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We study the changes in the short-distance quark structure of the Nambu-Goldstone boson when
the long-distance symmetry-breaking scales are depleted controllably. We achieve this by studying
the valence Parton Distribution Function (PDF) of pion in 2+1 dimensional two-color QCD, with
the number N of massless quarks as the tunable parameter that slides the theory from being strongly
broken for N = 0 to the conformal window for N > 4, where the theory is gapped by the fixed
finite volume. We perform our study non-perturbatively using lattice simulations with N = 0, 2, 4, 8
flavors of nearly massless two-component Wilson-Dirac sea quarks and employ the leading-twist
formalism (LaMET/SDF) to compute the PDF of pion at a fixed valence mass. We find that the
relative variations in the first few PDF moments are only mild compared to the changes in decay
constant, but the shape of the reconstructed x-dependent PDF itself dramatically changes from
being broad in the scale-broken sector to being sharply peaked in the near-conformal region, best
reflected in PDF shape observables such as the cumulants.

I. INTRODUCTION

QCD offers a unified theoretical description of the
mass-gapped hadron spectrum in its infrared limit, and
of the asymptotically free quarks and gluons in the short-
distance limit. While the perturbative facet of QCD has
been subject to stringent tests in collider experiments [1],
the only first-principle field theoretic description of the
low-energy hadronic physics with a controlled continuum
limit comes from the numerical lattice QCD computa-
tions. Even though lattice QCD reproduces the low-
energy behavior of QCD precisely (c.f., [2–4] and refer-
ences therein), a good theoretical understanding of QCD
by abstracting and characterizing the cause of the com-
plex nonperturbative low-energy features to few relevant
aspects of the theory is sought after. A fascinating as-
pect of QCD is the very fact that there is a non-zero
mass-gap in this classically conformal field theory. Un-
derstanding how length-scale emerges in QCD in terms
of the short-distance dynamics of the partons inside the
proton and other hadrons is one way to approach this
problem, and will be a key question that will be stud-
ied in the Electron-Ion Collider [5]. A starting point in
this approach is to break-down the energy-momentum
tensor [6, 7] into the quark and gluon momentum frac-
tions (c.f., [8, 9] for recent results for such a break-down
of proton momentum fraction), and the trace-anomaly
parts. This approach thus closely ties the understanding
of emergence of scale in the infrared to the parton distri-
bution functions (PDF), f(x) of hadrons and their mo-
ments, with x being the momentum fraction of hadrons
carried by a parton.

One of the low-energy scale generating mechanism is
the spontaneous chiral symmetry breaking (SSB) that
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leads to a dimensionful quark condensate, with the pion
being its Nambu-Goldstone (NG) boson. The natural
question then is whether we can learn about the SSB
physics by studying the quark and gluon structure of
pion, which has to be constrained in such a way as to
make it exactly massless in the chiral limit. Therefore,
not suprisingly, the PDF of pion has been determined
from multiple analyses of experimental data with increas-
ing levels of sophisticated analysis techniques, processes
being included and at different perturbative orders [10–
18]. Of special theoretical interest has been the valence
quark distribution and its puzzling (1−x)β large-x behav-
ior — whether the value of β ≈ 1 or ≥ 2. These aspects
have been extensively studied through many model cal-
culations [18–30]. With the rapid progress in the leading-
twist perturbative matching formalisms (LaMET [31, 32],
SDF [33–35], good lattice cross-section using current-
current correlators [36, 37], and see reviews [38–42]), the
lattice QCD computations of the pion PDF have been
able to weigh in on the large-x behavior [43–49]. While
the lattice findings seem to lean closer to β ≈ 1, the
studies [43, 49] found that variations in alternate analy-
sis methods could make the results consistent with 2 as
well. Thus, our understanding of the pion PDF is still
evolving, and will be guided further by some of the up-
coming experiments [50, 51] as well as the future lattice
computations.

The aim of this paper is to make use of the leading-
twist formalism and extend it to lattice computations of
PDF in a family of QCD-like theories, with the degree
of infrared scale-breaking varying within the family. By
studying how and which aspects of the quark structure
inside the Nambu-Goldstone boson (which we simply call
as the pion) change because of variations in the infrared
scale, induced by the choice of members in the family of
theories, we aim to understand the correlations between
the quark structure of pion and the long-distance vac-
uum structure. By such observations on how the PDFs
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evolve to their functional forms in the strongly-broken
theories as one slowly turns-on the infrared scales from
near-zero values, it also gives us a new viewpoint of the
nonpertubative origin of the parton distribution.

The model system we choose to work with is the 2+1
dimensional two-color (Nc = 2) QCD coupled to even
number N of two-component massless Dirac fermions in
a parity-invariant manner. In a previous study [52], we
found the global flavor symmetry in this system to be
spontaneously broken for N . 4, and conformal in the in-
frared for N ≥ 8 with nontrivial infrared mass anomalous
dimension. In order for us to meaningfully talk about the
ground-state with pion quantum number in the infrared
across both the scale-broken and conformal regimes, we
perform this study in a fixed box size and at finite va-
lence quark mass; as an upshot, an artificially produced
mass-gapped system from an underlying CFT serves as
a scientific control to compare a naturally mass-gapped
scale-broken QCD-like system with.

While reducing the computational cost of exploratory
studies as the present one, the 2+1 dimensional gauge
theories coupled to massless fermions by themselves are
being studied for their unexpected dual relationships [53–
56], as well as for their condensed-matter physics appli-
cations [57–59], especially the SU(2) theory being rele-
vant to spin liquids. As an alternative proposal to under-
standing the infrared mass gap to arise from quark-gluon
parton dynamics, the identification of few symmetry-
breaking operators, such as four-Fermi operators and
monopole operators that are naively irrelevant in the UV
Gaussian fixed point, but become relevant in an inter-
acting infrared fixed-point as the cause of the mass-gap
below the conformal window is being pursued in 2+1
dimensions [60–62]. Thus, the confluence of the recent
developments in studying the quark structure of hadrons
using lattice computations, with the fast pace of theoreti-
cal developments in 2+1 dimensional field theories in the
infrared, seems to be a promising avenue to understand
the confinement, symmetry breaking and the quark-gluon
interactions leading to them. We should also point to pre-
vious applications of the LaMET/SDF methodology used
in this paper to other QCD-like systems in Refs. [63–66].

The plan of the paper is as follows. In Section II, we
describe the aspects of parity-invariant 2+1 dimensional
SU(2) theory in the continuum that are relevant for this
paper. In Section III, we describe the set-up of the cal-
culation and state the problem addressed in this paper
precisely. In Section IV, we explain the leading twist
methodology that is used in this paper to obtain PDFs
on the lattice, and also explain its differences from 3+1
dimensional version. In Section V, we explain the lattice
setup and computational techniques, and in Section VI,
we explain the extraction of boosted pion bilocal matrix
element. These two sections can be skipped if one is not
interested in the technical details. In Section VII, we
present the results.

II. THREE-DIMENSIONAL
PARITY-INVARIANT SU(2) THEORY AND ITS

SYMMETRIES

The zero temperature system is defined on three-
dimensional Euclidean torus of physical extents `1× `2×
`3 with `3 � `1, `2. Here, we are using the convention
that µ = 1, 2 are the spatial x, y-directions, and µ = 3
is the temporal t-direction. We will refer to the the as-
pect ratio of the spatial slice as ζ = `2/`1. The parity-
invariant three dimensional QCD consists of SU(2) val-
ued gauge fields coupled to N flavors of two-component
fermions. Writing the action as S = Sg + Sf , the gauge
action is

Sg =
1

4g2

3∑
µ,ν=1

∫
d3xTrF 2

µν , (1)

with F being the SU(2) algebra valued field strength.
The important difference from the 3+1 dimensional QCD
is that the gauge coupling g2 has mass dimension 1, mak-
ing the theory super-renormalizable. This makes the
scale-setting simpler, as one simply needs to measure
all dimensionful quantities in the fundamental units of
g2. Once UV regulated, the continuum limit is simply
obtained by removing the regulator at the fixed values
of quantities in units of g2. Particularly for this work,
it will also greatly simply our computation of the PDF
compared to 3+1 dimensions. The dimensionful nature
of g2 also makes the theory trivially asymptotically free.

The SU(2) gauge fields aµ are coupled to an even num-
ber N = 2n flavors of Dirac fermions, which are two-
component spinors, in a parity-invariant manner; in or-
der to make the action parity-invariant, n of the fermion
flavors have mass +m and the other n have mass −m.
We will refer to the fermions with positive mass as u and
those with negative mass as d. This is a deliberate choice
to be analogous to the light flavors in 3+1 dimensional
QCD. Throughout this paper, we will simply refer to the
two-component Dirac fermions as quarks, to make the
connection to the real-world 3 + 1 dimensional QCD eas-
ier. The N = 2n flavor parity-invariant continuum action
is

Sf =

n∑
i=1

ui( /D+m)ui+

n∑
i=1

di( /D−m)di; /D =

3∑
µ=1

σµ(∂µ+iaµ)

(2)
with σµ being the three 2 × 2 Pauli matrices. In
2+1 dimensions, the continuum Dirac operator is anti-
Hermitian, and therefore, one can rewrite the Dirac op-

erator that the d-quarks couple to as − /D†. This will
be the form of the lattice regulated fermion action. We
will use the value of n as a tunable knob to control the
infrared fate of the theory.

