝜔)
𝐹 2
1 (𝑄

2)
𝑑𝜔 = 𝑍 + 𝐶2, (1.20)

where 𝑍 is the charge number of the target nucleus and 𝐶2 is the two-nucleon corre-

lation function. More detailed derivation can be found in Ref. [3].

At high momentum transfer, the relativistic effects and neutron contributions can

be taken into account by using:

𝐺̃2
𝐸 = |𝐺̃𝑝

𝐸(𝑄
2)|2 + (𝑁/𝑍)|𝐺̃𝑛

𝐸(𝑄
2)|2, (1.21)

where

𝐺̃
𝑝(𝑛)
𝐸 (𝑄2) = 𝐺

𝑝(𝑛)
𝐸 (𝑄2)

√︃
1 +𝑄2/4𝑀2

𝑁

1 +𝑄2/2𝑀2
𝑁

, (1.22)

Using these new functions, another form of the Coulomb sum is defined:

𝐶𝐿(𝑄
2) =

∫︁ 𝜔𝑚𝑎𝑥

𝜔+
𝑒𝑙

𝑅𝐿(𝑄
2, 𝜔)

|𝐺̃𝐸(𝑄2)|2
𝑑𝜔, (1.23)
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where 𝜔𝑚𝑎𝑥 = |𝑞⃗| as before. Here we define 𝐶𝐿 as a function of 𝑄2 instead of |𝑞⃗|,

because 𝑄2 is a Lorentz invariant.

The Coulomb sum normalized by the charge number of the nucleus 𝑍, 𝑆𝐿, can be

written as:

𝑆𝐿(𝑄
2) =

1

𝑍

∫︁ 𝜔𝑚𝑎𝑥

𝜔+
𝑒𝑙

𝑅𝐿(𝑄
2, 𝜔)

|𝐺̃𝐸(𝑄2)|2
𝑑𝜔. (1.24)

The Coulomb sum rule predicts 𝑆𝐿 be unity when 𝑞 > 2𝑘𝐹 with 𝑘𝐹 the Fermi mo-

mentum of the nucleon. There exist a few known corrections to the Coulomb Sum

Rule:

• Finite size effect: The finite size effect is due to center-of-mass motion [4][5].

In the calculation of the Coulomb Sum, the nucleon form factor should be

calculated with nucleon’s position relative to the center of mass. In the shell

model, the subtraction of the center of mass in form factor is done by Tassie-

Barker correction:

|𝐹 (𝑞⃗)|2 = exp
(︀
𝑞⃗ 2𝑎2/2𝐴

)︀
|𝐹𝑆𝑀(𝑞⃗)|2 , (1.25)

where 𝑎 is the length parameter of the oscillator well, 𝐴 is the number of nucleons

in the nucleus, 𝐹 (𝑞⃗) is the corrected form factor, and 𝐹𝑆𝑀(𝑞⃗) is the usual shell

model form factor from shell model wave functions. This effect becomes smaller

with increasing mass number, as shown in Fig. 1-3. This correction is important

for small 𝑞.

• Pauli blocking: Nucleons are fermions, and the Pauli exclusion principle re-

quires that no two fermions can occupy the same quantum state within the

same quantum system. When calculating the Coulomb sum, the result will be

different if we neglect the anti-symmetrization property of the nucleons. Pauli

blocking is important at small |𝑞⃗| and negligible at large |𝑞⃗|. A comparison

between with and without Pauli correlations was calculated by Lightbody using

harmonic oscillator model for 12C [7], as shown in Fig. 1-4.

• Long range correlations: In the region of low momentum transfer, the interac-

8



Figure 1-3: From Ref. [6]: CSR 𝑆𝐿 divided by the proton number as a function of the
three-momentum transfer, in the harmonic oscillator model, without (broken curve)
and with (full curve) center-of-mass corrections.

Figure 1-4: From Ref. [6]: CSR 𝑆𝐿 divided by the proton number as a function
of the three-momentum-transfer, without (broken curve) and with (full curve) Pauli
correlations. The center-of-mass effect is not included in this figure.
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tion between nucleons has a long range nature. The long-range correlation has

been studied based on the random phase approximation (RPA) [8] [9]. The long

range correlations are effective at low 𝑞 and vanish at high 𝑞. The quenching

(below unity) effect on the CSR produced by RPA is shown in Fig. 1-5.

Figure 1-5: From Ref. [6]: CSR divided by the proton number as a function of
the three-momentum-transfer in the harmonic oscillator model without (long broken
curve) and with (full curve) center-of-mass correlations. The short broken curve
represents the result including RPA correlations.

• Short range correlations: In the quasi-elastic region and when the incident

electron’s momentum is high enough, the virtual photon explores the medium

and short inter-nucleon distances [6]. As a result, the longitudinal structure

function is sensitive to the short range proton-proton correlations, and can cause

the Coulomb sum to quench. Short-range correlations can be calculated, for

example by modifying the short-range behaviour of the relative proton-proton

wave function through a Jastrow-type correlation:

𝑔(𝑟) = 1− 𝑒𝛾𝛼
2𝑟2/4, (1.26)

where 𝛾 is a correlation parameter and 𝛼0 is the harmonic oscillator constant,
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Figure 1-6: From Ref. [6]: CSR divided by the proton number as a function of the
three-momentum-transfer in the harmonic oscillator model (broken curve, 𝛼0 = 0.51
fm−1) and with short-range correlations included (chain curve, 𝛾 = 56.1; full curve:
𝛾 = 24.9).

and 𝑟 is the distance between the two protons. The effect of short range corre-

lation for 12C is shown in Fig. 1-6.

1.6 World Data

In the past thirty years, a large experimental program has been carried out at

Bates, Saclay and SLAC that aimed at the extraction of 𝑅𝐿 and 𝑅𝑇 for a variety of

nuclei [10]. The Bates and Saclay data allowed Rosenbluth separation to be performed

only up to 𝑞 = 600 MeV/𝑐 due to the maximum beam energy available(≈ 800 MeV).

At SLAC, only one measurement at 𝑞 = 1140 MeV/c was performed due to the

minimum beam energy available (≈ 900 MeV). The large uncertainty of the SLAC

data point makes it inconclusive. Overall, the longitudinal and transverse response

functions extracted with Rosenbluth separation are available for 2H, 3H, 3He, 4He,
12C, 40Ca, 48Ca, 56Fe, 238U in the range 200 MeV/c ≤ 𝑞 ≤ 600 MeV.

From previous world data, it was observed that the measured transverse response
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functions 𝑅𝑇 are generally in reasonable agreement with model predictions. In the

kinematic region where contributions from processes such as elastic scattering, nu-

clear excitation and giant resonance are small, the agreement between theories and

experiments is good. In regions where contributions from other processes – meson

exchange current (MEC) and Δ excitation – are important, the situation becomes

complicated. By taking into account these contributions, theorists can still reproduce

the measured transverse response function well, see Figs. 1-7, 1-8, 1-10, 1-12 and 1-13.

For the longitudinal response function 𝑅𝐿, the agreement between calculation and

experiment is reasonably good for very light nuclei such as 2H, 3H, and 3He, see Figs. 1-

7 and 1-8. For medium-weight to heavy nuclei such as 4He, 12C, 40Ca, an obvious

“quenching” – the 𝑅𝐿 value is smaller than the calculation– is observed, see Figs. 1-7,

1-8, 1-9, 1-11, and 1-13. The quenching of 𝑅𝐿 is observed to have a clear dependence

on the nuclear mass number. Furthermore, the quenching has a dependence on the

momentum transfer: the discrepancy between experimental 𝑅𝐿 and simple Fermi gas

model calculation becomes smaller when 𝑞 increases. This feature may be explained

by the Pauli correlation that decreases quickly when 𝑞 increases.

The Coulomb Sum was extracted from the data mentioned above with three-

momentum-transfer in the range 200 MeV/c ≤ 𝑞 ≤ 550 MeV/c, by integrating 𝑅𝐿

over the experimental measured region of energy loss 𝜔. As shown in Figs. 1-14,

1-15 and 1-16, Coulomb sum for the light nucleus 3He reaches unity at increasing 𝑞

quickly. On the other hand, there is a clear indication of quenching from theoretical

calculation up to 40% for medium (56Fe, 40Ca and 48Ca) and heavy nuclei (208Pb).

A later analysis on Saclay and SLAC data by Jourdan [16] showed that no quench-

ing exists by using the distorted wave Born approximation with the Coulomb correc-

tions. The Coulomb corrections will be explained in Section 4.11.1. However, reanal-

ysis of Saclay Data by Morgenstern and Meziani [10] with the effective momentum

approximation showed that quenching still exists. The comparison between Mor-

genstern and Meziani’s analysis and Jourdan’s work is presented in Table 1.1. Two

differences are identified: (a) the Coulomb corrections and (b) the use of the total

error in the Saclay data but only the statistical error in the SLAC data by Jourdan.
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Figure 1-7: From Ref. [11]: Longitudinal and transverse response functions for 𝐸 =
233.1 MeV at 𝜃 = 134.5° for 2H (top), 3He (middle) and 4He (bottom). Curves are
theoretical calculations.
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Figure 1-8: From Ref. [11]: Longitudinal and transverse response functions for 𝐸 =
327.7 MeV at 𝜃 = 134.5° for 2H (top), 3He (middle) and 4He (bottom). Curves are
theoretical calculations.
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Figure 1-9: From Ref. [12]: The longitudinal response function 𝑅𝐿 of 12C versus 𝜔
for (a) |𝑞⃗| = 300 MeV/𝑐; (b) |𝑞⃗| = 400 MeV/𝑐; (c) |𝑞⃗| = 550 MeV/𝑐. Solid curves
represent Fermi-gas calculations.

15



Figure 1-10: From Ref. [12]: The transverse response function 𝑅𝑇 of 12C as functions
of 𝜔 for momentum transfer |𝑞⃗| =300 MeV/𝑐, 400 MeV/𝑐 and 550 MeV/𝑐. The solid
curve represents the sum of the component curves: long dash curve: quasi-elastic;
dot curve: MEC; short dash curve: pion production.
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Figure 1-11: From Ref. [13]: Longitudinal response functions for 40Ca, 48Ca and 56Fe
at (a) |𝑞⃗| = 410 MeV/𝑐 and (b) |𝑞⃗| = 550 MeV/𝑐. Dashed curves are Fermi gas model
calculations.
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Figure 1-12: From Ref. [13]: Transverse response functions for 40Ca, 48Ca and 56Fe at
(a) |𝑞⃗| = 410 MeV/𝑐, (b) |𝑞⃗| = 550 MeV/𝑐. Dashed curves are Fermi gas calculations.
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Figure 1-13: From Ref. [14]: Longitudinal (left) and transverse (right) response func-
tions for 238U at (a) 𝑞 = 300 MeV/𝑐, (b) 𝑞 = 400 MeV/𝑐, and (c) 𝑞 = 500 MeV/𝑐.
Dashed curves are Fermi gas calculations.
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Figure 1-14: From Ref. [10]: 𝑆𝐿 obtained in the Effective Momentum Approxima-
tion(EMA) as a function of 𝑞𝑒𝑓𝑓 (effective 𝑞, defined by Eq. 4.13 in Section 4.11.1):(a)
the data shown were obtained using only cross section measured at Saclay; (b) the re-
sults by combining data from at least two different laboratories among Bates, Saclay
and SLAC except for the data point from SLAC experiment NE9 at 𝑞𝑒𝑓𝑓 = 1.14 GeV/𝑐
[15]. In (b), filled circle: 56Fe SLAC NE9 data [15]; thick star: Jourdan analysis of
56Fe Saclay data [16].
Some model calculations results are shown as: Solid line: Microscopic Nuclear Matter
calculations (N-M) calculations [17]; dash line: a partial NM Coulomb sum integrated
only within the experimental limits at 400 ≤ 𝑞𝑒𝑓𝑓 ≤ 550 MeV/𝑐; dotted dash line:
similar as dash line, but with modified form factors [18] [19]; thick right cross: partial
Hartree-Fock(HF) calculations [20] in 208Pb integrated within the experimental limits
at 𝑞𝑒𝑓𝑓 = 500 MeV/𝑐, thin right cross: similar as thick right cross, but with modified
form factors.
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Figure 1-15: From Ref. [6]: The CSR divided by the proton number as a function
of three-momentum-transfer for light weight nuclei. Continuous curves: results from
Schiavilla [19]; dotted curve: correlated model. The open markers represent the
experimental values, while the solid markers are the tail corrected results. Both
Saclay (circles) and Bates (squares) data are shown for 3He.

Figure 1-16: From Ref. [6]: The CSR divided by the proton number as a function
of three-momentum-transfer for medium weight nuclei. Broken curves: harmonic
oscillator; Continuous curves: correlated model; Dotted curve: Fermi gas model, 𝑘𝐹
= 1.32 fm−1. The open markers represent the experimental values from Saclay, while
the solid markers are the tail corrected results.
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Analysis Saclay
Uncertainty

SLAC
Uncertainty Coulomb Correction 𝑆𝐿

Jourdan total statistical No 0.86±0.12
total statistical Yes 0.91±0.12

M&M total Not included No 0.72±0.23
total Not included Yes 0.63±0.20
total total No 0.82±0.12
total total Yes 0.73±0.12

Table 1.1: Comparison of the Coulomb Sum in 56Fe between Jourdan and M&M
analysis at |𝑞⃗| = 570 MeV/𝑐. Table reproduced from Ref. [10].

1.7 Theoretical Models

Since the 1980s, great efforts have been made to resolve the 𝑅𝐿 quenching problem,

also called the “missing charge problem”. The traditional non-relativistic models

cannot explain the problem. Some models included relativistic corrections, final state

interactions, and two-body and many body correlations. These effects are important

but not large enough to fully explain the quenching of 𝑅𝐿 if the predicted 𝑅𝑇 is to

remain in agreement with the experiment data. As an example, predictions based on

the Auxiliary Field Diffusion Monte Carlo method [21] are shown in Fig. 1-17.

In order to explain the missing charge puzzle, several more exotic explanations

have been raised:

• Inadequate Coulomb correction: The idea of the Rosenbluth separation of the

longitudinal and transverse response functions is based on the Plane Wave Born

Approximation (PWBA) and one photon exchange. This approximation is not

valid for medium and heavy nuclei because of the Coulomb field of the nucleus.

In a large 𝑍 nucleus, the strong Coulomb field of the protons distorts the wave

front of the electron and the wave function of the electron is not plane wave

anymore. The electrons are accelerated when approaching the nuclei and decel-

erated when leaving the nuclei. This effect will modify the scattered electron’s

momentum and the scattering cross section as well as 𝑅𝐿 and 𝑅𝑇 . The effect of

the Coulomb field can be calculated with the Distorted Wave Born Approxima-

tion (DWBA) [22][23]. However, DWBA cross sections cannot be written in a
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Figure 1-17: From Ref. [21]: Model prediction of Coulomb sum rule for 4 ≤ 𝐴 ≤ 16.
Lines refer to AFDMC (Auxiliary Field Diffusion Monte Carlo) results for the N2LO
𝐸𝜏 potential with cutoff 𝑅0 = 1.0 fm. Solid symbols are the GFMC (Green Function
Monte Carlo) one- plus two-body results for AV18+IL7. Shaded areas indicate the
statistical Monte Carlo uncertainty.

separable form, and are extremely time consuming in numerical complications.

Due to these difficulties, the Effective Momentum Approximation (EMA) is de-

veloped [24][25]. As mentioned earlier, the re-analysis of Saclay and SLAC data

by Jourdan [16] suggested that no quenching exists if using the distorted wave

Born approximation with the Coulomb corrections.

• Swollen nucleon models: Noble first suggested another approach that there

could be an effective change in the size of the nucleon in the nuclear medium

[26], which is also used to explain the EMC effect [27][28]. The changing of

nucleon size in the nuclear medium may relates to the partial deconfinement of

quarks in the nuclear medium, which leads to modified quark distributions in

the nucleus. Noble’s calculations indicated a 30% increase in the nucleon charge

radius. He calculated the CSR by using the Fermi gas model (FGM) with an

increased charge radius. The results are shown in Fig. 1-18.
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Figure 1-18: From Ref. [6]: Longitudinal structure function in the relativistic FGM
calculation of Noble [26] for |𝑞⃗| = 410 MeV/c with 𝑘𝐹 = 1.11 fm−1). Experimental
data are from Altemus [29]. Broken curve: impulse approximation; Full curve: results
with scaled root mean square radius.
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Chapter 2

The CSR Experiment Setup

During experiment E05-110 that ran from October 23th 2007 to January 16th

2008 in Hall A of Thomas Jefferson National Accelerator Facility (Jefferson Lab),

the Coulomb Sum Rule was tested. To determine the Coulomb Sum, both response

functions 𝑅𝐿 and 𝑅𝑇 of four different nuclei (4He, 12C, 56Fe, 208Pb) were measured

from inclusive scattering in the quasi-elastic region. In this chapter, the experiment

setup and most of instrumentation are described. In Chapter 3, the optics calibration

and acceptance correction for the spectrometer system will be presented. Chapter 4

covers the data analysis procedure. Finally, preliminary results on 𝑅𝐿,𝑇 and 𝑆𝐿 of
4He will be presented in Chapter 5.

2.1 JLab Experiment E05-110

The purpose of JLab E05-110 experiment is to test Coulomb sum rule with three-

momentum-transfer in the range 550 MeV/𝑐 ≤ |𝑞⃗| ≤ 1 GeV/𝑐 and with significantly

improved precision. This is the first experiment that measured longitudinal and

transverse response functions in this three-momentum-transfer range: the previous

experiments performed at MIT Bates and Saclay covered 200 MeV/𝑐 ≤ 𝑞 ≤ 600

MeV/𝑐, and SLAC NE9 had only one point at 𝑞 = 1140 MeV/𝑐 with limited precision.

During E05-110, an unpolarized electron beam was scattered from 4He, 12C, 56Fe

and 208Pb targets to measure cross-sections in the quasi-elastic region. The 4He target
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is a gaseous target, 12C and 56Fe targets are solid foil targets, and 208Pb target is a

solid foil target kept in liquid hydrogen. The Hall A High Resolution Spectrometer

(HRS) pair was used to detect the scattered electrons at four different angles: 15°, 60°,

90° and 120°. The relatively large differences between scattering angles allowed for

the largest Rosenbluth lever arm within a single experiment compared to all previous

experiments. The cross section data were used to extract the 𝑅𝐿 and 𝑅𝑇 response

functions and the Coulomb Sum.

In order to have as much coverage as possible in (𝑞, 𝜔) to reduce systematic uncer-

tainties in the Rosenbluth separation procedure, data were acquired for beam ener-

gies between 400 MeV and 3679 MeV and spectrometer central momenta between 100

MeV/𝑐 and 3.6 GeV/𝑐, see Table 2.1. The kinematic coverage is shown in Fig. 2-1.

The main difficulty of the experiment is the massive number of kinematic settings

and the very low momentum setting of the HRS.

15° 60° 90° 120°
𝐸 𝐸 ′

𝑙𝑜𝑤 𝐸 𝐸 ′
𝑙𝑜𝑤 𝐸 𝐸 ′

𝑙𝑜𝑤 𝐸 𝐸 ′
𝑙𝑜𝑤

1260 810 646 187 400 100 400 100
1646 1147 740 250 528 108 528 98
2145 1605 845 305 646 127 646 107
2448 1838 957 377 740 170 740 110
2845 2135 1030 270 845 135 845 105
3249 2440 1102 333 957 267 957 237
3679 2770 1260 370 1030 100

Table 2.1: Incident electron beam energy and the lowest scattered electron energy
detected at each kinematic setting of JLab E05-110. All energies shown are in MeV
and all four targets shared the same settings.

A total of six Ph.D students worked on the data analysis of the E05-110 exper-

iment: Huan Yao [30] focused on 12C and 56Fe target data; Xinhu Yan [31] focused

on 12C and 56Fe target data; Yoomin Oh [32] focused on 4He and 12C target data;

Hamza Atac [1] focused on 12C and 56Fe target data; Yan Huang focused on 208Pb

target data; and I focused on 4He target data. The analysis of 4He target data is

reported in this dissertation. The work presented here will also help finalizing all

prior analysis performed by the other five students.
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Figure 2-1: Kinematic coverage of the CSR experiment. Each graph is for one scat-
tering angle and each color represents a beam energy in MeV. The 𝑥 axis is energy
loss 𝜔 (MeV), and the 𝑦 axis is three-momentum-transfer 𝑞 (MeV) .
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In the remaining part of this chapter, I will present details of the experiment

setup, including the electron beam, Hall A beamline components, the cryogenic and

solid targets and the HRS system.

2.2 The Accelerator and the Electron Beam

The Continuous Electron Beam Accelerator Facility (CEBAF) at JLab was built

to investigate the structure of nuclei and hadrons and the underlying fundamental

interactions in the region below the high-energy “asymptotically free” regime. The

accelerator consists of an electron injector, two super-conducting linear accelerators

(linacs), recirculation arcs, and RF separators. The layout of the accelerator is shown

in Fig. 2-2.

Figure 2-2: Aerial view of the JLab accelerator during the 6 GeV era.

The source of polarized electrons is a strained GaAs cathode at the injector. The

cathode is illuminated by a 1497 MHz gain-switched 780 nm diode laser, and provides

a polarized beam with up to 90% polarization.
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The beam is first accelerated to 45-60 MeV in the injector, then is transported to

the north linac. The north and the south linacs are connected by recirculation arcs

with radius 80 m that can turn the beam by 180° from the south to the north linac

and vice versa, forming a recycling beamline in the shape of a racetrack. Quadruple

and dipole magnets in each arc provide the field that keeps the beam on a precise

path and tightly focused. Each linac contained 20 cryomodules during the 6 GeV

era, and 5 new cryomodules were added to each linac during the 12 GeV upgrade.

There are eight super-conducting niobium RF cavities in each cryomodule, kept at

a temperature of 2 K using liquid helium from the CHL (Central Helium Liquefier).

The RF cavities are phased to provide maximum acceleration. During the 6 GeV era,

the nominal gain of each linac is up to 400 MeV, and it can be tuned further up to

600 MeV, making it possible for the beam to reach an energy of 6 GeV.

After passing through the south linac, the beam can either go to the next recir-

culation arc for another pass around the accelerator, or enter one of the experiment

halls using RF extraction. The designed maximum current is 200 𝜇A, which can be

split arbitrarily to three 499 MHz bunch trains, one for each of the three experimental

halls, Hall A, B and C. The CSR experiment required 50 𝜇A average current, with

energies ranging from 0.4 to 4 GeV.

2.3 Beam Energy Measurement

Beam energy measurements is an important part of the experiment to ensure the

accuracy of data analysis. There are two independent methods to measure the abso-

lute beam energy: Arc measurement, which is based on measurements of the beam

deflection in a known field; and eP measurement, which is based on measurement of

the electron elastic scattering off a proton target. During the CSR experiment, only

the Arc measurement was used.
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Figure 2-3: Arc section of the Hall A beamline. Figure reproduced from [33].

2.3.1 Arc Measurement

The principle of this method is that electrons in a magnetic field will move in a

circular pattern, with the radius depending on the field strength and the electron’s

momentum. The Arc method measures the bending radius of the beam in the arc

section, see Fig. 2-3.

The momentum of the beam (𝑃 in GeV/c) is related to the field integral in eight

dipoles (
∫︀
𝐵⃗ × 𝑑𝑙 in T· m) and the net bending angle through the arc section (𝜃 in

radians) by:

𝑃 = 𝑘

⃒⃒⃒⃒
⃒
∫︀
𝐵⃗ × 𝑑𝑙

𝜃

⃒⃒⃒⃒
⃒ (2.1)

where 𝑘 = 0.299792 GeV · rad · T−1 · m −1.

The arc measurement consists of two simultaneous measurements. One is for the

bending angle of the beam measured by a set of wire scanners. Another is for the field

strength integral
∫︀
𝐵⃗×𝑑𝑙 of the eight dipoles based on the reference magnet (the 9-th

dipole) field measurement. There are two operation modes in the Arc section: the

dispersive (invasive) and non-dispersive (non-invasive) mode. The dispersive mode
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will affect the quality of the beam, but has better precision (Δ𝐸𝑏𝑒𝑎𝑚/𝐸𝑏𝑒𝑎𝑚 = 2×10−4)

than non-dispersive mode (5 × 10−4). Detailed description of the Arc measurement

can be found in [34].

The Arc measurement during the CSR experiment was done at a beam energy of

845 MeV. The measurement result (845.08±0.2 MeV) is consistent with the so-called

“Tiefenbach” energy (844.87 ± 0.4 MeV), calculated from the Hall A arc 𝐵⃗𝑑𝑙 value

and the Hall A beam position measured from the beam position monitor (BPM). For

other energies, the Tiefenbach values are used for the analysis.

2.4 Beam Charge Measurement

The incident number of beam electrons is an essential normalization factor in

the extraction of cross sections. It is proportional to the beam current measured

by the Beam Current Monitor (BCM) in Hall A, which provides a stable, low-noise,

non-interfering beam current measurement [34].

The BCM consists of an Unser monitor, two RF cavities, associated electronics

and a data-acquisition system. The diagram of BCM is shown in Fig. 2-4. The

cavities and the Unser monitor are located 25 m upstream of the target. The Unser

monitor is a parametric current monitor that provides an absolute reference. The

two resonant RF cavity monitors on two sides of the Unser Monitor are stainless steel

cylindrical high-𝑄 (𝑄 ≈ 3000) waveguides. They are tuned to the frequency of the

beam (1.497 GHz), producing voltage levels at their outputs that are proportional to

the beam current. Each of the RF output signals from the two cavities is split into

sampled and integrated parts of the data acquisition system.

The sampled data were sent to a high-precision Digital Multi-Meter (DMM), which

provides an output signal that represents the root-mean-square (RMS) of the input

signal during that second. The output is proportional to the beam charge accumulated

for that second. Signals from both cavities are sent to a computer through GPIB

cables, and are recorded every 1-2 seconds in the Experimental Physics and Industrial

Control System (EPICS) database.
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Figure 2-4: Beam current monitor diagram. Figure reproduced from [34].

