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We present our results on the electromagnetic form factor of pion over a wide range of Q2 using
lattice QCD simulations with Wilson-clover valence quarks and HISQ sea quarks. We study the
form factor at the physical point with a lattice spacing a = 0.076 fm. To study the lattice spacing
and quark mass effects, we also present results for 300 MeV pion at two different lattice spacings
a = 0.04 and 0.06 fm. The lattice calculations at the physical quark mass appear to agree with
the experimental results. Through fits to the form factor, we estimate the charge radius of pion for
physical pion mass to be 〈r2π〉 = 0.41(2) fm2.

I. INTRODUCTION

Pion is one of the most prominent strongly interact-
ing particle next to the nucleon since it is a Goldstone
boson of QCD. For this reason it is important to study
the pion internal structure and find out if there is a con-
nection between its internal structure and its Goldstone
boson nature. This issue is particularly relevant for un-
derstanding the origin of mass generation in QCD, see
e.g. discussions in Refs. [1, 2].
The knowledge of internal structure of the pion is much

more limited than that of the nucleon. On the par-
tonic level the parton distribution function (PDF) of the
pion can been studied through the global analysis of the
Drell-Yan production in pion-nucleon collisions and in
tagged deep inelastic scattering (DIS), for recent analy-
ses see Refs. [3, 4]. Recently there have been many ef-
forts in lattice QCD to study the pion PDF [5–10] which
use the quasi-PDF in Large Momentum Effective The-
ory [11, 12], the pseudo-PDF [13, 14] and current-current
correlator [15–17] (also referred to as good lattice cross
section) approaches, see Refs. [18–21] for recent reviews.
Lattice calculations of the lowest moments of pion PDF
[22–27] are also available and can be used as additional
constraints in the global analysis.
Form factor, defined as

〈P1|Jµ|P2〉 = (P1 + P2)µFπ(Q
2), (1)

with Jµ being the electro-magnetic current and Q2 =
(P2−P1)

2, provide a different insight into pion structure,
namely the charge distribution. It can be in principle
measured in electron pion scattering. Generalized parton
distribution (GPD) combine the information contained in
PDF and form factors and provide a three-dimensional
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image of a hadron. In the case of the nucleon the study
of GPD is the subject of large experimental and theory
efforts (see e.g. Ref. [28] for a recent review). The exper-
imental study of the pion GPD is far more challenging
and will be only possible at Electron-Ion Collider (EIC),
if at all. Fortunately GPDs can be studied on the lattice
using LaMET, including pion GPDs [29–32].

Experimentally, the pion form factor was measured
by scattering of pions off atomic electrons in Fermilab
[33, 34] and CERN [35, 36]. This allowed to determine
the pion form factor for momentum transfer Q2 up to
0.253 GeV2 [33–36]. For larger Q2 one has to deter-
mine the pion form factor from the electro-production
of charged pions off nucleons. The corresponding exper-
iments have been performed in Cornell [37–39] DESY
[40, 41], and Jlab [42–46] This determination, however,
is model dependent. Recent determination of the pion
form factor up to Q2 of 2.45 GeV2 been carried out by
the Fπ collaboration using data both from DESY and
JLab [46]. Experiments at the future EIC facility will al-
low to probe even higher Q2 up to 30 GeV2 and possibly
see the partonic structure in a exclusive elastic process
and make contact with asymptotic large Q2 perturbative
behavior [47].

Lattice QCD calculations allow to obtain the pion form
factor from first principles, i.e. without any model de-
pendence, up to relatively large Q2. Therefore, they will
provide an important cross-check for the experimental
determinations. The first lattice calculations of the pion
form factor date back to late 80s and have been per-
formed in the quenched approximation [48, 49]. More
recently lattice calculations of the pion form factor have
been performed with two flavors (Nf = 2) of dynamical
quarks [50–54], with physical strange quark and two light
quark flavors (Nf = 2+1) [55–61], as well as with dynam-
ical charm quark, strange quark and two flavors of the
light quarks with nearly physical masses (Nf = 2+1+1)
[62]. Most of the lattice studies focused on the small Q2

behavior of the pion form factor and the extraction of
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the pion charge radius. The pion charge radius is very
sensitive to the quark mass. The chiral perturbation the-
ory predicts a logarithmic divergence of the pion charge
radius when quark mass goes to zero [63]. Therefore,
one has to work at physical quark mass or have calcula-
tions performed in an appropriate range of quark masses
to perform chiral extrapolations. Furthermore, studies
have been performed for lattice spacing a > 0.09 fm.

