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K. Slifer,10 R. Snyder,3 P. Solvignon†,10 R. Stringer,4 R. Subedi,34 W. A. Tobias,3 N. Ton,3

P. E. Ulmer,21 G. M. Urciuoli,13 A. Vacheret,27 E. Voutier,35 K. Wang,3 L. Wan,8

B. Wojtsekhowski,36 S. Woo,25 H. Yao,10 J. Yuan,19 X. Zhan,8 X. Zheng,5 and L. Zhu8

(Jefferson Lab E97-110 Collaboration)

1College of William and Mary, Williamsburg, Virginia 23187-8795, USA

2Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

3University of Virginia, Charlottesville, Virginia 22904, USA

4Duke University, Durham, North Carolina 27708, USA

⇤ Corresponding author; E-mail: deurpam@jlab.org.
† Deceased.



2

5Argonne National Laboratory, Argonne, Illinois 60439, USA

6Yerevan Physics Institute, Yerevan 375036, Armenia

7California State University, Los Angeles, Los Angeles, California 90032, USA

8Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
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Understanding the structure of the nucleon (proton and neutron) is a critical problem

in physics. Especially challenging is to understand the spin structure when the Strong

Interaction becomes truly strong. At energy scales below the nucleon mass (⇠1 GeV),

the intense interactions of the quarks and gluons inside the nucleon makes them highly

correlated. Their coherent behavior causes the emergence of effective hadronic degrees

of freedom (hadrons are composite particles made of quarks and gluons) which are nec-

essary to understand the nucleon properties. Theoretically studying this subject requires

approaches employing non-perturbative techniques or using hadronic degrees of freedom,

e.g. chiral effective field theory (�EFT) [1]. Here, we present measurements sensitive to

the neutron’s spin precession under electromagnetic fields. The observables, the general-

ized spin-polarizabilities �LT and �0, which quantify the nucleon spin’s precession, were

measured at very low energy-momentum transfer squared Q2 corresponding to probing

distances of the size of the nucleon. Our Q2 values match the domain where �EFT calcula-

tions are expected to be applicable. The calculations have been conducted to high degrees

of sophistication [2–4], including that of the so-called “gold-plated” observable– �LT . Sur-

prisingly however, our data show a strong discrepancy with the �EFT calculations. This

presents a challenge to the current description of the neutron’s spin properties.

The nucleon is the basic building block of nature, accounting for about 99% of the uni-
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verse’s visible mass. Understanding its properties, e.g., mass and spin, is thus crucial. Those

are mainly determined by the Strong Interaction, which is described by Quantum Chromody-

namics (QCD) with quarks and gluons as the fundamental degrees of freedom. The nucleon

structure is satisfactorily understood at high Q2 (short space-time scales) since there, QCD is

calculable using perturbation methods (perturbative QCD) and tested by numerous experimen-

tal measurements. At lower Q2, the strong coupling ↵s becomes too large for perturbative QCD

to be applicable [5]. Yet, calculations are critically needed since there the Strong Interaction’s

chiral symmetry breaks, which is believed to lead to the emergence of the nucleon’s global

properties. To understand these properties, non-perturbative methods must be used. A method

using the fundamental quark and gluon degrees of freedom is lattice QCD. However, calcula-

tions from this method are often intractable for spin observables at low Q2 [6]. Another solution

is to employ effective theories. �EFT capitalizes on QCD’s approximate chiral symmetry and

uses the emergent hadronic degrees of freedom. Therein lies �EFT’s strengths and challenges:

while the nucleon and the pion are used for first-order calculations, this is often insufficient

to describe the data, and heavier hadrons, such as the nucleon’s first excited state �(1232),

become needed. This complicates �EFT calculations, and theorists are still seeking the best

way to include the �(1232) in their calculations. It is therefore crucial to perform precision

measurements at low enough Q2 to test �EFT calculations. Spin observables, among them

the generalized spin-polarizabilities that are reported here, provide an extensive set of tests to

benchmark �EFT calculations [6].