The explicitly massive theory has a global
Sp(n)×Sp(n) symmetry [67] (with the symplectic
group being special for SU(2) gauge group due to it
being pseudo-real. For other generic color, it becomes
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U(n)×U(n) symmetry). At the massless point, the
theory has a larger Sp(N) symmetry, which gets spon-
taneously broken to Sp(n)×Sp(n) symmetry when N
is smaller than some critical flavor N < N∗ [68, 69].
The conformal window extends for all N above N∗.
Indications of non-zero value of N∗ have been seen in
previous large-N Schwinger-Dyson Equation study [70]
and in ε-expansion calculation [71]. In a previous lattice
study [52] to determine N∗, we found that it is likely
for N∗ to lie somewhere between 4 and 6, with N = 8
showing strong evidences in the finite-size scaling of
low-lying Dirac eigen values for being scale-invariant in
the infrared, with mass-anomalous dimension γm ≈ 0.4.
In the scale-broken side for N < N∗, the theory develops
a scalar condensate, Σ ≡

〈
uiui − didi

〉
that sets the

infrared scale even after the box size taken to infinity,
and sets the scale for the mass-gaps in the theory; the
hadronic content in the SU(2) theory are mesons of the
type qq and diquarks (“baryons”) of the type qT τ2q
with τ2 being the Pauli matrix in color space. In the
scale-broken sector, there will be 4n2 Nambu-Goldstone
(NG) modes. Of these, the 2n2 NG modes will be the
mesons

π+
ij = djui; π−ij = ujdi (3)

which we simply refer to as pions in this theory, that cou-
ple to the conserved flavor currentsAµ,ij(x) = djσµui(x).
Associated with the symmetry-breaking, there is the pion
decay constant 1,

〈0|A∓µ,ij(0)|π±ij ; pµ〉 ≡ −ipµFπ, (4)

with an on-shell pion at momentum p = (p1, p2, E). The
remaining set of NG modes will be of the diquark type
uTi σ2τ2dj and dTi σ2τ2uj that couple to the correspond-
ing conserved currents. Since these conserved currents
and extra NG modes are very special to the SU(2) the-
ory, we simply consider the pions π+ and π− that ex-
ists for any number of color, and roughly belong to the
U(2n)→ U(n)×U(n) symmetry breaking part of the en-
larged Sp(2n) → Sp(n)×Sp(n) symmetry-breaking pat-
tern for SU(2) gauge theory 2.

Before ending this section dealing with the system in
the continuum, we discuss the subtlety with parity sym-
metry in the theory. The spatial parity P acts as

x = (x1, x2, x3)→ x′ = (−x1, x2, x3),
[a1(x), a2(x), a3(x)]→ [−a1(x′), a2(x′), a3(x′)],

[ui(x), di(x)]→ [σ1u(x′), σ1d(x′)],
[ui(x), di(x)]→ [−ui(x′)σ1,−di(x′)σ1]. (5)

1 The mass-dimension of Fπ in d space-time dimensions is (d−2)/2;
1/2 in d = 3. We will therefore consider F 2

π to be the IR scale in
the subsequent sections

2 At the level of correlators after Wick contraction of fermions, the
diquark correlators can be seen to be degenerate with the that
of mesons.

For a single two-component Dirac fermion, N = 1, this
symmetry is broken by the mass term and also becomes
anomalous in the massless limit [72, 73]. While it appears
as though this is not a symmetry of Eq. (2) with even N ,
in fact, it is a symmetry once the fermions are integrated
out, or the symmetry can be made more obvious by per-
forming a parity P transformation along with a pairwise
flavor permutation, G : [ui(x), di(x)] → [di(x

′), ui(x
′)].

This GP operation is usually referred to as the parity in
the literature on parity-invariant theories in 2+1 dimen-
sions. Since we are interested in hadron spectroscopy, it
is easier to consider the usual notion of spatial parity P
above, and whether bilinears are odd or even under it.
As in 3+1 dimensions, the pions π and the correspond-
ing current Aµ in 2+1 dimensions are pseudo-scalars and
axial-vectors under the spatial parity P (However under
GP, the bilinears can be linearly combined to become
even under it, but this does not play any role in our fur-
ther discussions.)

III. DESCRIPTION OF METHOD AND
STATEMENT OF THE PROBLEM

We propose to study the internal quark structure of
NG boson as a function of the varying vacuum struc-
ture by varying the number of massless fermion flavors,
wherein the theory moves from being scale-broken to be-
ing conformal in the infrared. In this section we first dis-
cuss how to prepare a well-defined massive valence pion
on top of a vacuum containing massless sea quarks, and
then define its valence PDF which we will use to charac-
terize the pion quark structure.

A. Setting-up the computation such as to ensure
non-zero mass-gaps for all N

In the scale-broken side of small N , the infrared con-
tent of the theory are the mass-gapped hadrons, with the
typical gaps, denoted by MH , set by the IR scales such
as the condensate Σ, the decay constant Fπ, and in the
case of pure-gauge theory, the string tension σ. These
non-zero gaps survive the thermodynamic and massless
quark limit. On the other hand, in the conformal side of
the theory, the eigenstates of the Hamiltonian are gap-
pless and continuous in the thermodynamic limit. We
need to deform the theory to introduce a mass-gapped
spectrum in order for us to address the quark structure
of a distinct ground state for any number of flavors. Such
a deformation would only be a sub-leading correction in
the scale-broken side, but will be the leading contribution
in the conformal side. One can introduce the non-zero
mass-gap (1) by studying the theory at finite spatial vol-
ume, where the box size ` sets the infrared scale [74].
That is, the mass-gaps become MH(`, ζ) = c(ζ)/` where
ζ is the aspect ratio of the two-dimensional spatial torus,
and c is some function of ζ. (2) by introducing finite
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quark mass m in the theory [75], so that all the masses
receive finite mass corrections with MH(m).

In this work, we will take a hybrid approach, which is
easier to implement in a lattice calculation, than being
theoretically pristine. In order to capture the effect of
N flavors of fermions without them getting decoupled in
the infrared, we sample the gauge configurations in the
theory coupled to N massless fermions in a finite spatial
volume, `2 with ζ = 1. In the lattice theory terminology,
the sea quarks are massless. On the gauge fields sampled
this way, we construct pion states πij built out of ui
and dj quarks which have a finite quark mass m, which
is tuned so that the mass of pion for any flavor N in `2

spatial volume is an arbitrary chosen value. In the lattice
terminology, the valence pion is made massive by tuning
the mass of the valence quark masses to non-zero values.
This approach has the advantages that (a) the depletion
of the infrared scales is preserved due to the presence
of massless fermions, and (b) the pion is massive even in
the scale-broken side which makes computation of matrix
elements feasible without large periodicity effects [43],
which is a technical boon.

We chose the mass of the valence pion, Mval
π = 0.53g2,

and kept this fixed across all N . The reason for this
value being that the pion is light enough to have the
chiral properties in the scale-broken side, whereas in the
conformal side, it will ensure that the mass Mval

π (m, `, ζ),
which is now a function of valence quark mass and spatial
volume, is dominated by the finite m. This preference is
because we will use hadrons boosted in the x-direction
in our computation of PDF, which will cause a Lorentz
expansion of extent `1 to γ`1 in the rest frame of that
state, which effectively will decrease the aspect ratio ζ to
ζ/γ in that state’s rest-frame [76]. Our choice of Mval

π

is to minimize the effect of this variation in ζ on the
energy-momentum dispersion for the ground state in the
IR conformal sector. One could also use lattices with
small ζ (i.e., `1 � `2) to begin with, but we realized
it post facto and intend to improve the calculation with
ζ < 1.

B. Definition of u− d and valence PDFs

Having described the preparation of valence pion state
of mass Mval

π above, we now specify how to study its
valence PDF, fv(x), which we will use to characterize the
UV quark structure of the pion. To define a valence PDF,
we should first consider the u− d PDF of the π+

ij = uidj
pion which has a well defined operator definition as

fui−dj (x) ≡
∫
dξ−

4π
e−ixξ

−P+〈πij ;P |Oσ+ |πij ;P 〉,

Oσ+(ξ) =

n∑
k=1

(
uk(ξ−)σ+W+(ξ−, 0)uk(0)

−dk(ξ−)σ+W+(ξ−, 0)dk(0)

)
.

(6)

Here, the light-cone coordinates ξ± = (x3 ± x1)/
√

2,

σ± = (σ3±σ1)/
√

2 and W+(ξ−, 0) is the straight Wilson-
line along the light-cone connecting the quark and anti-
quark that are displaced by ξ−. Roughly speaking, the
bilocal operator Oσ+ counts the number of massless u
type quark minus the number of d type quark moving
long the light-cone, each carrying a fraction x of the mo-
mentum P+. We have written the operator O formally
to be a singlet in the unbroken Sp(n)×Sp(n) symmetry
but non-singlet in the full Sp(2n) symmetry. For prac-
tical purposes, we can simply speak of the operator of
the type uiui − djdj for a pion of type πij . Since the
magnitude of the quark masses are all the same as |m|,
we will drop the indices i, j from πij and fui−dj (x). The
u−d PDF has support from x ∈ [−1, 1]. The charge con-
jugation symmetry and the GP symmetry ensures that
fu−d(x) = fu−d(−x). Thus, we can write,

fu−d(x) =

{
0.5fv(x) for x > 0,

0.5fv(−x) for x < 0.
(7)

This defines for us the valence PDF fv(x) of pion defined
in x ∈ [0, 1] 3. Their moments are defined as

〈xn〉u−d =

∫ 1

−1

xnfu−d(x)dx; 〈xn〉v =

∫ 1

0

xnfv(x)dx,

(8)
respectively. The even moments 〈x2k〉u−d = 〈x2k〉v, but
for the odd ones, 〈x2k−1〉u−d = 0 whereas 〈x2k−1〉v 6= 0.
Since we can only determine fu−d via the well-defined
operator definition above, we will be inferring properties
of fv(x) indirectly from fu−d(x) in this paper.

With the set-up and key quantities defined, the precise
questions we want to address are the following. As we
increase N , the IR scales will vanish, and can be quanti-
fied by how Fπ decreases. Is fv(x) of the pion sensitive
to the changes in the symmetry-broken vacuum given its
role as the NG boson? If so, to what degree the PDF
changes with Fπ and what aspects of the pion valence
PDF and its moments are sensitive to these changes?