The integrated data are sent to an RMS-to-DC converter to generate an analog DC

voltage level. The voltage level is sent to a Voltage-To-Frequency (VtoF) converter

whose output frequency is proportional to the input. The frequency signal is fed to

200 MHz VME scalers and stored in the data stream with other scaler information

every 4 seconds. The scaler value accumulates during the run and is proportional

to the time-integrated voltage level. The regular RMS to DC output is linear for

currents from 5 𝜇𝐴 to 200 𝜇𝐴. A set of amplifiers with different gain factors (×1,

×3, ×10) can extend the linear region to lower currents. The six signals for each

spectrometer (U1, U3, U10 and D1, D3, D10, corresponding to the three gain factors

and the up and downstream cavities respectively) are sent to scalers and provide the

charge information with redundancy.

The beam charge can be derived from BCM scaler reading Scaler𝑏𝑐𝑚×𝑛 as

𝑄𝑏𝑐𝑚×𝑛(𝜇𝐶) =
Scaler𝑏𝑐𝑚×𝑛

𝑇
−Offset𝑏𝑐𝑚×𝑛

Constant𝑏𝑐𝑚×𝑛

𝑇 , (2.2)

where 𝑛 = 1, 3, 10 is the gain factor of the amplifiers and 𝑇 is the clock time for each
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Gain Upstream
Calibration Constants

Upstream
Offsets

Downstream
Calibration Constants

Downstream
Offsets

1 2372.38 362.5 24727.91 160.1
3 7294.51 350.2 7517.37 126.7
10 22067.11 442.6 23485.15 321.1

Table 2.2: BCM calibration constants and offsets for the CSR experiment.

run (in seconds). The Offset𝑏𝑐𝑚×𝑛 and Constant𝑏𝑐𝑚×𝑛 are determined in the BCM

calibration procedure. The values calibrated for the CSR experiment are given in

Table 2.2.

2.5 Beam Position Monitor and Beam Raster

The beam produced by the accelerator typically has a Gaussian distribution across

the cross-sectional area with full width at half maximum (FWHM) 𝜎 ≈ 100 𝜇m. To

avoid damaging the target, the beam is rastered to a few millimeters in size. The raster

is a pair of horizontal (X) and vertical (Y) air-core dipoles located 23 m upstream of

the target. There are two modes of the raster: sinusoidal and amplitude modulated.

In the sinusoidal mode, both X and Y dipoles are driven by pure sine waves with

relative 90° phase difference and a frequency which do not produce a closed Lissajous

pattern. In the amplitude modulated mode, both X and Y dipoles are driven at 18

kHz with a phase difference between X and Y producing a circular pattern. The

radius of this pattern is changed by amplitude modulation at 1 kHz. The radius

modulation is controlled by a function generator and creates a uniform distribution

of the area swept out by the beam motion. In the CSR experiment, a 2 mm × 2 mm

sinusoidal mode was used on both the cryogenic targets and solid targets. The beam

spot is 2 mm × 2 mm with a square shape.

The beam position is an important parameter for the optics calibration and accep-

tance calculation of the spectrometers. Two Beam Position Monitors (BPMs) located

at 7.524 m and 1.286 m upstream of the target are used to determine the position

and direction of the beam at the target. Each BPM consists of four wire antennas

perpendicular to the beam direction, which are tuned to the beam RF frequency 1.497
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GHz. They are placed symmetrically around the beam pipe in a vacuum chamber.

When a electron passes through the BPM, it will induce signals in antennas. The am-

plitude of the signal in each antenna is inversely proportional to the distance between

the antenna and the beam. The absolute position of the BPMs can be calibrated

with respect to the harps near each of the BPMs. The beam position information

measured by the BPMs is stored in two ways:

1. The average beam position data over a 0.3 s time period are recorded in EPICS

database and injected asynchronously into the data stream every 3-4 s.

2. The event-by-event beam position information is recorded in the CODA data

stream from each of the 8 BPM antennas, and are also recorded in the data

stream.

The beam position and direction at the target are reconstructed from BPM infor-

mation 𝑥𝑏𝑝𝑚𝑎,𝑏 and 𝑦𝑏𝑝𝑚𝑎,𝑏 as:

𝑥𝑏𝑒𝑎𝑚 =
𝑥𝑏𝑝𝑚𝑎 · 𝑧𝑏𝑝𝑚𝑏 − 𝑥𝑏𝑝𝑚𝑏 · 𝑧𝑏𝑝𝑚𝑎

𝑧𝑏𝑝𝑚𝑏 − 𝑧𝑏𝑝𝑚𝑎

(2.3)

𝑦𝑏𝑒𝑎𝑚 =
𝑦𝑏𝑝𝑚𝑎 · 𝑧𝑏𝑝𝑚𝑏 − 𝑦𝑏𝑝𝑚𝑏 · 𝑧𝑏𝑝𝑚𝑎

𝑧𝑏𝑝𝑚𝑏 − 𝑧𝑏𝑝𝑚𝑎

(2.4)

𝜃𝑏𝑒𝑎𝑚 =
𝑥𝑏𝑝𝑚𝑏 − 𝑥𝑏𝑝𝑚𝑎

𝑧𝑏𝑝𝑚𝑏 − 𝑧𝑏𝑝𝑚𝑎

(2.5)

𝜑𝑏𝑒𝑎𝑚 =
𝑦𝑏𝑝𝑚𝑏 − 𝑦𝑏𝑝𝑚𝑎√︀

(𝑥𝑏𝑝𝑚𝑏 − 𝑥𝑏𝑝𝑚𝑎)2 + (𝑧𝑏𝑝𝑚𝑏 − 𝑧𝑏𝑝𝑚𝑎)2
(2.6)

where 𝑧𝑏𝑝𝑚𝑎 = −7.345 m, 𝑧𝑏𝑝𝑚𝑏 = −2.214 m are the location of BPMA and BPMB

along the beamline, 𝑥𝑏𝑒𝑎𝑚 and 𝑦𝑏𝑒𝑎𝑚 are the horizontal and vertical positions and

𝜃𝑏𝑒𝑎𝑚 and 𝜑𝑏𝑒𝑎𝑚 are the vertical and horizontal angles of the beam at the target,

respectively.

Since the beam is spread by a 18 kHz “fast” raster, the BPMs can not provide

the beam position event by event due to the time delay effect. The BPMs are only

used to measure the center and shape of the raster pattern, and the raster current

information is combined with the BPM readout to provide the beam position for
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each event. The magnet currents of the rasters are calibrated to provide the absolute

values of the deviation with respect to the center of the raster pattern. More details

can be find in Ref. [35].

2.6 Target System

2.6.1 Target Chamber

The standard target vacuum chamber is used in the CSR experiment, see Fig. 2-5.

The vacuum chamber is constructed out of a 1037-mm diameter ring supported on

a 607-mm diameter central pivot post. The stainless-steel base ring has one vacuum

pump-out port and other ports for viewing and electrical feed-through. The aluminum

middle ring is located at the beam height with 152-mm high vertical cutouts on each

side of the beam over the full angular range. The cutoff can accommodate scattering

angles within 12.5° ≤ 𝜃 ≤167.5°, and are covered with a pair of flanges with thin (0.38

mm) aluminum foils. It also has entrance and exit beam ports. The top part of the

target chamber is used to house the cryotarget, and the bottom part is used to house

solid targets.

2.6.2 Target Configuration of the CSR Experiment

The CSR experiment used targets from light to heavy nuclei in order to study

medium dependence of the Coulomb Sum. Several targets: 2H, 4He, 12C, 23Al, Empty,

BeO, 56Fe and 208Pb — were used in this experiment. These targets were installed

on a target ladder in the target chamber and can be controlled remotely.

The target ladder is oriented vertically and is controlled by three servo motors,

each connected to its own motion controller. Two of the motion controller units

are configured as “Slaves” and are controlled by the third, the “Master”. During the

running of the experiment, the target can be moved by controlling the Master motion

controller through Input-Output Controllers (IOCs). The various target positions are

stored as 15 encoder values on the control computer. An encoder that is attached to
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Figure 2-5: Hall A target chamber.

the Master’s servo motor determines the target encoded position. The target positions

used in the CSR experiment are listed in Table 2.3.

The cryogenic targets are mounted on the top layer of the target ladder inside

the target chamber with sub-systems for cooling, gas handling, and temperature and

pressure monitoring. The cryogenic target has three independent target loops: one

gaseous helium loop (Loop 1), one liquid helium loop (Loop 2) and one liquid hydrogen

loop (Loop 3).

The Loop 1 target is a vertical “racetrack” shape cell, it is 10 cm long and 2cm

wide, see Fig. 2-6. This 4He target is not static: 4He gas flowed vertically to recycle

and cool the target.
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Target Material Encoded Position
Loop 1 10cm High Pressure He 32932800
Loop 2 15 cm + Pb He + Pb 26954176
Loop 2 10 cm He 23377856
Loop 3 15 cm + Pb H2 + Pb 19802560
Loop 3 15 cm H2 16241600
Optics 7 carbon foils 12760000
10 cm dummy 2 Al foils 10092480
15 cm dummy 2 Al foils 9370560
Empty N/A 8653760
BeO BeO 6406480
Beam right carbon Carbon 4321550
Beam right iron Iron 2692366
Beam left carbon Carbon 585998
Beam left iron Iron -1040625

Table 2.3: Target materials and encoded positions used during the CSR experiment.

Figure 2-6: Loop 1 and part of loop 2 of the cryogenic target.
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Cryogenic Target Entrance Window
(mm) ± 0.005

Exit Window
(mm) ± 0.005

Lead thickness
(𝑔/𝑐𝑚2) Beam left wall (mm) Beam right wall (mm)

Loop1 10 cm 0.263 ± 0.008 0.280 ± 0.005 N/A 0.245 ± 0.002 0.239 ± 0.007
Loop2 15 cm 0.128 ± 0.002 0.194 ± 0.009 0.1057 ± 0.0001 0.194 ± 0.009 0.194 ± 0.009
Loop2 10 cm 0.257 ± 0.005 0.120 ± 0.070 N/A 0.120 ± 0.070 0.120 ± 0.070
Loop3 15 cm 0.129 ± 0.001 0.207 ± 0.005 0.3187 ± 0.0004 0.207 ± 0.005 0.207 ± 0.005
Loop3 15 cm 0.217 ± 0.003 0.115 ± 0.001 N/A 0.115 ± 0.001 0.115 ± 0.001

Table 2.4: Cryotargets window and lead target thicknesses.

The Loop 2 target has two aluminum cylindrical target cells filled with liquid 4He.

The upper cell is 15 cm long with a 208Pb foil held at the center and tilted 50.0 ±

2.00° to the beam right. The 208Pb is kept in 4He for cooling purpose. The lower

cell is 10 cm long filled with liquid 4He only. Similarly, Loop 3 has two aluminum

cylindrical 15-cm long target cells filled with liquid hydrogen. The upper cell has a
208Pb foil at the center, also tilted 50.0 ± 2.00° to the beam right. The lower cell

is 15 cm long filled with liquid hydrogen only. Loop 2 and Loop 3 cryogenic targets

are shown in Fig. 2-7. Table 2.4 shows thickness of the cell window and wall and

the lead foil. The cryo targets are cooled with helium supplied by the End Station

Refrigerator (ESR).

The 4He gas target was operated at 7.0 K and about 170 psi, with a density about

0.12 g/cc. The nominal operating conditions of liquid targets are: 6.3 K at 1.4 MPa

for 4He in Loop 2, and 19.0 K at 0.17 MPa for H2 in Loop 3. The uncertainty in

the target density is minimized by monitoring the pressure and temperature with

pressure transducers.

Next on the target ladder are optics, dummy and empty targets, see Fig. 2-8. The

optics target consists of seven carbon foils cut from the same 99.5% chemically pure

0.042 ± 0.001 g/cm2 thick carbon sheet. The foils are separated by 4 cm along the

beam direction. The dummy targets are two pairs of aluminum foils with thickness

0.259 ± 0.001 g/cm2. The two foils of one pair are separated by 10 cm (called “10

cm dummy target”), and those of the second pair are separated by 15 cm (called

“15 cm dummy target”) in the beam direction direction. The dummy targets are for

measuring scattering contribution from the cryogenic target windows. In addition,

there is a hole on each foil of the second dummy target, and the position that allows

the beam to pass through all holes (no material along the beam path) is called the
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Figure 2-7: Loop 2 and Loop 3 cryogenic target.

“empty target”.

The last on the target ladder are solid targets. The upper position is for BeO

which is perpendicular to the beam. The second two positions are for carbon and

iron targets and they are tilted 51.78° clockwise when viewed from top, so the beam

hits the right side of foils (“Beam right”). The bottom two positions are also for carbon

and iron targets, but tilted 48.56° counterclockwise, and the beam hit the foils from

the left side (“Beam left”). The configuration of the left and right titled solid target

are shown in Fig. 2-9. The tilting angles are optimized so electron’s average passing

length in the target material 𝑇 is small, in particular for electrons with scattering

angle 90°. The solid targets are shown in Fig. 2-10, with foil positions, thicknesses

and chemical purity shown in Table 2.5.
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Figure 2-8: Optics, dummy and empty target.
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Figure 2-9: Configuration of left and right tilted carbon and iron targets (viewed from
the top).
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Figure 2-10: Solid targets ladder.

Purity Target Position Material Thickness (𝑔/𝑐𝑚2)
99% BeO BeO 0.149 ± 0.001
99.95% Beam right carbon Carbon 0.0894 ± 0.0001
99.99% Beam right iron Iron 0.1027 ± 0.0001
99.95% Beam left carbon Carbon 0.0895 ± 0.0001
99.99% Beam left iron Iron 0.1023 ± 0.0001

Table 2.5: Solid target purity and thickness.

2.7 Hall A High-Resolution Spectrometers

The core of the Hall A equipment is a pair of nearly identical High Resolution

Spectrometers (HRS) designed to study electromagnetic interactions and hadronic

structure with high precision, see Fig. 2-11. Viewing along the beam direction, the two

HRSs are called Left HRS (LHRS) and Right HRS (RHRS), respectively. Important

design characteristics of the HRSs are shown in Table 2.6.
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Figure 2-11: The Hall A high resolution spectrometers. Figure reproduce from [34].

Configuration QQDQ vertical bend
Bending angle 45°
Optical length 23.4 m
Momentum range 0.1− 4.0 GeV/𝑐
Momentum acceptance −4.5% < 𝛿𝑝/𝑝 < +4.5%
Momentum resolution 1× 10−4

Dispersion at the focus (D) 12.4 m
Radial linear magnification (M) −2.5
D/M 5.0
Angular range
HRS-L 12.5− 150°
HRS-R 12.5− 130°
Angular acceptance
Horizontal (𝜑) ±30 mrad
Vertical (𝜃) ±60 mrad
Angular resolution
Horizontal (Δ𝜑/𝜑) 0.5 mrad
Vertical (Δ𝜃/𝜃) 1.0 mrad
Solid angle at 𝛿p/p=0, 𝑦0=0 6 msr
Transverse length acceptance ± 5 cm
Transverse position resolution 1 mm

Table 2.6: Main design characteristics of the Hall A high resolution spectrometers.
Table reproduced from [34].

42



2.7.1 Design and Characteristics of the HRS Magnets

Each HRS has four superconducting magnets: three quadrupoles (Q) and one

dipole (D). The QQDQ magnet configuration (see Fig. 2-12) is used because of a few

requirements: a high momentum resolution at the 10−4 level over the 0.8 to 4.0 GeV/𝑐

momentum range, a large acceptance in both angle and momentum, good position

and angular resolution in the scattering plane, and extended target acceptance [34].

The first two quadrupoles are used to focus the scattered electrons vertically and hor-

izontally, respectively, to achieve the desired angular acceptance and avoid particles

to collide with the magnets. The dipole is mainly used to bend the electron trajectory

by 45° upward and to achieve a good momentum resolution. The third quadrupole

further focuses the particles horizontally.

(o). For Dy ¼ 760 mrad; o ¼ 40 cm; and
D=M ¼ "5; the above expression gives a ¼
41#; close to the chosen value of 45#: The
expression assumes a parallel beam in a uni-
form-field dipole. The radial focussing provided
by the indexed dipole necessitates a slightly
larger bend angle.

* The pole-face rotation angles have been fixed at
"30# as a practical limit. The field of Q1 and
the dipole field index provide the remaining
radial focussing. In the absence of the field
index an excessively large rotation angle (B43#)
would have been needed.

* The overall optical length was constrained to fit
with 24 m:

2.3. Spectrometer Mechanical Support System

A schematic view of one of the Hall A High
Resolution Spectrometers (HRS) is shown in Fig.
5. The structural system of each spectrometer arm
must rigidly support the spectrometer magnet and
detector elements in their 45# vertical bending
configuration, while providing almost full azi-
muthal positioning of the spectrometer about the
central pivot. All three quadrupoles and the drift
chamber detector elements are hung from or
mounted on a box beam, which is rigidly mounted
on the top of the dipole. Once these elements are
surveyed in place, their relative positions remain

constant regardless of the spectrometer azimuthal
position. The box beam itself is an B80 Mg
welded steel structure. The back of the box beam
extends into the shield house. The detector
package and the box beam holding it are
surrounded by the shield house, but free to move
within it (see Fig. 2).

The 450 Mg concrete shield hut required for the
detectors is independently supported and posi-
tioned from a structural steel gantry. The bulk of
its mass is transmitted from the structural leg to a
20:7 m radius steel floor track through a series of
bogie-mounted conical wheels (see Section 2.8).
The rest of its weight is supported on the back end
of the transporter cradle. The total mass of each
spectrometer including the shielding hut is over
1000 Mg:

2.4. Cryogenics and magnet cooling system

The two spectrometers contain a total of eight
superconducting magnets, two dipoles and 6
quadrupoles. These magnets each have indepen-
dent cryogenic controls and reservoirs. The
cryogenic system that maintains these magnet
systems is common to all eight magnets and the
cryo-target. The cryogenic system is fed from an
1800 W helium refrigerator, the End Station
Refrigerator (ESR), dedicated to the cooling of
the magnets and targets in all JLab end stations.
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Fig. 5. Schematic layout of a HRS device, showing the geometrical configuration of the three quadrupole and the dipole magnets. Also
shown is the location of the first VDC tracking detector.

J. Alcorn et al. / Nuclear Instruments and Methods in Physics Research A 522 (2004) 294–346302

Figure 2-12: The Hall A high resolution spectrometers magnets layout (sideview).

2.7.2 HRS Collimator

Each HRS has a collimator box carefully aligned and rigidly attached to the en-

trance flange of the first quadrupole. In each collimator box, there are a set of

collimators and a sieve slit. Only one collimator or sieve slit is selected and used at
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a single time.

The first two collimators are made of 80 mm thick tungsten, positioned around

1109 mm away from the target. The first collimator has an aperture of 121.8(Vertical)

× 62.9(Horizontal) mm at the entrance and 129.7(V) × 66.8(H) mm at the exit. The

second collimator is smaller and with an aperture of 50.0(V) × 21.3(H) mm at the

entrance and 53.2(V) × 22.6(H) mm at the exit. The third collimator is called "sieve

slit", which is used to determine the angular information during optics calibrations.

It is made of a 5 mm thick stainless steel sheet, positioned 1165.3 mm for LHRS

(1192.5 mm for RHRS) away from the Hall A center. There are 49 holes (arranged

in a 7×7 array) on each sieve slit sheet, spaced 25 mm apart vertically and 12.5 mm

apart horizontally. Two of these holes have a diameter of 4 mm, and all other holes

are 2 mm in diameter. Details of the sieve slits will be presented in Chap. 3.

2.7.3 HRS Detector Package

Following the third quadrupole is the detector package. The detector package is

designed for various functions in the characterization of charged particles that come

through the spectrometer. The layout of the LHRS and RHRS detector packages used

in the CSR experiment are shown in Figs. 2-13 and 2-14, respectively, and included:

• A pair of Vertical Drift Chambers (VDCs) to determine the tracking information

(momentum and trajectory);

• Two scintillator planes, S1 and S2, to provide triggers that activate the data

acquisition (DAQ) electronics;

• A gas Cerenkov detector to provide particle identification (PID) information;

• On the LHRS, a NaI calorimeter was used to check the background especially

at low momentum. The information from NaI confirmed that the background

level is under control. Unfortunately, some NaI blocks were unresponsive during

the experiment due to problems during installation, and the NaI was used only

to cross check other detectors and not for defining the PID cuts.
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Figure 2-13: The LHRS detector package.
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Figure 2-14: The RHRS detector package.
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• A set of lead glass calorimeter for additional PID.

Details of each detector are explained below.

Vertical Drift Chamber

Each HRS uses a pair of Vertical Drift Chambers (VDC) to provide particle track-

ing information. The layout of the VDC is shown in Fig. 2-15.
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Figure 2-15: Schematic layout of a pair of Vertical Drift Chambers.

The two VDCs are positioned 335 mm away from each other. Each VDC has a

standard U-V plane configuration: the wires of one plane are at 90° w.r.t. the wires of

the other plane, and all lie in the laboratory horizontal plane. All wires are inclined

at an angle of 45° w.r.t. the dispersive (vertical) and the non-dispersive (horizontal)

directions of the HRS. The particle’s central trajectory crosses the wire planes at an

angle of 45° vertically. The distance between U and V planes is 26 mm. There are

368 sense wires in each plane, the spacing between two adjacent wires is 4.243 mm.

There are three high voltage gold-plated Mylar planes at about -4 kV in each

VDC, one between U and V wire planes and two on opposite sides. The wires are

kept at ground voltage. The electric field between the wires and the cathode planes
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Figure 2-16: Electric fields between the wires and the cathode planes in the VDC.

is show in Fig. 2-16. The gas supply to the VDCs is a mixture of 62% argon and 38%

ethane, which is bubbled through cooled alcohol to reduce aging effects on the sense

wires [34].

When a charged particle passes through the VDC, it ionizes the gas inside the

chamber and leaves behind ions and generated electrons on its track. The generated

electrons initially drift towards sense wires with a constant velocity (50 𝜇m/ns) along

the path of the least time, and accelerate rapidly when approaching the wires, pro-

ducing a shower of secondary ionization. This generates an electric signal on the sense

wires. The timing information of the signal is measured by the Time-To-Digital Con-

verter (TDC), which is started by a triggered wire and stopped by the event trigger

supervisor. Since the ionization electron’s drift velocity is constant for most of the

flight path, the drift distance from the trajectory to the wire can be extracted from

the TDC output. The trajectory can be reconstructed by combining drift distances

of all fired wires of the two VDC planes. By design, charged particles that cross the

VDCs at the nominal angle of 45° typically trigger 5 wires. Considering the ineffi-

ciency of sense wires, signals with 3 or 4 hits on a plane are also accepted as good

tracks. The position and angular reconstruction resolution of the particle trajectory

at the focal plane are approximately 100 𝜇m and 0.5 mrad, respectively.
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Scintillators and Trigger Definition

Two scintillator planes separated by 2 meters, S1 and S2, are used to generate

the trigger for the DAQ system. The active volumes of S1 and S2 are 36.0 cm

(transverse or horizontal direction) × 29.3 cm (dispersive or vertical direction) × 0.5

cm (thickness), and 60.0 cm (horizontal) × 37.0 cm (vertical) × 0.5 cm (thickness),

respectively. Each scintillator plane consists of 6 overlapping thin plastic scintillator

paddles. Two photomultipliers (PMT) are attached to each scintillator paddle, one

on the left side and another on the right side. The timing resolution of each plane is

around 0.3 ns.

Charged particles passing through a scintillator paddle generate scintillating light

which travels towards PMTs on both sides. A paddle is called “fired” if both PMTs

on its two sides have signals. Signals from PMTs are used to generate triggers which

control the signal readout of all other detectors and the DAQ system. Each event

recorded by the DAQ is assigned an event type based on the scintillator signal pattern

as follows:

• A T1(T3) event for the right (left) HRS is formed if all the following conditions

are satisfied:

1. The N𝑡ℎ
1 paddle of S1 and the N𝑡ℎ

2 paddle of S2 are “fired” within a specific

time window;

2. N2 = N1 or N2 = N1± 1. This means the angle formed by the particle

trajectory and the central ray of the spectrometer is very small. In other

words, the particle trajectory is at approximately 45° w.r.t. the Hall floor.

T1(T3) events are often considered to be “good events”.

• A T2(T4) event for the right (left) arm is formed if one of the following condi-

tions is satisfied:

1. The N1
𝑡ℎ of S1 and N2

𝑡ℎ of S2 are fired within a specific time window, but

N2 ̸= N1 and N2 ̸= N1 ± 1;
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2. Either a S1 paddle or a S2 paddle is fired, and at the same time the Gas

Cerenkov is fired.

T2(T4) events are either cosmic ray events, or particles on the edge of the

acceptance.

• A T5 event is defined as a coincidence event of T1 and T3. It was not used

during the CSR experiment.

Triggers T1-T4 are counted by scalers and are sent to the trigger supervisor. The

trigger supervisor synchronizes all the detector read-outs and sends them to the DAQ

system. Because of hardware limitations, the DAQ cannot record all events when the

event rate is high. A quantity called livetime (LT) is defined as the fraction of events

recorded by DAQ:

𝐿𝑇 =
number of events that are recorded by DAQ

number of events that are fed to the DAQ
. (2.7)

If the event rate is very high, events can be prescaled by an integer prescale factor

𝑝1(2,3,4) for 𝑇1(2,3,4) at the trigger supervisor to decrease the load of the DAQ system.

Only one event is sent to the DAQ system for each set of 𝑝1(2,3,4) events. Livetime is

event type dependent. It can be found by comparing the number of triggers 𝑇1(2,3,4)

recorded by scalers and the total number of triggers accepted by the DAQ system,

𝑇𝐷𝐴𝑄,1(2,3,4):

𝐿𝑇1,(2,3,4) =
𝑝1,(2,3,4)𝑇𝐷𝐴𝑄,1(2,3,4)

𝑇1(2,3,4)

. (2.8)

Similarly, we can define a quantity called trigger inefficiency which describes the

fraction of “good events” miscounted as T2(T4) events. To minimize the dilution from

cosmic events, we usually choose a high rate run to determine the inefficiency as

Inefficiency =
𝑇2(4)

𝑇1(3) + 𝑇2(4)

(2.9)
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and the trigger efficiency as

𝜂𝑡𝑟𝑖𝑔 = 1− Inefficiency =
𝑇1(3)

𝑇1(3) + 𝑇2(4)

. (2.10)

The trigger inefficiencies for both left and right HRS were below 1% during the CSR

experiment and are considered negligible.