The aim of this paper is to study the pion form factor
in a wide range of Q2. Therefore, we perform calculations
for small lattice spacings, namely a = 0.04fm and 0.06 fm
with valence pion mass of about 300 MeV. Furthermore,
to study quark mass effect we also perform calculations
at the physical pion mass, though at somewhat larger
lattice spacing, a = 0.076 fm. Unlike previous studies
we also perform calculations for highly boosted pion in
order to extend them in the future for the pion GPD.

II. LATTICE SETUP

In this study we use Wilson-Clover action with hy-
percubic (HYP) [64] smearing on 2+1 flavor staggered
Lt×L3

s lattices generated with highly improved staggered
quark (HISQ) action by HotQCD collaboration [65, 66].
For the clover coefficient we use the tree-level tadpole

improved value csw = u
−3/4
0 , with u0 being the HYP

smeared plaquette expectation value. This setup is the
same as the one used by us to study the valence parton
distribution of the pion [9, 10]. As in Refs. [9, 10] we
use two lattice spacings a = 0.04 fm and a = 0.06 fm
and the valence pion mass of 300 MeV. The lightest pion
mass for these gauge configurations is msea

π = 160 MeV
and the lattice spacings was fixed through r1 scale [65]
using the value r1 = 0.3106(18) fm [67]. In addition, we
performed calculations at a lattices spacings of 0.076 fm
and valence pion mass of 140 MeV using the gauge con-
figurations that correspond to the lightest pion mass of
msea

π = 140 MeV [66]. The lattice spacings was set by the
kaon decay constant, fK [66]. The lattice ensembles used
in this study and the corresponding parameters are sum-
marized in Table I. Because of the use of the HISQ action
the taste splitting in the pion sector is small for lattice
spacings a < 0.076 fm. The root mean square pion mass
is only 15% than the lightest pion mass, while the heav-
iest pion mass is only 25% above the lightest pion mass
[66]. In what follows for a = 0.076 fm ensemble will will
not make a difference between the sea and the valence
pion mass and refer to this ensemble as mπ = 140 MeV
ensemble or the ensemble with physical pion mass. The
effects of partial quenching will persist at finite lattice
spacings but will go away in the continuum limit.

To obtain the form factor we calculate the pion two-
point and three point functions. We consider two point
functions defined as

Css′

2pt(t;Pz) =
!
πs(P, t)π†

s′(P, 0)
"
, (2)

where πs(P, t) are either smeared or point sources, s =
S, P sources with spatial momentum

P =
2π

aLs
· (nx, ny, nz).

As in the previous studies [9, 10] we used boosted Gaus-
sian sources in Coulomb gauge with boost along the z-
direction kz = 2π/Ls · (0, 0, jz). The radius of the Gaus-
sian sources rG is also given in Table I. The three-point
function is defined as

C3pt(P
f ,Pi, τ, ts) =

!
πS(P

f , ts)Oγt(τ)π
†
S(P

i, 0)
"
, (3)

with

Oγt(τ) =
#

x

e−i(Pf−Pi)x

$
u(x)γtu(x)−d(x)γtd(x)

%
, x = (x, τ)