IV. LEADING-TWIST OPE IN A PLANAR
WORLD

The defining equation for the PDF involving the quark
and antiquark separated on the light-cone is given in Eq.
(6). Instead, one can take the matrix element

2P+M(ξ−, P+) ≡ 〈π;P |Oσ+ |π;P 〉, (9)

as the defining central object, which is also called as Ioffe-
time distribution [77], and one can define the moments

3 By defining antiquark distribution fq(x) = −fq(−x), and using
the same symmetry argument, one can see that fv(x) = fu(x)−
fu(x) for x > 0.
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〈xk〉u−d of u−d PDF through its expansion as a function
ν = P+ξ−, referred to as the Ioffe time in the literature,

M(ξ−, P+) =M(ν) =

∞∑
k=0

(−iξ−P+)k

k!
〈xk〉u−d with,

〈π;P |
[
uσ+(iD+)ku− (u↔ d)

]
|π;P 〉 ≡ 2P+(P+)k〈xk〉u−d.

(10)

Only even u−d moments are non-vanishing in the above
equation for the pion. Since, the 2+1 dimensional QCD
is super-renormalizable, owing to the dimensionful cou-
pling, there are no UV divergences once the theory is
regularized. Therefore, there are no additional scales µ
entering the matrix elements defining 〈xk〉 in the equa-
tion above, unlike in 3+1 dimensions. Hence, one can
talk of the PDF without referencing an MS renormaliza-
tion scale of the PDF in 2+1 dimensions, as is the case in
the super-renormalizable 1+1 dimensional QCD as well.

A brute-force Monte Carlo computation of M(ξ−P+)
is not possible due to the unequal time separation in the
operator Oσ+ . Computing the matrix elements of the lo-
cal operators [78] defining the PDF moments in Eq. (10)
is one possibility. Another recent method [31, 33], which
has been proven to be very successful in 3+1d, is to com-
pute the following equal time bilocal matrix element of
the pion boosted with a momentum P = (P1, 0, E(P1)),

2EMB(z1, P1) ≡ 〈π;P |Oσ3(z1)|π;P 〉; where,
Oσ3(z1) = u(0)σ3W1̂(0, z)u(z)− (u↔ d), (11)

containing a purely spatial displacement z = (z1, 0, 0)
of the quark and anti-quark. The operator now has σ3,
along the t-direction instead of the σ+ present in Eq.
(6). The straight Wilson line along the x-direction join-
ing the quark and antiquark is denoted as W1̂. This equal
time matrix element in 3+1 dimensions has been called
quasi-PDF matrix element, pseudo-ITD matrix element
or, simply as Ioffe-time Distribution in the literature. In
this paper, we simply refer to the equal time correla-
tion above as the bilocal quark bilinear matrix element
(or simply as bilocal matrix elements) due to its central
role in both quasi- and pseudo- approaches to PDF from
lattice, and the present work can be viewed from any
perspective the reader wants to approach it with. The
OPE of the above equal time bilocal matrix element [79],
arranged by twist, gives

MB(z1, P1) =

∞∑
k=0

(−iz1P1)k

k!
〈xk〉u−d

+O
(

(g2z1)2, (F 2
πz1)2, (Mval

π z1)2

)
,(12)

with the first term being at leading twist, and the rest are
higher twist corrections due to the non-vanishing P 2 and
z2 present off the light-cone, unlike in the similar expres-
sion Eq. (10) on the light-cone. The leading twist term is
exactly the same as the one in Eq. (10). In 3+1 dimen-
sions, the similar expression [34, 79] will involve a match-
ing Wilson-coefficient cn(z2µ2) which is 1 at tree-level

and the terms higher order in coupling capture log
(
z2µ2

)
divergence in the limit of z2 → 0. In the above expression
for 2+1 dimensions, the Wilson coefficients take their tree
level value cn = 1, and there are no higher order pertur-
bative corrections to this tree-level value at leading twist,
making it exact at leading twist. This peculiarity in 2+1
dimension arises because the coupling g2 has mass dimen-
sion 1, which means that a perturbative correction to cn
increases the twist of the term occurring in the OPE by
1. Therefore, we have discarded such higher-order terms
as (g2z1)2 higher-twist corrections. Along with such cor-
rections, there could be other genuine higher twist cor-
rections coming from higher-dimensional operators that
occur in the OPE, which we have denoted by a (F 2

πz)
2

corrections. Even at leading twist, there will be target
mass corrections [80, 81] coming from the trace terms
which bring factors of P 2 = (Mval

π )2. We have denoted
these as the (Mval

π z1)2 corrections above.
In the above discussion, we have been a little cav-

alier about the Wilson-line. In 3+1 dimensions, the
self energy divergence of the Wilson-loop causes a non-
perturbative exp(−cz1/a) suppression of Wilson-line as a
function of z [82–84]. The non-perturbative renormaliza-
tion of the bilocal operator removes this nonperturbative
z1 dependence. In 2+1 dimensions, there will instead
be exp

(
−c′g2z1

)
behavior as g2 is dimensionful; one way

to justify this is to see that the set of 1-loop diagram
in real-space that contributes to the αs(z1a)/a2 behav-
ior of the bare Wilson-line in 3+1 dimensions, now con-
tributes g2(z1a)/a; where, the factor of (z1a) in both
the dimensions comes from the integral measure when
the end-points of the gluon loop on the Wilson-line be-
come nearly coincident, whereas, the other 1/a2 factor
in 3+1 dimensions comes from |z|−2 gauge field prop-
agator, and similarly the 1/a factor in 2+1 dimensions
comes from the corresponding |z|−1 gauge field propaga-
tor. The residual exp

(
−c′g2z

)
effect of the Wilson-loop

insertion, which is hadron momentum independent, is
then a non-perturbative higher-twist effect, which we re-
move by forming ratio as done in 3+1 dimensions [34],
namely

M̃(z1, P1) =

(MB(z1, P1)

MB(z1, 0)

)( MB(0, 0)

MB(0, P1)

)
, (13)

which we expect to converge to leading-twist expansion
in Eq. (12) better in a moderate range of z1 and P1.
The reason for the second factor in the above equation
to ensure z1 = 0 matrix element is 1 by definition, since
it is the charge of the pion. From the OPE, one can
obtain the light-front Ioffe-time DistributionM from the
Euclidean construction M̃ in the limit,

M(ν) = lim
z1→0,P1→∞
P1z1=ν

M̃(z1, P1). (14)

In practice however, we will simply be looking at a set
of data that spans a range of z1 and P1. If the leading
twist expansion works, we expect a scaling M̃(z1, P1) =
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M̃(z1P1) for all z1 and the range of P1 where the scaling
violations from z2

1-type higher twist corrections in Eq.
(12) are negligible. Based on fits of Eq. (12) to a subset
of data where the leading twist OPE works the best, we
will be able to inferM(ν), and the PDF and its moments.

V. LATTICE METHODOLOGY AND
TECHNICAL DETAILS

In this section, we detail the lattice regularization of
2+1 dimensional QCD in a parity-invariant manner, the
gauge field statistics, and the construction of correlators
required to build the pion bilocal matrix element.

We regulate the system defined on `1 × `2 × `3 on a
periodic L1×L2×L3 lattice with isotropic lattice spacing
a = `µ/Lµ. In this paper, we will be using 28 × 28 × 48
lattices. The basic gluon object in the computation are
the SU(2) gauge-links, Uµ,x connecting the lattice site x
to x+µ̂. The gauge action is the lattice regulated Wilson
single plaquette action,

Sg = −β
2

3∑
µ>ν=1

∑
x

Re TrPµν(x); β =
4

g2a
, (15)

where Pµν(x) is the SU(2) valued plaquette at lattice site
x = (x1, x2, x3). Periodic boundary condition is imposed
on all three directions (an explicit antiperiodic boundary
condition in the temporal direction is superfluous as −1
is part of the SU(2) gauge group). We will use a single
fixed lattice spacing β = 9.3333 in this work. Our choice
is based on an observation in the study of glueballs in 2+1
dimensional pure-gauge SU(2) theory [85], where L1 =
L2 = 28 at this lattice spacing was found to be close to
the thermodynamic limit.

The gauge fields are coupled to a system of N =
2n massless fermions, which we regulate by using two-
component Wilson-Dirac fermions [52, 86, 87], defined
using the regulated Dirac operator,

/Dw = /Dn +B +mw, (16)

where /Dn is the naive Dirac operator,

/Dn =
1

2

3∑
µ=1

σµ

(
U (n)
µ,xδx+µ̂,y − U (n)†

µ,x−µ̂δx−µ̂,y

)
, (17)

B is the Wilson term,

B = −3δx,y+
1

2

3∑
µ=1

(
U (n)
µ,xδx+µ̂,y + U

(n)†
µ,x−µ̂δx−µ̂,y

)
, (18)

and mw is the Wilson fermion mass in lattice units. The
lattice fermion is coupled to the gauge fields via n-step

Stout smeared [88] gauge links, U
(n)
µ,x , in order to reduce

the lattice artifacts coming from irrelevant UV fluctu-

ations [89, 90], with the identification U
(0)
µ,x = Uµ,x. We

used 1-step stout smeared links in the Wilson-Dirac oper-
ator with optimal value ε = 0.65 for the smearing param-
eter. The lattice regulated action that is exactly invariant
under spatial parity is

Sf =

n∑
i=1

ui /Dwui −
n∑
i=1

di /D
†
wdi, (19)

making the partition function,

Z =

∫
[dU ] det

(
/Dw /D

†
w

)n
e−Sg , (20)

with a positive definite measure that can be simulated
with Monte Carlo algorithms. The theory only has an
Sp(n)×Sp(n) symmetry even when mw is tuned to the
massless point, and the full Sp(2n) symmetry will be re-
covered in the continuum limit.