Gas Cerenkov Detector

The Gas Cerenkov detector is used for particle identification during the CSR

experiment. The Gas Cerenkov detector is based on the Cerenkov effect: The speed

of light in medium, 𝑐/𝑛 with 𝑛 the medium index of refraction, is always smaller than

the speed of light in vacuum 𝑐. When a high energy particle travels in a medium

with high enough speed, 𝑣 > 𝑐/𝑛, the disturbance accumulates in the medium due to

the limited response speed (speed of light in the medium) and causes a radiation in

a cone with aperture angle 𝜃𝑐 with respect to the particle’s trajectory.

✓
e�

Cherenkov light 
direction 

v > c/n
Traveling at 

Wavefront of 
Cherenkov light

Figure 2-17: The geometry of the emission of Cerenkov radiation when an electron
(or any charged particle) passes through a dielectric medium at speed 𝑣 > 𝑐/𝑛.

The threshold velocity and momentum for the production of Cerenkov light of a

charged particle of mass 𝑚 are

𝛽𝑚𝑖𝑛𝑐 =
𝑐

𝑛
, (2.11)

𝑝𝑚𝑖𝑛 =
𝑚𝑐√
𝑛2 − 1

. (2.12)
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The threshold angle 𝜃𝑐 is given by:

cos 𝜃𝑐 =
1

𝛽𝑚𝑖𝑛𝑛
. (2.13)

By detecting if a particle emits Cerenkov light, one can determine if this particle’s

velocity is larger than the threshold velocity in the medium.

The main background during the CSR experiment is from pions. The Cerenkov

detector can be used to separate electrons from pion background. The gas Cerenkov

detector is filled with CO2 at atmospheric pressure. With a refraction index 𝑛 =

1.00041, the threshold momentum of electrons and pions are:

𝑝𝑒,𝑚𝑖𝑛 = 17 MeV/𝑐, and 𝑝𝜋,𝑚𝑖𝑛 = 4.8 GeV/𝑐. (2.14)

Because the beam energy of CSR experiment varied from 0.4 to to 4 GeV, only

electrons generate signals in the Cerenkov and pions do not. The Gas Cerenkov

detector can achieve a very high efficiency in identifying electrons.

The Gas Cerenkov detector for each HRS is located between the two scintillator

planes S1 and S2. It is made of steel with thin entrance and exit windows made of

tedlar. There are ten spherical mirrors installed as a 5 (vertical) × 2 (horizontal)

array that reflect the Cerenkov light onto ten PMTs. The mirrors have a radius of

curvature of 90 cm, and the PMTs are placed at 𝑓 = 90/2 = 45 cm from the mirrors,

such that parallel incident light can be focused on PMTs. Signals from PMTs are

sent to ADCs and summed together.

Even though pions cannot produce Cerenkov light, they can still ionize the gas

medium and thus generate secondary electrons. These secondary electrons may have

high enough energy to trigger Cerenkov detector and leave a background signal that

lies near the single-photon-electron peak. These electrons are called knock-on elec-

trons. This background can be removed in the analysis using ADC cuts which will

be explained in Chap. 4.
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Electromagnetic Calorimeters

The electromagnetic calorimeters provide an additional way of particle identifica-

tion (PID). For the two HRS, the electromagnetic calorimeters are made of leadglass

blocks. When a high energy charged particle of light mass travels through lead glass,

it creates a cascade of photons and 𝑒−/𝑒+ pairs and loses nearly all its energy in to

such “electromagnetic shower”. The photons created in this process are collected by

PMTs and the signal intensity is linearly proportional to the energy deposit of the

incoming particle. On the other hand, high energy charged particles of heavier mass

(such as pions) do not produce electromagnetic shower and lose energy more slowly.

There are therefore typically two peaks in the output spectrum: one peak with higher

energy deposit for electrons and another peak with lower energy deposit for pions,

and one can separate electrons from pions by applying a cut on the spectrum. A

double-layer configuration further separates electrons from contamination of pions.

The configurations of the electromagnetic calorimeter on the LHRS and RHRS are

slightly different, see Fig. 2-18. The calorimeter on LHRS is composed of two layers

of leadglass blocks with the same geometry. Each layer is called a “pion rejector” and

consists of 17 long blocks and 17 short blocks of dimension 14.5 cm × 14.5 cm × 30

and 35 cm, respectively, forming a 17 (dispersive) × 2(transverse) array. The 30-cm

and the 35-cm long blocks are arranged interchangeably in the dispersive direction

for each row.

On the RHRS, the two layers are called “preshower” and “shower” respectively.

The preshower layer consists of leadglass blocks of dimension 35 cm × 10 cm ×

10 cm, arranged in a 24 (dispersive) × 2 (transverse) array. The preshower blocks

are oriented perpendicular to the direction of incoming particles. The shower layer

consists of 16 (dispersive) × 5 (transverse) blocks of dimension 35 cm × 15 cm × 15

cm, with the 35-cm long side oriented parallel to the particle trajectory.

The main difference between LHRS and RHRS lead-glass calorimeters is that the

RHRS calorimeter is thick enough that electrons will deposit all their energies, while

the calorimeter on LHRS is not a full energy absorber because of its reduced thickness.
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the anode. To prevent a non-linear PMT response
even in the case of few photoelectrons requires a
progressive HV divider [22]. The length of the
particle path in the gas radiator is 130 cm for the
gas Cherenkov in the HRS-R, leading to an
average of about twelve photoelectrons. In the
HRS-L, the gas Cherenkov detector in its standard
configuration has a pathlength of 80 cm; yielding
seven photoelectrons on average. The total
amount of material in the particle path is about
1.4% X0:

Two layers of shower detectors [23] are installed
in each HRS. The structure of the shower

detectors in each arm is shown in Fig. 12. The
blocks in both layers in HRS-L and in the first
layer in HRS-R are oriented perpendicular to the
particle tracks. In the second layer of HRS-R,
the blocks are parallel to the tracks. The front
layer in HRS-R is composed of 48 lead glass
blocks, 10 cm! 10 cm! 35 cm: The second layer
is composed of 80 lead glass blocks, 15 cm!
15 cm! 35 cm each. The front layer in HRS-L is
composed of 34 lead glass blocks, of dimensions
15 cm! 15 cm! 30ð35Þ cm: The second layer is
composed of 34 similar blocks. Because of its
reduced thickness, the resolution in HRS-L is
not as good as that of the shower detector in HRS-
R. A particle identification parameter Rsh is
defined as

Rsh ¼
Etot

p
!

lnðEpreshÞ
lnðEaveÞ

ð4Þ

where Etot is the total energy deposited in the
shower detector, p the particle’s momentum, Epresh

the energy deposited in the front layer and Eave the
average energy deposited by an electron with
momentum p: The quality of the particle identifi-
cation in the HRS-R shower detector is demon-
strated in Fig. 13. The combination of the gas
Cherenkov and shower detectors provides a pion
suppression above 2 GeV=c of a factor of 2! 105;
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Figure 2-18: Schematic layout of electromagnetic calorimeters in the left (top) and
the right (bottom) HRS. Figure reproduced from [34].

2.8 Data Acquisition System

The Data Acquisition system is used to collect event information from the detec-

tors and beamline apparatus and store the raw data. The Hall A DAQ system is

built on the CEBAF Online Data Acquisition System (CODA), a software package

specifically developed for nuclear physics applications by the JLab data-acquisition

group, see Fig. 2-19.

CODA is composed of a set of software packages which can control DAQ hardwares

such as front-end Fastbus VME digitization devices (ADCs, TDCs, scalers), the VME

Interface to Fastbus, single-board VME computers, and mass storage system (MSS).

The raw data are divided into different runs for specific kinematics settings. The data

of each run consists of several parts of information:

• A header consists of information such as run number, timestamp, event size and

prescale factors.

• CODA events which contain detectors and helicity information.

• EPICS events which contain information about beamline apparatus, spectrom-
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Figure 2-19: DAQ system diagram.

eter magnets setting and angle, and information on the target and other slow

control device.

• Scaler events which contain numbers of triggers and the accumulated charge of

the run.

The data are first written to a local disk, then moved to the MSS. The total volume

of data accumulated during the CSR experiment was about 3.0 TBytes.
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Chapter 3

HRS Optics and Acceptance

For the CSR experiments, most of the momentum settings of the HRS were below

the range specified by the HRS design. As a result, calibration of the HRS optics and

acceptance were challenging. This chapter will focus on presenting the procedure and

the results of optics calibration and acceptance analysis.

3.1 Optics Calibration

The Hall A HRS are two spectrometers each with an identical group of super-

conducting magnets: three quadrupoles and a dipole in a QQDQ configuration as

mentioned in the previous chapter. The optics of the QQDQ magnets determines

how charged particles move once they enter the magnets. An optics matrix can be

used to describe how particles move forward from the target to the HRS focal plane,

and a reverse optics matrix is typically used to reconstruct the kinematic variables

at the target interaction vertex using coordinates of the particle detected at the HRS

focal plane. In this section I will describe the optics calibration procedure in which

dedicated data are used to determine the optics matrix elements.
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3.1.1 Coordinate Systems

In this section, coordinate systems used in the optics calibration are introduced.

More details of these coordinate systems can be found in [36]. Note that all angular

coordinates used in optics calibration refer to the tangent of the angle.

Hall Coordinate System (HCS)

The origin of HCS is the center of Hall A, which is the intersection of the beamline

and the vertical symmetric axis of the target system. The 𝑧 axis is along the beamline

and pointing to the beam dump, the 𝑥̂ axis is pointing to the left of the beam, and

the 𝑦 axis is pointing up vertically, see Fig. 3-1.

L-H
RS

R-HRS

X

Y

Z

^

^

^

Incoming Beam

Beam Dump

0.8 m

Figure 3-1: Top view of hall coordinate system (HCS). Figure reproduced from [37].

Target Coordinate System (TCS)

Each of the spectrometers has its own TCS coordinates, see Fig. 3-2. The 𝑧 axis

of TCS is along the spectrometer center line and is perpendicular to the sieve slit

surface, pointing away from the target. The 𝑦 axis is pointing to the left side of 𝑧

axis, and the 𝑥̂ axis is pointing down vertically. In the ideal case, the origin of TCS
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Figure 3-2: Top and side view of target coordinate system (TCS). Figure reproduced
from [38].

is at the Hall center and coincide with the HCS origin. In reality, the HRS central

ray is not pointing exactly at the Hall center, and there can be a horizontal shift 𝐷𝑦

and a vertical shift 𝐷𝑥 that can be measured in surveys. In the TCS, the distance

from the origin to the center of the collimator is defined as a constant 𝐿. If a particle

trajectory intersects with the sieve slit plane at (𝑥𝑠𝑖𝑒𝑣𝑒, 𝑦𝑠𝑖𝑒𝑣𝑒), one can calculate its

in-plane angle 𝜃𝑡𝑔 =
𝑥𝑠𝑖𝑒𝑣𝑒

𝐿
and the out-of-plane angle 𝜑𝑡𝑔 =

𝑦𝑠𝑖𝑒𝑣𝑒
𝐿

.

Detector Coordinate System (DCS)

The origin of DCS is defined by wire 184 of the VDC U1 plane and the projection

of wire 184 of the VDC V1 plane on the U1 plane. The 𝑧 axis is perpendicular to

the VDC plane and the 𝑥̂ axis is along the long symmetry axis and pointing to the

dispersive direction, see Fig. 3-3. The coordinate of the detector vertex (𝑥𝑑𝑒𝑡, 𝑦𝑑𝑒𝑡,
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𝜃𝑑𝑒𝑡, 𝜑𝑑𝑒𝑡) in DCS can be calculated from the intersection points of the trajectory on

four VDC planes (U1, V1, U2, V2):

tan(𝜂1) =
𝑝𝑈2 − 𝑝𝑈1

𝑑2
, (3.1)

tan(𝜂2) =
𝑝𝑉 2 − 𝑝𝑉 1

𝑑2
, (3.2)

𝜃𝑑𝑒𝑡 =
1√
2
(tan(𝜂1) + tan(𝜂2)), (3.3)

𝜑𝑑𝑒𝑡 =
1√
2
(− tan(𝜂1) + tan(𝜂2)), (3.4)

𝑥𝑑𝑒𝑡 =
1√
2
𝑝𝑈1 + 𝑝𝑉 1 − 𝑑1 tan(𝜂2), (3.5)

𝑦𝑑𝑒𝑡 =
1√
2
−𝑝𝑈1 + 𝑝𝑉 1 − 𝑑1 tan(𝜂2), (3.6)

where 𝑝𝑈1, 𝑝𝑉 1, 𝑝𝑈2, 𝑝𝑉 2 are the trajectory’s intersection point positions in U-V

coordinates, on U1, V1, U2 and V2 planes, respectively. 𝜂1 and 𝜂2 are angles between

the trajectory and the U and the V axis, respectively. 𝑑1 is the distance between U1

and V1 plane, and 𝑑2 is the distance between U1 and U2 plane.
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Figure 3-3: Top and side view of detector coordinate system (DCS). Figure repro-
duced from [37].
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Target Transport Coordinate System (TRCS)

The TRCS is generated by rotating DCS clockwise along its 𝑦 axis by 45∘, see

Fig. 3-4). The 𝑧 axis of TRCS coincides with the central trajectory of the spectrometer

in the ideal case. TRCS is a middle step from DCS to Focal Plane Coordinate System

(FCS) which will be described in the next section. The transform from DCS variables

(𝑥𝑑𝑒𝑡, 𝑦𝑑𝑒𝑡, 𝜃𝑑𝑒𝑡, 𝜑𝑑𝑒𝑡) to TRCS variables (𝑥𝑡𝑟𝑎, 𝑦𝑡𝑟𝑎, 𝜃𝑡𝑟𝑎, 𝜑𝑡𝑟𝑎) can be expressed as:

U1

VDC1

VDC2

Y Z
^ ^

X
^

45
o

Figure 3-4: Target transport coordinate system (TRCS). Figure reproduced from [37].

𝑥𝑡𝑟𝑎 = 𝑥𝑑𝑒𝑡 cos(𝜌0)(1 + 𝜃𝑡𝑟𝑎 tan(𝜌0)) (3.7)

𝜃𝑡𝑟𝑎 =
𝜃𝑑𝑒𝑡 + tan(𝜌0)

1− 𝜃𝑑𝑒𝑡 tan(𝜌0)
(3.8)

𝑦𝑡𝑟𝑎 = 𝑦𝑑𝑒𝑡 + sin(𝜌0)𝜑𝑡𝑟𝑎𝑥𝑑𝑒𝑡 (3.9)

𝜑𝑡𝑟𝑎 =
𝜑𝑑𝑒𝑡

cos(𝜌0)(1− 𝜃𝑑𝑒𝑡 tan(𝜌0))
(3.10)

where 𝜌0 = 45∘ is the rotation angle.

Focal Plane Coordinate System (FCS)

Because of the focusing feature of the HRS magnet system, particles from different

scattering angles are focused on the focal plane. The relative momentum 𝛿 (sometimes

written as dp), defined as 𝛿 = 𝑝−𝑝0
𝑝0

with 𝑝0 the nominal momentum setting of the

HRS, depends mostly on the location in the dispersive direction, 𝑥𝑑𝑒𝑡.
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The FCS is a rotated coordinate system. It is generated by rotating the DCS

by a varying angle 𝜌(𝑥𝑡𝑟𝑎) such that the new FCS 𝑧 axis is always along the local

central ray that has 𝜃𝑡𝑔 = 0 and 𝜑𝑡𝑔 = 0, see Fig. 3-5. With this rotation, 𝜃𝑓𝑝 is small

for all points on the focal plane and is approximately centered around 𝜃𝑓𝑝=0. This

ensures the expansion of the optics matrix will converge fast during the optimization

procedure.

The FCS variables can be expressed a

𝑥𝑓𝑝 = 𝑥𝑡𝑟𝑎 tan(𝜌) = Σ𝑡𝑖000𝑥
𝑖
𝑓𝑝 , (3.11)

𝑦𝑓𝑝 = 𝑦𝑡𝑟𝑎 − Σ𝑦𝑖000𝑥
𝑖
𝑓𝑝 , (3.12)

𝜃𝑓𝑝 =
𝑥𝑑𝑒𝑡 + tan(𝜌)

1− 𝜃𝑑𝑒𝑡 tan(𝜌)
, (3.13)

𝜑𝑓𝑝 =
𝜑𝑑𝑒𝑡 − Σ𝑝𝑖000𝑥

𝑖
𝑓𝑝

cos(𝜌0)− 𝜃𝑑𝑒𝑡 sin(𝜌0)
, (3.14)

where 𝑡𝑖000, 𝑦𝑖000 and 𝑝𝑖000 are important optics matrix elements and will be discussed

later.

r
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Figure 3-5: Focal coordinate system. Figure reproduced from [37].

3.1.2 Optimization Procedure

The DCS variable (𝑥𝑑𝑒𝑡, 𝜃𝑑𝑒𝑡, 𝑦𝑑𝑒𝑡, 𝜑𝑑𝑒𝑡) are directly measured in experiment, and

are transformed to focal plane variables (𝑥𝑓𝑝, 𝜃𝑓𝑝, 𝑦𝑓𝑝, 𝜑𝑓𝑝). The optics matrix pro-

vides a point-to-point mapping between focal plane variables and the target variables

(𝛿, 𝜃𝑡𝑔, 𝑦𝑡𝑔, 𝜑𝑡𝑔). In the optics calibration, the 𝑥𝑡𝑔 is always set to be zero, and an
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extended target correction that depends on 𝑥𝑏𝑒𝑎𝑚 is applied to 𝜃𝑡𝑔 and 𝛿 in the recon-

struction process.

To the first order the optics matrix can be expressed as:⎛⎜⎜⎜⎜⎜⎜⎝
𝛿

𝜃

𝑦

𝜑

⎞⎟⎟⎟⎟⎟⎟⎠
tg

=

⎛⎜⎜⎜⎜⎜⎜⎝
⟨𝛿|𝑥⟩ ⟨𝛿|𝜃⟩ 0 0

⟨𝜃|𝑥⟩ ⟨𝜃|𝜃⟩ 0 0

0 0 ⟨𝑦|𝑦⟩ ⟨𝑦|𝜑⟩

0 0 ⟨𝜑|𝑦⟩ ⟨𝜑|𝜑⟩

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥

𝜃

𝑦

𝜑

⎞⎟⎟⎟⎟⎟⎟⎠
fp

. (3.15)

The optics matrix used in the experiment has a more complicated form: a set of

tensors 𝐷𝑗𝑘𝑙, 𝑇𝑗𝑘𝑙, 𝑌𝑗𝑘𝑙 and 𝑃𝑗𝑘𝑙 transform the focal plane variables to target plane

variables as:

𝛿 =
∑︁
𝑗,𝑘,𝑙

𝐷𝑗𝑘𝑙𝜃
𝑗
𝑓𝑝𝑦

𝑘
𝑓𝑝𝜑

𝑙
𝑓𝑝, (3.16)

𝜃𝑡𝑔 =
∑︁
𝑗,𝑘,𝑙

𝑇𝑗𝑘𝑙𝜃
𝑗
𝑓𝑝𝑦

𝑘
𝑓𝑝𝜑

𝑙
𝑓𝑝, (3.17)

𝑦𝑡𝑔 =
∑︁
𝑗,𝑘,𝑙

𝑌𝑗𝑘𝑙𝜃
𝑗
𝑓𝑝𝑦

𝑘
𝑓𝑝𝜑

𝑙
𝑓𝑝, (3.18)

𝜑𝑡𝑔 =
∑︁
𝑗,𝑘,𝑙

𝑃𝑗𝑘𝑙𝜃
𝑗
𝑓𝑝𝑦

𝑘
𝑓𝑝𝜑

𝑙
𝑓𝑝, (3.19)

where the tensors 𝐷𝑗𝑘𝑙, 𝑇𝑗𝑘𝑙, 𝑌𝑗𝑘𝑙 and 𝑃𝑗𝑘𝑙 are polynomials in 𝑥𝑓𝑝. For example:

𝐷𝑗𝑘𝑙 =
∑︁
𝑖=0

𝐶𝐷
𝑖,𝑗,𝑘,𝑙𝑥

𝑖
𝑓𝑝, (3.20)

where 𝐶𝐷
𝑖,𝑗,𝑘 are called the optics matrix elements of 𝛿. All the optics matrix elements

are up to the third order in powers of 𝑥𝑓𝑝, 𝜃𝑓𝑝, 𝑦𝑓𝑝 and 𝜑𝑓𝑝, that is, each of the

summations of index in Eqs. 3.16-3.20 is up to 𝑖, 𝑗, 𝑘, 𝑙 = 3. The optics optimization

is a method to determine the optics matrix elements using dedicated optics calibration

data. The optimization procedure is described in the next section.
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3.1.3 Experimental and Optimization Procedure

The optics calibration requires sets of dedicated data with wide coverage over

the entire acceptance of the spectrometer, including 𝛿 for momentum, 𝜃𝑡𝑔 and 𝜑𝑡𝑔

for solid angle and 𝑦𝑡𝑔 for reaction position. The target variables of calibration data

are precisely determined by methods including: survey of the sieve-slit collimator

and spectrometer angle for 𝜃𝑡𝑔 and 𝜑𝑡𝑔, survey of foil targets for 𝑦𝑡𝑔, and well-known

physics process such as elastic scattering for 𝛿.

To optimize 𝜃𝑡𝑔, 𝜑𝑡𝑔 and 𝑦𝑡𝑔, a multi-foil optics (carbon) target is used with a

fixed energy, unrastered electron beam. The seven carbon foils of the optics target

are aligned along the beam line to cover the 𝑦𝑡𝑔 acceptance from 𝑧 = −12 cm to

𝑧 = +12 cm, with a separation of 4 cm between foils. The 𝑧𝑟𝑒𝑎𝑐𝑡 can be determined

by 𝑧 coordinates of the survey result of target foils. The 𝑥𝑏𝑒𝑎𝑚 and 𝑦𝑏𝑒𝑎𝑚 of interaction

point in HCS can be determined by BPM. The sieve slit collimator is inserted before

the entrance of the first quadrupole of the spectrometer. The sieve slit pattern is

shown in Fig. 3-6. The holes on the sieve slit are placed in a grid pattern, and two

large holes are used to determine the orientation of the image at the focal plane. The

in-plane angle 𝜑𝑡𝑔 and out-of-plane angle 𝜃𝑡𝑔 for each sieve-slit hole can be expressed

as:

𝜑𝑡𝑔 =
𝑦𝑠𝑖𝑒𝑣𝑒 +𝐷𝑦 − 𝑥𝑏𝑒𝑎𝑚 cos 𝜃0 + 𝑧𝑟𝑒𝑎𝑐𝑡 sin 𝜃0

𝐿− 𝑧𝑟𝑒𝑎𝑐𝑡 cos 𝜃0 − 𝑥𝑏𝑒𝑎𝑚 sin 𝜃0
, (3.21)

𝜃𝑡𝑔 =
𝑥𝑠𝑖𝑒𝑣𝑒 +𝐷𝑥 + 𝑦𝑏𝑒𝑎𝑚

𝐿− 𝑧𝑟𝑒𝑎𝑐𝑡 cos 𝜃0 − 𝑥𝑏𝑒𝑎𝑚 sin 𝜃0
, (3.22)

where (𝑥𝑠𝑖𝑒𝑣𝑒, 𝑦𝑠𝑖𝑒𝑣𝑒) are the position of the hole on the sieve slit plate, 𝑧𝑟𝑒𝑎𝑐𝑡 is the

position of the target foil from which the event originates, 𝜃0 is the spectrometer

central angle, 𝐷𝑥 and 𝐷𝑦 are the vertical and horizontal mis-pointing distances of the

spectrometer central ray from the HCS origin, 𝐿 is the distance from the TCS origin

to the sieve slit (see Fig. 3-2). Values of 𝜃0, 𝐿, 𝐷𝑥 and 𝐷𝑦 can be determined from

surveys of the spectrometer and the sieve slit. The spatial coordinates 𝑥𝑡𝑔 and 𝑦𝑡𝑔
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Figure 3-6: Geometric (left) and reconstructed (right) configurations of the sieve slit.
Figure reproduced from [34].

can be expressed by:

𝑥𝑡𝑔 = 𝑥𝑠𝑖𝑒𝑣𝑒 − 𝐿𝜃𝑡𝑔, (3.23)

𝑦𝑡𝑔 = 𝑦𝑠𝑖𝑒𝑣𝑒 − 𝐿𝜑𝑡𝑔. (3.24)

The momentum calibration typically uses carbon elastic scattering to determine

the momentum of the detected particle. It requires precise measurements of the

spectrometer central momentum and beam energy. The momentum of the elastically

scattered electron can be expressed as:

𝑃 (𝑀, 𝜃) = 𝐸 ′ =
𝐸

1 + 𝐸
𝑀
(1− cos 𝜃)

, (3.25)

where 𝐸 is the beam energy, 𝑀 is the target mass and 𝜃 is the scattering angle.

Because the solid angle acceptance covers a wide 𝜃𝑡𝑔 and 𝜑𝑡𝑔 range, the scattering

angles of electrons passing through different sieve holes are different. The elastic peak

63



is broadened and this effect becomes larger for lighter target nucleus. To remove the

angular dependence of 𝛿, a new variable 𝛿𝑘𝑖𝑛 is defined as:

𝛿𝑘𝑖𝑛 = 𝛿 − 𝑃 (𝑀, 𝜃𝑠𝑐𝑎𝑡)− 𝑃 (𝑀, 𝜃0)

𝑃0

, (3.26)

where the 𝜃 is the scattering angle and 𝜃0 is the central angle of the spectrometer.