(4)
being the iso-vector component of the electric charge op-
erator. Note that the iso-singlet component of the elec-
tric charge vanishes between the pion states. The initial
momentum in the above expression is Pi = 2π/(aLs) ·
(0, 0, nz), while the final momentum is Pf = P = Pi+q.
The values of the momenta used in this study as well as
the corresponding boost parameter jz are summarized
in Table I. We calculated the three point functions for
three values of the source-sink separations, ts for the two
coarser lattices. For the finest lattice we used four source-
sink separations. The source think separations used in
our study are also listed in Table I.
The calculations of the two and three point functions

were performed on GPU, with the QUDA multi-grid al-
gorithm used for the Wilson-Dirac operator inversions to
get the quark propagators. We used many sources to-
gether with All Mode Averaging (AMA) technique [68]
to increase the statistics. The stopping criterion for AMA
was set to be 10−10 and 10−4 for the exact and sloppy
inversions respectively. Since the signal is deteriorat-
ing with increasing momenta we use different number of
sources and number of gauge configurations for different
momenta. The number of gauge configurations and num-
ber of sources used in the analysis are given in the last
two columns of Table I for each value of the momenta.
For the study of the form-factor it is useful to use the

Breit frame, where |Pi| = |Pf |. The use of the Breit
frame is essential when studying the GPD within LaMET
[29–32]. Therefore we also calculated the pion form factor
using the Breit frame. The parameters of this set-up are
summarized in Table II.

III. TWO-POINT FUNCTION ANALYSIS

Since the source-sink separation used in this study are
not very large it is important to quantify the contribu-
tions of the excited states when extracting pion matrix
elements. This in turn requires a detailed study of the
pion two point functions. For a = 0.04 fm and 0.06 fm
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Ensemble: mval
π (GeV) csw ts/a rG fm nz ni (i = x, y) jz #cfgs (#ex,#sl)

a = 0.076 fm, mπsea = 0.14 GeV, 0.14 1.0372 6, 8, 10 0.342 0,1 ±1,±2 0 350 (5, 100)

64× 643 2,3 ±1,±2 1 350 (5, 100)

a = 0.06 fm, msea
π = 0.16 GeV, 0.3 1.0336 8, 10, 12 0.312 0,1 ±1,±2 0 100 (1, 32)

64× 483 2,3 ±1,±2 1 525 (1, 32)

0,1 ±1 0 314 (3, 96)

a = 0.04 fm, msea
π = 0.16 GeV 0.3 1.02868 9,12, 0.208 0,1 ±2 0 314 (2, 64)

64× 643 15,18 2,3 ±1 1 564 (4, 128)

2,3 ±2 1 564 (3, 96)

TABLE I. The lattice parameters used in our calculations. Shown are the gauge ensembles used in our study, the valence
pion mass, the coefficient of the clover term, the size of the smeared Gaussian sources, the source-sink separations, used in the
analysis of the three point functions, the value of the momenta and with the corresponding boost parameters, see text. The
last two columns show the number of gauge configurations and the number of sources in AMA, see text.

Ensemble mπ ts/a np
z np

i nq
i #cfgs (#ex,#sl)

a, Lt × L3
s (GeV) i = x, y i = x, y

a = 0.06 fm, 0.3 8, 2 ±1 ∓2 120 (1, 32)

64× 483 10

a = 0.04 fm, 0.3 9,12, 2 ±1 ∓2 120 (1, 32)

64× 643 15,18

TABLE II. Two set of the measurements in the Breit frame of 2 ensembles are shown. Using the similar notation like Table I,
the initial pion have transverse momentum P i

⊥ = 2πnp
i /(Lsa), and final state Pf = Pi + q have the same energy.

lattices and mval
π = 300 MeV the pion two point func-

tions have been studied for different momenta along the
z-direction in Refs. [9, 10]. Furthermore, this analy-
sis was very recently extended to include momenta also
along the x and y-directions for a = 0.04 fm [69]. We
extended this analysis to a = 0.076 fm and the physical
pion mass.
The pion two point function in Eq. (2) has the spectral

decomposition:

Css′

2pt(t) =

Nstate−1#

n=0

As
nA

s′∗
n (e−Ent + e−En(aLt−t)), (5)

where En+1>En, with E0 being the mass of the pion
ground state. An is the overlap factor 〈Ω|πs|n〉 of the
state n and the state created by operator πs from the
vacuum state |Ω〉. Thanks to the Gaussian smearing, the
excited state contribution is suppressed. So we truncate
the Eq. (5) up to Nstate = 3 and then fit the data in a
range of t between [tmin, aLt/2]. The one-state fit re-
sults of the smeared-smeared (SS) two point function are
shown in left panels of Fig. 1 for three different momenta.
As one can see, the ground state energies, E0 reach a
plateau when tmin ≳ 10a. And at P = 0, the plateau is
around mπ = 140 MeV, which is the physical pion mass.
The lines in the plots are computed from the dispersion
relation E0(P) =