A. Gauge field generation

We studied the theories with N = 0, 2, 4, 8 of approxi-
mately massless Wilson-Dirac (sea) quarks at a fixed lat-
tice spacing corresponding to β = 9.3333, and using fixed
282 × 48 lattices. We generated gauge configurations us-
ing the standard Hybrid Monte Carlo algorithm [91] us-
ing n copies of Gaussian noise vectors to sample the de-

terminant det
(
/Dw /D

†
w

)
. We tuned the value of the Wil-

son mass mw to the approximate massless point such that
the smallest Dirac eigenvalue Λ1(mw) has a minimum at
the tuned mw in the finite fixed volume. Since the Dirac
eigenvalues are gapped in finite volume, the eigenvalues
occurring are not zero at the massless point, and hence
makes the HMC tractable. For N = 2, 4, 8, the values
of sea quark mass mw = −0.06836,−0.06513,−0.06060
respectively. The details of the tuning are given in [52].
We used Omelyan integrator [92] for the molecular dy-
namics (MD) evolution. The analytical results on the
fermion force calculation for the MD evolution are given,
for example, in [88, 93]. We dynamically tuned the step
size of the integrator such that the acceptance rate was
at least 85%; in practice the average acceptance was typ-
ically 90% at the different N . For thermalization, we
discarded the first 400 trajectories in each stream that
were started from random configurations. After that,
gauge configurations every 5 trajectories were stored and
used for correlator measurements. This way, we gen-
erated 24.5k, 25.2k, 27.3k and 30.2k configurations for
N = 0, 2, 4, 8 flavor respectively. The autocorrelation
time is less than 5 trajectories, and to be safe, we used
jack-knife blocks of bin size larger than 20 configurations
(∼ 100 trajectories).
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B. Choice of valence quark masses to create a
massive valence pion

Using the configuration generated with near massless
sea quarks, we tuned the valence Wilson-Dirac quark
mass to produce a valence pion ground state of mass
Mval
π = 0.53g2 in units of g2, or Mval

π a = 0.2265 in lat-
tice units. We performed this tuning for all N = 0, 2, 4, 8
flavors, so that the valence pion mass is held fixed. We
performed this analysis by scanning a set of mw and in-
terpolating the Mval

π dependence on mw, and zero-in on
the exact tuned mass value. This way, we found the
tuned valence quark mass corresponding to 0.53g2 pion
mass to be mval

w = −0.02,−0.01875,−0.0235 and −0.051
for N = 0, 2, 4 and 8 respectively. In the subsequent com-
putations to be described below for the structure calcula-
tion, we used the above mass in the Wilson fermion prop-

agators /D
−1
w . For this choice of valence pion mass, the

values of e−M
val
π (aL3−2ts) = 0.0043 for ts = 12a, implying

only a small periodicity effect of 0.4% when operators are
temporally separated by 12 lattice units.

C. Two point function computations

The first step is to find the ground and the excited state
contributions to the pion two-point function. Since the
leading twist formalism demands boosted pion states, we
construct pion sources that project to definite momentum
states. Namely, we construct the two point functions,

C2pt(ts;P1) =
〈
πS(x0, ts)π

†
S(P, 0)

〉
, with,

πS(P, ts) =
∑
x

d(x, ts)u(x, ts)e
−iP·x, (21)

using smeared source πS(P, 0) and smeared sink
πS(P, ts) that project to momentum P = (P1, 0). We
chose a single source point x0 per configuration. We use
the momenta,

aP1 =
2π

L1
n1, (22)

for n1 = 0, 1, 2, 3, 4. At the given fixed β, these mo-
menta correspond to P1/g

2 = 0.52, 1.05, 1.57.2.09 respec-
tively in units of coupling g2. In order to suppress the
tower of excited states, we use Wuppertal smeared quark
sources [94] to construct the pion source and sink. For
this, we used 10 steps of two-dimensional stout smeared
links to construct the smearing kernel with smearing
parameter ε2d = 0.3 in order to smoothen the spatial
links further. Through a set of tuning runs at P1 = 0,
we found the optimal number of steps nwup of Wup-
pertal smearing to be 80 with Wuppertal smearing pa-
rameter δ = 0.6 for N = 0, 2 flavors, for N = 4 we
found (nwup = 120, δ = 0.6), and for N = 8 we found
(nwup = 160, δ = 0.6), reflecting an increasing effective
radius of pion with increasing number of flavors. In order

to increase the overlap with the ground state at non-zero
momenta, we used boosted Wuppertal smearing [95] built
out of quark sources that are boosted with a quark mo-
mentum k1 = ζ ′P1 which then are used to construct the
Wuppertal sources (with the same smearing radius as at
P1 = 0). We found the optimal boost parameter ζ ′ for
n1 = 1, 2, 3, 4 to be 0.8, 0.8, 0.7, 0.6 respectively.

The fermion contractions to evaluate Eq. (21) are simi-
lar to the 3+1 dimensional case, with the thing to remem-

ber is 〈daxd
b

y〉 =
(

[− /D†w]−1
)ab
xy

and 〈uaxuby〉 =
(
[ /Dw]−1

)ab
xy

.

One can then simply use
(

[− /D†w]−1
)
xy

=
(
[− /Dw]−1

)†cs
yx

with A†cs meaning a conjugate transpose of A only over
color-spin space, thereby halving the number of inver-
sions, just like in 3+1 dimensions. We used Conjugate
Gradient algorithm for inversion here (and also in the
HMC) with a stopping criterion of 10−10.

D. Three point function computations

The next important ingredient in the PDF computa-
tion is the three-point function between the pion source,
pion sink and the bilocal operator Oσ3

,

C3pt(ts, τ ;P1, z1) ≡
〈
πS(x0, ts)Oσ3

(z1; τ)π†S(P, 0)
〉
,

(23)
with the zero momentum projected bilocal operator that
is inserted at a time-slice τ between the pion source and
sink at time-slice ts,

Oσ3
(z1; τ) =

∑
x

(
u(x)σ3W1̂(x, x+ L)u(x+ L)−

d(x)σ3W1̂(x, x+ L)d(x+ L)

)
; x = (x, τ).(24)

Here, the quark and antiquark are separated along the
x-direction by L = (z1, 0, 0), and the operator is made
gauge invariant with the smeared Wilson line, W1̂ =∏
x′∈[x,x+L] U

(n)
1,x′ . We used only 2-level stout smeared

links U
(2)
1,x′ for this construction, so as to not risk the

smearing to spoil the UV physics. The pion source and
sink are smeared using the same set of parameters used
for the corresponding two-point function. It should be
noted that the u and d quark operators appearing in Oσ3

are simple point operators.
The contractions for the above three-point function

were performed using the sequential-source trick (c.f.,
appendix of [45] for details relevant to the bilocal op-
erator) to take care of the necessary Fourier summation
over two-dimensional time-slice at the sink. It should
be noted that, similar to the u − d three-point function
of the pion in 3+1 dimensions, the three-point function
is purely real at all P1. Also, there are no fermion-line
disconnected pieces; this comes non-trivially at finite lat-
tice spacing, by the parity invariance of the action which
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FIG. 1. The spectral content of pion two-point functions in N = 0, 2, 4, 8 quark flavors from left to right. (Top) The
effective mass from pion two-point function at different momenta (different colored symbols) shown as a function of source-sink
separations ts/a in lattice units. The bands are the expected effective mass from two-state fits to the two-point function.
(Bottom) The dispersion relation between ground state (red circles) and the first excited state (purple triangle) energy on
boosted momentum is shown. For comparison, the expected single particle dispersion in the continuum (blue dashed curve)
and on the lattice (black curve) are shown. The ground state pion energy extracted from axial-vector A1 correlator are also
shown at non-zero momenta.

guarantees that 〈Tr( /D
−1
w )〉 = −〈Tr( /D

†
w

−1
)〉. If one used

2+1 dimensional overlap fermions [96], the cancellation
of disconnected piece would have been on each configu-
ration.

E. Pion decay constant computations

We will quantify the presence of infrared scale in the
system using the pion decay constant, Fπ, defined in
Eq. (4). We extracted this matrix element using the
axialvector-pion two-point function (c.f., [97]),

Cπ−A(ts) ≡
〈
A3(x0, ts)π

†
S(P = 0, 0)

〉
; A3(x) = d(x)σ3u(x).

(25)
The pion source was optimally Wuppertal smeared,
whereas the current is constructed out of point quark
operators. We will describe the analysis of the two-point
function leading to Fπ in a subsequent section.

VI. ANALYSIS OF CORRELATOR DATA TO
OBTAIN THE PION BILOCAL MATRIX

ELEMENT & Fπ

A. The spectral content of pion correlator

The two point function in Eq. (21) gives information
on the spectrum of states contributing to the pion quan-
tum number, that we will use to extract the ground state
boosted bilocal matrix element. In the top panels of Fig.
1, we have shown the effective masses for the pion at all

flavors as a function of source-sink separation ts, both in
lattice units. For each flavor, the effective masses at the
five momenta are shown by the different symbols. First,
one can see that the ground state displays a well defined
plateau for all N , even for N = 8, thereby demonstrating
the effectiveness of gapping the spectrum by finite valence
quark mass and volume even in the otherwise conformal
infrared theories. We can see that the value of the ground
state mass has been tuned well to be ≈ 0.227a in all the
theories, which corresponds to 0.53g2 physical mass. The
smallest ts from where one can see a well-defined plateau,
at least for the smallest three momenta, increases with
momenta due to the decreasing gap with the excited state
with the boost. However, we have tuned the Wuppertal
smearing and quark boost parameters precisely to reduce
the amplitudes of the excited state as best we could, and
the any observed deviation from the plateau at smaller
ts was the best we could reduce it to, without compro-
mising on the noise at larger ts. Since the range of ts
that we will use to analyze the three-point function falls
in the small ts region without the plateau, we need to
understand the spectral content of C2pt better.