To cover the 𝛿 acceptance of the spectrometer, several different central momentum

𝑃0 values are typically during the optics calibration. Such runs are called the “delta

scan”. The scattered particles will pass through target foils and several windows

before entering the spectrometer, and the energy loss of the scattered electrons due

to radiative effect is considered as a correction to 𝛿.

For optimization of the optics matrix, the target variables 𝛿, 𝜃𝑡𝑔, 𝜑𝑡𝑔 and 𝑦𝑡𝑔

calculated from survey or elastic scattering peaks are taken as the true value. Then

a minimization is carried out on:

𝜎2(𝑥) =
𝑁∑︁
𝑠=1

(𝑥𝑟𝑒𝑐𝑜𝑛 − 𝑥𝑡𝑟𝑢𝑒)2, (3.27)

where 𝑁 is total number of events measured for optics calibration, 𝑥 can be any of

the target variables 𝛿, 𝜃𝑡𝑔, 𝜑𝑡𝑔 or 𝑦𝑡𝑔, 𝑥𝑟𝑒𝑐𝑜𝑛 is the target variable reconstructed by

the optics matrix, and 𝑥𝑡𝑟𝑢𝑒 is the true target variable calculated from survey results

and Eqs. 3.21-3.24 or elastic scattering peak using Eq. 3.25. The optimization begin

with an initial optics matrix generated by the magnetic field simulation tool SNAKE.

The core of the optimization package is the TMinuit package of ROOT [39]. The

package also contains scripts to make graphic cuts and select events to be used for

optimization.

3.1.4 Optics Results

In the CSR experiment, two sets of optics calibrations were done: one with 𝐸𝑏

= 1.1 GeV and 𝜃0 = 14.6°, and another with 𝐸𝑏 = 399 MeV and 𝜃0 = 35°. The

optimization results of these optics calibrations are discussed.
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The angular components of the optics matrix were optimized first. The recon-

structed sieve pattern for the 1.1 GeV data is shown in Fig. 3-7, obtained by project-

ing the reconstructed 𝜃𝑡𝑔 and 𝜑𝑡𝑔 from the interaction point to the sieve slit plane.

The nominal position of the sieve holes are indicated by the cross points of the grids

in the plots. As can be seen from the figure, the agreement between reconstructed

𝜃𝑡𝑔 and 𝜑𝑡𝑔 and their expected values is quite good. The resolution in 𝜃𝑡𝑔 and 𝜑𝑡𝑔 are

1× 10−4 mrad and 0.5× 10−4 mrad, respectively.
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Figure 3-7: 1.1 GeV optics 𝜃𝑡𝑔 and 𝜑𝑡𝑔 reconstruction for each of the seven carbon
foils. From left to right, top to bottom, the foil targets are from downstream to
upstream. For each panel, 𝑥 axis is 𝜑𝑡𝑔, 𝑦 axis is 𝜃𝑡𝑔. The black crossing shows the
reference (true) 𝜃𝑡𝑔, 𝜑𝑡𝑔 position for each sieve slit hole.
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The next step is momentum calibration. To optimize the matrix elements of

𝛿, measurements of runs with five different central momentum 𝑃0 of the HRS were

used, with 𝑃𝑒𝑙−𝑃0

𝑃0
= −2.7%,−1.2%, 0.2%, 1.8%, 3.3% where 𝑃𝑒𝑙 is the elastic peak

momentum. The 𝛿𝑘𝑖𝑛 calibration results for 1.1 GeV data are shown in Fig. 3-8. The

nominal positions of 𝛿𝑘𝑖𝑛 are indicated by magenta lines for each delta scan run. The

resolution of each 𝛿𝑘𝑖𝑛 peak is ≈ 2× 10−4.

The 𝑦𝑡𝑔 is related to the foil target position along the 𝑧 direction in Hall coordinate

system. It is optimized by minimizing the difference between the reconstructed foil

target position and the real foil target position. The 𝑦𝑡𝑔 calibration for 1.1 GeV data

results are shown in Fig. 3-9. The nominal position of the optics foils are indicated

by red lines for each foil. The resolution of 𝑦𝑡𝑔 of the foils is ≈ 1 mm.

The 399 MeV optics calibration results are also presented here: the 𝜃𝑡𝑔, 𝜑𝑡𝑔 opti-

mization results are shown in Fig. 3-10, the 𝛿 optimization results in Fig. 3-11, and

𝑦𝑡𝑔 optimization results in Fig. 3-12.

Due to several reasons, the target variables resolution at 399 MeV are much worse

than 1.1 GeV: First, spectrometer pointing survey was not performed for the 399

MeV optics calibration because of limited beam time; Second, while the HRS central

momentum is typically measured by a NMR probe, the NMR probe does not work

below 𝑃0 = 450 MeV (see 3.2.3). Thus the measurement of the HRS momentum for

the 399 MeV optics calibration was performed only by a Hall probe and the precision

is 10 times worse than the NMR probe; Third, multiple scatterings that smear the

target variables distributions are much stronger at 399 MeV than 1.1 GeV.

3.2 HRS Acceptance

Because of the limited aperture of the HRS, the spectrometer can only detect

scattered electrons in a certain range of 𝜃𝑡𝑔, 𝜑𝑡𝑔, 𝛿 and 𝑦𝑡𝑔. The acceptance of the

spectrometer can be defined as a window in 𝜃𝑡𝑔, 𝜑𝑡𝑔, 𝛿 and 𝑦𝑡𝑔 (the foil target has only

acceptance in the first three variables, the 𝑦𝑡𝑔 acceptance is used only for extended

target) in which scattered electrons can pass through all magnets of the spectrometer
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and be detected at the focal plane. In the ideal case, the spectrometer would accept

all the particles if they are inside the aperture of the spectrometer and reject particles

outside the aperture. But in reality, the spectrometer’s geometrical aperture is more

complicated than a hypercube of the five target variables (𝑥𝑡𝑔, 𝑦𝑡𝑔, 𝜑𝑡𝑔, 𝜃𝑡𝑔, 𝛿), and

multiple scatterings and the resolution of the VDC will smear out the boundaries.
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Figure 3-8: The 𝛿 optimization result of 1.1 GeV optics calibration. Each figure is
for a delta scan run and the expected 𝛿𝑘𝑖𝑛 is shown as the red line. The 𝛿 values are
-2.7%, -1.2%, 0.2%, 1.8%, 3.3% (there are two runs with same 𝛿 value). The difference
between the reconstructed and the expected (true) 𝛿𝑘𝑖𝑛 is fitted and the results are
shown in each panel, with Δ the mean and 𝜎 the root-mean-square (RMS) of the
difference.
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Figure 3-9: Results for 1.1 GeV optics 𝑦𝑡𝑔 optimization. From left to right, top to bot-
tom, the foil targets are from downstream to upstream. The blue is the reconstructed
𝑦𝑡𝑔 for each foil and the red line shows the expected (true) value. The difference
between the reconstructed and the true values are fitted with a Gaussian function
(red curve) and the results shown in each panel with Δ the mean and 𝜎 the RMS
values.

A more proper definition of the acceptance is a probability function that depends

on target variables, acc(𝜃𝑡𝑔, 𝜑𝑡𝑔, 𝛿, 𝑦𝑡𝑔) (𝑥𝑡𝑔 is not included but an extended target

correction is applied to correct the effect from 𝑥𝑡𝑔, see [40]). The value of this function

is the probability for a scattered electron with certain target variables to reach the

focal plane, and can be obtained from simulations described below.
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Figure 3-10: 399 MeV optics 𝜃𝑡𝑔 and 𝜑𝑡𝑔 reconstruction for each foil. From left to
right, top to bottom, the foil targets are from downstream to upstream. For each
panel, 𝑥 axis is 𝜑𝑡𝑔, 𝑦 axis is 𝜃𝑡𝑔. The black crossing is the reference 𝜃𝑡𝑔, 𝜑𝑡𝑔 position
for each sieve slit hole. Because the 399 MeV optics calibration data were collected
at a scattering angle of 35°, the first and last foil are outside HRS spectrometer’s
acceptance. Overall, we also see much less holes than 1.1 GeV optics data.
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Figure 3-11: The 𝛿 optimization result of 399 MeV optics calibration. Each figure for
a delta scan run. The 𝛿 value are -4.3%, -2.4%, -0.4%, 1.6%, 3.7%. The difference
between the reconstructed and the true values are fitted and the results are shown in
each panel with Δ the mean and 𝜎 the RMS values.
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Figure 3-12: Results for 399 GeV optics 𝑦𝑡𝑔 optimization. From left to right, top to
bottom, the foil targets are from downstream to upstream. The red lines indicate
the real foil target positions. The difference between reconstructed and expected 𝑦𝑡𝑔
is fitted and the fitting results are shown in each panel, with Δ the mean and 𝜎 the
RMS value. Because the 399 MeV optics calibration data were collected at 35°, the
first and last foil are outside the HRS spectrometer’s acceptance.

3.2.1 SAMC simulation

A Monte Carlo simulation package called Single Arm Monte Carlo (SAMC) [41]

is used to study the acceptance of the spectrometer. SAMC was originally written

in Fortran by A. Deur and converted into ROOT/C++ by Huan Yao. A detailed

description of SAMC is given below:

• Trial events are generated at the target with a uniform distribution in (𝛿, 𝜃𝑡𝑔, 𝜑𝑡𝑔, 𝑦𝑡𝑔),

within ranges that are (much) larger than the HRS acceptance.

• When scattered electrons pass through target and a few windows, the radiative
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Name Material Z A(g/mol) Length(cm) Density
(g/cm3)

Radiation
Length 𝑋0

(g/cm2)
Target cham-
ber exit win-
dow

Al 13 26.982 4.064×10−2

(Left HRS)
2.70 24.01

Target cham-
ber exit win-
dow

Al 13 26.982 3.048×10−2

(Right HRS)
2.70 24.01

Air between
target chamber
and spectrom-
eter

Air 7 14.028 ≈ 65 1.2×10−3 36.66

Spectrometer
entrance win-
dow

Kapton 5 9.80 1.778×10−2 1.42 40.61

Spectrometer
exit window

Titanium 22 47.867 1.016×10−2 4.54 16.16

Table 3.1: List of materials that scattered electrons pass through in SAMC (same for
LHRS and RHRS unless specified) for the CSR experiment.

effects due to ionization and multiple scatterings are calculated. The windows

and other materials for the CSR experiment are listed below in Table 3.1.

• Scattered electrons are then transported forward into the spectrometer using

a set of forward propagation matrix generated by SNAKE simulation and the

MUDIFI fitting package. The position of each event is checked at each aper-

ture of the spectrometer. An event is discarded if it falls outside an aperture.

Apertures of the HRS magnets are listed in Table 3.2.

• Events that pass through all the aperture cuts in the spectrometer are trans-

ported to VDC wire planes. They are randomly smeared according to VDC

resolutions 𝜎𝑥 = 𝜎𝑦 = 100 𝜇𝑚 and 𝜎𝜃 = 𝜎𝜑 = 0.3 mrad.

• All events reaching the focal plane are reconstructed back to the target coordi-

nates with the reverse matrix fitted from the SNAKE simulation.
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Position Aperture(unit in meter)
Q1 Entrance/Exit

√︀
𝑥2 + 𝑦2 < 0.15

Q2 Entrance/Exit
√︀
𝑥2 + 𝑦2 < 0.15

Dipole Entrance/Exit |𝑥|<0.4 and |𝑦| < 0.125(1− 1.25 · 𝑥/8.40)
Q3 Entrance/Exit

√︀
𝑥2 + 𝑦2 < 0.30

Table 3.2: HRS magnet apertures used in SAMC simulation (same for LHRS and
RHRS). 𝑥 and 𝑦 are hit position of the event at that aperture.

3.2.2 Acceptance functions from SAMC

A 3-dimensional (3D) acceptance function that depends on 𝛿, 𝜃𝑡𝑔, 𝜑𝑡𝑔 is used for

foil targets like 12C and 56Fe. To avoid most of the pions and low energy electrons

scattered by the inner boundary of the spectrometer, we define a tight acceptance

cut for the acceptance simulation and the same cut is also used for raw cross section

extraction: |𝜃𝑡𝑔| < 40 mrad, |𝜑𝑡𝑔| < 20 mrad and |𝑑𝑝| < 0.035. The 3D acceptance

is integrated over 𝜃𝑡𝑔 and 𝜑𝑡𝑔, and projected on 𝛿, as shown in Fig. 3-13. Because of

the tight cuts, the acceptance inside the cuts is very close to unity.
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Figure 3-13: 3D acceptance function for foil targets, integrated over 𝜃𝑡𝑔 and 𝜑𝑡𝑔,
projected on 𝑑𝑝 from SAMC simulation.

For extended targets (4He and 1H), a 4D acceptance function that also depends

on 𝑦𝑡𝑔 is necessary. The acceptance is integrated over 𝜃𝑡𝑔 and 𝜑𝑡𝑔, and projected onto

𝑦𝑡𝑔 for different 𝑑𝑝 separately, as shown in Fig. 3-14. The acceptance falls below 1.0
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for events scattered from the up- or down-stream part of the target.

Figure 3-14: 4D acceptance function for extended targets (4He and 1H), integrated
over 𝜃𝑡𝑔, 𝜑𝑡𝑔, projected on 𝑦𝑡𝑔 for different 𝑑𝑝 separately, from SAMC simulation.

3.2.3 Low momentum (<450 MeV) acceptance simulation

As mentioned in Chapter 2, the HRS spectrometer has a QQDQ magnet con-

figuration. The functionality of the dipole magnet is bending the scatted particles

upward by 45°. The central momentum of the HRS spectrometer 𝑃0 is related to the

magnetic field 𝐵0 of the dipole with a constant Γ [42]:

𝑃0 = Γ𝐵0. (3.28)

When the central momentum is above 450 MeV, the magnetic field in each dipole is

measured and monitored by two arrays of three NMR field probes each, that work for

a field range from 0.17 to 2.10 T [43]. The probes are connected through a multiplexer

to a PT 4025 Teslameter. The system has a precision at the 10−4 level. But below

0.17 T ( ≈ 450 MeV for the particle momentum) the NMR probes do not work,

and the field in the dipole is measured by a Hall probe. The Hall probe is read out
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with a Model 450 Gaussmeter which has a precision at the 10−3 level. The field in

quadrupoles are always measured by Hall probes and Model 450 Gaussmeters.

The central momentum of the HRS can be changed by adjusting the dipole’s power

supply until the field in the dipole is close enough to the desired value 𝐵0 = Γ−1𝑃0.

Power supplies of quadrupoles are also changed at the same time to keep the ratio

between quadrupole fields and the dipole field almost constant. This ensures that the

optics property of HRS spectrometer is independent of the central momentum and

the same optics matrix can be used to analyze runs with different central momenta.

Fields in the dipole and quadrupoles above 450 MeV are shown in Fig. 3-15 and are

fitted as functions of the central momentum as:

𝐵𝑃0>450
𝑄1 (𝑃0) = 7.05631× 10−5 − 6.3525× 10−5𝑃0,

𝐵𝑃0>450
𝑄2 (𝑃0) = 0.000733 + 0.000226𝑃0 + 3.293× 10−10𝑃 2

0 − 1.075× 10−13𝑃 3
0 ,

𝐵𝑃0>450
𝑄3 (𝑃0) = 0.000167− 0.000202𝑃0 + 5.623× 10−11𝑃 2

0 + 3.894× 10−14𝑃 3
0 ,

𝐵𝑃0>450
𝐷𝑖𝑝𝑜𝑙𝑒 (𝑃0) = −0.000580− 0.000356𝑃0 − 1.332× 10−9𝑃 2

0 + 2.864× 10−13𝑃 3
0 ,

(3.29)

where 𝐵 is in unit of Tesla and 𝑃0 is in unit of MeV/𝑐. The ratio between quadrupole

fields and the dipole field with central momentum above 450 MeV is shown in Fig. 3-

16.

For the CSR experiment, a significant fraction of the large angle (90° and 120°)

data were collected with central momenta below 450 MeV. By comparing the 𝑦𝑑𝑒𝑡

(focal plane variable in DCS coordinate) of data with central momentum below and

above 450 MeV, I found that 𝑦𝑑𝑒𝑡 has an abrupt change near 450 MeV, as shown in

Fig. 3-17: This abrupt change indicates the optics property is changed near 450 MeV.

I found that the reason is the ratio between dipole field and quadrupole field has a

“jump” near 450 MeV, see Fig. 3-18.

A further study shows that, the fields in quadrupoles and dipole have a different

momentum dependence below 450 MeV. The fields are again fitted as functions of the

central momentum for 𝑃0 < 450 MeV, see Fig. 3-19. The fitted results are:
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Figure 3-15: Top: measured magnetic fields in the dipole and quadrupoles with central
momentum above 450 MeV. Bottom: deviation of the fields from the fitting functions
of Eqs. 3.29.
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Figure 3-16: Field ratios between HRS magnets for 𝑃0 > 450 MeV: Top left: Q1
field/Q2 field; top right: Q1 field/dipole field; bottom left: Q2 field/dipole field;
bottom right: Q3 field/dipole field. All the ratios are normalized by ratios of fields
calculated from Eqs. 3.29 for 𝑃0 = 3000 MeV/𝑐. The ratio is within ±1% of unity.

𝐵𝑃0<450
𝑄1 (𝑃0) = 3.101× 10−4 − 6.356× 10−5𝑃0,

𝐵𝑃0<450
𝑄2 (𝑃0) = 9.556× 10−5 + 2.262× 10−4𝑃0,

𝐵𝑃0<450
𝑄3 (𝑃0) = 7.937× 10−4 − 1.988× 10−4𝑃0,

𝐵𝑃0<450
𝐷𝑖𝑝𝑜𝑙𝑒 (𝑃0) = −2.963× 10−7 − 3.573× 10−4𝑃0.

(3.30)

I also calculated the ratio between dipole field and quadrupole fields, as shown in

Fig. 3-20. The ratio between dipole field and Q1 (or Q3) field changed by ∼3% when

the central momentum 𝑃0 decrease from 450 MeV to 100 MeV. This change in field

ratio means the optics property changes continuously with momentum when 𝑃0 <
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<450 MeV

>450 MeV

Figure 3-17: 𝑦𝑑𝑒𝑡 distribution of run. Each colored line is for a run, with the run
number and the HRS central momentum (in MeV) shown on the right. Runs below
450 MeV have narrower 𝑦𝑑𝑒𝑡 peaks.

450 MeV. But we only had one optics calibration below 450 MeV at 𝑃0 = 399 MeV.

The optics matrix optimized based on this optics calibration will not work very well

at momenta below 250 MeV.

To solve this issue, I implemented an acceptance correction as follows:

• For each central momentum 𝑃0, calculate the field in quadrupole and dipole

using Eqs. 3.30. Feed these field values into SNAKE simulation;

• Use MUDIFI to fit the forward matrix at 𝑃0 based on SNAKE simulation result;

• Run an SAMC simulation using the forward matrix fitted in the previous step

to propagate events from the target to the focal plane. Then use 399 MeV optics

matrix to reconstruct target variables of all survived events;

• Calculate 3D acceptance for foil target or 4D acceptance for extended target as

the high momentum case.
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Figure 3-18: Magnetic fields of quadrupoles and dipole divided by the functions fitted
with field data above 450 MeV (Eqs. 3.29). The field of Q1 and Q2 change by 0.8%
while field of Q3 changes by 2.5% near 450 MeV, while the dipole field is consistent
with Eqs. 3.29 for all 𝑃0 values. Since Q3 focus electrons in the 𝑦 direction, the abrupt
change in 𝑦𝑑𝑒𝑡 distribution shown in Fig. 3-17 is consistent with the finding here. The
low momentum (𝑃0 < 450 MeV) fields are shown in a wider 𝑃0 range in Fig 3-19.

Please note step 3 above differs from the typical simulation of acceptance (where

the reverse matrix from SNAKE is used for reconstruction). This method ensures

the simulation follows the same process as the real physics events and the resulting

acceptance function is accurate.

3.2.4 Check of Forward Matrix

Acceptance used in this analysis was based on SAMC simulation, which used

forward propagation matrix generated by SNAKE simulation and MUDIFI fitting

package. Because the forward matrix is crucial to the acceptance calculation, we

need to check it with experimental data.

The forward matrix were checked with 1.1 GeV and 399 MeV optics calibration
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Figure 3-19: Top: field in dipole and quadrupoles with central momentum below 450
MeV. Bottom: deviation of dipole and quadrupoles field from the fitting of Eqs. 3.30.
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Figure 3-20: Field ratio between HRS magnets for 𝑃0 < 450 MeV/𝑐: Top left: Q1
field/Q2 field; top right: Q1 field/dipole field; bottom left: Q2 field/dipole field;
bottom right: Q3 field/dipole field. All the ratios are normalized by ratios between
fields calculated from Eqs. 3.30 at 450 MeV. The ratio differs from unity by up to 3%.

data: the reconstructed target variables (𝜃𝑡𝑔, 𝜑𝑡𝑔, 𝛿, 𝑦𝑡𝑔) of events from optics calibra-

tion data (clean carbon elastic scattering events) were fed into forward matrix fitted

from MUDIFI to propagate these events to focal plane. The focal plane variables

(𝑥𝑑𝑒𝑡, 𝑦𝑑𝑒𝑡, 𝜃𝑑𝑒𝑡, 𝜑𝑑𝑒𝑡) of these events are compared with their real focal plane variables

from optics data, seee Figs. 3-21 and 3-22.

From Fig. 3-21, the 𝑦𝑑𝑒𝑡 variable has a ≈ 2 mm difference between simulation and

optics data at 𝑦𝑑𝑒𝑡 ≈ 18 mm. This difference shows a difference between the real

fields in magnets and fields measured by NMR probes/Hall probes. To correct this

difference, a tuning of fields in quadrupoles and dipole was performed: Numerous field

settings were generated by changing the fields in quadrupoles and dipole individually
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from 99% to 101%, with a step size 0.1%. For each field setting, a forward matrix

was fitted from a SNAKE simulation and implemented into a SAMC simulation using

optics calibration data as described above. Focal plane variable differences between

simulation and optics calibration data were plotted for each field setting. The optimal

field setting was found as: Q2 field increased to 100.1% and Q3 field increased to

100.3% of original values, while keeping Q1 and dipole field unchanged, as shown in

Fig. 3-23. This field adjustment was applied to all field settings above 450 MeV.

The same procedure was performed on forward matrix at 399 MeV, but due to

limited resolution in the optics calibration data, it was not clear how to identify the

optimal field setting. Therefore the field settings below 450 MeV were not changed.
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Figure 3-21: Focal plane variables (𝑥𝑑𝑒𝑡, 𝑦𝑑𝑒𝑡, 𝜑𝑑𝑒𝑡, 𝜃𝑑𝑒𝑡) from SAMC simulation using
1.1 GeV forward matrix fitted by MUDIFI (blue) and from 1.1 GeV optics calibration
data (red) are compared.

Because the ratio between dipole field and quadrupoles field change with momen-

tum when central momentum 𝑃0 < 450 MeV, optics below 450 MeV has a momentum
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Figure 3-22: Focal plane variables (𝑥𝑑𝑒𝑡, 𝑦𝑑𝑒𝑡, 𝜑𝑑𝑒𝑡, 𝜃𝑑𝑒𝑡) from SAMC simulation using
399 MeV forward matrix (blue) and from 399 MeV optics calibration data (red) are
compared.

dependence, therefore the forward matrix below 450 MeV also changes with momen-

tum. To check the performance of low momentum forward matrix, several SAMC

simulations were run and compared with hydrogen elastic runs. Information includ-

ing beam energy 𝐸, spectrometer angle 𝜃0, central momentum 𝑃0, beam position

and beam size of a hydrogen elastic run was fed into SAMC simulation, and the for-

ward matrix at 𝑃0 was also put into the simulation. The simulation result was then

weighted by hydrogen elastic cross section calculated from:

𝑑2𝜎

𝑑Ω
= 𝜎𝑀𝑜𝑡𝑡

(︂
𝐺2

𝐸(𝑄
2) + 𝜏𝐺2

𝑀(𝑄2)

1 + 𝜏
+ 2𝜏𝐺2

𝑀(𝑄2) tan2 𝜃

2

)︂
, (3.31)

where

𝜏 =
𝑄2

4𝑀𝑝

. (3.32)
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Figure 3-23: Focal plane variables (𝑥𝑑𝑒𝑡, 𝑦𝑑𝑒𝑡, 𝜑𝑑𝑒𝑡, 𝜃𝑑𝑒𝑡) using 1.1 GeV forward matrix
with optimal field setting (blue) and from 1.1 GeV optics calibration data (red) are
compared.

For the proton’s form factors 𝐺𝐸(𝑄
2) and 𝐺𝑀(𝑄2), Zhihong Ye’s nucleon electromag-

netic form factor fitting parametrizations [44] were used.

Target variables of three 90° hydrogen elastic runs and corresponding simulation

are compared in Figs. 3-24, 3-25, and 3-26. These hydrogen elastic runs are at 𝑃0 =

433.7 MeV, 341.3 MeV, 272.0 MeV, respectively. Despite the difference in dp, The

simulation and data agree very well. This indicates the acceptance calculation works

for low momentum settings until 272.0 MeV.
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Figure 3-24: Target variables 𝑦𝑡𝑔, dp, 𝜃𝑡𝑔, 𝜑𝑡𝑔 (from left to right, top to bottom) of
SAMC simulation (blue) and hydrogen elastic data (red) are compared. The hydrogen
elastic data is from run 2659, with 𝐸 = 845.0 MeV, 𝑃0 = 433.7 MeV, 𝜃0 = 90°.
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Figure 3-25: Target variables 𝑦𝑡𝑔, dp, 𝜃𝑡𝑔, 𝜑𝑡𝑔 (from left to right, top to bottom) of
SAMC simulation (blue) and hydrogen elastic data (red) are compared. The hydrogen
elastic data is from run 1754, with 𝐸 = 528.3 MeV, 𝑃0 = 341.3 MeV, 𝜃0 = 90°.