Polarizabilities describe how the components of an object collectively react to external elec-

tromagnetic fields. In particular, spin-polarizabilities quantify the object’s spin precession un-

der an electromagnetic field, see Fig. 1. The spin-polarizabilities, initially defined with real

photons, can be generalized to virtual photons such as those used to probe the neutron in our

experiment (see Fig. 2). The energy-momentum transferred between the electron and neu-
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FIG. 1: Spin-polarizabilities quantify the precession (curled black arrow) of the spin of the neutron

(black arrow and gray sphere, respectively) under electromagnetic fields (electric field E: blue arrow;

magnetic field B: red arrow). Electromagnetic waves formed by real photons have E and B and polar-

ization vectors perpendicular to the wave propagation direction z. Generalized spin-polarizabilties arise

with virtual photons which also have a longitudinal polarization component.

Virtual photon

Incident  
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Scattered  
Electron 

Target 
neutron

Neutron  
debris

FIG. 2: Electron scattering off a neutron by the one-photon exchange process. If both the inci-

dent electron and the neutron are polarized, this process can be used to measure the generalized spin-

polarizabilities of the neutron.

tron is (⌫, q), with Q2
= q2 � ⌫2 characterizing the space-time scale at which we probe the

neutron. While real photons (Q2
= 0) only have transverse polarizations, mediating virtual

photons (Q2 6= 0) are transversely (T) or longitudinally (L) polarized. Thus, two contributions

to the spin-polarizability arise, one from the transverse-transverse (TT) interference called the

forward spin-polarizability �0(Q2
), and the other from the longitudinal-transverse (LT) interfer-
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ence, called the Longitudinal-Transverse interference polarizability �LT(Q2
) and available only

with virtual photons. The additional polarization direction L and the ensuing interference term

offer extra latitude to test theories describing the Strong Interaction.

The theoretical basis to measure �LT(Q2
) originates from a work of Gell-Mann, Goldberger

and Thirring [7, 8]. This work lead relations between the cross-sections measured in polarized

electron-nucleon scattering (Fig. 2) and the spin-polarizabilities:

�0(Q
2
) =

1

2⇡2

Z 1

⌫0

�

⌫2

�TT(⌫, Q2
)

⌫2
d⌫, (1)

�LT(Q
2
) =

✓
1

2⇡2

◆Z 1

⌫0

�

⌫Q

�LT(⌫, Q2
)

⌫2
d⌫, (2)

where �TT and �LT are respectively the TT and LT interference cross-section, � = ⌫ �

Q2/2M [9] is the photon flux factor with ⌫ the energy transfer and ⌫0 the photoproduction thresh-

old. The ⌫�2 weighting factor facilitates the convergence of the integral and minimizes the issue

that ⌫ ! 1 cannot be reached experimentally.

An outstanding feature of �LT(Q2
) at low Q2 is that the �(1232) is not expected to signif-

icantly contribute to the LT-interference cross section, since exciting the �(1232) overwhelm-

ingly involves transverse photons. This should alleviate the difficulty of including the �(1232)

in �EFT calculations, making them more robust. However, the first measurement of �LT(Q2
)

from JLab experiment E94-010 [12] done at Q2 � 0.1 GeV2 strongly disagreed with �EFT cal-

culations [10, 11]. This surprising result, known as the “�LT puzzle” [13], triggered improved

�EFT calculations [14] which now explicitly include the �(1232) [2–4], and measurements of

�LT at lower Q2 where �EFT can be best tested. New data of �LT on the neutron at very low Q2,

taken during experiment JLab E97-110, are presented next.

Eq. (2) allows measuring �nLT(Q
2
) (the superscript n indicates neutron quantities) by scat-

tering polarized electrons off polarized neutrons in 3He nuclei. The measured cross-section
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FIG. 3: �nLT(Q
2) from experiment E97-110, compared to earlier E94-010 data [12], �EFT calcula-

tions [2, 4, 10, 11] and the MAID model [15]. The inner error bars, sometimes too small to be visible,

represent the statistical uncertainties. The outer error bars show the combined statistical and uncorrelated

systematic uncertainties. The correlated systematic uncertainty is indicated by the band at the bottom.