&
P2 +m2

π, and show good consistency
with the plateaus. Thus for the determination of the
next energy level, we can fix the ground state energy
E0 to be from the dispersion relation, and perform a 2-
state fit. Interestingly, as shown in right panels of Fig. 1,

we can also observe plateaus for E1 when tmin>5a, fol-
lowing the dispersion relation E1(P) =

&
P2 +m2

π′ well
within the errors. This could imply a single-particle ex-
cited state, namely the first radial excitation of the pion
π(1300) [69]. Since the first excited state energy, E1 does
not reach a plateau for tmin<5a, we conclude that for
t/a < 5 the contribution of higher excited states in the
two point function is significant. Therefore, we need to
consider three state fits for these t values. To perform
the three state fit, we fix E0 to the dispersion relation
and put a prior to E1 using the best estimates from SS
and smeared-point (SP) correlators [10] together with the
errors from the two-state fit. This way we get the third
excited state energy, E2, which does not depend on tmin

within the statistical errors. However, the value of E2

is very large, about 3 GeV. This implies that E2 does
not actually belong to a single energy state but rather to
a tower of many higher excited states. The situation is
similar for other two 300 MeV ensembles [10].

Now we understand that a two-state spectral model
can describe our two-point functions well when tmin ≳ 5a,
while three-state can describe tmin ≳ 2a. This will be im-
portant to keep in mind when analyzing the three point
function and pion matrix elements in the next section.
To summarize this section, in Fig. 2 we show the dis-
persion relation obtained from the above analysis. We
also extended the analysis for a = 0.06 fm [10] by in-
cluding additional momenta with non-zero components
along the x and y-directions. The corresponding results
are also shown in Fig. 2. We clearly see the effect of
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FIG. 1. E0 from one-state fit (left) and E1, E2 from constrained two-state and 3-state fit (right) for three different momentum

are showed as a function of tmin. The lines are computed from the dispersion relation E(P) =
!

P2 + E(P = 0)2, with E(P = 0)
to be 0.14 GeV for E0 and 1.3 GeV for E1. As can be observed, the E0 and E1 reach a plateau for large enough tmin.

the quark masses. For the physical pion mass the first
excited state has the correct mass of π(1300), while for
the larger quark mass (a = 0.06 fm) the excited state is
about 200 MeV higher.

IV. EXTRACTION OF BARE MATRIX
ELEMENT OF PION GROUND STATE

To obtain the bare pion form factor we consider the
following standard ratio of the three point and two point
pion functions [70]

Rfi(τ, ts) ≡
2

'
P f
0 P

i
0

P f
0 + P i

0

C3pt(P
f ,Pi, τ, ts)

C2pt(ts,Pi)

×
(
C2pt(ts − τ,Pf )C2pt(τ,P

i)C2pt(ts,P
i)

C2pt(ts − τ,Pi)C2pt(τ,Pf )C2pt(ts,Pf )

)1/2
(6)

This ratio gives the bare pion form factor in the limit
ts → ∞: hB(Pf , Pi) = limts→∞ Rfi(τ, ts).

As explained in Sec. II, we calculated the three-point
functions with Pi along with z direction, and multiple
momentum transfer q = Pf − Pi for each Pi. Thus
there is no difference for q with same magnitude of the
transverse momentum transfer. In other words, there
should be transverse symmetry for the three-point func-
tion data. We find that indeed that our numerical re-
sults for Rfi(τ, ts) with same |nq

x| and |nq
y| are consistent

within the error. Therefore, we average the three-point
functions data with same magnitude of the transverse
momentum transfer in the following analysis.