86



-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

hs_y

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

0.002

0.004

0.006

0.008

0.01

hs_dp

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

0.001

0.002

0.003

0.004

0.005

hs_th

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

0.001

0.002

0.003

0.004

0.005

0.006

hs_ph

Figure 3-26: Target variables 𝑦𝑡𝑔, dp, 𝜃𝑡𝑔, 𝜑𝑡𝑔 (from left to right, top to bottom) of
SAMC simulation (blue) and hydrogen elastic data (red) are compared. The hydrogen
elastic data is from run 4876, with 𝐸 = 399.4 MeV, 𝑃0 = 272.0 MeV, 𝜃0 = 90°.
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Chapter 4

Data Analysis

In this chapter I will discuss the data analysis procedure of the CSR Experiment.

4.1 Particle Identification Efficiency

For Hall A experiments using the standard HRS detector package, particle iden-

tification (PID) is achieved by a Cerenkov detector and a double-layered lead glass

calorimeter. For the CSR experiment, a NaI calorimeter was installed on LHRS in

front of the double-layered lead glass calorimeter in order to have a better control of

background particles at low momentum settings. However, some of the blocks were

unresponsive during the experiment, which made the NaI Calorimeter very difficult

to use in the analysis, and thus only Cerenkov was used for PID. In this analysis, we

define PID cuts only by Cerenkov cuts. PID analysis on RHRS was done with the

aid of shower/preshower detectors.

The PID efficiencies of left and right arm HRS were fairly close. The PID efficiency

is usually characterized by the electron efficiency 𝜂𝑒 and the pion rejection factor 𝜂𝜋.

Electron efficiency 𝜂𝑒 is defined as the ratio between number of electrons identified

by the detector and the total number of electrons that enter the detector. The pion

rejection factor 𝜂𝜋 is defined as the ratio between number of pions rejected by the

detector and the number of pions that are mis-identified as electrons by the detector.

Figure 4-1 shows a spectrum of summed ADC signal of the LHRS gas Cerenkov
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detector. The ADC signal of the Cerenkov detector has two peaks: the peak around

1400 ADC channels for LHRS (and 1800 ADC channels for RHRS) is the multiple

photo-electron peak triggered by electrons. The peak centered around 250 ADC

channels is the single photo-electron peak triggered mostly by background particles.

A Cerenkov ADC cut at ADC channel > 350 was used to select scattered elec-

trons and reject background particles such as pions and knock-on electrons (see Sec-

tion 2.7.3). Pions usually cannot fire the Cerenkov detector, but the knock-on elec-

trons produced by pions still can.

  

Count

ADC channel

Figure 4-1: LHRS Cerenkov spectrum, both total (green) and those pass the PID cut
(red). The 𝑥 axis is the sum of all ADC channels of the Cerenkov, while 𝑦 axis is
event count.

To study the electron efficiency and pion rejection factors of the Cerenkov detec-

tor, we first use RHRS shower and preshower calorimeters to select clean samples

of electrons and clean sample of background. Once clean electrons and background

samples were selected, their RHRS Cerenkov ADC spectra are plotted and fitted sep-

arately using Poisson distributions. The parameters from the fitting of clean electron

and background samples were used to fit the multiple photo-electron peak and one

photo-electron peak. Because part of the clean electron sample is below the Cerenkov
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ADC channel > 350 cut, the cut will remove some of the good electrons. The cut

efficiency can be calculated by estimating the electrons below the Cerenkov ADC

channel > 350 cut using the multiple photo-electron peak fit. A similar Poisson dis-

tribution fit was applied to the LHRS Cerenkov ADC spectra, but without using lead

glass calorimeters to select clean electron/pion samples.

The electron cut efficiency for both LHRS and RHRS can be defined as:

𝜀Cerenkov =
𝐴1

𝐴1 + 𝐴2

(4.1)

where 𝐴1 is the area above the Cerenkov ADC channel 350 cut, and 𝐴2 is the area

below that cut, as shown in Fig. 4-2. Here areas (instead of number of electron or

pion entries) are used in the definition because the LHRS has no calorimeters to select

clean electron or pion samples.

Figure 4-2: LHRS Cerenkov ADC signal as a function of the number of photoelectrons.
The green vertical line is the position of the Cerenkov ADC cut at channel 350. 𝐴1

is the area above the cut and 𝐴2 is the area below the cut. The left red curve is
the fitting of one-photoelectron peak and the right curve is the fitting of main peak.
Figure reproduced from [1].
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The Cerenkov electron efficiency was studied for each run. It was found to be 99.6

± 0.003% for the LHRS (see Fig. 4-3) and 99.9±0.003% for the RHRS (see Fig. 4-4).

The RHRS Cerenkov is longer than LHRS and is thus slightly more efficient.

RunNo
1500 2000 2500 3000 3500 4000 4500 5000

C
he

re
nk

ov
 E

ffi
ci

en
cy

0.8

0.85

0.9

0.95

1

1.05

1.1

 / ndf 2χ  0.0008989 / 370
p0        8.092e-05± 0.9955 

 / ndf 2χ  0.0008989 / 370
p0        8.092e-05± 0.9955 

Fe56LHRS 

 / ndf 2χ  0.0008989 / 370
p0        8.092e-05± 0.9955 

 / ndf 2χ  0.0008989 / 370
p0        8.092e-05± 0.9955 

RunNo
1500 2000 2500 3000 3500 4000 4500 5000

A
D

C
 p

ea
k 

po
si

tio
n 

600

800

1000

1200

1400

1600

1800 Fe56LHRS 

Figure 4-3: Cerenkov electron efficiency (top) and ADC peak position (bottom) re-
sults for LHRS as function of run numbers. Figure reproduced from [1].

Similarly, part of the pion background is above the Cerenkov ADC 350 cut. To

study the pion rejection factor, we use shower/preshower of RHRS to get a clean pion

sample. 𝑁𝜋−𝑠𝑎𝑚𝑝𝑙𝑒 is the total number of pions in the clean pion sample and 𝑁𝜋−𝑙𝑒𝑎𝑘

is the number of 𝜋− that is above the Cerenkov ADC channel 350 cut. The pion

rejection factor is defined as:

𝜋−
𝑟𝑒𝑗 =

𝑁𝜋−𝑠𝑎𝑚𝑝𝑙𝑒 −𝑁𝜋−
𝑙𝑒𝑎𝑘

𝑁𝜋−𝑠𝑎𝑚𝑝𝑙𝑒

, (4.2)

Because the backward angle and high beam energy runs have the most background,

the 120° and 𝐸=957 MeV runs were used for the pion rejection study. The pion

rejection factor was found to be 99.7 ± 1.1% for RHRS (see Fig. 4-5). This factor

was applied on LHRS data too because the LHRS calorimeter (or the NaI detector)

cannot be used to define clean pion samples.
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Figure 4-4: Cerenkov electron efficiency (top) and ADC peak position (bottom) re-
sults for RHRS as function of run numbers. Figure reproduced from [1].
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Figure 4-5: The pion rejection factor as a function of calorimeter 𝐸/𝑃 cut. The
calorimter 𝐸/𝑃 cut is used to define the clean pion samples. Figure reproduced from
[1].
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4.2 Tracking Efficiency

The Vertical Drift Chambers (VDC) detect hits of scattered particles and recon-

struct tracks through the track reconstruction algorithm. Under normal conditions,

each event leaves only one track in the VDC, but in certain cases an event can have

zero track or multiple tracks. The inefficiency of VDC wires or failure of track re-

construction may result in zero track events. In most cases, the wire inefficiency is

less than 0.1%. The wire inefficiency cannot be separated from the tracking ineffi-

ciency and is convoluted into the multi-track efficiency. A multi-track event means

two or more tracks are reconstructed by the VDC for a single event. It can happen

when several particles generated by secondary processes are passing through VDC

simultaneously, or when there is noise in the VDC.

For most of runs in the CSR experiment, the event rate was below 10 kHz and

only a small fraction of events had multiple tracks. For kinematic settings with higher

trigger rates, the fraction of multi-track events is also higher: there are some runs

with trigger rates higher than 10 kHz, and multi-track events contribute more than a

few percent to total events. A strict treatment is therefore necessary for these runs:

Multi-track events must be examined carefully to determine whether there is a good

track among all the reconstructed tracks.

The tracking efficiency can be defined as the ratio:

𝜀VDC =
𝑁good

𝑁total

, (4.3)

where 𝑁good is the number of events with successful track reconstruction and are con-

firmed by the energy deposit in the leadglass calorimeter and also pass all acceptance

cuts and PID cuts, 𝑁total is the number of events that pass all acceptance and PID

cuts. The PID cuts used for tracking analysis are Cerenkov cut and shower/preshower

cuts (the shower/preshower cuts are only available for RHRS, and this tracking effi-

ciency is done on RHRS and applied on LHRS).

Because checking the multi-track event is very time consuming, in the analysis of

production runs, we usually use only events with a single track, and a correction for
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the loss of multi-track events is applied: We redefine the multi-track efficiency as:

𝜀VDC =
𝑁goodsingletrack

𝑁goodsingletrack +𝑁goodmultitrack

, (4.4)

where 𝑁goodsingletrack is the number of events with good single-track reconstruction in

the sample and 𝑁goodmultitrack is the number of multi-track events with at least one

good track in the same sample.

A multi-track event is considered a good event if: (a) at least one track resides

inside the normal acceptance cuts used for the analysis: |𝑑𝑝| ≤ 3.5%, |𝜃𝑡𝑔| ≤ 40 mrad,

|𝜑𝑡𝑔| ≤ 20 mrad; and (b) the energy deposited in the calorimeter of this track satisfies

the PID cuts.

To obtain the energy deposition of an event in the calorimeter, we need to project

forward the track onto the calorimeter. Because some of the blocks of the NaI

calorimeter in LHRS were not responsive during the experiment, this tracking ef-

ficiency is studied only for RHRS, and then applied to LHRS since the left and right

HRS VDCs are identical.

Figure 4-6 shows the distribution of energy deposition in 2 layers of the RHRS

calorimeter (sum of shower and preshower) for two-tracks events. We can divide these

events into four distinct types, depending on the total energy deposits, 𝐸1 and 𝐸2, of

the two tracks:

• Region A: 𝐸1 < 𝐸𝑃𝐼𝐷 and 𝐸2 < 𝐸𝑃𝐼𝐷, where 𝐸𝑃𝐼𝐷=620 MeV is the PID cut

for total energy deposited in the preshower and shower calorimeter. None of the

tracks can pass the PID cut, therefore none of the tracks is considered good.

• Region B: 𝐸𝑃𝐼𝐷 ≤ 𝐸1 < 2𝐸𝑃𝐼𝐷 and 𝐸2 < 𝐸𝑃𝐼𝐷, if track #1 passes acceptance

cut and its energy deposited in the preshower also satisfies the PID energy cut,

track # 1 is considered good and track # 2 not good.

• Region C: 𝐸1 < 𝐸𝑃𝐼𝐷 and 𝐸2 ≥ 𝐸𝑃𝐼𝐷, similar to Region B, track # 2 is

considered good and track # 1 not good.

• Region D: 𝐸1 > 2𝐸𝑃𝐼𝐷 or 𝐸2 > 2𝐸𝑃𝐼𝐷, if one track can pass acceptance cut
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Figure 4-6: Energy deposit summed over in shower and preshower for two track
events. 𝑥 axis: 𝐸1 is energy deposit of the first track; 𝑦 axis: 𝐸2 is energy deposit of
the second track.

and its energy deposited in the preshower also satisfies the PID energy cut, at

least one good track is expected.

• Region E: 𝐸𝑃𝐼𝐷 < 𝐸1, 𝐸2 < 2𝐸𝑃𝐼𝐷. There can be two good tracks, or one good

track and one bad track, or two bad tracks. More study is necessary to further

identify good events in this region, as follows:

1. If there is at least one block distance between the pointed blocks of the

two tracks at lead glass, then at least one track is considered good in this

event (one good track in the event is enough to identify this event as good

multi-track event).
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2. If the distance between the pointed blocks of the two tracks at lead glass

is smaller than one block width, the two tracks overlapped in the energy

deposition. If one cluster energy subtracts the energy deposited in the

overlapping block still satisfying the PID cut, we can expect at least one

good track in this event.

The multi-track efficiency is plotted as a function of the trigger rate and fitted

to a first order polynomial, as shown in Fig. 4-7. This fitted function was used to

calculate the tracking efficiency of each run using the run’s trigger rate.

Figure 4-7: Tracking efficiency as a function of trigger rate.

4.3 Window Background Subtraction

As mentioned in Chapter 2, the cryogenic targets (gaseous or liquid 4He or liquid

hydrogen) are made of aluminium. Therefore, data from cryotargets contain electrons

scattered from aluminium walls, which form a background. To extract experimental

cross sections, the background must be subtracted properly. For this reason, data

were taken on the aluminium dummy target with the same kinematic settings as

the 4He and 1H data, including the same beam energy 𝐸𝑏𝑒𝑎𝑚, spectrometer central
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momentum 𝑃0 and scattering angle 𝜃.

To subtract aluminium background from cryogenic target data, the yield from

pure 4He or H2 is calculated as:

Ycorrected = Ycryot − Ydummy
Twall

Tdummy

Rwall

Rdummy

, (4.5)

where Ycryot and Ydummy are yields of the cryogenic target runs and dummy runs. The

yield is defined as the amount of scattered electron events normalized by the incident

beam charge. Twall and Tdummy are aluminum wall thicknesses of the cryogenic and

the dummy target, and Rwall and Rdummy are the radiation factors of the cryogenic

target and the dummy target, respectively. The radiation factor term is included

because electrons scattered off entrance/exit window of the cryotarget target pass

through gaseous or liquid 4He or H2 both before and after scattering, which is different

from the situation of the dummy target. Two sets of SAMC simulations were used

to calculate this factor: one contains the material of the cryotarget target, another

contains the material of the dummy target. The ionization and Bremsstrahlung are

properly included for both conditions. The simulation used the aluminium cross

section from F1F209 model [45]. The yield ratio between two sets of simulations is

used as the radiation factor ratio Rwall/Rdummy. The SAMC simulation of 4He target

and dummy target are shown in Fig. 4-8. The wall background subtraction of 4He

run 1881 at 90° is shown in Fig. 4-9.

Besides using dummy target to subtract window background, another method to

remove the window background was used independently as a cross check. In this

second method, a 𝑦𝑡𝑔 cut was used to remove the background from entrance and exit

windows: a cut |𝑦𝑡𝑔| ≤ 5 mm was applied for 15° data, and a cut |𝑦𝑡𝑔| ≤ 2.5 cm was

applied to other angles. A comparison of the cross section extracted using these two

methods is shown in Fig. 4-10. The difference is below 1% for 60° data.
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Figure 4-8: Top: SAMC simulation of electrons scattered on aluminum windows of
4He target (red) and electrons scattered on aluminium foils of dummy target (blue),
from left to right, top to bottom, the figures are for 𝑦𝑡𝑔, dp, 𝜃𝑡𝑔 and 𝜑𝑡𝑔. Bottom:
𝐸 ′ spectrum of electron scattered on aluminium windows of 4He target (red) and on
aluminium foils of dummy target (blue).
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Figure 4-9: Yield for cryogenic 4He target run 1881 (red), aluminium background
calculated (blue) from dummy target run 1885, and clean 4He contribution (green).
The 𝑦𝑡𝑔 cut at 2.5 cm is marked as teal colored lines. The kinematic setting for this
run is 𝐸𝑏=1030.5 MeV, 𝜃=90°, and 𝐸 ′=301.2 MeV.

4.4 Center-of-bin Correction

With angular cuts of |𝜃𝑡𝑔| ≤ 40 mrad and |𝜑𝑡𝑔| ≤ 20 mrad as mentioned previously,

the cross section measured at a certain central spectrometer angle is the average of

cross sections within the range of acceptance. Because the cross section varies non-

linearly within the bin size of the acceptance, the measured cross section is not the

value at the bin center and a center-of-bin correction must be applied.

For the carbon/proton elastic cross section, we can use Phaseshift.f program to

calculate the cross section based on world data of elastic scattering and form factors.

The center-of-bin factor 𝐶𝑎 can be calculated as:

𝐶𝑎 =
𝜎𝑐∫︀

𝜎(𝛿,𝜃,𝜑)·𝐴𝑐𝑐(𝛿,𝜃,𝜑)𝑑𝛿𝑑𝜃𝑡𝑔𝑑𝜑𝑡𝑔∫︀
𝜃,𝜑,𝛿 𝐴𝑐𝑐(𝜃,𝜑,𝛿)𝑑𝛿𝑑𝜃𝑡𝑔𝑑𝜑𝑡𝑔

, (4.6)

where 𝜎𝑐 and 𝜎(𝛿, 𝜃, 𝜑) are the calculated cross sections at the center and at a certain

bin (𝛿, 𝜃, 𝜑) of the acceptance.
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Figure 4-10: Comparison of cross sections using two methods of window background
subtraction: Top: cross section spectrum of 90°, E = 1030 MeV using |𝑦𝑡𝑔| < 3 cm
cut (green) and dummy subtraction (red). Bottom: relative difference between cross
sections using these two methods (0.01 in the 𝑦 axis means 1%).

For the case of quasi-elastic scattering, we don’t known the exact cross section,

and the correction is performed based on calculations using the F1F209 fitting [45].

4.5 𝑒− Background from 𝑒+𝑒− Pair Production

One major source of background is 𝑒+𝑒− pair production resulting from the decay

of 𝜋0. 𝜋0 particles are generated at the target and the main decay mode of 𝜋0 is

𝜋0 → 2𝛾. These photons then decay into 𝑒+𝑒− pairs, and electrons from the 𝑒+𝑒−

pair production become a background for this experiment. To evaluate and subtract

this background, the magnetic filed of the HRS magnets are reversed at 𝜃 =90°, E=
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Angle Constant
90∘ 1042
120∘ 1346.6

Table 4.1: Constants that bring the experimental and calculated 𝑒+ cross sections to
agreement. They were used as scale factors to calculate positron cross sections for
unmeasured kinematic regions.

845 MeV and 𝜃 =120° E= 740 MeV to measure 𝑒+ cross sections. Because the number

of 𝑒− generated from the pair production is equal to the number of 𝑒+, the 𝑒+ cross

section can be used to subtract the 𝑒− background due to pair production.

Unfortunately, because of the limited beam time, the 𝑒+ spectrum was not mea-

sured at all kinematic settings. To evaluate 𝑒+ spectra at unmeasured kinematics, a

Fortran program EPC [46] and J.P Chen’s calculation [47] were used: EPC is used

to produce the 𝜋0 cross sections at the desired kinematic setting, then the 𝜋0 cross

sections were used as an input to J.P Chen’s calculation to give the 𝑒+ cross sections.

The measured positron spectra were used to extract the positron cross sections

with the similar procedure as electron data, except a 𝛽 cut was used to reject the

knocked out proton background. The measured positron cross sections were compared

with J.P Chen’s calculation results, as shown in Fig. 4-11. A scale factor that makes

the Chen’s calculation results agree with measured cross sections was extracted. This

scale factor was then applied to the calculated positron spectra at unmeasured kine-

matic settings. One scale factor was evaluated for each angle, see Table 4.1. The

background from 𝑒+𝑒− pair production is found to be negligible at high momentum

and increases at low momentum settings.
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(a) 4He positron cross section at 𝜃=90°, 𝐸=845 MeV.
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(b) 4He positron cross section at 𝜃=120°, 𝐸=740 MeV.

Figure 4-11: 4He positron cross sections. The colored line are from EPC and J.P
Chen’s calculation with the uncertainty of the calculation shown as the black band.
The purple data point are from CSR measured positron spectra. The scaling factor
of Table 4.1 is already applied to the calculation.
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4.6 Extraction of Experimental Cross Section

The goal of experiment E05-110 is to measure the longitudinal and transverse re-

sponse functions, and extract the Coulomb sum to test the Coulomb Sum Rule(CSR).

To obtain the Coulomb sum with high precision, it is important to extract the cross

sections while minimizing the uncertainties. The raw experimental cross section can

be extracted from data as:

𝑑𝜎

𝑑Ω𝑑𝜔
=

𝑁𝑐𝑢𝑡

(𝑄/𝑒) · 𝑡𝐿𝑇 · 𝐴𝑐𝑐 · 𝜀 ·𝑁𝑡𝑔

1

Δ𝐸 ′ΔΩ
, (4.7)

where

• 𝑁𝑐𝑢𝑡 is the number of events that pass all electron cuts in one bin.

• 𝑄/𝑒 is the number of incident beam electrons. 𝑄 is the total charge read from

BCM scalers and 𝑒 is the magnitude of the charge of a single electron.

• 𝑡𝐿𝑇 = 𝑇1(3)/𝑇1(3)𝑟𝑎𝑤 is the Livetime of the detector. 𝑇1(3) is the count of main

trigger event type 1(3) for right(left) HRS.

• 𝐴𝑐𝑐 is the spectrometer’s acceptance determined from SAMC simulation, see

Section 3.2.

• 𝜀 is the total detector efficiency, 𝜀 ≡
∏︀

𝑖 𝜀𝑖, that includes efficiencies of the VDC,

scintillators and the gas Cerenkov;

• 𝑁𝑡𝑔 is the number of the target particles calculated as:

𝑁𝑡𝑔 =
𝐿𝜌𝑁𝑎

𝐴
, (4.8)

where 𝐿𝜌 is the target thickness in unit of g/cm2 (the target thickness is listed

in Section 2.6; if a 𝑦𝑡𝑔 cut is applied, a shorter target thickness 𝐿′ is used in

Eq. 4.8), 𝑁𝑎 = 6.02× 1023 is Avagadro’s number, and 𝐴 is the mass number of

the target. The target density effect on 𝜌 will be presented in Section 4.7.
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• Δ𝐸 = 𝑃0𝑑𝑝 is the width (in unit of MeV) for the given momentum bin.

• ΔΩ = Δ𝜃Δ𝜑 is the solid angle defined by the acceptance cuts used in 𝜃𝑡𝑔 and

𝜑𝑡𝑔: Δ𝜃 = 80 mrad and Δ𝜑 = 40 mrad for this analysis.

4.7 Density effect

The gaseous 4He target is in a high pressure gas state, and the liquid helium and

the liquid hydrogen targets are in a liquid state. For fluid targets, the local heating

generated by beam current will result in lower density along the beam trajectory that

cannot be detected by sensor devices. This density fluctuation effect was measured

by investigating the linearity between the event yield and the beam current using

elastic scattering data.

The density fluctuation depends on two parameters: beam current and beam size.

A higher beam current or smaller beam size will cause a larger decrease in the target

density. Due to the configuration of the cryogenic target that the cooling flow enters

the target at the top and exits at the bottom, the vertical beam size has less effect

on target density than horizontal beam size.

This density effect was extracted from two groups of calibration runs with different

beam sizes, see Fig. 4-12 for the gaseous (loop 1) 4He target: For beam with size 2

mm × 2 mm, the density effect causes the yield to drop by 5.4% per 100 𝜇𝐴, and for

beam with size 3.5 mm × 2 mm, this effect is 4.1% / 100 𝜇𝐴. Similar data on the

(loop 3) liquid hydrogen target are shown in Fig. 4-13. No study was done on the

loop 2 liquid helium target. On the other hand, most ofthe 4He data were collected

on the loop 1 target.

It is interesting to see the difference between the two kinds of cryogenic target:

the density of the gaseous 4He target decreases linearly as beam current grows, while

the liquid hydrogen target has a changing slope. The density fluctuation is found to

be less than 5% for both targets, and is corrected for in cross section extractions.
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Figure 4-12: Density effect: 4He elastic scattering yield vs beam current for loop
1 target with beam size 2 mm × 2 mm (left) and 3.5 mm × 2mm (right). The
kinematic settings are 𝐸𝑏𝑒𝑎𝑚 = 1260 MeV, 𝜃𝐿𝐻𝑅𝑆=15° (left), 𝐸𝑏𝑒𝑎𝑚 = 2845 MeV,
𝜃𝑅𝐻𝑅𝑆=15° (right).
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Figure 4-13: Density effect: liquid hydrogen elastic scattering yield vs beam current
for 2 mm × 2 mm beam size. The kinematic setting is 𝐸𝑏𝑒𝑎𝑚 = 739 MeV, 𝜃𝐿𝐻𝑅𝑆=45°.
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4.8 Radiative Corrections

The cross section in the Rosenbluth Eq. 1.10 was derived to the lowest order in

fine-structure constant 𝛼, which includes only the amplitude from the exchange of a

single virtual photon between the incident electron and the nucleon. This is known

as Born approximation. Cross sections measured in actual experiments have large

contributions from higher order processes and the straggling effect (ionization and

bremsstrahlung energy loss before and after the main scattering). Therefore the raw

measured cross section needs to be corrected to extract the Born cross section. This

process is called “radiative correction” for the next to leading order (in 𝛼) (if we ignore

2-𝛾 contribution). Details of radiative corrections are explained in Appendix B.

There are several steps in the radiative corrections. The first is to remove the

radiative tail of elastic scattering from the measured cross section. The radiative

elastic tail was calculated using Fortran code rosetail.f. The material thickness passed

through by electrons are taken into account in the program, with elastic cross sections

calculated based on form factors from a phase shift calculation [48]. The radiative

elastic tail for 60° and 𝐸 = 1260 MeV is given in Fig. 4-14.

Figure 4-14: Elastic radiative tail of 4He with E=1260 MeV, 𝜃 = 60°.
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After the radiative elastic tail was subtracted, radiative corrections of quasi-elastic

scattering were calculated separately for each scattering angle.

Additionally, the electron scattering cross section measured in the experiment is

not the cross section at the scattering vertex: electrons pass through target material

and windows before and after main scattering with straggling effects. Therefore the

incident beam energies and the detected scattered energies of electrons are different

from the actual values at the scattering vertex, and interpolation or extrapolation is

needed to obtain the cross section at the vertex energy values. This is called external

radiative correction. The external radiative corrections needs measured cross sections

with many beam energies. For 15°, 60° and 90° angles, data were taken with 7 different

incident energies during CSR experiment. For the 120° data, spectra were measured

for 6 incident energies. These data were still not enough to cover the full range

needed for radiative corrections, and the F1F209 fit [45] was used below the lowest

beam energy for each angle. Fortran code radcor.f was used to do the unfolding

procedure for the CSR experiment analysis.