�LT(⌫, Q2
) is used with Eq. (2) to form �nLT(Q

2
), after which nuclear corrections are applied

(see supplemental material). Our data are shown in Fig. 3. They agree with earlier data from

E94-010 at larger Q2 [12] while reaching much lower Q2 where the �EFT is expected to work

well. The measurement can be compared to �EFT calculations [2, 4, 10, 11] and a model pa-

rameterization of the world photo- and electro-production data called MAID [15]. Earlier �EFT

calculations [10, 11] used different approaches (Heavy Baryon and Relativistic Baryon chiral

perturbation theory: HB�PT and RB�PT, respectively), and furthermore either neglected the

�(1232) degrees of freedom, or included it approximately. Newer calculations [2–4] account

for the �(1232) explicitly by using a perturbative expansion, but they differ in their choice of

expansion parameter. Despite this theoretical improvement and the small Q2 reach that places

our data well in the validity domain of �EFT, our �nLT(Q2
) starkly disagrees with the predictions.
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FIG. 4: Same as Fig. 3 but for the other generalized spin-polarizability, �n0 (Q2).

This is even more surprising because the latest �EFT calculations of �nLT agree with each other,

suggesting that calculations for this particular observable should be under control. However,

our data reveal an opposite trend with Q2 to that of all the �EFT calculations.

This startling discrepancy demanded further scrutinization of our data. They are compatible

with the E94-010 data where they overlap. This is also true for �n
0 (Q

2
), which we measured

concurrently and show in Fig. 4. The measured �n
0 (Q

2
) also agrees with data from CLAS ex-

periment EG1 [16], which used a target and detectors that are very different from E97-110

and E94-010. Our �n
0 (Q

2
) data generally disagree with �EFT calculations. Since �0(Q2

) does

not benefit from the suppression of the �(1232) contribution, and since �n
0 (Q

2
) predictions

do not reach a consensus, this disagreement is not entirely surprising, in contrast to the unex-

pected �nLT(Q
2
) disagreement. Interestingly, we can also study with our data the Schwinger

relation [17], which has a similar definition but without ⌫�2 weighting in its integrand. The

Schwinger integral is shown in Fig. 5 of the Supplemental Materials and displays a similar Q2-

behavior as �LT, irrespective of the different ⌫-weighting. Other integrals without ⌫�2 weighting
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formed using our data and reported in [18] did not display the surprisingly strong disagreements

with the predictions seen here.

In conclusion, we measured the spin-polarizability �nLT(Q
2
) well into the domain where

�EFT is expected to describe reliably the nucleon properties. Surprisingly, data and predic-

tions disagree significantly. This is perplexing since �LT was expected to be a robust prediction

of �EFT and the earlier finding that the �(1232) is important for the calculation of �LT had

been addressed. Our data indicate that both the TT and LT interferences of the electromagnetic

field’s components induce a clear spin precession of the neutron. While it was predicted by all

calculations and models that the LT term influence should intensify at small Q2, our data reveal

the opposite trend. Lattice QCD calculations of �LT(Q2
) are possible [19], but not yet avail-

able. Our data motivate such calculations since the measured generalized spin-polarizabilities

underline a current lack of reliable quantitative descriptions of the Strong Interaction at the

nucleon-size scale, even for “gold-plated” observables such as �LT.

Method Summary The data were acquired in the Hall A [21] of Jefferson Lab (JLab) dur-

ing experiment E97-110 [18]. The probing virtual photons were produced by a longitudinally

polarized electron beam during its scattering off a polarized 3He target [21]. The beam polar-

ization, flipped pseudo-randomly at 30 Hz and monitored by Møller and Compton polarimeters,

was 75.0 ± 2.3%. The beam energies ranged from 1.1 to 4.4 GeV and the beam current was

typically a few µA. Since free neutrons are unstable we used 3He nuclei as an effective polar-

ized neutron target. To first-order, polarized 3He nuclei are equivalent to polarized neutrons

because the 3He’s nucleons (two protons and one neutron) are mostly in an S-state, so the Pauli

exclusion principle dictates that in the S-state, the proton spins point oppositely, yielding no

net contribution to the 3He spin. The gaseous (⇡ 12 atm) 3He was contained in a 40 cm-long

glass cylinder, and polarized by spin-exchange optical pumping of Rubidium atoms. Helmholtz

coils provided a parallel or transverse 2.5 mT field used to maintain the polarization, to orient
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it longitudinally or perpendicularly (in-plane) to the beam direction, and to aid in performing

polarimetry. The average target polarization in-beam was (39.0 ± 1.6)%. The scattered elec-