We take the spectral decomposition of C2pt,

C2pt(ts;P1) =

Nstate−1∑
i=0

|Ai|2
(
e−Ei(P1)ts + e−Ei(P1)(aL3−ts)

)
,

(26)
and truncate it at Nstate = 2, which is referred to as the
two-state ansatz. We found that this is enough to de-
scribe the behavior of C2pt(ts) for all the P1 used, even
starting from ts = 2a and be able to reproduce the value
of ground state E0, as obtained from one-state fit with



9

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0 2 4 6 8 10 12

N = 0

R
(t

z
,τ
)

τ

z = 3a, nz = 3

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0 2 4 6 8 10 12

N = 2

R
(t

z
,τ
)

τ

z = 3a, nz = 3

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0 2 4 6 8 10 12

N = 4

R
(t

z
,τ
)

τ

z = 3a, nz = 3

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a

0.54

0.56

0.58

0.6

0.62

0.64

0 2 4 6 8 10 12

N = 8

R
(t

z
,τ
)

τ

z = 3a, nz = 3

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12

N = 0

R
(t

z
,τ
)

τ

z = 6a, nz = 3

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a

−0.15

−0.1

−0.05

0

0.05

0.1

0 2 4 6 8 10 12

N = 2

R
(t

z
,τ
)

τ

z = 6a, nz = 3

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a

−0.2

−0.15

−0.1

−0.05

0

0.05

0 2 4 6 8 10 12

N = 4

R
(t

z
,τ
)

τ

z = 6a, nz = 3

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0 2 4 6 8 10 12

N = 8

R
(t

z
,τ
)

τ

z = 6a, nz = 3

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a

FIG. 2. The estimation of matrix element h00(z1, P1) by the two-state fits to the ratio, R(ts, τ). Some sample fits to the
operator insertion point, τ , and the source-sink separation, ts, dependence of R are shown in the different panels; the top panels
are at z1 = 3a and the bottom ones are z1 = 6a, at a momentum of n1 = 3. For each z1, the panels from left to right are from
different number of flavors.

the minimum ts > 10a. The uncertainly bands for the
effective mass curves for the different P1 based on the
two-state fits over the range ts ∈ [3a, 24a] are also shown
in Fig. 1 along with the data. The quality of the fits are
seen to be good, which is also reflected in χ2/dof ≈ 1 for
the fits. We repeated the two-point function computa-
tion using 〈A1(0)A1(ts)〉 correlators also; at P1 = 0, this
gives the mass of the axial-vector meson, but at non-zero
momentum the lowest mass comes from the pion due to
the non-zero overlap ∼ P1Fπ with the lighter pion state.
Thus, at non-zero momenta this gave a cross-check on
the determined ground-state values of the pion.

In the bottom panels of Fig. 1, we have shown the best
fit values of the ground state energy E0 and the first ex-
cited state E1 as a function of boosted momentum P1.
The different panels are again for the five different N . We
have compared the data for E0(P1) with the curves for
the single particle dispersion in the continuum, E0(P1) =√
P 2

1 +Mval
π

2
, shown as the blue dashed curves. There is

a slight discrepancy which increases with P1, as P1a ≈ 1
at the largest momentum used. We can understand this
by, instead comparing the data with the lattice disper-
sion, cosh(E0(P1)a) = cosh

(
Mval
π a

)
+ 1− cos(P1a). This

lattice single particle dispersion curve is shown as black
continuous curve in the figures. The nice agreement tells
us that there are possible lattice corrections at the level
of 3− 4% at the highest momenta, which can be reduced
in the future by going to much finer lattices. But this
effect will persist for all the N , and therefore, we do not
expect this to affect variations as a function of N that we
are interested in. As a cross-check, we have also shown
the values of ground-state masses of pion as extracted
from the axial-vector A1 correlator at non-zero momenta,
which can be seen to agree with the values from the sim-

ple pion correlator. While the slight disagreement with
the dispersion curve at higher momenta are understood
as lattice spacing effect, a slight disagreement at the level
of 4% is also seen at the smallest non-zero momentum
corresponding to n1 = 1 for N = 4 and 8. This tells us
that the valence pion mass for the near-conformal and
conformal theories mildly originate from aspect-ratio(ζ)-
dependent 1/` effect that we described in Section III, in
spite of our effort to use somewhat larger value of valence
quark mass. As the pion is boosted, the aspect ratio in
the boosted frame decreases, and causes the observed
small discrepancy at the smallest non-zero momentum.
At the larger momentum, these aspect-ratio variations
are not important as the leading E ∝ P1 relativistic de-
pendence takes over. Therefore, as a precaution, we will
avoid using n1 = 1 momentum in our analysis of three-
point function to avoid systematic effects. In a future
computation, we aim to rectify this by using lattices with
ζ < 1.

In the next section, we will use the extracted energies
and amplitudes in the two-point function to determine
the ground state bilocal matrix element from the three-
point functions.

B. The extraction of the pion bilocal matrix
element from three-point function

The required ground state matrix element of the bilo-
cal operator can be obtained from the spectral decompo-
sition of the three-point function,

C3pt(ts, τ ;P1, z1) =

Nstate−1∑
i,j=0

A∗iAjhij(z1, P1)e−Ei(ts−τ)−Ejτ ,

(27)
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FIG. 3. The matrix elements at N = 0, 2, 4, 8 (left to right) obtained by extrapolation are shown as a function of quark-
antiquark separation z1/a. The different colored symbols correspond to different fixed momenta P1, which are shown in the
legend in units of gauge coupling g2.

with the amplitudes Ai and energies Ei, being the
same as obtained from the two-point function anal-
ysis. The matrix elements are the terms hij =
〈Ei, P1|Oσ3

(z1)|Ej , P1〉. Therefore, the leading term
h0,0 is the required ground state matrix matrix element
〈π;P1|Oσ3(z1)|π;P1〉.

We extracted this leading term by fitting the ts, τ de-
pendencies of the actual C3pt data at various fixed z1 and
P1 using the above spectral decomposition truncated to
Nstate = 2 (since we found that Nstate = 2 was able to
describe the corresponding two-point function well even
from small ts ≈ 2− 3a). In practice, we constructed the
ratio,

R(ts, τ) ≡ C3pt(ts, τ)

C2pt(ts)
, (28)

with the P1 and z1 arguments being the same for both
numerator and denominator, and hence notationally sup-
pressed above. We then fitted R(ts, τ) using the ratio of
expressions in Eq. (27) and Eq. (26), with hij as the fit
parameters. We took the values of the amplitudes |Ai|
and energies Ei from the two-state fit analysis of C2pt

with the fit range over ts ∈ [3a, 24a]. We used these
(Ai, Ei) from the same Jack-knife blocks as used for the
three-point function analysis. We performed these fits
over τ ∈ [2a, ts−2a] to reduce larger excited state effects
for insertion closer to source and sink. Further, we used
all the data for ts/a ∈ [6, 8], [6, 10], [6, 12], [6, 12], [6, 10]
for momenta n1 = 0, 1, 2, 3, 4 respectively; we skipped
ts = 10a, 12a for n1 = 0 in order to reduce the 0.4%
lattice periodicity effect due to the smaller E0, and sim-
ilarly we skipped only ts = 12a for the larger n1 = 1
momentum. We did not used ts = 12a for n1 = 4 as the
two-point function for ts > 10a was very noisy. While the
extrapolated values were insensitive to changes in fitting
windows, we kept the fit systematic fixed for all N so
that even if there is any unnoticed systematic error, it is
unlikely to affect the overall variations in the data as a
function of N , which is our interest in this paper. Such
a two-state fit to the ratio R resulted in good fits for all
z1 and P1.

Some sample data for R along with the results from
the fits are shown in Fig. 2 for the case of momentum

n1 = 3. The top and the bottom panels are for fixed
z1 = 3a and 6a respectively, with the different N shown
in the different columns. The fits, shown as bands, agree
with the data well for all N , and the extrapolated value
is shown as the horizontal band. The ground state ma-
trix element MB(z1, P1) = h00(z1, P1) so extracted, are
shown as a function of z1/a in Fig. 3; with each panel
for different N , and in each panel, the data for different
momenta differentiated by color and symbols. The data
has not been symmetrized by hand with respect to z1 and
−z1, so as to show that the symmetry emerges automat-
ically, which is a simple cross-check on the computation.
The local matrix element corresponding to z1 = 0 should
be precisely be 1 if we had used an exact conserved cur-
rent on the lattice, which we have not. So, one sees the
matrix element at z = 0 to be slightly below 1 at z = 0
and this difference with 1 increases with larger momen-
tum; we found this lattice spacing effect to be of the kind
(aP1)2, which was also seen in 3+1 dimensional computa-
tion [43]. We will see that such effects are nicely canceled
by an overall normalization such that z = 0 matrix ele-
ments are exactly 1; this is justified since the information
on the PDF comes from the variations in z1 and P1, and
not by a fixed overall normalization.

C. Determination of pion decay constant

We determined the pion decay constant through the
spectral decomposition of the correlator CA−π in Eq. (25)
as,

CA−π(ts) =
−Fπ√
2Mval

π

Mval
π A0

(
e−M

val
π ts − e−Mval

π (aL3−ts)
)

+A′e−E
′ts + . . . , (29)

which follows from Eq. (4) with µ = 3. The factor of√
2Mval

π is to convert the lattice normalization of state
vectors to the relativistic one used in defining Fπ. The
factor A0 is the amplitude 〈0|πS |π〉, which we take from
the smeared-smeared pion two-point function at zero mo-
mentum; we only determine the magnitude of A0, and
therefore we are assuming there is no phase in A0. The
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FIG. 4. The determination of pion decay constant Fπ. The
data points are the effective F eff

π (ts) as determined from the
〈A3π〉(ts) correlator, and the curves are fits to Fπ +Ae−δmts .

correlator is antiperiodic in the t-direction, which can be
seen by a rotation in the xt-plane; taking (x1, x2, x3) →
(−x1, x2,−x3) along with u, d → σ2u, σ2d. The excited

state contributions captured by e−E
′ts . We fit the above

functional form along with a subleading excited state con-
tribution to the CA−π(ts) correlator to determine Fπ.
Such fits worked well even starting from ts = 2a with the
fitted value of Fπ independent of the fit range. In Fig. 4,
we show an effective F eff

π (ts) obtained by inverting right-
hand side of Eq. (29) without excited state term to get
a ts dependent value of Fπ. The curves in the plot are
the expectations for F eff

π (ts) from the excited state fits,
which can be seen to perform well. From this analysis,
we find Fπa

0.5 = 0.200(1), 0.1574(7), 0.1249(4), 0.0164(1)
for N = 0, 2, 4, 8 in lattice units.

VII. RESULTS

We will present the results in the following logical or-
der; first, we will explain how we measure the presence
of infrared scale, by which we establish that the infrared
scales are indeed depleted as a function of number of
massless fermion flavors N . Then, we will infer the Mellin
moments of the PDF and reconstruct the PDF based on
a two-parameter model, and see how the PDF related
quantities change as a function of N . This induces a
correlation between the infrared scale and the PDF pa-
rameters, which we look for.