4.9 12C Elastic Cross Sections

Elastic scattering of 12C has been well studied in many experiments, thus the

elastic form factors and cross sections are known to a very good precision. The 12C

elastic cross sections measured during the CSR experiment are compared with world

data to check the quality of optics and acceptance corrections. The 12C elastic cross

sections were extracted similar to the extraction of quasi-elastic cross section, Eq. 4.7,

as:

(︂
𝑑𝜎

𝑑Ω

)︂
𝑒𝑙𝑎𝑠𝑡𝑖𝑐

=
𝑁𝑐𝑢𝑡

(𝑄/𝑒) · 𝑡𝐿𝑇 · 𝐴𝑐𝑐 · 𝜀 ·𝑁𝑡𝑔

1

ΔΩ
. (4.9)

The measured elastic cross sections represent the average of elastic cross sections

over the acceptance range |𝜃𝑡𝑔| < 40 mrad and |𝜑𝑡𝑔| <20 mrad. Because the elas-

tic form factor changes rapidly with 𝑞2, as shown in Fig. 4-15, a finite acceptance

correction was applied as follows: the acceptance was divided into small bins, then
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the phaseshift program was used to calculate cross sections and form factors in each

bin based on world data and an average was taken over the whole acceptance. The

finite acceptance correction factor is the ratio of the average cross section to the cross

section at the center of acceptance.
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Figure 4-15: 12C form factor as a function of 𝑞eff .

Figure 4-16: 12C elastic scattering spectrum extracted from this experiment using
data taken with E=400 MeV at 35°.
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Radiative corrections for elastic scattering were applied by using Mo and Tsai

formula [49]. The procedure is given in Appendix B. After 12C elastic cross sections

were extracted, form factors were also calculated. The results were plotted as function

of 𝑞2 and compared with world data, see Fig. 4-17 for the comparison at 15° and E

= 1260 MeV. As one can see, the 12C elastic results have fairly good agreement with

world data. The difference observed from most of the elastic runs is less than 3%.

Figure 4-17: 12C elastic form factors extracted from this experiment (red solid circles)
and comparison with world data [50] [51]. The solid curve in the top panel is a
calculation from phase shift program [48]. The bottom panel shows the experiment
data’s deviation from the phase shift calculation.
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4.10 Systematic Uncertainties

Systematic uncertainties of the cross section include:

• Beam energy: the uncertainty in beam energy is Δ𝐸𝑏/𝐸𝑏 < 5 × 10−4. Its

contribution to the uncertainty in cross section Δ𝜎/𝜎 is less than 0.6% for 15°

and less than 0.1% for other angles.

• Scattered electron energy: the uncertainty in the HRS central momentum is

Δ𝑃0/𝑃0 = 5 × 10−4. Its contribution to the cross section uncertainty Δ𝜎/𝜎 is

less than 0.5% for 15° and less than 0.1% for other angles.

• Scattering angle: the uncertainty in the scattering angle is 0.2 mrad. Its contri-

bution to the cross section uncertainty Δ𝜎/𝜎 is less than 0.5% for 15° and less

than 0.1% for other angles.

The F1F209 cross section fitting [45] was used to estimate the uncertainties due

to the above three kinematics variables as follows: a Gaussian distribution was

generated for each variable with the width being the uncertainty of that vari-

able. The cross section was calculated using F1F209 for all events in the input

Gaussian distribution, and the resulting cross section also follows a Gaussian

distribution. The width of the resulting cross section distribution is used as

the uncertainty in the cross section contributed from the uncertainty of that

input variable. Figure 4-18 shows how the uncertainty due to beam energy is

estimated using this procedure.

• Beam charge: the cross section uncertainty due to beam charge is less than

0.3% [30].

• Acceptance: The uncertainty in the acceptance was estimated by changing the

acceptance cut size from 90% to 110% of the nominal value. The cross section

uncertainty due to acceptance is found to be less than 1%.

• Detector efficiency: the uncertainty due to detector efficiency is less than 0.2% [30].
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Figure 4-18: Using F1F209 fitting to calculate the cross section uncertainty due
to beam energy uncertainty. Left: Gaussian distribution of beam energy, blue is
distribution of beam energy, red is a Gaussian fit of this distribution. Right: Gaussian
distribution of the generated F1F209 cross section, blue is the calculated distribution
of cross section from the input beam energy distribution, red is a Gaussian fit of this
distribution. The width of the cross section distribution is used as the uncertainty.

• Livetime: the uncertainty due to electronic and detector livetimes is less than

0.2% [30].

• Target thickness: the uncertainty in the target thickness is mainly from target

density, and is 0.5% for this experiment.

• Radiative corrections: the uncertainty due to radiative corrections is studied

by using different interpolation variables 𝑦,𝑊 and 𝜔/𝐸, the uncertainty in the

cross section 𝛿𝜎/𝜎 is estimated to be around 1% for most kinematic settings.

• 𝑒−𝑒+ background: The uncertainty due to 𝑒−𝑒+ background is less than 5% for

90° and 120°. This uncertainty is 0 at 15° (not applied at 15°) and less than 1%

at 60°.
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Systematic uncertainties in the cross section extraction are summarized in Ta-

ble 4.2. The total systematic uncertainty are calculated as the quadratic sum of all

uncertainties.

Source 15° 60° 90° 120°
Beam Energy <0.6% <0.1% <0.1% <0.1%

Scattered Electron Energy <0.5% <0.1% <0.1% <0.1%

Scattering Angle <0.5% <0.1% <0.1% <0.1%

Beam Charge <0.3% <0.3% <0.3% <0.3%

Dead Time <0.2% <0.2% <0.2% <0.2%

Detector Efficiency <0.2% <0.2% <0.2% <0.2%

𝑒+𝑒− Background negligible <0.1% <2% <2%

𝜋 Background <0.1% <0.5% <0.5% <0.5%

Target Density <0.2% <0.2% <0.2% <0.2%

Radiative Corrections <1% <1% <1% <1%

Density Effect <0.5% <0.5% <0.5% <0.5%

Acceptance <1% <1% <1% <1%

Total <1.82% <1.66% <2.59% <2.59%

Table 4.2: Summary of all systematic uncertainties on the cross section extraction.

4.11 Rosenbluth Separation

4.11.1 Coulomb Corrections

The Rosenbluth Formula Eq. 1.10 is derived under the plane-wave Born approx-

imation (PWBA). The PWBA assumes that the wave function of both incident and

scattered electrons can be described by plane waves, and only one virtual photon
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is exchanged between the target nucleus and the electrons. However, PWBA is only

valid for 𝑍𝛼 ≪ 1. For light and medium nuclei, the interaction between electrons and

the charge of the nucleus must be included. The effective momentum approximation

can be used to include the Coulomb correction due to the nuclear Coulomb field in

the PWBA. The effective momentum approximation requires changes to the energy

of the incoming and outgoing electrons due to the nuclear Coulomb potential:

𝐸𝑠 eff = 𝐸𝑠 − 𝑉𝐶 , (4.10)

𝐸𝑝 eff = 𝐸𝑝 − 𝑉𝐶 , (4.11)

where 𝑉𝐶 is the mean value of the Coulomb potential of the nucleus,

𝑉𝐶 =
3𝑍𝛼

2𝑅
(4.12)

with 𝑅 = (5/3)1/2⟨𝑟2⟩1/2 and ⟨𝑟2⟩1/2 the nuclear RMS radius [52]. The effective

momentum transfer is:

𝑞eff = 𝑞

(︂
1− 𝑉𝐶

𝐸𝑠

)︂
. (4.13)

Therefore, 𝑄2 needs to be replaced by 𝑄2
eff = 4𝐸𝑠 eff𝐸𝑝 eff sin

2(𝜃/2) and 𝑞 needs to be

replaced by 𝑞eff . Since 𝐸𝑠 and 𝐸𝑝 change by an equal amount, 𝜔 remains unchanged.

4.11.2 Interpolation

To extract the Coulomb Sum, we need to integrate longitudinal response function

along a constant |𝑞⃗eff | value. However the experiment cross sections were measured

with constant incident beam energies at each angle, not along constant |𝑞⃗eff |, as shown

in Fig. 2-1. In order to do Rosenbluth separation at a constant |𝑞⃗eff |, it is necessary to

interpolate between measured cross section spectra in the (|𝑞⃗eff |, 𝜔) plane to obtain

spectra along constant |𝑞⃗eff | values.

The interpolation needs to follow paths which can align corresponding features

(quasi-elastic peak and dip region) of each spectrum. Two scaling variables were used

to determine the interpolation paths: invariant mass 𝑊 and quasi-elastic scaling
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variable 𝑦. The quasi-elastic scaling variable 𝑦 satisfies the equation [53]:

𝜔 +𝑀𝐴 = (𝑦2 + 2𝑦𝑞⃗ +𝑀2 + 𝑞⃗2)1/2 + (𝑦2 +𝑀2
𝐴−1)

1/2. (4.14)

where 𝑀𝐴 is the nucleus mass, 𝑀 is the nucleon mass and 𝑀𝐴−1 is the mass of nucleus

with 𝐴 − 1 nucleons. The 𝑦 scaling variable changes from negative to positive, with

𝑦 = 0 corresponding to the location of quasi-elastic peak. When the spectra are

plotted as a function of 𝑦, the quasi-elastic peaks are aligned.

The interpolation is done on the total response, which is the experimental cross

section divided by the Mott cross section:

𝑅 =
𝑑𝜎
𝑑Ω

𝜎𝑀

=
𝑄4

𝑞⃗4
𝑅𝐿(𝑄

2, 𝜔) +
𝑄2

2𝑞⃗2𝜀
𝑅𝑇 (𝑄

2, 𝜔) (4.15)

The spectra of four different angles plotted in 𝑊 and 𝑦 scaling are shown in Figs. 4-19

and 4-20. We can see the 𝑦 scaling aligns the quasi-elastic peak quite well, and 𝑊

scaling aligns the dip region and the Δ resonance peak better. In this analysis, 𝑦

scaling is used up to quasi-elastic peak and 𝑊 scaling is used above the quasi-elastic

peak.

The interpolation is performed using the following procedure:

• Each measured spectrum is interpolated along 𝜔;

• For a certain (|q|,𝜔) point, calculate corresponding 𝑦 and 𝑊 ;

• Find points with same 𝑦 and 𝑊 in the measured spectra;

• The total response at the given point is interpolated using a spline of 𝜔 from

the points on the measured spectra.

Figures 4-21 and 4-22 show the interpolation at 15°, |q|=650 MeV and 𝜔=200 MeV

and 60°, |q|=750 MeV and 𝜔=200 MeV. The difference between the two interpolation

methods is used as an estimate of the systematic uncertainty. The typical uncertainty

is around 1%.
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Figure 4-19: Total response function of 4He at 15° and 60° aligned in constant 𝑦 (left)
and constant 𝑊 (right). Different colors are for different beam energies.
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Figure 4-20: Total response function of 4He at 90° and 120° aligned in constant 𝑦
(left) and constant 𝑊 (right). Different colors are for different beam energies.
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Figure 4-21: 𝑦 and 𝑊 interpolation of 4He data at 𝜃 = 15°, 𝑞=650 MeV, 𝜔 = 200 MeV.
Top left: Comparison of 𝑦 (green) and 𝑊 (red) interpolation; Top right: interpolation
path (yellow) in 3D view, black points are the measured spectra; Bottom: 𝑦 (left)
and 𝑊 (right) interpolation with spline functions. The red lines are the interpolation
line, the grey bend is the uncertainty, the teal line indicates the target interpolation
point.
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Figure 4-22: 𝑦 and 𝑊 interpolation at 𝜃 = 60°, 𝑞=750 MeV, 𝜔 = 200 MeV. Top left:
Comparison of 𝑦 (green) and 𝑊 (red) interpolation; Top right: interpolation path
(yellow) in 3D view, black points are the measured spectra; Bottom: 𝑦 (left) and 𝑊
(right) interpolation with spline functions. The red lines are the interpolation line,
the grey bend is the uncertainty, the teal line indicates the target interpolation point.
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The interpolated total response of 4He in the (|q|,𝜔) plane are shown in Figs. 4-23

through 4-26.
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Figure 4-23: Interpolated total response function of 4He at 15°.
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Figure 4-24: Interpolated total response function of 4He at 60°.

4.11.3 Rosenbluth Separation

In Rosenbluth formula, Eq. 1.10, if one divides out the Mott cross section 𝜎𝑀 and

multiplies virtual photon polarization 𝜀 on both sides, the formula can be re-written
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Figure 4-25: Interpolated total response function of 4He at 90° and 120°.
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Figure 4-26: Interpolated total response function of 4He at 90° and 120°.

as:

𝜀𝑅 = 𝜀
𝑑𝜎
𝑑Ω

𝜎𝑀

= 𝜀
𝑄4

q4
𝑅𝐿 +

𝑄2

2𝑞⃗2
𝑅𝑇

(4.16)

The Rosenbluth separation method can be used to extract 𝑅𝐿 and 𝑅𝑇 from Eq. 4.16.

Because the virtual photon polarization 𝜀 has an angle dependence, one can use the

plot of 𝜀𝑅 versus 𝜀. The data point for each angle should lie in a straight line, the

slope and intercept of which are 𝑄4/q4𝑅𝐿 and 𝑄2/2q2𝑅𝑇 , respectively.
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Figure 4-27 shows the Rosenbluth separation at q = 650 MeV, 𝜔 = 150, 200,

250 and 300 MeV as examples. Because the separation is done by linear fitting, the

error of data points can affect the fitting results and the systematic and statistical

uncertainties cannot be treated separately. The total uncertainty of data points are

calculated by adding the systematic and statistical uncertainty in quadrature. The

separation is performed for all (|q|,𝜔) data points with more than two angles’ data.

The uncertainties in 𝑅𝐿 and 𝑅𝑇 are from the linear fitting.
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Figure 4-27: Rosenbluth separation for 4He data at |q| = 650 MeV, 𝜔 = 150, 200, 250
and 300 MeV. In each panel, the different colors of the data points represent different
scattering angles: 15°(red), 60°(green), 90°(blue), 120°(purple).

As one can see from Eq. 4.16 and Fig. 4-27: at high 𝜔, |q|2/𝑄2 is small, the 𝑅𝐿

contribution decreases and the 𝑅𝑇 contribution increases and the uncertainty in 𝑅𝐿

can be large from the fitting procedure. Thus the Coulomb sum at large 𝜔 must be

calculated carefully.
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4.11.4 Coulomb Sum

The Coulomb Sum Rule is defined in Eq. 1.24, and is repeated here:

𝑆𝐿(|q|) =
1

𝑍

∫︁ ∞

0+

𝑅𝐿(|q|, 𝜔)
𝐺̃2

𝐸

𝑑𝜔

As shown above, the Coulomb Sum is defined to be the integral of the ratio of 𝑅𝐿

to the nucleon electric form factor over the energy loss 𝜔. The upper limit of the

integral goes to infinity. However, it is impossible to measure 𝜔 > |q| in experiments.

Moreover, due to radiative corrections, falling detector efficiencies and other technical

issues, the data near 𝜔 ≈ |q| cannot be collected. Besides, as explained in the previous

section, the coefficient |q|4/𝑄4 in Rosenbluth separation will cause large uncertainty

in 𝑅𝐿 at high 𝜔 and the Coulomb sum must be calculated carefully.

In order to extract the Coulomb sum at a given |q|, 𝑅𝐿 needs to be separated

for all 𝜔 first, then the 𝑅𝐿 spectrum can be integrated and the Coulomb sum can

be extracted. For the nucleon electric form factor in the denominator of Eq. 1.24,

Zhihong Ye’s parameterization [44] was used. I will present all preliminary results on
4He in the next Chapter.
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Chapter 5

Results

For experiment E05-110, quasi-elastic cross sections were measured for 4He, 12C,
56Fe, 208Pb target at four angles: 15°, 60°, 90° and 120°. In this chapter, preliminary

results of 4He cross sections, response functions and the Coulomb sum are presented.

5.1 Cross Sections

5.1.1 Raw Cross Sections

The raw cross sections measured at 15°, 60°, 90° and 120° for the 4He target are

plotted versus energy loss in Figs. 5-1 through 5-8. Only statistical uncertainties are

shown. The acceptance correction, center-of-bin correction, density effect correction

and window background subtraction were already applied on these spectra.

The 𝑒−𝑒+ background and radiative elastic tail were subtracted before the radia-

tive correction was applied. The 𝑒−𝑒+ background and radiative elastic tail are also

plotted in Figs. 5-1 through 5-8. The radiative elastic tail and 𝑒−𝑒+ background are

small at forward angles 15° and 60°.

At 15°, the quasi-elastic peak is the dominant feature of the cross section at all

incident energies. At 60°, the quasi-elastic peak is dominant at incident energies from

646 MeV to 1030 MeV. At 𝐸𝑏𝑒𝑎𝑚 = 1102 MeV the quasi-elastic peak becomes broader

and eventually disappears into a background of delta excitation, meson exchange, and

125



(MeV)ω
0 50 100 150 200 250 300 350 400 450

 (
nb

/M
eV

/s
r)

 d
 E

'
Ω

d 
σ

d 

0

20

40

60

80

100

120

140 After Corrections

Before Corrections

elastic tail

Very Preliminary

(a) E=1260 MeV, 𝜃 = 15°
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(b) E=1646 MeV, 𝜃 = 15°
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(c) E=2145 MeV, 𝜃 = 15°
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(d) E=2448 MeV, 𝜃 = 15°

Figure 5-1: Raw cross sections measured by the LHRS as a function of the electron’s
energy loss 𝜔 (MeV) at 𝜃 = 15°, before (red) and after (green) subtraction of elastic
tail (blue) and 𝑒+ background (black, too small to be seen).
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(a) E=2845 MeV, 𝜃 = 15°
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(b) E=3249 MeV, 𝜃 = 15°
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(c) E=3679 MeV, 𝜃 = 15°

Figure 5-2: Raw cross sections measured by the LHRS as a function of the electron’s
energy loss 𝜔 (MeV) at 𝜃 = 15°, before (red) and after (green) subtraction of elastic
tail (blue) and 𝑒+ background (black, too small to be seen).
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(a) E=646 MeV, 𝜃 = 60°
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(b) E=740 MeV, 𝜃 = 60°
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(c) E=845 MeV, 𝜃 = 60°
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(d) E=958 MeV, 𝜃 = 60°

Figure 5-3: The raw cross sections measured by the LHRS as a function of the
scattered electron energy (MeV) at 𝜃 = 60°, before (red) and after (green) subtraction
of elastic tail (blue) and 𝑒+ background (black, too small to be seen).
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(a) E=1030 MeV, 𝜃 = 60°
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(b) E=1102 MeV, 𝜃 = 60°
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(c) E=1260 MeV, 𝜃 = 60°

Figure 5-4: The raw cross sections measured by the LHRS as a function of the
scattered electron energy (MeV) at 𝜃 = 60°, before (red) and after (green) subtraction
of elastic tail (blue) and 𝑒+ background (black, too small to be seen).
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(a) E=399 MeV, 𝜃 = 90°
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(b) E=528 MeV, 𝜃 = 90°
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(c) E=646 MeV, 𝜃 = 90°
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Figure 5-5: The raw cross sections measured by the LHRS as a function of the
scattered electron energy (MeV) at 𝜃 = 90°, before (red) and after (green) subtraction
of elastic tail (blue) and 𝑒+ background (purple with black band as its uncertainty).
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(a) E=845 MeV, 𝜃 = 90°
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(b) E=958 MeV, 𝜃 = 90°
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(c) E=1030 MeV, 𝜃 = 90°

Figure 5-6: The raw cross sections measured by the LHRS as a function of the
scattered electron energy (MeV) at 𝜃 = 90°, before (red) and after (green) subtraction
of elastic tail (blue) and 𝑒+ background (purple with black band as its uncertainty).
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(a) E=399 MeV, 𝜃 = 120°
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(b) E=528 MeV, 𝜃 = 120°
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(c) E=646 MeV, 𝜃 = 120°

Figure 5-7: The raw cross sections measured by the LHRS as a function of the
scattered electron energy (MeV) at 𝜃 = 120°, before (red) and after (green) subtraction
of elastic tail (blue) and 𝑒+ background (purple with black band as its uncertainty).
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(a) E=740 MeV, 𝜃 = 120°
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Figure 5-8: The raw cross sections measured by the LHRS as a function of the
scattered electron energy (MeV) at 𝜃 = 120°, before (red) and after (green) subtraction
of elastic tail (blue) and 𝑒+ background (purple with black band as its uncertainty).
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deep inelastic scattering. At 90°, the quasi-elastic peak is visible from 𝐸𝑏𝑒𝑎𝑚 = 399

MeV to 740 MeV, and disappears into the background above 845 MeV. At 120°, the

quasi-elastic peak disappears into the background above 𝐸𝑏𝑒𝑎𝑚 = 646 MeV.

5.1.2 Born Cross Sections

After the radiative elastic tail and 𝑒−𝑒+ background were subtracted, the radiative

correction was applied. The raw cross sections and Born cross sections after radiaitve

corrections are shown in Figs. 5-9 through Figure 5-16 for 15°, 60°, 90° and 120°.
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(a) E=1260 MeV, 𝜃 = 15°
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(b) E=1646 MeV, 𝜃 = 15°
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(c) E=2145 MeV, 𝜃 = 15°
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(d) E=2448 MeV, 𝜃 = 15°

Figure 5-9: The Born cross section after radiative correction on 15° data. Black:
raw cross section before radiative correction; red: Born cross section after radiative
correction. 135
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(a) E=2845 MeV, 𝜃 = 15°
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(b) E=3249 MeV, 𝜃 = 15°
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(c) E=3679 MeV, 𝜃 = 15°

Figure 5-10: The Born cross section after radiative correction on 15° data. Black:
raw cross section before radiative correction; red: Born cross section after radiative
correction.
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(a) E=646 MeV, 𝜃 = 60°
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(b) E=740 MeV, 𝜃 = 60°
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(c) E=845 MeV, 𝜃 = 60°
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(d) E=958 MeV, 𝜃 = 60°

Figure 5-11: The Born cross section after radiative correction on 60° data. Black:
raw cross section before radiative correction; red: Born cross section after radiative
correction. 137
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(a) E=1030 MeV, 𝜃 = 60°
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(b) E=1102 MeV, 𝜃 = 60°
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(c) E=1260 MeV, 𝜃 = 60°

Figure 5-12: The Born cross section after radiative correction on 60° data. Black:
raw cross section before radiative correction; red: Born cross section after radiative
correction.
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(a) E=399 MeV, 𝜃 = 90°
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(b) E=528 MeV, 𝜃 = 90°
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(c) E=646 MeV, 𝜃 = 90°
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(d) E=740 MeV, 𝜃 = 90°

Figure 5-13: The Born cross section after radiative correction on 90° data. Black:
raw cross section before radiative correction; red: Born cross section after radiative
correction. 139
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(a) E=845 MeV, 𝜃 = 90°
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(b) E=958 MeV, 𝜃 = 90°
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(c) E=1030 MeV, 𝜃 = 90°

Figure 5-14: The Born cross section after radiative correction on 90° data. Black:
raw cross section before radiative correction; red: Born cross section after radiative
correction.
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(a) E=399 MeV, 𝜃 = 120°
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(b) E=528 MeV, 𝜃 = 120°
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(c) E=646 MeV, 𝜃 = 120°

Figure 5-15: The Born cross section after radiative correction on 120° data. Black:
raw cross section before radiative correction; red: Born cross section after radiative
correction.
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(a) E=740 MeV, 𝜃 = 120°
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(b) E=958 MeV, 𝜃 = 120°

Figure 5-16: The Born cross section after radiative correction on 120° data. Black:
raw cross section before radiative correction; red: Born cross section after radiative
correction.
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5.2 Rosenbluth Separation

5.2.1 𝑅𝐿 and 𝑅𝑇

The longitudinal and transverse response functions 𝑅𝐿 and 𝑅𝑇 of 4He were ex-

tracted using Eq. 1.10 at constant three-momentum-transfer |𝑞⃗|. The results are

shown in Figs. 5-17, 5-18, 5-19, and 5-20.