Since the temporal extent of our lattices is not large
it is important to consider thermal contamination, also
called wrap-around effects, caused by the periodic bound-
ary condition [10]. To remove the wrap-around ef-
fects in the two point function we replaced C2pt(t) by
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FIG. 2. Dispersion relation determined by the plateau of Fig. 1 for the physical pion mass ensemble (left) and a = 0.06 fm

ensemble (right). The lines are dispersion relation calculated by E(P) =
!

P2 + E(P = 0)2.

C2pt(t) − A0e
−E0(aLt−t) using the best estimate of A0

and E0 from the 2-point function analysis. To under-
stand wrap-around effects in the three point function we
consider the spectral decomposition of C3pt in Eq. (6)

〈πS(P
f , ts)Oγt(τ)π

†
S(P

i, 0)〉

=
#

m,n,k

〈m|πS |n〉〈n|Oγt
|k〉〈k|π†

S |m〉×

e−τEke−(ts−τ)Ene−(aLt−ts)Em ,

(7)

where m,n, k = Ω, 0, 1, . . . , with 0 being the pion
ground state. In general, terms with non-zero Em will be
highly suppressed by e−(aLt−ts)Em (we assume EΩ = 0).
Therefore, in most studies such terms are neglected. For
P = 0 case e−(aLt−ts)Em(P=0) = e−aLtmπ , however, is
not very small. We have e−aLtmπ ∼ 0.03, 0.003, 0.02 for
a = 0.076, 0.06 and 0.04 fm lattices, respectively. On
the other hand, for non-zero momenta the terms propor-
tional to e−(aLt−ts)Em are smaller than 0.003 and can be
neglected. Therefore, for a = 0.04 fm and 0.076 fm calcu-
lations we only consider non-zero momenta and limit the
sum over index m in Eq. (7) to include only the vacuum
state in what follows. We need, however, to consider the
wrap-around effects when dealing with the renormaliza-
tion, as discussed in the next section.
In this work, we use multi-state fit to extract the

bare matrix elements of the ground state 〈P f |Oγt
|P i〉 ≡

〈0P f |Oγt |P i0〉 by inserting the spectral decomposition
of the two point function in Eq. (5) and the three point
function in Eq. (7) withm = Ω, and the sum over n trun-
cated toNstate terms. Furthermore, we take the best esti-
mate of An and En from the two-point function analysis.
and put them into Eq. (6). In the following we will refer

to this method as Fit(Nstate, nsk), in which Nstate is the
number of states in the corresponding 2-point function
analysis and nsk labels how many τ we skipped on the
two sides of ts. We consider Nstate = 2 and Nstate = 3
that imply four and nine fit parameters, respectively.
In Fig. 3, we show the examples of ratio Rfi(τ, ts) as

well as the 2-state and 3-state fit results. As one can
see, for large momentum, the 2-state and 3-state fit re-
sults are consistent with each other because of the large
statistical errors, while this is not the case for smaller mo-
mentum, where the data are more precise. The 3-state
fit can describe the data on the ratio data better than
the 2-state fit. Thus for the following analysis, we will
take the 3-state fit results as the central value and use the
corresponding statistical errors. However, even when us-
ing 3-state fit there is no guarantee that we are free from
excited state contamination. Therefore, we take the dif-
ference between 2-state fit and 3-state fit results as the
systematic errors in the following analysis.

V. THE PION FORM FACTORS

To obtain the form factor from the bare form factor
determined in the previous section it needs to be multi-
plied by the vector current renormalization factor, ZV .
The simplest way to obtain this is to calculate the for-
ward matrix element hB(P

i, P i) = 〈0P i|O|P i0〉 = Z−1
V .

one needs to keep in mind the wrap-around effect dis-
cussed in the previous section. The other issue is cut-
off dependence of hB(P

i, P i) at large values of P i. In
Fig. 4, we show hB(P

i, P i) for a = 0.076 fm as function
of (aP i). In absence of discretization effects hB(P

i, P i)
should be independent of P i since after renormalization
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FIG. 3. Rfi(τ, ts) for np
i = (0, 0, 1) (left) and (0, 0, 3) (right) for nq = (0, 0, 0), (2, 0, 0), (2, 2, 0) of physical ensemble are

shown. The curves are the central value of multi-state fit Fit(2,3) (dashed) and Fit(3,2) (solid), and the bands are the estimated
bare matrix elements.

it gives the charge of the pion. In other words ZV should
not depend on the momentum of the external state. Fol-
lowing Ref. [10] we model the discretization effects using
the form hB(P

i, P i) = hB(P
i = 0, P i = 0) + r(aP i

z)
2.