A. The depletion of infrared scales

For the N = 0 pure-gauge theory, the confining in-
frared can simply be characterized by the string-tension,
which takes a value

√
σ = 0.335g2 for the SU(2) the-

ory [85]. For theories with non-zero N , string-tension is
not a good parameter to use; instead we use the conden-
sate Σ and the decay constant Fπ. In a previous study
with R. Narayanan [52], we measured the scalar conden-
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FIG. 5. The changes to the infrared scales when the number
of massless quark flavor is changed. (Top panel) the quark
condensate as a function of decay constant, both implicitly
depending on the number of quark flavors. (Bottom panel) a
similar plot showing how the mass gap between the pion and
the axial vector changes as a function of decay constant.

sate Σ that breaks the Sp(N) global flavor symmetry,
as a function of N in the massless limit of the theory.
For this, we compared the finite-size scaling (FSS) of
the low-lying eigenvalues, λi ∝ ziΣ−1`−3 behavior of the
eigenvalues in an `3 box, where the proportionality con-
stant zi are the eigenvalues of the random matrix model
from the non-chiral Gaussian Orthogonal Ensemble [98],
which shares the same symmetries as the Dirac operator
coupled to SU(2) gauge field in 2+1 dimension. The co-
efficient Σ is the condensate in the massless limit. We
found non-zero Σ/g4 = 0.0152(22), 0.0038(12), 0.0025(7)
and 0.0(6)10−6 for N = 0, 2, 4, 8 flavor respectively. The
N = 8 and 12 theories were instead likely to be infrared
conformal with non-trivial mass anomalous dimensions
γm = 0.38(8) and γm = 0.48(6) respectively; that is,
the Dirac eigenvalues displayed its FSS as λi ∝ `−γm−1

rather than an `−3 FSS expected from SSB. Here, we
should remark that we found that it was also possible
to describe the eigenvalue FSS in the N = 4 theory as-
suming a rather large γm = 0.6 along with additional
subleading 1/` FSS corrections; however, in light of the
results on Fπ in this work, it appears that the N = 4
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theory indeed is more likely to be scale-broken in the IR.
The Fπ we determined here are at finite volume and finite
valence pion mass, but it cannot change the non-zero Fπ
result for N = 4 because of the following. One should
notice that the very small F 2

π = 6 × 10−4g2 for N = 8
is most likely to arise due to finite volume and valence
quark mass, and hence it gives the typical correction to
Fπ due to these effects; the value of Fπ for N = 4 theory
is F 2

π = 0.036g2, which is much larger than those typi-
cal corrections, and hence justifying our inference about
the IR fate of N = 4. Thus, our current understanding
about the IR fate of many-flavor SU(2) gauge theory is
that N = 0, 2, 4 are likely to be scale-broken, whereas the
N ≥ 8 are likely to be conformal in the IR.

The depletion of all the infrared scales due to the
monotonic reduction in condensate is quite apparent.
To see this, we plot different mass-scales, all appropri-
ately casted to have mass-dimension 1, one versus an-
other. In the top panel of Fig. 5, we plot the mass-scale
from condensate,

√
Σ/g2, as a function of another scale,

F 2
π/g

2. The two seem to be almost directly proportional.
Another infrared scale one could use is the mass-gap,
MA−Mval

π between the pion and the axial-vector meson.
In the bottom panel of Fig. 5, we correlate this mass-gap
with F 2

π . Again, it is clear than the mass-splitting also
shrinks with the other diminishing, perhaps a more fun-
damental scale, Fπ. The mass-splitting does not go to
zero even for N = 8 most likely because of the finite
fixed volume and the quark mass. The one-to-one posi-
tive correlation between the infrared scales also suggests
that we can now make the number of flavors implicit, and
simply ask for the effect of reducing one infrared scale on
another, as done in Fig. 5. As one would have expected, a
factor reduction in Fπ induces a reduction in other scales
by a similar factor. We now apply this perspective to
quark structure of pion, where the effect is not obvious.

B. Response of the pion PDF to changes in
infrared

The central object in our analysis of PDF is the
equal time bilocal matrix element M̃(z1, P1) in Eq.
(13), formed by taking ratios of the matrix elements
MB(z1, P1) that we obtained directly from the three-
point function analysis. We formed these ratios to re-
move the presence of exp

(
−c′g2z1

)
behavior due to the

Wilson-line which is present in the definition of the bilo-
cal operator, and hence ensure a better description by
the OPE. In Appendix A, we describe features of MB

itself, and here we proceed with using the improved M̃.
Through its OPE in Eq. (12), M̃ contains the leading
twist terms that relate to the pion PDF as well as con-
tribution from operators with higher-twist, which could
have interesting physics in their own right, but for our
purposes here are contaminations. We can distill the
leading-twist PDF terms in a practical lattice compu-
tation, when z1 is small and P1 is large, so that one has
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FIG. 6. A cross-check that at least an application of small
number of Stout smearing to the Wilson-line connecting
quark-antiquark is harmless. The pion bilocal matrix element
at n1 = 3 momentum in N = 0 theory with 2-stout and 6-
stout smeared Wilson line insertions are compared and shown
to be consistent once the ratio is taken.

a finite range of z1P1 which can simply be described the
lead-twist part of the OPE in the analysis. Before go-
ing further, we need to first make sure that the ratio in
Eq. (13) indeed cancels any remnant non-perturbative
z1-dependent factor from the usage of Wilson line in the
operator. For this, we performed the computations of
M̃(z1, P1) with 2-stout and 6-stout smeared Wilson lines
for a sample case with n1 = 3 momentum in the N = 0
theory. The results from the two are compared in Fig.
6, where one can see a good agreement between the two,
giving confidence that the results are not stout smear-
ing dependent, at least for few steps of it. The results
get less noisier when number of stout smearing steps in-
creases, but we use 2-stout in order to be conservative.

We perform two types of analysis on M̃, namely, a
model-independent determination of the even moments
of the valence quark PDF, and secondly, by model-
dependent reconstruction of x-dependent PDF. For both
the ways, the starting point is the working version of
the leading twist OPE in Eq. (12) with some unknown
higher-twist z2

1 corrections, namely,

M̃(z1, P1) = 1+

[
Nmax∑
k=1

(−1)k
(z1P1)2k

(2k)!
〈x2k〉v

]
+bz2

1 . (30)

We have rewritten leading twist part of Eq. (12) in a

different form above so that is clear that 〈x0〉 = 1, M̃
is purely real and that only even valence PDF moments
〈x2k〉v appear. These are very specific properties of M̃
for a pion in 2+1 as well as 3+1 dimensions. The upper-
cutoff of the sum Nmax is infinity but for practical imple-
mentation, we need to work with smaller Nmax since the
data is only sensitive to some smaller powers k. Here, the
moments of the PDF are the unknowns we are interested
it, but we will also fit the parameter b to effectively take
care any higher twist g2z, F 2

πz corrections, and also any
target mass corrections. We also tried adding lattice cor-
rections of the form (aP1)2 to the above functional form
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FIG. 7. The pion bilocal quark bilinear matrix elements, M̃(z1, P1) from N = 0, 2, 4 and 8 flavor theories are shown in the
four panels. In each panel, the matrix elements from P1 = 1.05, 1.57, 2.09g2 are put together and shown as a function of z1P1.
The color and symbols differentiate the data at fixed P1. The bands are the expectations for M̃(z1, P1) based on the fits to
the leading twist expression in Eq. (30). The bands extend over points included in the fit.

of OPE [43], but such terms were found to be unnecessary
and consistent with zero well within errors. Therefore, we
do not present such an analysis here.

In any method of analysis, we need to choose the range
of z1 and P1 carefully, since we will not be taking either
z1 → 0 or P1 →∞ limits, and instead we will simply be
fitting the data which spans a finite range of z1 and P1.
First, we will work with momenta P1/g

2 ≥ 1 to make
sure that for a given separation z1, a term like (P1z1)k

is larger than a similar order term (g2z1)k. This leaves
the momenta corresponding to n1 = 2, 3, 4. Through this
choice, we are also guaranteed that Mval

π /P1 and F 2
π/P1

corrections would also be controlled. For the range of
quark-antiquark separation z1, we have two choices; we
might want z1g

2 < 1 or z1F
2
π < 1, where the first factor

is simply due to the superficial dimensional scale in the
system and the second is the natural infrared scale. We
assume that the superficial scale will arise simply due
the exp

(
−cg2z

)
-type Wilson-line term which we find to

be nicely canceled in the ratio M̃. Due to the natural
infrared scales being at least a factor 10 smaller than g2

for N = 0, and even smaller for larger N , even a usage
of z = 10a will only lead to F 2

πz = 0.4 in this system.
Thus, we restricted ourselves to z ∈ [a, 8a] and change
the maximum z1 to 6a and 10a to check for the robustness
of results. The justifications for the used ranges of z1, P1,

will also bear out in the data.