As one can see from these figures: at low |q|, all of 𝑅𝐿 decrease to zero or even

go below zero at large 𝜔, while the transverse response function 𝑅𝑇 keeps rising after

the quasi-elastic peak. This is because the 𝑅𝐿 has most of the contribution from

quasi-elastic scattering, but the 𝑅𝑇 has contributions from other processes such as

meson exchange currents (MEC), Δ excitation, higher resonances and deep inelastic

scattering. One can also see that as |q| increases, the uncertainties of 𝑅𝐿 and 𝑅𝑇

increase. This is because the difference between total response function 𝜀𝑅 of Eq. 4.16

of forward and backward angles become small, and thus the uncertainties of the linear

fitting become large. Another reason for the large uncertainty in 𝑅𝐿 is because at high

|q|, 𝑅𝐿 contributes only a small term to the total cross section while 𝑅𝑇 dominates

the total cross section.
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Figure 5-17: Longitudinal response function 𝑅𝐿 of 4He (in 1/MeV) at constant |q|.
From top to bottom: |q| = 600, 650, 700 and 750 MeV.
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Figure 5-18: Transverse response function 𝑅𝑇 of 4He (in 1/MeV) at constant |q|.
From top to bottom: |q| = 600, 650, 700 and 750 MeV.
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Figure 5-19: Longitudinal response function 𝑅𝐿 of 4He (in 1/MeV) at constant |q|.
From top to bottom: |q| = 800, 850, 900 and 950 MeV.
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Figure 5-20: Transverse response function 𝑅𝑇 of 4He (in 1/MeV) at constant |q|.
From top to bottom: |q| = 800, 850, 900 and 950 MeV.
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5.2.2 Comparison with Existing Data

The longitudinal response function 𝑅𝐿 extracted from this analysis at 𝑞=600 and

640 MeV/𝑐 are compared with existing data from Saclay [54], see Fig. 5-21. The

agreement is very good overall.
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Figure 5-21: Preliminary results of this experiment (red) and Saclay data (black) [54]
on 𝑅𝐿 of 4He at |𝑞⃗| = 600 and 640 MeV.
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5.2.3 Comparison with Fermi Gas Model

Here we compare our results on 𝑅𝐿 and 𝑅𝑇 with a relativistic Fermi gas model

[47] [55]. In this model 𝑅𝐿 and 𝑅𝑇 are calculated using:

𝑅𝐿(|𝑞⃗|, 𝜔) =
𝜋𝑉

|𝑞⃗|

∫︁ ∞

𝐸0

𝑑𝐸𝑛(𝐸)(1− 𝑛(𝐸 + 𝜔̄))
[︀
(𝐸 +

𝜔

2
)2
𝑇2(𝑄

2)

𝑀2
− 𝑞⃗2

𝑄2
𝑇1(𝑄

2)
]︀
, (5.1)

𝑅𝑇 (|𝑞⃗|, 𝜔) =
𝜋𝑉

|𝑞⃗|

∫︁ ∞

𝐸0

𝑑𝐸𝑛(𝐸)(1− 𝑛(𝐸 + 𝜔̄))

×
{︂
2𝑇1(𝑄

2) +

[︂
𝐸2 −𝑀2 − (

𝑞⃗2 − 𝜔̄2 − 2𝐸𝜔̄

2|𝑞⃗|
)2
]︂
𝑇2(𝑄

2)

𝑀2

}︂
, (5.2)

where 𝜔̄ = 𝜔 − 𝜖𝑠, with 𝜖𝑠 the average separation energy. 𝐸0 is the lower bound of

the integral:

𝐸0 = max

(︃
𝑀,

|𝑞⃗|
2

√︃
1 +

4𝑀2

𝑞⃗2 − 𝜔̄2
− 𝜔̄

2

)︃
. (5.3)

𝑇1 and 𝑇2 are related to the electric and magnetic form factors 𝐺𝐸 and 𝐺𝑀 :

𝑇1(𝑄
2) = 𝑄2𝐺2

𝑀/2, 𝑇2(𝑄
2) = 2𝑀2

(︂
𝐺2

𝐸 + 𝜏𝐺2
𝑀

1 + 𝜏

)︂
, (5.4)

where 𝜏 = 𝑄2/4𝑀2 and 𝐺2
𝐸(𝑀) = 𝐺2

𝐸(𝑀)𝑝 +
𝑁
𝑍
𝐺2

𝐸(𝑀)𝑛 with 𝑝 and 𝑛 stand for proton

and neutron, respectively. Different types of form factors can be used, the most simple

one is the dipole form factor:

𝐺𝐸𝑝(𝑄
2) = [1 +𝑄2/(0.71(GeV/𝑐)2)]−2, (5.5)

𝐺𝐸𝑛(𝑄
2) = 0, (5.6)

𝐺𝑀𝑝(𝑛)(𝑄
2) = 𝜇𝑝(𝑛)𝐺𝐸𝑝(𝑄

2), (5.7)
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where 𝜇𝑝 = 2.793 and 𝜇𝑛 = -1.913 are the proton and the neutron magnetic moments,

respectively. 𝑉 is the normalization volume for the momentum distribution 𝑛(𝑝):

𝑉

∫︁
𝑑3𝑝 𝑛(𝑝) = 𝑍. (5.8)

The most simple form of momentum distribution is a step function:

𝑛(𝑝) = Θ(𝑘𝐹 − 𝑝) =

⎧⎪⎨⎪⎩= 1 if 𝑝 ≤ 𝑘𝐹

= 0 if 𝑝 > 𝑘𝐹

(5.9)

where 𝑘𝐹 is the Fermi momentum. The parameters used for 4He are: 𝑘𝐹 = 200 MeV/𝑐

and 𝜖𝑠 = 20 MeV.

The comparison is shown in Figs. 5-22 and 5-23. Because the simple Fermi gas

model contains only the quasi-elastic scattering process, we expect the transverse

response function 𝑅𝑇 differ significantly from the model prediction. The real 𝑅𝑇

from data contains contributions from MEC, Δ resonance and other processes. On

the other hand, the longitudinal response function 𝑅𝐿 is mainly from the quasi-elastic

scattering and is relative clean from background of the other mechanism. Therefore

we expect predictions on 𝑅𝐿 from the simple Fermi gas model to agree with data.

The long and the short range correlations, center-of-mass correction are not included

in the model.
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Figure 5-22: Comparison of longitudinal (left) and transverse (right) response func-
tion at |𝑞⃗| = 550 (top), 600 (middle), 650 (bottom) MeV compared with a simple Fermi
gas model. Left: 𝑅𝐿 data (orange points) and simple Fermi gas model prediction (red
curve); right: 𝑅𝑇 data (orange points) and simple Fermi gas model prediction (green
curve).
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Figure 5-23: Comparison of longitudinal (left) and transverse (right) response func-
tion at 𝑞⃗ = 700 (top), 750 (middle), 800 (bottom) MeV compared with a simple Fermi
gas model. Left: 𝑅𝐿 data (orange points) and simple Fermi gas model prediction (red
curve); right: 𝑅𝑇 data (orange points) and simple Fermi gas model prediction (green
curve).
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5.3 Coulomb Sum

Preliminary results on the Coulomb Sum as a function of |𝑞⃗| is shown in Fig. 5-24.

Existing data from Saclay, Bates and SLAC are also shown in the same figure. As

one can see, the value of 𝑆𝐿 for 4He stays below 1.0 for the range measured in our

experiment (which is different from the prediction of GFMC model in Fig. 1-17), and

agree well with previous world data within uncertainties.
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Figure 5-24: Preliminary results of 4He Coulomb sum of this experiment (red filled
circle), compared with previous data from Saclay (open box) [11], Bates (open trian-
gles) [54] and SLAC (open crossing) [56].
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Appendix A

Rosenbluth Formula

The derivation of Rosenbluth formula which describes the electron nucleus scat-

tering is presented here briefly.

In the Plane Wave Born Approximation (PWBA), an inclusive unpolarized elec-

tron scattering process occurs through the exchange of a single virtual photon. Using

Feynman rules, the cross section can be written as:

𝑑𝜎 = 2𝑍2𝛼2 𝑑𝑘⃗𝑓
2𝐸𝑓

1

𝑄4
𝑊𝜇𝜈𝜂𝜇𝜈

1

[(𝑘𝑖 · 𝑃𝑖)2 −𝑚2
𝑒𝑀

2]1/2
, (A.1)

The leptonic tensors is:

𝜂𝜇𝜈 = −1

2

∑︁
𝑠𝑖

∑︁
𝑠𝑓

𝐸𝑖𝐸𝑓𝜇(𝑘𝑖)𝛾𝜈𝜇(𝑘𝑓 )𝜇(𝑘𝑓 )𝛾𝜇𝜇(𝑘𝑖), (A.2)

where 𝜇(𝑘𝑖) and 𝜇(𝑘𝑓 ) are the initial and final electron plane wave functions, respec-

tively.

The hadronic tensor is

𝑊𝜇𝜈 =
(2𝜋)3Ω

𝑍2

∑︁
𝑆𝑖

∑︁
𝑆𝑓

𝐸𝑡𝛾
(4)(𝑃𝑖 − 𝑃𝑓 − 𝑞)⟨𝑖|𝐽𝜈(0)|𝑓⟩⟨𝑓 |𝐽𝜇(0)|𝑖⟩, (A.3)

where 𝐽𝑚𝑢(0) is the electromagnetic current operator of the nucleus at the space-time

point 𝑥𝜇 = 0. |𝑖⟩, |𝑓⟩ are the initial and final nuclear states, Ω is the normalization
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volume, 𝐸𝑡 is the initial target energy. The average over the initial leptonic spin states

𝑠𝑖 gives a factor 1/2 and the average over the initial target spin states 𝑆𝑖 is indicated

by
∑︀

. The final spin states of the lepton and nucleus, 𝑠𝑓 and 𝑆𝑓 are to be summed

over.

The leptonic tensor can be simplified as:

𝜂𝜇𝜈 = −1

2
𝑇𝑟𝛾𝜇(𝑚𝑒 − 𝑖𝛾 · 𝑘𝑖)𝛾𝜈(𝑚𝑒 − 𝑖𝛾 · 𝑘𝑓 ) (A.4)

where 𝑚𝑒 is the electron mass. If neglecting the electron mass, Eq. A.4 can be written

as:

𝜂𝜇𝜈 = −1

2
[(𝑘1)𝜇(𝑘2)𝜈 + (𝑘2)𝜇(𝑘1)𝜈 − (𝑘1 · 𝑘2)𝑔𝜇𝜈 ] (A.5)

The hardronic tensor 𝑊𝜇𝜈 is a second order tensor built out of the two independent

4-vectors 𝑃 and 𝑞 With the target mass known, there are only two independent

Lorentz scalers, 𝑄2 and 𝑞 · 𝑃 . The most general tensor we can make out of 𝑃 and 𝑞

that satisfies the parity symmetry is

𝑊𝜇𝜈 = 𝑊1(𝑄
2, 𝑞 · 𝑃 )𝑔𝜇𝜈 +𝑊2(𝑄

2, 𝑞 · 𝑃 )
𝑃𝜇𝑃𝜈

𝑀2

+ 𝐴
𝑞𝜇𝑞𝜈
𝑀2

+𝐵
1

𝑀2
(𝑃𝜇𝑞𝜈 + 𝑃𝜈𝑞𝜇) + 𝐶

1

𝑀2
(𝑃𝜇𝑞𝜈 − 𝑃𝜈𝑞𝜇).

(A.6)

Using current conservation:

𝑞𝜇𝑊𝜇𝜈 = 𝑊𝜇𝜈𝑞𝜈 = 0, (A.7)

the hardronic tensor can be simplified with only two independent terms:

𝑊𝜇𝜈 = 𝑊1(𝑄
2, 𝑞 · 𝑃 )

(︂
𝑔𝜇𝜈 −

𝑞𝜇𝑞𝜈
𝑄2

)︂
+𝑊2(𝑄

2, 𝑞 · 𝑃 )
1

𝑀2

(︂
𝑃𝜇 −

𝑃 · 𝑞
𝑄2

𝑞𝜇

)︂(︂
𝑃𝜈 −

𝑃 · 𝑞
𝑄2

𝑞𝜈

)︂
.

(A.8)
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In the laboratory frame where 𝑃 · 𝑞 = 𝜔𝑀 , one obtains the cross section:

𝑑2𝜎

𝑑Ω𝑑𝜔
=

𝑍2𝜎𝑀

𝑀

[︂
𝑊2(𝑄

2, 𝜔) + 2𝑊1(𝑄
2, 𝜔) tan2 𝜃

2

]︂
, (A.9)

where 𝑊1 and 𝑊2 are the structure functions of the target nucleus and are related to

the longitudinal and transverse response functions:

𝑅𝑇 (𝑄
2, 𝜔) =

2𝑍2

𝑀
𝑊1(𝑄

2, 𝜔), (A.10)

𝑅𝐿(𝑄
2, 𝜔) =

𝑍2

𝑀

[︂(︂
|𝑞⃗|4

𝑄4

)︂
𝑊2(𝑄

2, 𝜔)−
(︂
|𝑞⃗|2

𝑄2

)︂
𝑊1(𝑄

2, 𝜔)

]︂
. (A.11)

Then we can obtain the Rosenbluth formula, Eq. 1.10.
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Appendix B

Radiative Corrections

The cross section in the Rosenbluth formula is derived to the lowest order in

the fine-structure constant 𝛼 that includes only the amplitude due to exchange of a

single virtual photon between the incident electron and the nucleon. This is known

as Born approximation. The cross section measured in electron scattering has large

contributions from higher order processes and the straggling effect. So the raw cross

sections extracted from experiments need to be corrected in order to extract Born

cross sections. This correction is called "radiative correction".

Feynman diagrams of the second order and third order processes are shown in

Fig. B-1. Diagram (a) is the vacuum polarization which modifies the photon propaga-

tor and partly renormalizes the electron charge. Diagram (b) is the vertex correction

which cancels the wave function renormalization in (c) and (d). Diagrams (c) and (d)

are the self-energy diagrams which contribute to the renormalization of the electron

mass and wave function. Diagrams (e) and (f) describe the bremsstrahlung process

before and after scattering. The hadronic radiations are negligible due to the large

hadronic masses.

The radiation processes that happen during the main scattering are called “inter-

nal” processes. Bremsstrahlung and ionization happen when electrons pass through

target material before and after the main scattering, and are referred to as “external”

processes. The internal processes are proportional to the target thickness 𝑇 , while

the external processes are proportional to 𝑇 2.
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In this section, a summary of theory and procedures of radiative correction is

given, including subtraction of the elastic tail, radiative corrections for quasi-elastic

data and radiative corrections for elastic data.

Figure B-1: Next to leading order Feynman diagrams for internal radiative correc-
tions: (a) vacuum polarization, (b) vertex correction, (c)/(d) electron self-energy, and
(e)/(f) Bremsstrahlung before and after scattering.

B.1 Subtraction of the Elastic Radiative Tail

Following the formalism of Mo and Tsai [49] and Stein [57], the cross section for

the elastic radiative tail includes several parts:

𝜎𝑒𝑙𝑡𝑎𝑖𝑙 = (𝜎𝑖𝑛𝑡 + 𝜎𝑒𝑥𝑡) · 𝐹𝑠𝑜𝑓𝑡 (B.1)

where 𝜎𝑖𝑛𝑡, 𝜎𝑒𝑥𝑡 and 𝐹𝑠𝑜𝑓𝑡 represent the internal bremsstrahlung, external bremsstrahlung

and soft photon corrections, respectively. Cross sections for single photon emission

from both internal and external processes are corrected by including the multiple soft
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photon emission:

𝐹𝑠𝑜𝑓𝑡 =

(︂
𝜔𝑠

𝐸𝑠

)︂𝑏(𝑡𝑏+𝑡𝑟)(︂ 𝜔𝑝

𝐸𝑝 + 𝜔𝑝

)︂𝑏(𝑡𝑎+𝑡𝑟)

, (B.2)

where 𝑡𝑏, 𝑡𝑎 are the radiation thicknesses before and after scattering. The “equivalent

radiator” thickness 𝑡𝑟 is used to describe the effect of internal Bremsstrahlung, which

can be approximated by two external radiators with one placed before and one after

the scattering process, each with thickness:

𝑡𝑟 =
(︁ 𝛼

𝑏𝜋

)︁[︂
ln

(︂
𝑄2

𝑚2
𝑒

)︂
− 1

]︂
. (B.3)

B.1.1 Internal Elastic Tail

The internal Bremsstrahlung cross section for elastic scattering can be calculated

exactly to the lowest order order of 𝛼 if we assume one-photon exchange:

𝜎𝑖𝑛𝑡 =

∫︁
𝐵𝜇𝜈𝑇𝜇𝜈𝑑Ω𝑘, (B.4)

where 𝐵𝜇𝜈 is the internal Bremsstrahlung tensor and 𝑇𝜇𝜈 is the lepton tensor which

includes the form factors 𝑊1 and 𝑊2.

The exact cross section for the elastic radiative tail is expressed as:

𝜎𝑒𝑥𝑎𝑐𝑡 =

(︂
𝑑2𝜎

𝑑Ω𝑑𝐸𝑝

)︂
=

𝛼3

2𝜋

(︂
𝐸𝑝

𝐸𝑠

)︂∫︁ 1

−1

2𝑀𝑇𝜔𝑑 cos 𝜃𝑘
𝑞4(𝑢0 − |𝑢⃗| cos 𝜃𝑘)

×

(︃
𝑊̃2(𝑞

2)

{︃
−𝑎𝑚3

𝑥3

[︂
2𝐸𝑠(𝐸𝑝 + 𝜔) +

𝑞2

2

]︂
− 𝑎′𝑚2

𝑦3

[︂
2𝐸𝑝(𝐸𝑠 + 𝜔) +

𝑞2

2

]︂
−2 + 2𝜈(𝑥−1 − 𝑦−1){𝑚2(𝑠 · 𝑝− 𝜔2) + (𝑠 · 𝑝)[2𝐸𝑠𝐸𝑝 − (𝑠 · 𝑝) + 𝜔(𝐸𝑠 − 𝐸𝑝)]}

+𝑥−1

[︂
2(𝐸𝑠𝐸𝑝 + 𝐸𝑠𝜔 + 𝐸2

𝑝) +
𝑞2

2
− (𝑠 · 𝑝)−𝑚2

]︂
−𝑦−1

[︂
2(𝐸𝑝𝐸𝑠 + 𝐸𝑝𝜔 + 𝐸2

𝑠 ) +
𝑞2

2
− (𝑠 · 𝑝)−𝑚2

]︂}︃

+𝑊̃1(𝑞
2)

[︃(︂
𝑎

𝑥3
+

𝑎′

𝑦3
𝑚2(2𝑚2 + 𝑞2) + 4 + 4𝜈(𝑥−1 − 𝑦−1)(𝑠 · 𝑝)(𝑠 · 𝑝− 2𝑚2)

)︂

+(𝑥−1 − 𝑦−1(2𝑠 · 𝑝+ 2𝑚2 − 𝑞2))

]︃)︃
. (B.5)
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The kinematic parameters (𝜔, 𝜈, 𝑠, 𝑝... ) are defined in [57]. The two terms 𝑊̃1 and

𝑊̃2 contain elastic form factors and are defined as:

𝑊̃1(𝑞
2) = 𝐹 (𝑞2)𝑊1(𝑞

2), (B.6)

𝑊̃2(𝑞
2) = 𝐹 (𝑞2)𝑊2(𝑞

2). (B.7)

The function 𝐹 (𝑞2) represents corrections that are independent of photon energy 𝜔:

𝐹 (𝑞2) = (1 + 0.5772 · 𝑏𝑇 ) + 2

𝜋

[︂
−14

9
+

13

12
ln

𝑄2

𝑚2

]︂
+

𝛼

𝜋

[︂
1

6
𝜋2 − Φ(cos2

𝜃

2
)

]︂
, (B.8)

where the first term is a normalization factor from the expression for the external

Bremsstrahlung, the second term is the sum of vacuum polarization and vertex cor-

rections, and the last term is from Schwinger [58]. Φ(𝑥) is the Spence function:

Φ(𝑥) =

∫︁ 𝑥

0

− ln |1− 𝑦|
𝑦

𝑑𝑦, (B.9)

𝑏 =
4

3
{1 + 1

9
[(𝑍 + 1)/(𝑍 + 𝜂)][ln

(︀
183𝑍−1/3

)︀
]−1}, (B.10)

𝜂 = ln
(︀
1440𝑍−2/3

)︀
/ ln
(︀
183𝑍−1/3

)︀
, (B.11)

B.1.2 External Elastic Tail

The probability of an electron with energy 𝐸0 emitting a photon with energy 𝐸

in material thickness 𝑡 can be expressed as:

𝐼(𝐸0, 𝐸, 𝑡) =
1

Γ(1 + 𝑏𝑡)

(︂
𝐸0 − 𝐸

𝐸0

)︂𝑏𝑡 [︂(︂
𝑏𝑡

𝐸0 − 𝐸

)︂
𝜑

(︂
𝐸0 − 𝐸

𝐸0

)︂
+

𝜉

(𝐸0 − 𝐸)2

]︂
,

(B.12)

where Γ(𝑥) is the gamma function, and 𝜑(𝑣) ≈ 1 − 𝑣 + 3
4
𝑣2 is the shape of the

Bremsstrahlung spectrum. The internal Bremsstrahlung cross section 𝜎𝑟 is weighted

by this probability function and integrated over all possible incoming and outgoing
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electron energies to obtain the external elastic tail:

𝜎𝑒𝑥𝑡(𝐸𝑠, 𝐸𝑝) =

∫︁ 𝑇

0

𝑑𝑡

𝑇

∫︁ 𝐸𝑠

𝐸𝑚𝑖𝑛
𝑠

∫︁ 𝐸𝑚𝑎𝑥

𝐸𝑝

𝑑𝐸 ′
𝑝𝐼(𝐸𝑠, 𝐸

′
𝑠, 𝑡)𝜎𝑟(𝐸

′
𝑠, 𝐸

′
𝑝)𝐼(𝐸𝑝, 𝐸

′
𝑝, 𝑇 − 𝑡), (B.13)

where the limits of the integration are:

𝐸𝑚𝑎𝑥
𝑝 =

𝐸 ′
𝑠

1 + 𝐸𝑠

𝑀
(1− cos 𝜃)

, (B.14)

𝐸𝑚𝑖𝑛
𝑠 =

𝐸𝑝

1 + 𝐸𝑝

𝑀
(1− cos 𝜃)

. (B.15)
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Figure B-2: two-dimensional integral area for external Bremsstrahlung.

The integration region for Eq. B.13 is shown in Fig. B-2. The integration is heavily

peaked near the green horizontal and vertical regions, therefore this two-dimensional
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integral can be approximated by two one-dimensional integrals:

𝜎𝑒𝑥𝑡(𝐸𝑠, 𝐸𝑝) ≈
∫︁ 𝑇

0

𝑑𝑡

𝑇

[︃
𝜎̃(𝐸𝑠)𝐼(𝐸𝑝 + 𝜔𝑝, 𝐸𝑝, 𝑇 − 𝑡)

∫︁ 𝐸𝑠

𝐸𝑠−𝜔𝑠

𝑑𝐸 ′
𝑠𝐼(𝐸𝑠, 𝐸

′
𝑠, 𝑡)

+ 𝜎̃(𝐸𝑠 − 𝜔𝑠)
𝑀 + (𝐸𝑠 + 𝜔𝑠)(1− cos 𝜃)

𝑀 − 𝐸𝑝(1− cos 𝜃)
𝐼(𝐸𝑠, 𝐸𝑠 − 𝜔𝑠, 𝑡)

×
∫︁ 𝐸𝑝+𝜔𝑝

𝐸𝑝

𝑑𝐸 ′
𝑝𝐼(𝐸

′
𝑝, 𝐸𝑝, 𝑇 − 𝑡)

]︃
.

(B.16)

If we complete the integral including external Bremsstrahlung as well as ionization

loss before and after scattering, the external elastic tail can be written as:

𝜎𝑒𝑥𝑡(𝐸𝑠, 𝐸𝑝) =
𝑀𝑇 + 2(𝐸𝑠 − 𝜔𝑠) sin

2 𝜃
2

𝑀𝑇 − 2𝐸𝑝 sin
2 𝜃
2

× 𝜎̃𝑒𝑙(𝐸𝑠 − 𝜔𝑠)

[︂
𝑏𝑡𝑏
𝜔𝑠

𝜑(𝜈𝑠) +
𝜉

2𝜔2
𝑠

]︂
+ 𝜎̃𝑒𝑙(𝐸𝑠)

[︂
𝑏𝑡𝑎
𝜔𝑝

𝜑(𝜈𝑝) +
𝜉

2𝜔2
𝑝

]︂ (B.17)

where

𝜔𝑠 = 𝐸𝑠 −
𝐸𝑝

1− 2 𝐸𝑝

𝑀𝑇
sin2 𝜃

2

, (B.18)

𝜔𝑝 =
𝐸𝑠

1 + 2 𝐸𝑠

𝑀𝑇
sin2 𝜃

2

− 𝐸𝑝, (B.19)

𝜉 =
𝜋𝑚

2𝛼

𝑡𝑎 + 𝑡𝑏
(𝑍 + 𝜂) ln(183/𝑍1/3)

, (B.20)

𝜈𝑠 = 𝜔𝑠/𝐸𝑠, (B.21)

𝜈𝑝 = 𝜔𝑝/(𝐸𝑝 + 𝜔𝑝), (B.22)

𝜎̃𝑒𝑙 = 𝐹 (𝑞2)𝜎𝑒𝑙(𝐸), (B.23)

𝜎𝑒𝑙 is the elastic cross section defined from the elastic form factors. The approximation

for the shape of the Bremsstrahlung spectrum 𝜑(𝜈) holds for 𝐸 > 100 MeV and 𝜈 <

0.8 (in unit of 1).
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B.2 Radiative Corrections for Quasi-elastic Data

While the radiative correction for elastic tail is for a discrete state, the radiative

corrections for quasi-elastic data are reached by integrating over all states. In order

to simplify the calculation, the integral Bremsstrahlung spectrum is approximated

by the external Bremsstrahlung spectrum, and the method of equivalent radiators is

used. Radiative corrections for quasi-elastic data were calculated using formula of

Stein et al. [57]:

(︂
𝑑2𝜎

𝑑Σ𝑑𝜔

)︂
𝑒𝑥𝑝

=

(︂
𝑅Δ𝐸

𝐸𝑠

)︂𝑏𝑡′𝑏
(︂
Δ𝐸

𝐸𝑝

)︂𝑏𝑡′𝑎
[︂
1− 𝜉/Δ𝐸

1− 𝑏(𝑏(𝑡′𝑎 + 𝑡′𝑏))

]︂
𝜎̃(𝐸𝑠, 𝐸𝑝)

+

∫︁ 𝐸𝑠−𝑅Δ𝐸

𝐸𝑚𝑖𝑛
𝑠

𝜎̃(𝐸 ′
𝑠, 𝐸𝑝)

(︂
𝐸𝑠 − 𝐸 ′

𝑠

𝑅𝐸𝑝

)︂𝑏𝑡′𝑎
(︂
𝐸𝑠 − 𝐸 ′

𝑠

𝐸𝑠

)︂𝑏𝑡′𝑏

×
[︂

𝑏𝑡′𝑏
𝐸𝑠 − 𝐸 ′

𝑠

𝜑

(︂
𝐸𝑠 − 𝐸 ′

𝑠

𝐸𝑠

)︂
+

𝜉

2(𝐸𝑠 − 𝐸 ′
𝑠)

2

]︂
𝑑𝐸 ′

𝑠

+

∫︁ 𝐸𝑚𝑎𝑥
𝑝

𝐸𝑝+Δ𝐸

𝜎̃(𝐸𝑠, 𝐸
′
𝑝)

(︂
𝐸 ′

𝑝 − 𝐸𝑝

𝐸 ′
𝑝

)︂𝑏𝑡′𝑎 (︂𝑅(𝐸 ′
𝑝 − 𝐸𝑝)

𝐸𝑠

)︂𝑏𝑡′𝑏

×
[︂

𝑏𝑡′𝑎
𝐸 ′

𝑝 − 𝐸𝑝

𝜑

(︂
𝐸 ′

𝑝 − 𝐸𝑝

𝐸 ′
𝑝

)︂
+

𝜉

2(𝐸 ′
𝑝 − 𝐸𝑝)2

]︂
𝑑𝐸 ′

𝑝 , (B.24)

where the first term is the integral of low energy photon, the second term is the

integral due to energy loss before scattering, and the last term is the integral due to

energy loss after scattering. In Eq. B.24, 𝑡′𝑎 = 𝑡𝑎 + 𝑡𝑟 and 𝑡′𝑏 = 𝑡𝑏 + 𝑡𝑟 are radiation

thicknesses include the equivalent radiator. The integration limits are given by:

𝐸𝑚𝑖𝑛
𝑠 =

𝑀𝑇𝐸𝑝

𝑀𝑇 − 2𝐸𝑝 sin
2(𝜃/2)

, (B.25)

𝐸𝑚𝑎𝑥
𝑝 =

𝑀𝑇𝐸𝑠

𝑀𝑇 + 2𝐸𝑠 sin
2(𝜃/2)

, (B.26)

and

𝑅 =
𝑀𝑇 + 2𝐸𝑖 sin

2(𝜃/2)

𝑀𝑇 − 2𝐸𝑓 sin
2(𝜃/2)

. (B.27)
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B.3 Radiative Corrections for Elastic Data

The radiative correction to the elastic peak has been well studied. The relation

between the cross section measured in experiments and the Born cross section is:

(︂
𝑑𝜎

𝑑Ω

)︂
𝑒𝑥𝑝

= (1 + 𝛿)

(︂
𝑑𝜎

𝑑Ω

)︂
𝐵𝑜𝑟𝑛

, (B.28)

where 𝛿 is the radiative correction factor. Higher order corrections can be taken into

account by replacing 1 + 𝛿 with 𝑒𝛿.