As one can see from Fig. 4 this form describes the data
quite well, except for Pi = 0. The anomalously large
value of hB(P

i, P i) at Pi = 0 is due to the wrap-around
effects as discussed in the previous section. This means
that hB(P

i, P i) is contaminated by a small contribution
proportional to e−aLtmπ mentioned in the previous sec-
tion. This contribution is also proportional to matrix
elements containing two or more pion states with the ap-
propriate qunatum numbers. Constraining such matrix
elements is difficult in practice. However, under some
physically well motivated assumption it is possible to es-
timate the corresponding contributions and remove them
from hB(P

i, P i) [10]. Therefore, we follow the procedure
explained in Appendix. A of Ref. [10] to remove this con-

tribution from the matrix element. The corrected result
for hB(P

i = 0, P i = 0) is shown as the blue point in
Fig. 4 and is not very different from the result obtained
by the fit. Thus we understand the discretization effects
in the forward matrix element hB(P

i, P i). We also cal-
culated ZV for a = 0.076 fm using RI-MOM scheme and
obtained ZV = 0.946(12) which agrees with the results
on hB(P

i = 0, P i = 0) shown in Fig. 4 within errors.

From Fig. 4 we also see that the discretization errors
are smaller than 1% for P i

z < 1 GeV and are less than
2% for P i

z < 1.6 GeV. Since the discretization effects
as function of P i

z will be similar for off-forward matrix
element it is convenient to obtain the renormalized pion
form factor by simply dividing hB(P

f , P i) by hB(P
i, P i).

Then we have Fπ(Q
2 = 0) = 1 by construction and the

discretization errors for large P i
z are removed. We still

may have discretization errors proportional (aQ)2. As-
suming that these discretization errors are similar to the
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FIG. 4. The forward matrix elements hB(P
i, P i). The P i

z de-
pendence can be described by hB(P

i, P i) = hii
B(P

i = 0, P i =
0) + r(aP i

z)
2 shown as the line.

(aP i
z)

2 discretization errors we can neglect them. This is
because other sources of errors for the form-factors are
significantly larger for the considered Q2 range as we will
see below.
In Fig. 5, we show the renormalized pion form factors

obtained for the mπ = 140 MeV ensemble and compared
to the experimental data CERN [36], as well as the JLAB
result [46]. We see good agreement between the lattice
results and the experimental data within the estimated
error bars at low Q2. It is expected that for low Q2

the pion form factors can be well described by a simple
monopole Ansatz motivated by the Vector Meson Domi-
nance (VMD) model [71]

Fπ(Q
2) =

1

1 +Q2/M2
. (8)

The monopole mass should be close to the ρ meson mass.
Therefore, in Fig. 5 we show the inverse of the pion from
factor, 1/Fπ(Q

2) as function of Q2. We see clearly that in
the studied range ofQ2 the inverse form factor can be well
described by a linear function, as expected from monople
form, at least up toQ2 = 0.4 GeV The monopole fit of the
lattice data (dashed band in Fig. 5) extended to higher
Q2 also agrees with the pion form factor obtained by Fπ

collaboration [46], possibly indicating that the monopole
form may work in extended range of Q2.
At very low Q2 the the pion form factor can be char-

acterized in terms of the pion charge radius

r2π = −6
dFπ(Q

2)

dQ2
|Q2=0. (9)

The pion charge radius is very sensitive to the quark
mass. The chiral perturbation predicts that it will di-
verge logarithmically as pion mass goes to zero [63]. The
pion mass dependence is clearly seen in the lattice calcu-
lations. In fact, it appears to be challenging to obtain the
correct pion charge radius from the lattice results [50–62].
The lattice calculations at the unphysical quark masses
lead to smaller pion charge radius than the experimental