1. Model-independent inferences

In the model independent analysis [43, 99], we first fit

Eq. (30) to M̃(z1, P1) data over the specified range of
z1 and P1 with the even moments 〈x2k〉v being the fit
parameters. In addition, we also fitted the high-twist pa-
rameter b to take care leading higher twist effects; but
their values were consistent with zero, and when we per-
formed the fits without the higher-twist corrections, the
results were consistent with the one including it. Here,
we keep this correction nonetheless. Since the valence
quark PDF is positive (since the anti-u quark and d quark
arises only radiatively in ud pion , whereas the u quark
is present at tree-level itself), it imposes a set of inequal-
ities to be satisfied by the moments as discussed in [43];
with the important one being 〈xk〉v < 〈xm〉v for k > m.
We imposed these constraints in the fit using the meth-
ods discussed in [43]. With such constraints, one can add
as many moments, Nmax, in the analysis without over-
fitting the data, except that it will result in many of the
higher-moments, which the data is not sensitive, to con-
verge to zero. We found that Nmax = 5 was sufficient to
describe the data in the range we fitted, as we describe
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and taking its z1 → 0, P1 → ∞ limit at fixed P1z1 = ν. The
matrix element is shown as a function of ν = P+ξ− (Ioffe
time). The different colored bands are at different F 2

πg
−2.

below.
In Fig. 7, we show the data for M̃(z1, P1) as a func-

tion of z1P1; the data from different fixed pion momenta
P1 are differentiated by the colored symbols. The four
different panels show the data from N = 0, 2, 4, 8 flavors.
The data can be seen to fall on almost universal curves as
a function of z1P1, which demonstrates the dominance of
the lead-twist part, as is essential for this work. As seen
by the early peeling-off of P1 = 1.05g2 data from the
higher momenta data beyond P1z1 > 4 for N = 4, 8 sug-
gests that the leading twist dominance works better for
N = 0 than for N = 8. This could be because the nat-
ural higher-twist scale in the broken phase is F 2

π which
is smaller than the natural scale corrections g2z, and the
finite-box scale, z/`, which could be important in the con-
formal phase. However, for the range of z1 = 6a, 8a, 10a,
this ensuing higher twist effect is less important even for
P1 = 1.05g2, and definitely not important for higher mo-
menta. This justifies our choices of fit ranges and the rea-
soning we presented before. The data gets increasingly
precise with increasing N because the fluctuations in the
gauge field decreases roughly as 1/

√
N for larger N . The

bands of various colors in Fig. 7 are the expectations for
M(z1, P1) from the best fits from the analysis; the colors
match the corresponding color for the momenta for the
data. The bands cover the range of P1z1 for each P1 for a
fixed range of z1 up to 8a, and for P1 = 1.05g2 this range
is within the point where the higher twist effects start
becoming visible at this lower momentum. The quality
of fits are very good with resulting χ2/dof ≈ 0.6 to 0.8.

In Fig. 8, we have taken the results of the above model-
independent fits to M̃(z1, P1) and extracted the light-
front bilocal matrix element, M(ν), which is the Ioffe-
time Distribution (ITD). As we discussed, the variation
of infrared scales with N , induces a direct infrared scale
dependence of various quantities. Therefore, in Fig. 8,
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FIG. 9. (Top) The correlation between decay constant and
the valence PDF moments. The filled symbols are obtained
from model-independent fits and the open ones from model-
dependent PDF ansatz fits. For model-independent fits only
the even moments are directly obtained, whereas the odd mo-
ments 〈x〉v and 〈x3〉v were obtained indirectly by definition in
Eq. (32). The curves are quadratic fits in order to interpolate
the data. (Bottom) The correlation between decay constant
and the cumulants κ4 and κ6 of u− d PDF.

we have shown the ITD dependence on the decay con-
stant. This is the main result in this paper, which we
will process further and look at from various angles. As
the infrared scale-breaking is made stronger, as reflected
in Fπ, the corresponding valence quark ITD starts peel-
ing off from the large-N conformal curve at shorter and
shorter ν. In this process, however, the ITD remains al-
most universal up until ν ≈ 3. This tells us that the
lowest non-zero u − d moment, 〈x2〉u−d = 〈x2〉v, must
remain quite insensitive to the scale changes. Thus, the
effect of scale-breaking seems to be encoded in the fall-
off rate of the ITD for ν > 3 with an almost fixed lowest
even moment. We can infer simply that this will reflect
in the low-x behavior, which is typically modeled as a
Regge-type xα behavior, and also in the large-x, (1−x)β

behavior of the underlying valence PDF. This is because,
the tail of the ITD typically carries information on the
small-x asymptotic of the PDF, whereas given the infer-
ence that the lowest moment will be almost fixed, will
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induce a variation in β as well via the implicit relation
〈x2〉v(α, β, . . .), with (α, β, . . .) being the parametrization
of the shape of the PDF.

In the top panel of Fig. 9, we have plotted
the F 2

π dependence of the first three even moments
〈x2〉v, 〈x4〉v, 〈x6〉v, as obtained directly from the model-
independent analysis discussed above, using the closed
symbols. Since we can directly get only the even valence
moments, we infer the odd moments from 〈x2〉v and 〈x4〉v
by assuming a two-parameter PDF ansatz,

fv(x) = Nxα(1− x)β , (31)

with normalization N to ensure 〈x0〉v = 1, and simply
solve for α and β through the two equations,

Γ(3 + α)Γ(2 + α+ β)

Γ(1 + α)Γ(4 + α+ β)
= 〈x2〉v,

Γ(5 + α)Γ(2 + α+ β)

Γ(1 + α)Γ(6 + α+ β)
= 〈x4〉v.

(32)
Through this we get 〈x2k−1〉v(α, β) by this semi-model-
dependent analysis. As a cross-check, this procedure also
predicts the even moment 〈x6〉(α, β), which we found
to agree well with the actual value we obtained in the
model-independent analysis. These odd moments 〈x〉v
and 〈x3〉v are also shown in Fig. 9. The inferred value
of 〈x〉v, the fraction of pion mass carried by a valence
quark, seems to be ≈ 0.35 in N = 0 theory and increases
to ≈ 0.45 as Fπ decreases to zero. Thus, even in the
strongly confined regime of 2+1 dimensional SU(2) QCD,
about 30% of pion mass is carried by gluons and sea
quarks, which one might want to contrast with the 3+1
dimensional QCD where this fraction is about ≈ 55%,
at a scale of 3 GeV [28], and decreases further as the
scale approaches ΛQCD. Thus, it might be that the
scale-independent value of moments in 2+1 dimensions
has to be compared with PDFs in 3+1 dimensions de-
termined at typical non-perturbative hadronic scales to
serve as good analogues. We interpolated the data with a
quadratic in F 2

πg
−2, which are shown as the curves in Fig.

9. It is quite striking how the individual moments them-
selves weakly depend on Fπ. One should contrast this
behavior with the commensurate dependence of other IR
quantities to this decrease in Fπ. As we inferred from
the ITD itself, 〈x2〉v seems to be the least sensitive to
changes in Fπ.

It is the observables that dictate the shape of the full
x-dependent PDF that are quite sensitive the infrared
rather than the moments themselves. One such observ-
able is the log-derivatives [43] of moments βeff(k) =
−1− ∂ log

(
〈xk〉v

)
/∂ log(k) which approaches the large-x

exponent β for k → ∞. As explained in [43], we define
the descretized version of the effective β for any k as

βeff(k) =
〈xk−2〉v − 〈xk+2〉v

〈xk〉v
k

4
− 1. (33)

Using k = 4, we find βeff for N = 0, 2, 4, 8 to be
1.0(3), 1.2(2), 1.6(2), 4.1(9) respectively. As expected,
this quantity shows a sharp increase as the theory moves

from being strongly confined to being infrared confor-
mal. The u − d PDF, fu−d(x) being a positive quantity
and having a probabilistic interpretation, also admits the
canonical shape observables, cumulants κn,

κn ≡
∂n

∂sn
log

(∫ 1

−1

fu−d(x)esxdx

) ∣∣∣∣
s=0

with,

κ4 = 〈x4〉v − 3〈x2〉2v,
κ6 = 〈x6〉v − 15〈x2〉v〈x4〉v + 30〈x2〉3v. (34)

Using the model independent estimates of the even
moments up to 〈x6〉v, we find the fourth and sixth
cumulants, [κ4, κ6], for N = 0, 2, 4, 8 flavors to
be [-0.02(2), 0.01(2)], [0.04(2), -0.04(1)], [0.07(2), -
0.054(7)], [0.10(1), -0.068(7)] respectively. This varia-
tion is shown in the bottom panel of Fig. 9, and it can
seen to be very sensitive to the IR changes. One could do
a similar analysis by including the non-vanishing odd va-
lence moments, but we specifically chose the cumulants
of u − d PDF so as to keep the analysis fully model-
independent. The aim of this exercise was to point to
some good observables of the pion PDF that seem to be
sensitive about the IR, and consequently, we were able to
deduce simply from the model independent analysis that
the shape of the PDF will show sharp changes as the the-
ory morphs. Next, we will see these inferences concretely
arise in the reconstructed x-dependent valence PDFs.

2. Model dependent analysis: PDF reconstruction

Now we reconstruct the x-dependent valence PDFs
that best describe the real space data for M̃(z1, P1). For
this we use the two-parameter functional form of the PDF
in Eq. (31) that was completely sufficient to describe

M̃(z1, P1) at all N and in the range of z1 and P1 de-
scribed before; in fact, when we tried to make the ansatz
more complex by adding subleading small-x terms xα+0.5

and xα+1, the fits became quite unstable and hence we
resort to the simpler two-parameter ansatz. Essentially,
the parametrized PDF enters through its corresponding
moments 〈x2k〉v(α, β), that is then input into the leading
twist OPE in Eq. (30) to get the best values of α and β.
In the left panels of Fig. 10, we have shown the resulting
curves for M̃(z1, P1) from such two-parameter fits super-
imposed on the data. The quality of fits are as good as
the one from model-independent fits shown in Fig. 7.

The valence PDFs, fv(x), corresponding to the best
fits are shown in the middle panels of Fig. 10, and the
rightmost panels are simply the same data replotted as
the momentum distribution, xfv(x). We checked that the
reconstructed PDFs were robust against variations in the
fit ranges by changing the maximum of the fit range from
z1 = 6a to z1 = 10a. These variations are shown as the
bands of different colors in the middle and right panels
of Fig. 10. Since the data points fall on universal curves
well to begin with, the reconstructed PDFs also show al-
most no variations; so we simply take the estimate with
z1 = 8a for further discussions. It should be noted that
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FIG. 10. Reconstruction of valence PDF, fv(x), by fits to two-parameter ansatz. The left panels show the fits (bands) to

the bilocal matrix element M̃(z1, P1) (points) via leading-twist expression in Eq. (30). The middle panels show the inferred
valence PDF, fv(x). The different colored bands correspond to different fit ranges [0, z1]. The right panels show xfv(x). Top
to bottom are N = 0, 2, 4, 8 theories respectively.

the scales in the different panels in Fig. 10 are differ-
ent, but it is already clear that the PDFs get narrower
as N increases. In terms of the exponents [α, β] of the
PDFs, they change as [0.0(5), 1.0(6)], [0.6(5), 1.5(5)],

[2.9(1.0), 4.4(1.2)], [12(6), 16(7)] for N = 0, 2, 4, 8 re-
spectively. The values of the large-x exponent β for the
strongly broken phase for N = 0 and 2, are the typical
value around 1 and 2 as in 3+1 dimensions. The expo-
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FIG. 11. (left) The reconstructed valence pion PDFs, fv(x), and (right) their corresponding momentum distribution, xfv(x)
are shown as a function of pion decay constant that characterizes the vacuum of different N = 0, 2, 4, 8 flavor theories.

nent subsequently gets larger as the theory is pushed into
the near-conformal and conformal regimes. Perhaps it is
of interest to note that numerically, β ≈ α + 1 for these
PDFs, which makes xfv(x) appear almost symmetrical
around their peak positions.