The expression of 𝛿 is given as a sum of the external and internal terms:

𝛿 = 𝛿𝑖𝑛𝑡 + 𝛿𝑒𝑥𝑡. (B.29)

The internal term include contribution from internal Bremsstrahlung, vacuum polar-

ization and nucleus recoil and photon emission:

𝛿𝑖𝑛𝑡 =
−𝛼

𝜋

(︃
28

9
− 13

6
ln

(︂
𝑄2

𝑚2
𝑒

)︂
+

(︂
ln

(︂
𝑄2

𝑚2
𝑒

)︂
− 1 + 2𝑍 ln

(︂
𝐸𝑠

𝐸𝑝

)︂)︂
×
[︂
2 ln

(︂
𝐸𝑠

Δ𝐸

)︂
− 3 ln

(︂
𝐸𝑠

𝐸𝑝

)︂]︂
−Φ

(︂
𝐸𝑝 − 𝐸𝑠

𝐸𝑝

)︂
− 𝑍2 ln

(︂
𝐸𝑇

𝑀𝑇

)︂
+ 𝑍2 ln

(︂
𝑀𝑇𝐸𝑝

𝐸𝑠Δ𝐸

)︂(︂
1

𝛽𝑡

ln

(︂
1 + 𝛽𝑡

1− 𝛽𝑡

)︂
− 2

)︂
+
𝑍2

𝛽𝑡

{︃
1

2
ln

(︂
1 + 𝛽𝑡

1− 𝛽𝑡

)︂
ln

(︂
𝐸𝑇 +𝑀𝑇

2𝑀𝑇

)︂
− Φ

[︃
−
(︂
𝐸𝑇 −𝑀𝑇

𝐸𝑇 +𝑀𝑇

)︂(︂
1 + 𝛽𝑡

1 + 𝛽𝑡

)︂ 1
2

]︃}︃

−𝑍
[︁
Φ

(︂
−𝐸𝑇 − 𝐸𝑝

𝐸𝑝

)︂
− Φ

(︂
𝑀𝑇 (𝐸𝑇 − 𝐸𝑝)

2𝐸𝑠𝐸𝑇 −𝑀𝑇𝐸𝑝

)︂
+ Φ

(︂
2𝐸𝑠(𝐸𝑇 − 𝐸𝑝)

2𝐸𝑠𝐸𝑇 −𝑀𝑇𝐸𝑝

)︂
(B.30)

+ ln |2𝐸𝑠𝐸𝑇 −𝑀𝑇𝐸𝑝

𝐸𝑝(𝑀𝑇 − 2𝐸𝑠)
| ln
(︂
𝑀𝑇

2𝐸𝑠

)︂]︁
−
[︁
Φ

(︂
−𝑀𝑇 − 𝐸𝑝

𝐸𝑝

)︂
− Φ

(︂
𝑀𝑇 − 𝐸𝑝

𝐸𝑝

)︂
+ Φ

(︂
2(𝑀𝑇 − 𝐸𝑝)

𝑀𝑇

)︂
+ ln | 𝑀𝑇

2𝐸𝑝 −𝑀𝑇

| ln
(︂
𝑀𝑇

2𝐸𝑝

)︂]︁
+
𝑍2

𝛽𝑡

{︃
Φ

[︃(︂
𝐸𝑇 −𝑀𝑇

𝐸𝑇 +𝑀𝑇

)︂ 1
2
(︂
1− 𝛽𝑡

1 + 𝛽𝑡

)︂ 1
2

]︃
− Φ

[︃(︂
𝐸𝑇 −𝑀𝑇

𝐸𝑇 +𝑀𝑇

)︂ 1
2

]︃
+ Φ

[︃
−
(︂
𝐸𝑇 −𝑀𝑇

𝐸𝑇 +𝑀𝑇

)︂ 1
2

]︃}︃)︃
,
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where 𝐸𝑇 is the final energy of the target nucleus, 𝛽𝑡 = 𝑣𝑡/𝑐 is the final velocity of

target nucleus. Δ𝐸 is the 𝐸𝑝 cutoff of the elastic tail.

The external terms include straggling by the electron before and after the scat-

tering, and is given by:

𝛿𝑒𝑥𝑡 = −
[︂
(𝑏𝑤𝑡𝑖𝑤 + 𝑏𝑡𝑖) ln

(︂
𝐸2

𝑝

𝐸𝑠Δ𝐸

)︂
+ (𝑏𝑤𝑡𝑓𝑤 + 𝑏𝑡𝑓 ) ln

(︂
𝐸𝑝

Δ𝐸

)︂]︂
, (B.31)

where 𝑡𝑖 and 𝑡𝑓 are the target thicknesses before and after scattering in radiation

lengths. 𝑡𝑖𝑤 and 𝑡𝑓𝑤 are the thicknesses of the entrance and exit windows. 𝑏 and 𝑏𝑤

are given in Eq. B.10, calculated using 𝑍 the charge numbers of the target and the

window, respectively.
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Appendix C

Longitudinal and Transverse

Response Function Results

The longitudinal and transverse response functions for 4He extracted from this

analysis are listed below. The 1𝑠𝑡 to 6𝑡ℎ columns are, respectively, magnitude of

three-momentum-transfer |𝑞⃗| in MeV, energy loss of electron 𝜔 in MeV, longitudinal

response function 𝑅𝐿 and its uncertainty 𝛿𝑅𝐿, transverse response function 𝑅𝑇 and

its uncertainty 𝛿𝑅𝑇 . The unit of all response functions and their uncertainties are in

1/MeV.

Table C.1: Longitudinal and transverse response function 𝑅𝐿 and 𝑅𝑇 for 4He from
this analysis.

𝑞 𝜔 𝑅𝐿 𝛿𝑅𝐿 𝑅𝑇 𝛿𝑅𝑇

600 80 2.8543e-04 1.4294e-04 -5.0933e-06 1.8350e-04

600 90 3.7168e-04 1.6262e-04 4.3654e-04 1.9791e-04

600 100 5.8499e-04 1.5352e-04 5.6812e-04 2.4204e-04

600 110 8.0270e-04 1.7999e-04 9.1163e-04 2.9171e-04

600 120 7.7443e-04 1.8825e-04 1.8518e-03 1.8480e-04

600 130 8.9635e-04 1.7611e-04 2.8263e-03 2.0603e-04

600 140 1.3140e-03 1.6618e-04 3.4039e-03 1.8168e-04

600 150 1.3585e-03 2.0189e-04 4.5463e-03 2.8706e-04
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Table C.1 – continued from previous page

𝑞 𝜔 𝑅𝐿 𝛿𝑅𝐿 𝑅𝑇 𝛿𝑅𝑇

600 160 2.0472e-03 2.1389e-04 5.1888e-03 2.2187e-04

600 170 2.2847e-03 1.6214e-04 6.1269e-03 1.6389e-04

600 180 2.9266e-03 1.2211e-04 6.7386e-03 1.2262e-04

600 190 2.7424e-03 1.8120e-04 7.2094e-03 1.6840e-04

600 200 2.7764e-03 2.2031e-04 7.2812e-03 2.1583e-04

600 210 2.4874e-03 2.0688e-04 7.1820e-03 2.2317e-04

600 220 2.3275e-03 1.8689e-04 6.7471e-03 1.7444e-04

600 230 2.0432e-03 1.4740e-04 6.1510e-03 1.3129e-04

600 240 1.7022e-03 2.0736e-04 5.7165e-03 1.9525e-04

600 250 1.4784e-03 2.0925e-04 5.0405e-03 1.5990e-04

600 260 1.0716e-03 1.4062e-04 4.6380e-03 1.2579e-04

600 270 7.4452e-04 1.3467e-04 4.3897e-03 1.4340e-04

600 280 4.0182e-04 7.5738e-05 4.2767e-03 1.0564e-04

600 290 5.5618e-04 6.6471e-05 3.7063e-03 9.1532e-05

600 300 4.3147e-04 9.0104e-05 3.7014e-03 1.0875e-04

600 310 3.3287e-04 8.9670e-05 3.7646e-03 8.0070e-05

600 320 2.6702e-04 5.6598e-05 3.8528e-03 4.7285e-05

600 330 2.3859e-04 5.1771e-05 4.1439e-03 3.2430e-05

600 340 1.9309e-04 7.1121e-05 4.5224e-03 1.6658e-05

600 350 8.6450e-05 6.0033e-05 5.0230e-03 6.7345e-05

700 110 1.0497e-04 6.5471e-05 3.8546e-05 5.9645e-05

700 120 1.8037e-04 6.5336e-05 9.7562e-05 7.5207e-05

700 130 2.1154e-04 8.6119e-05 2.6255e-04 1.1434e-04

700 140 2.6635e-04 6.7946e-05 4.7497e-04 1.1104e-04

700 150 3.5726e-04 1.2497e-04 6.8900e-04 1.6357e-04

700 160 4.7695e-04 1.2570e-04 1.0248e-03 1.3692e-04

700 170 4.3007e-04 9.5887e-05 1.5771e-03 1.1557e-04

700 180 7.4226e-04 1.4684e-04 1.7989e-03 1.0592e-04
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Table C.1 – continued from previous page

𝑞 𝜔 𝑅𝐿 𝛿𝑅𝐿 𝑅𝑇 𝛿𝑅𝑇

700 190 5.9453e-04 5.8698e-05 2.6790e-03 8.5948e-05

700 200 9.3741e-04 1.0104e-04 3.1418e-03 8.4991e-05

700 210 1.1435e-03 1.6594e-04 3.7942e-03 1.6585e-04

700 220 1.2505e-03 8.5646e-05 4.3499e-03 6.8792e-05

700 230 1.4664e-03 1.1229e-04 4.9118e-03 1.1564e-04

700 240 1.7523e-03 1.2702e-04 5.0080e-03 6.9416e-05

700 250 1.5807e-03 1.5338e-04 5.5219e-03 1.0571e-04

700 260 1.5764e-03 2.0685e-04 5.5894e-03 1.5502e-04

700 270 1.4878e-03 1.4511e-04 5.5059e-03 1.3040e-04

700 280 1.2586e-03 1.0684e-04 5.3630e-03 2.3201e-05

700 290 1.0773e-03 1.1719e-04 5.0538e-03 7.5844e-05

700 300 8.2505e-04 1.0338e-04 4.7384e-03 2.1508e-05

700 310 7.3507e-04 1.4117e-04 4.2837e-03 1.1015e-04

700 320 6.1230e-04 1.7345e-04 3.9962e-03 1.6077e-04

700 330 4.3778e-04 7.3898e-05 3.6824e-03 4.6625e-05

700 340 4.6445e-04 1.0040e-04 3.4592e-03 9.8322e-05

700 350 2.4321e-04 8.3413e-05 3.4878e-03 5.7593e-05

700 370 2.9899e-04 8.8143e-05 3.5009e-03 7.0059e-05

700 380 1.8591e-04 1.1323e-04 3.7546e-03 4.2434e-05

700 390 2.1575e-04 3.5339e-05 4.0182e-03 3.3599e-05

700 410 1.1265e-04 7.8502e-05 4.8016e-03 3.3976e-05

700 440 8.0508e-05 2.4802e-04 6.2348e-03 1.4909e-04

700 450 6.2064e-05 3.4044e-04 6.7797e-03 2.2799e-04

700 470 3.1232e-04 4.0371e-04 7.5828e-03 2.6402e-04

700 480 1.6139e-04 2.9918e-04 8.0602e-03 2.9359e-04

800 140 5.2469e-05 6.3081e-05 1.0342e-05 3.9651e-05

800 150 1.0095e-04 6.1816e-05 1.6527e-05 5.0043e-05

800 160 6.9779e-05 2.7131e-05 1.0762e-04 2.3419e-05
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𝑞 𝜔 𝑅𝐿 𝛿𝑅𝐿 𝑅𝑇 𝛿𝑅𝑇

800 170 1.0813e-04 3.8368e-05 1.4745e-04 4.8304e-05

800 180 1.1774e-04 4.6622e-05 2.5586e-04 6.4750e-05

800 190 1.4268e-04 5.5854e-05 3.8690e-04 5.3191e-05

800 200 1.7494e-04 6.5771e-05 5.2829e-04 5.3668e-05

800 210 1.8428e-04 9.0308e-05 7.4223e-04 5.9421e-05

800 220 2.4772e-04 1.0440e-04 9.5905e-04 8.6449e-05

800 230 3.1996e-04 9.4332e-05 1.2290e-03 7.9132e-05

800 240 4.4801e-04 9.4049e-05 1.5462e-03 8.8981e-05

800 250 6.2466e-04 7.6165e-05 1.8767e-03 5.7792e-05

800 260 8.2011e-04 9.9291e-05 2.2093e-03 8.2245e-05

800 270 8.2734e-04 9.8366e-05 2.7528e-03 8.4899e-05

800 280 9.0520e-04 1.1770e-04 3.1071e-03 1.0303e-04

800 290 7.4290e-04 1.2033e-04 3.5690e-03 6.7599e-05

800 300 9.6879e-04 1.3722e-04 3.8959e-03 1.2271e-04

800 310 8.8033e-04 2.1906e-04 4.1386e-03 1.5584e-04

800 320 1.6605e-04 1.0145e-04 4.4959e-03 4.2993e-05

800 330 8.4481e-04 2.1723e-04 4.1933e-03 1.3390e-04

800 340 1.0633e-03 1.5817e-04 3.8753e-03 8.5219e-05

800 350 7.3503e-04 1.8996e-04 3.9633e-03 1.2504e-04

800 360 8.9823e-04 1.7745e-04 3.5748e-03 1.2329e-04

800 370 7.6103e-04 1.5185e-04 3.4506e-03 1.0755e-04

800 380 8.0460e-04 1.4600e-04 3.1581e-03 9.1204e-05

800 390 8.6690e-04 1.2010e-04 2.9530e-03 8.2096e-05

800 400 6.8590e-04 1.1782e-04 2.8274e-03 8.0168e-05

800 410 3.6754e-04 1.0808e-04 3.0293e-03 8.7189e-05

800 420 3.4120e-04 8.0968e-05 2.9969e-03 7.8901e-05

800 430 2.6206e-04 1.1505e-04 3.1373e-03 8.6993e-05

800 440 1.1187e-04 7.9192e-05 3.3896e-03 5.2880e-05
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𝑞 𝜔 𝑅𝐿 𝛿𝑅𝐿 𝑅𝑇 𝛿𝑅𝑇

800 450 1.2567e-04 9.0091e-05 3.5440e-03 6.5920e-05

800 460 6.8505e-05 7.6119e-05 3.8856e-03 3.1525e-05

800 470 7.6737e-05 8.6148e-05 4.1764e-03 4.9007e-05

800 480 2.0489e-04 7.3688e-05 4.4084e-03 5.7815e-05

800 490 2.1798e-04 8.5965e-05 4.7514e-03 7.2599e-05

800 500 2.0971e-04 1.4372e-04 5.1740e-03 9.0138e-05

800 510 8.1747e-05 1.3151e-04 5.5852e-03 9.7790e-05

800 520 4.1556e-04 3.6348e-04 5.7248e-03 2.8648e-04

800 530 5.0730e-04 3.7290e-04 5.9449e-03 3.2413e-04

800 540 7.3472e-04 5.4406e-04 6.0890e-03 4.5041e-04

800 550 9.8142e-04 7.4741e-04 6.2198e-03 5.6506e-04

900 200 6.0024e-05 4.3481e-05 3.3367e-05 3.4419e-05

900 220 6.4692e-05 2.9197e-05 1.1062e-04 3.0073e-05

900 230 5.8982e-05 2.7410e-05 1.6954e-04 1.6878e-05

900 240 7.4389e-05 5.2727e-05 2.3172e-04 3.8182e-05

900 250 7.7250e-05 5.6591e-05 3.3134e-04 5.2671e-05

900 260 1.0440e-04 6.6223e-05 4.2838e-04 2.4101e-05

900 270 1.3079e-04 7.0179e-05 5.6457e-04 4.5072e-05

900 280 1.6675e-04 7.4559e-05 7.1872e-04 4.8205e-05

900 290 2.3286e-04 1.0304e-04 8.6095e-04 6.3102e-05

900 300 3.6060e-04 6.4985e-05 1.0028e-03 4.9180e-05

900 310 4.3106e-04 1.0940e-04 1.2161e-03 7.1772e-05

900 320 6.1385e-04 9.5658e-05 1.3857e-03 6.7878e-05

900 330 5.8847e-04 1.2897e-04 1.7646e-03 9.9765e-05

900 340 6.9987e-04 1.7999e-04 2.0113e-03 1.4189e-04

900 350 6.6886e-04 1.8167e-04 2.3796e-03 1.4469e-04

900 360 5.3115e-04 1.0006e-04 2.8010e-03 7.7502e-05

900 370 6.9206e-04 2.1801e-04 2.8636e-03 1.5256e-04
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𝑞 𝜔 𝑅𝐿 𝛿𝑅𝐿 𝑅𝑇 𝛿𝑅𝑇

900 380 5.8618e-04 2.5036e-04 3.0796e-03 1.4874e-04

900 390 3.3911e-04 1.6147e-04 3.2886e-03 7.2117e-05

900 400 7.0527e-04 1.4024e-04 3.0315e-03 9.3753e-05

900 410 1.9291e-04 1.7665e-04 3.1915e-03 7.7126e-05

900 420 4.0931e-04 1.7136e-04 3.0825e-03 1.0752e-04

900 430 6.3052e-04 1.0154e-04 2.7407e-03 6.3694e-05

900 440 4.2964e-04 5.2566e-05 2.7522e-03 4.4806e-05

900 450 4.1964e-04 9.7827e-05 2.5917e-03 5.3113e-05

900 460 4.0476e-04 1.3228e-04 2.4980e-03 7.2362e-05

900 470 6.2791e-04 1.3521e-04 2.2879e-03 7.9602e-05

900 480 5.0708e-04 1.3568e-04 2.3833e-03 9.2775e-05

900 490 4.3182e-04 1.0430e-04 2.4006e-03 5.1124e-05

900 500 5.7135e-04 1.0916e-04 2.5262e-03 7.4131e-05

900 510 5.8170e-04 1.0149e-04 2.5543e-03 4.6212e-05

900 520 3.5382e-04 1.1583e-04 3.0157e-03 6.9331e-05

900 530 4.0631e-04 1.3966e-04 3.0824e-03 6.7937e-05

900 540 8.9554e-04 1.0108e-04 3.0744e-03 5.3261e-05

900 550 4.9622e-04 1.4678e-04 3.5059e-03 8.9666e-05

900 560 5.1543e-04 1.8444e-04 3.7214e-03 1.0537e-04

900 570 7.3812e-04 1.8736e-04 3.8599e-03 9.2028e-05

900 580 8.6335e-04 2.4755e-04 4.0580e-03 1.3475e-04

900 590 1.0061e-03 3.2007e-04 4.2912e-03 1.7389e-04

900 600 8.8758e-04 2.3200e-04 4.5119e-03 1.9842e-04

900 610 1.0181e-03 4.6944e-04 4.7133e-03 2.5141e-04

900 620 8.2445e-04 4.4932e-04 5.1195e-03 2.5039e-04

900 630 6.8175e-04 2.7231e-04 5.3950e-03 1.9337e-04

1000 310 5.8333e-05 5.6945e-05 2.1486e-04 2.0042e-05

1000 320 6.9113e-05 6.5485e-05 2.7035e-04 3.2808e-05
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𝑞 𝜔 𝑅𝐿 𝛿𝑅𝐿 𝑅𝑇 𝛿𝑅𝑇

1000 330 8.8743e-05 6.5814e-05 3.4532e-04 2.9804e-05

1000 340 1.1209e-04 8.1222e-05 4.3115e-04 3.1533e-05

1000 350 1.2259e-04 8.3911e-05 5.4328e-04 3.4732e-05

1000 360 1.5579e-04 1.2203e-04 6.7140e-04 7.3874e-05

1000 370 2.0184e-04 1.2663e-04 8.1111e-04 8.5837e-05

1000 380 2.5819e-04 1.8599e-04 9.6088e-04 1.1563e-04

1000 390 3.2448e-04 2.1752e-04 1.1146e-03 1.3440e-04

1000 400 4.0338e-04 2.3237e-04 1.2702e-03 1.3553e-04

1000 410 4.2614e-04 2.9214e-04 1.4487e-03 1.6666e-04

1000 420 4.4033e-04 3.0494e-04 1.6370e-03 1.7943e-04

1000 430 5.2240e-04 1.5796e-04 1.8143e-03 1.4364e-04

1000 440 3.5085e-04 3.7606e-04 2.0241e-03 2.1434e-04

1000 450 2.5035e-04 4.6419e-04 2.1807e-03 2.3892e-04

1000 460 2.2677e-04 5.0075e-04 2.2699e-03 2.4725e-04

1000 470 2.5298e-04 5.3024e-04 2.2968e-03 2.9021e-04

1000 480 2.1058e-04 5.3895e-04 2.3260e-03 2.7766e-04

1000 490 2.8700e-04 4.9172e-04 2.2557e-03 2.3875e-04

1000 500 2.6439e-04 5.0468e-04 2.2045e-03 2.7199e-04

1000 510 1.9096e-04 4.9110e-04 2.1874e-03 2.2479e-04

1000 520 1.6750e-04 4.5480e-04 2.1266e-03 1.9814e-04

1000 560 8.9054e-05 3.2612e-04 2.1100e-03 2.0522e-04

1000 570 1.7445e-04 2.8484e-04 2.1544e-03 1.7584e-04

1000 580 3.0325e-04 2.2058e-04 2.2782e-03 1.2999e-04

1000 590 2.7038e-04 2.0716e-04 2.4568e-03 1.4305e-04

1000 610 2.2475e-04 2.6221e-04 2.8519e-03 1.4550e-04

1000 620 1.0748e-04 1.8952e-04 3.1471e-03 1.0762e-04

1000 630 2.7963e-04 2.1302e-04 3.1171e-03 1.8233e-04

1000 640 4.2486e-04 2.3117e-04 3.2584e-03 1.9730e-04
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𝑞 𝜔 𝑅𝐿 𝛿𝑅𝐿 𝑅𝑇 𝛿𝑅𝑇

1000 650 4.5870e-04 2.3228e-04 3.5155e-03 2.1930e-04

1000 660 6.4708e-04 2.8889e-04 3.5841e-03 2.7854e-04

1000 670 9.3588e-04 4.1514e-04 3.5431e-03 3.6692e-04

1000 680 1.0430e-03 4.8140e-04 3.5939e-03 4.3209e-04

1000 690 9.3463e-04 6.2631e-04 3.8185e-03 4.6205e-04

1000 700 8.0316e-04 9.0018e-04 4.0548e-03 7.2294e-04
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Appendix D

Coulomb Sum Results

Results on the Coulomb sum 𝑆𝐿 for 4He from this analysis, from |𝑞⃗| = 550 MeV

to 1100 MeV, are listed below. The 1𝑠𝑡 to 3𝑟𝑑 columns are, respectively, |𝑞⃗| in MeV,

Coulomb Sum 𝑆𝐿, and its uncertainty 𝛿𝑆𝐿.

|𝑞⃗| 𝑆𝐿 𝛿𝑆𝐿

550 0.714 0.019

560 0.787 0.025

570 0.721 0.018

580 0.752 0.019

590 0.733 0.019

600 0.748 0.019

610 0.737 0.020

620 0.733 0.019

630 0.722 0.019

640 0.710 0.019

650 0.705 0.016

660 0.734 0.019

670 0.739 0.022

680 0.737 0.024

690 0.732 0.024

700 0.707 0.025

|𝑞⃗| 𝑆𝐿 𝛿𝑆𝐿

710 0.714 0.028

720 0.710 0.027

730 0.697 0.027

740 0.679 0.028

750 0.728 0.033

760 0.737 0.030

770 0.761 0.033

780 0.792 0.036

790 0.846 0.042

800 0.841 0.042

810 0.874 0.044

820 0.924 0.045

830 0.964 0.049

840 0.962 0.052

850 1.006 0.049

860 1.054 0.048

|𝑞⃗| 𝑆𝐿 𝛿𝑆𝐿

870 1.099 0.049

880 1.172 0.048

890 1.269 0.054

900 1.184 0.058

910 1.121 0.069

920 1.090 0.077

930 1.064 0.086

940 1.037 0.095

950 1.001 0.092

960 1.032 0.098

970 0.978 0.121

980 0.941 0.144

990 0.917 0.160

1000 0.953 0.174
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