FIG. 5. Pion form factors (upper panel) and the inverse form
factors (lower panel) derived from the a = 0.076 fm (mπ = 140
MeV) ensemble (blue points), compared with the experiment
data from CERN (red points) [36] and Fpi collaboration (yel-
low points) [46]. The bands are the fit result of our a = 0.076
fm data, in which the filled band is from z-expansion fit and
the dashed band is from monopole fit.

results. If the monopole form (8) could describe the pion
form factor for all Q2 the pion charge radius would be
related to the monopole mass as

rπ =

*
6

M
. (10)

Therefore, it is convenient to represent the lattice results
in terms of the effective charge radius defined as [50]

r2eff (Q
2) =

6(1/Fπ(Q
2)− 1)

Q2
. (11)

In Fig. 6 we show the effective radius for a = 0.076
fm ensemble as well as for the two finer ensembles with
mval

π = 300 MeV. We see from the figure that r2eff is

constant as function of Q2 for all three lattice spacings.
For the smallest lattice spacing, a = 0.04 fm the results
on the effective radius are Q2-independent for Q2 as high
as 1.4 GeV. This is consistent with earlier findings [50].
We also clearly see the quark mass dependence of r2eff .
The effective radius is smaller for the heavier pion mass
as expected. Comparing the results at a = 0.06 fm and
a = 0.04 fm we see no clear lattice spacing dependence
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FIG. 6. The effective radius as function of Q2. The smaller
error bars are the statistical errors, while the larger error bars
also include the systematic errors. We show results for a =
0.076 fm (top panel), a = 0.06 fm (middle panel) and a = 0.04
fm (bottom panel). The blue band is constructed by solving
Eq. (9) using z-expansion fit results as a function of Q2, while
the green band is a constant from monopole fit combining all
the form factors.

of r2eff . Therefore, we conclude that for a = 0.06 fm the
discretization errors for the pion form factor are smaller
than the estimated lattice errors in the range of Q2 stud-
ied by us. Finally, for the two finer lattices we also show
the results from the calculations using Breit frame, which
agree with the non Breit frame results.

While the monopole Ansatz seems to describe the pion
form factor very well, it is useful to consider an alter-
native parameterizations of the pion form factor. An

alternative way to fit the form factors is the model inde-
pendent method called the z-expansion. Here the form
factor is written as

Fπ(Q
2) =

kmax#

k=0

akz
k

z(t, tcut, t0) =

√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

(12)

where t = −Q2, ak are the fit parameters with con-
strain condition Fπ(Q

2 = 0) = 1, and tcut = 4m2
π is

the two-pion production threshold. Furthermore, t0 is
chosen to be the optimal value topt0 (Q2

max) = tcut(1 −&
1 +Q2

max/tcut) to minimize the maximum value of |z|,
with Q2

max the maximum Q2 used for the fit. We use
AIC model selection rules to determine kmax, which are
1 for a = 0.06 fm, and 2 for a = 0.04, 0.076 fm data and
for the Q2 under consideration. The z expansion results
is also shown in Fig. 5 and appear to agree well with
the monopole fit, but for larger Q2 it has larger errors,
c.f. Fig. 5. We also show the fits with the z-expansion
in Fig. 6. From this figure we see that this fit works
well also for the valence pion mass of 300 MeV and nat-
urally reproduces the Q2 independence of the effective
radii. To better understand the quark mass dependence
of the pion form factor as well to facilitate the compar-
ison with the experimental results in Fig. 7 we show all
the results for the pion form factor in terms of the ef-
fective radius reff (Q

2). We see that the effective radius
obtained for the physical pion mass is clearly larger than
the one obtained for mval

π = 300 MeV and is much closer
to the CERN data. Furthermore, the fits of reff for
mval