We summarize the PDF determination in Fig. 11 by
putting together the PDFs from all N , and showing it
as a function of the induced dependence on the infrared
scale F 2

π . The left and right panels show fv(x) and xfv(x)
respectively. The depletion of the IR scales can be seen to
have visible effect on the pion PDF. The effect of strong
scale-breaking is to broaden the pion PDF over the entire
range of x; implying indirectly, the increased importance
of gluons and the sea quarks. This is the case for F 2

π =
9.3× 10−2g2, 5.8× 10−2g2. As the symmetry-breaking is
made about three-times weaker with F 2

π = 3.6× 10−2g2,
we start seeing the PDF get sharper around the middle
values x ≈ 0.4 to 0.5, pointing to less important role
of the gluons, as well as of instances of valence quarks
that carry all of the pion momentum. As the theory
enters a phase with F 2

π ≈ 0 which is most likely to be
conformal in the infrared, which is made gapped simply
by finite quark mass and finite box size, the PDF gets
sharply peaked around 〈x〉v ≈ 0.44, pointing to a near
dominance of the valence quarks. This extreme case can
be seen as a control in this calculation; that is, the quark
structure of an artificial pion-like state emerging simply
because of finite mass and volume, being not consistent
with the quark structure of an actual pion state in the
scale-broken theories points to the important causal role
of the infrared vacuum structure in shaping the valence
quark structure of the Nambu-Goldstone boson.

VIII. CONCLUSIONS AND DISCUSSION

We presented a lattice calculation of the valence quark
structure of the Nambu-Goldstone boson (which we refer
to as the pion) of the flavor symmetry breaking in 2+1
dimensional SU(2) gauge theory coupled to many mass-
less flavors of fermions. The motivation for this work
was to first of all see if the quark structure of the pion is
sensitive to the long-distance vacuum structure, as one
would expect; and secondly to understand precisely how
much this dependence is and in what observables this
shows up. For this work, we used N = 0, 2, 4 and 8 fla-
vors of nearly massless dynamical Wilson-Dirac fermions
in the sea, and the valence fermion mass tuned such that
the pion mass stayed the same at 0.53g2 for all flavors.
We studied the theories at a fixed lattice spacing and
fixed finite box size. We used the pion decay constant
Fπ as a measure of the strength of scale-breaking in the
infrared, and correlated its decrease as a function of N
with other infrared quantities and to the short-distance
quark structure of the pion to Fπ.

We showed that as the strength of the infrared scale
breaking decreases, the pion Ioffe-time distribution (ITD)
or bilocal quark bilinear matrix element on the light-cone
becomes sensitive to this effect for Ioffe-time (or light-
front distance) ν > 3 with an almost near-universal be-
havior for ν < 3; the effect is seen by a slower fall-off
of the ITD at ν > 3 as the theory gets more broken.
We found that the individual moments of the valence
pion PDF themselves show only a weak dependence to
the changes in the infrared. However, the effect gets
amplified when one constructs observables appropriately
from the moments, such that they underlie the shape
of the x-dependent valence PDF and equivalently of the
u − d PDF; we demonstrated this in terms of the first
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few cumulants of the u − d PDF and in terms of the
log-derivative of the moments with respect to the order
of the moment that determine the large-x behavior. We
reconstructed the valence PDF of the pion based on a
two-parameter ansatz. The above behavior of the ITD
resulted in a broadening of the valence PDF over small
and large x regions when the value of the Fπ increased.
When the Fπ was near zero in the near-conformal region,
one could see a sharp localization of the PDF around
〈x〉v ≈ 0.43. The key results in this paper are shown in
Fig. 8 and Fig. 11.

As an outcome of this work, we established the 2+1 di-
mensional QCD as a good model system to perform com-
putational experiments on the nonperturbative aspects
of the internal structure of hadrons using the recent de-
velopments in leading-twist matching frameworks. The
short-coming of the present work is that we do not com-
pare and contrast the behavior of the pion PDF with that
of another ordinary non-Goldstone boson, such the axial-
vector or the diquark states. We intend to perform these
comparative studies in future computations, especially by
using lattices which have larger extents in the direction
of boost so as to reduce the effect of Lorentz contraction
(rather an expansion) of the lattice extent longitudinal
to the boost. Another improvement one could do is to
extend this calculation to SU(3) theory in 2+1 dimen-
sions; this will extend the range of flavor N where the
theory is scale-broken, thereby making the changes to
the PDFs more gradual and easier to study than done
here. Owing to the lower-dimension used, performing an
exact massless overlap fermion computation to improve
on this work will be feasible. Understanding the obser-
vations made in this paper in terms of simplistic model
calculations will also shed more light on how the UV is
correlated to the IR. With the availability of many-flavor
theory computations in 3+1 dimensions (e.g., [100]), per-
formed due to its relevence to composite Higgs models,
it would be interesting to use them to understand the
evolution of quark structures with scale depletion as Nf
is changed from 2 to the near-conformal point near 8 or
10; especially, ask how does large-x exponent β change
for 3+1 dimensional pion?

It would also be amusing to study the properties of the
bilocal bilinear matrix element (Ioffe time distribution)
in the long distance limit of the quark-antiquark separa-
tion when the theory is in the conformal phase for N > 6,
such that the higher-twist effects now are actually going
to be due to operators with non-trivial infrared scaling di-
mensions, and thereby shed new light into the higher-spin
operators of fixed twist in the infrared CFT and its con-
formal blocks, possibly corresponding to scalar-vector-
vector-scalar four point function. A recent study [101]
of conformal QCD in 4-ε dimensions might be helpful in
this endeavor, by carefully extrapolating the results to
ε = 1.
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Appendix A: The behavior of P1 = 0 matrix element
MB

In Section VI B, we described the extrapolation of
three-point function to obtain the “bare” matrix ele-
ment, MB(z1, P1). The nomenclature “bare” here sim-
ply means the matrix element obtained before taking the
ratio in Eq. (13), as there are no truely divergent behav-
iors in 2+1 dimensions due to its super-renormalizability,
and even for the Wilson-line, we expect it to contribute
only a benign exp

{
−c′g2z

}
nonperturbative higher twist

effect. In this appendix, we look at MB(z1, P1 = 0) it-
self.

From Fig. 3 in the main text, we can notice that the
P1 = 0 matrix element with pion at rest shows a z1 de-
pendence. To see why it is interesting, for argument-sake,
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the data taken from N = 0, 2, 4, 8 flavor theories. The black
dashed line is the expectation based on target mass correc-
tions from leading-twist trace terms. The blue dashed line is
the behavior modelled by Eq. (A2) to take into account the
screening behavior of the Wilson-line.
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if we assume that the leading-twist term was the only
piece at P1 = 0 OPE, then one simply does not expect
any z1 dependence. In Fig. 12, we have put together the
P1 = 0 data (shown as the points) for MB at all flavors
N as a function of lattice separation, z1/a. For the data
shown, the Wilson-line entering the bilocal operator was
smeared using 2-steps of Stout. It is quite suprising that
the P1 = 0 matrix element shows absolutely no depen-
dence on the flavor or changing Fπ equivalently. Due to
the finite valence pion mass, there can be z1 dependence
from the target mass corrections (TMC) that arises due
to trace terms at leading twist [80, 81]. We expect this
to be described by

MTMC(z1) = 1− (Mval
π z1)2

8
〈x2〉v +O

(
(Mval

π z1)4
)
.

(A1)
To see if this arises because of the TMC, we have plotted
Eq. (A1) as the dashed black curve, using the value of
〈x2〉 ≈ 0.2 that we observed in Fig. 9. This behavior is
definitely not sufficient to describe the data. The other
z1 dependence should, of course, be from the Wilson-line
due to its exp

(
−c′g2z

)
behavior for larger |z1| with some

c′. Since it should be even with respect to z1 → −z1, we

model this behavior as

MTMC,WL(z1) ≡ M
TMC(z1)

cosh(c′g2z1)
. (A2)

In Fig. 12, we plot MTMC,WL as the blue dashed curve
using c′ = 0.281. The value of c′ will be dependent on
the construction of Wilson-line itself, such as the steps of
smearing (in our case, the value of c′ decreases to 0.206
when 6-step stout was used). We see that MTMC,WL

nicely describes the data at all z1 and for all N . Thus,
through this exercise, we first understand that the non-
perturbative screening behavior of Wilson-line is impor-
tant in MB , and therefore, it is very important to form
ratios, like in 3+1 dimensions, to get rid of this trivial
z1 dependence. In Fig. 6, we showed how this cancella-
tion works well by using Wilson-lines with two-different
smearing parameters, thereby justifying the application
of leading twist framework to the ratio M̃. Secondly, due
to universal behavior ofMB(P1 = 0) at all N , the screen-
ing behavior does not care about the infrared physics at
all, pointing to the fact that it arises due to the Wilson-
line self-interaction at ultraviolet scales.
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and Y. Zhao, Phys. Rev. D 100, 034505 (2019),
arXiv:1804.01483 [hep-lat].

[45] T. Izubuchi, L. Jin, C. Kallidonis, N. Karthik,
S. Mukherjee, P. Petreczky, C. Shugert, and S. Syrit-
syn, Phys. Rev. D 100, 034516 (2019), arXiv:1905.06349
[hep-lat].
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