trons from the reaction ~3He(~e, e0) were detected by a High Resolution Spectrometer (HRS) [21]

supplemented by a dipole magnet [22] allowing scattering angles down to 6�. Behind the HRS,

drift chambers provided particle tracking, scintillator planes enabled the data acquisition trig-

ger, and a gas Cherenkov counter and electromagnetic calorimeters ensured the identification of

the particle type. Both spin asymmetries and absolute cross-sections were measured and used

to form �TT(⌫, Q2
) and �LT(⌫, Q2

) [6]. They were integrated according to Eqs. (1) and (2)

to obtain the integrals �n
0 (Q

2
) and �nLT(Q

2
). The unmeasured part of the integral at large ⌫ is

negligible for �n
0 and �nLT due to the ⌫-weighting of their integrands. The values �n

0 (Q
2
) and

�nLT(Q
2
) with their uncertainties are provided in the Supplemental Material, as well as the inte-

gration range which was covered. While polarized 3He nuclei are effectively polarized neutrons

to good approximation, nuclear corrections are needed to obtain genuine neutron information.

The prescription of Ref. [23] was used for the correction. Typically, the correction increases by

20% the absolute values of the generalized spin-polarizabilities except for the lowest Q2 point

for �nLT where the correction is smaller, less than 7%. The relative uncertainty on this correction

is estimated to be 6 to 14%, the higher uncertainties corresponding to our lowest Q2 values. The

other main systematic uncertainties come from the absolute cross-sections (3.5 to 4.5%), target

and beam polarizations (3 to 5% and 3.5%, respectively), and radiative corrections (3 to 7%).

Data availability Experimental data that support the findings of this study are provided in the

supplemental material or are available from J.P Chen, A. Deur, C. Peng or V. Sulkosky upon

request.

Code availability The computer codes that support the plots within this paper and the findings

of this study are available from J.P Chen, A. Deur, C. Peng or V. Sulkosky upon request.
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M. Vanderhaeghen for useful discussions and for sharing their calculations. We are grateful

to V. Pascalutsa and M. Vanderhaeghen for suggesting to compare the data to the Schwinger

relation. This material is based upon work supported by the U.S. Department of Energy, Office

of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by the NSF

under grant PHY-0099557.

[1] V. Bernard, N. Kaiser and U. G. Meissner, Int. J. Mod. Phys. E 4, 193 (1995)

[2] V. Bernard, E. Epelbaum, H. Krebs and U. G. Meissner, Phys. Rev. D 87, no. 5, 054032 (2013)

[3] V. Lensky, J. M. Alarcón and V. Pascalutsa, Phys. Rev. C 90, no. 5, 055202 (2014)

[4] J. M. Alarcón, F. Hagelstein, V. Lensky and V. Pascalutsa, arXiv:2006.08626

[5] A. Deur, S. J. Brodsky and G. F. de Teramond, Prog. Part. Nucl. Phys. 90, 1 (2016)

[6] A. Deur, S. J. Brodsky and G. F. De Téramond, Rep. Prog. Phys., 82, 7 (2019)
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Supplemental material
Verification of the data quality using the Schwinger relation: A relation similar to that of �LT

but without ⌫�2 weighting is:

ILT(Q
2
) ⌘

✓
M2

↵⇡2

◆Z 1

⌫0

h
�

�LT(⌫, Q2
)

Q⌫

i

Q=0
d⌫ (3)

Schwinger predicted that ILT(Q2
) ���!

Q2!0
et [17], with  the summer anomalous magnetic

moment of the target particle and et its electric charge. This prediction is general, e.g. it

does not use �EFT. ILT(Q2
) having no ⌫-weighting, the large ⌫ contribution to the integral is

not negligible. Since this contribution to the integral cannot be measured, a parameterization

based on the model described in [24] completed by a Regge-based parameterization [25] for

the largest ⌫ part was used to extrapolate it. Our measurement of InLT(Q2
) is shown in Fig. 5.

Our measurement of InLT(Q2
) without the Regge-based parameterization [25] for the large-⌫

part (open symbols), which is suppressed in �LT(Q2
), displays a similar pattern as �nLT(Q

2
).