π = 300 MeV for the two lattice spacing agree within
errors. While the individual lattice data and the CERN
data appear to agree within errors we also see from the
figure that there is a tendency for the CERN data to lie
higher than the lattice data. Because the data at differ-
ent Q2 are correlated this leads so a slight difference in
the pion charge radius as discussed below.
The z-expansion provides an model independent way

to obtain the pion charge radius. In Table III we show
the charge pion radius for the three lattice spacings used
in our study obtained from the monopole fit and from the
z-expansion fit. The statistical error are often smaller for
the monopole fit, but this fit has larger systematic errors
compared to the fit based on z-expansion. Within the
estimated errors the two fit forms give consistent results.
Thus, the model uncertainty in our determination of the
pion charge radius is small. As expected the calculations
for the heavier quark mass give smaller pion charge ra-
dius. As our final estimate of the pion charge radius for
physical point we take the result from the z-fit:

〈r2π〉 = 0.41(2) fm2, (13)

where we added the statistical and systematic errors in
quadrature. This result is one sigma lower than the pion
charge radius quoted by Particle Data Group (PDG),
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FIG. 7. The comparison of effective radius between CERN
and our lattice data as a function of Q2/m2

π. The bands are
the z expansion fit results of lattice data (blue, green and
orange).

Data nz 〈r2M 〉 〈r2Z〉
a=0.076fm [1,3] 0.402(6)(23) 0.412(10)(19)

a=0.06fm [0,3] 0.339(4)(18) 0.329(3)(14)

a=0.04fm [1,3] 0.313(5)(27) 0.319(9)(11)

TABLE III. The charge radius computed from monopole fit
(〈r2M 〉) and z-expansion fit (〈r2Z〉). The first error is statistical,
while the second error is systematic.

〈r2π〉PDG = 0.434(5) fm2 [72], but agrees well with the
HPQCD determination that uses HISQ action both in
the sea and the valence sector in 2+1+1 flavor QCD,
〈r2π〉 = 0.403(18)(6) fm2 [62]. The most precise lattice
determination of the pion charge radius in 2+1 flavor
QCD using overlap action in the valence sector and do-
main wall action in sea has 〈r2π〉 = 0.436(5)(12) fm2

[61]. The 2+1 flavor domain wall calculation gives
〈r2π〉 = 0.434(20)(13) fm2. Finally, the other 2+1 fla-
vor lattice determinations of the pion charge radius have
significantly larger errors [58, 59]. Since both our and
HPQCD’s calculations give lower value of the pion charge
radius compared to the PDG value, while calculations
with chiral quarks agree very well with with the PDG re-
sult we may speculate whether the uncontrolled effects of
partial quenching are responsible for this. Calculations
at smaller lattice spacing will be needed to clarify this
issue.

VI. CONCLUSIONS

In this paper we studied the pion form factor in 2+1
flavor lattice QCD using three lattices spacings a =
0.076, a = 0.06 and a = 0.04 fm. The calculations on
the coarsest lattice have been performed with the physi-
cal value of the quark masses, while for the finer two lat-
tices the valence pion mass was 300 MeV. We have found

that the pion form factor is very sensitive to the quark
mass, as expected. We showed that lattice discretization
effects are quite small for lattice spacings smaller than
0.06 fm. For the physical quark masses our lattice re-
sults on the pion form factor appear to agree with the
experimental determinations. Unlike other lattice stud-
ies we also considered highly boosted pions in the initial
state using momentum boosted Gaussian sources. In ad-
dition we performed calculations also in the Breit frame.
We demonstrated that the calculations of the pion form
factor performed at different momenta of the pion as well
as in the Breit frame give consistent results. This is very
important for extending the calculations to pion GPDs.
An important outcome of our analysis is that the

monopole Ansatz can describe the pion form factor in
large range of Q2, up to Q2 = 1.4 GeV2. In the fu-
ture it will be important to extend the calculations to
even higher momentum transfer given the experimental
efforts in Jlab and EIC. To do this we should use boosted
sources that also depend on the value of Q2. At present
the momentum boost was optimized only according to
the pion momentum in the initial state.
From the low Q2 dependence of the pion form fac-

tor we determined the pion charge radius, which is one
sigma lower that the experimental result. We speculated,
whether this is due to the effect of partial quenching. To
fully resolve this issue calculations at smaller lattice spac-
ing with the physical value of the pion masses are needed.
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