The Gerasimov-Drell-Hearn (GDH) relation [28, 29] can be used to extrapolate our InLT(Q2
) to

Q2
= 0 and provided that the GDH relation is correct, which is widely expected and supported

by dedicated experimental studies [27], our data satisfy Schwinger’s prediction that InLT(0) =

0 [17]. Our trend contrasts with the MAID model and presumably the �EFT calculations, since

MAID tracks those (see Fig. 3). This suggests that the problem lies in the theoretical description

of the neutron structure.

Integrands: The integrands (excluding the ⌫-weighting) of �nLT(Q2
), InLT (Q2

) and �n
0 , are

displayed in Figs. 6 and 7.
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FIG. 5: The InLT(Q
2) integral. The open symbols are our results without the large ⌫ part of ILT. The

filled blue circles are our results for the full ILT, using an estimate for the large ⌫ contribution. The

inner error bars represent the statistical uncertainties. The outer error bars show the combined statistical

and uncorrelated systematic uncertainties. The correlated systematic uncertainty is indicated by the

band. The Schwinger relation [17] for the neutron predicts InLT(0) = 0 at Q2 = 0. The plain line

shows the MAID model [15] (resonance only, to be compared to the open symbols). The dashed line

uses the GDH [28, 29] and Burkhardt-Cottingham [20] relations, together with an elastic form factor

parameterization [26], to obtain InLT(Q
2) for Q2 ! 0.
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FIG. 6: The longitudinal-transverse interference cross-section �LT(⌫, Q2) for 3He at the Q2 values at

which it is integrated into �LT(Q2) (Eq. 2) or ILT (Q2) (Eq. 3). The nuclear corrections [23] necessary

to obtain the neutron information from the 3He data are applied after the integration. The prominent

�(1232) contribution seen for �TT(⌫, Q2) in Fig. 7 is not present here, in agreement with the expectation

that the role of �(1232) is suppressed in LT-interference quantities.
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FIG. 7: The transverse-transverse cross-section �TT(⌫, Q2) for 3He at the Q2 values at which it is inte-

grated to form �0 (Eq. 1). The nuclear corrections providing the neutron information from the 3He data

are applied after the integration. The prominent negative peak at small-⌫ is the �(1232) contribution.
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Data table

Q2 xmin (Wmax) �n
0 (Q

2)±(stat)±(syst) �nLT(Q
2)±(stat)±(syst) ILT (Q2)n±(stat)±(syst) Imeas.

LT

ILT

0.035 0.0112 (2.00) �3.094± 0.129± 0.270 �0.383± 0.326± 0.677 �1.112± 0.316± 0.606 0.26

0.057 0.0181 (2.00) �3.117± 0.141± 0.259 0.225± 0.071± 0.197 �0.862± 0.136±0.389 -0.48

0.079 0.0249 (2.00) �2.717± 0.140± 0.270 0.435± 0.098± 0.195 �0.721± 0.149± 0.314 -1.09

0.100 0.0183 (2.50) �2.070± 0.074± 0.170 0.491± 0.083± 0.209 �0.126± 0.114± 0.329 -8.65

0.150 0.0273 (2.50) �1.370± 0.051± 0.125 0.215± 0.052± 0.173 �0.266± 0.057± 0.233 -1.72

0.200 0.0398 (2.40) �0.965± 0.032± 0.065 0.111± 0.028± 0.091 �0.345± 0.055± 0.267 -1.13

0.240 0.0547 (2.25) �0.742± 0.026± 0.050 0.108± 0.020± 0.043 �0.267± 0.067± 0.192 -1.91

TABLE I: Data and kinematics. From left to right: Four-momentum transfer ([GeV]2); mimimum x ⌘

Q2/2m⌫ value experimentally covered (equivalent maximum invariant W [GeV] (W = (M2 + 2M⌫ �

Q2)1/2; �n0 (Q2) ± statistical uncertainty ± systematic uncertainty; �nLT(Q
2) ± statistical uncertainty ±

systematic uncertainty; ILT (Q2)n, including an estimate for the unmeasured contribution below xmin, ±

statistical uncertainty ± systematic uncertainty; Ratio of measured to total ILT (Q2)n. The unmeasured

parts of �n0 (Q2) and �nLT(Q
2), i.e, the contributions for x < xmin, are entirely negligible.


