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Abstract— Unsupervised multivariate time series clustering 

is important in many application areas. Among many 

unsupervised methods Shapelet learning has shown promise for 

univariate time series signal processing. Discovering suitable 

Shapelets from a large number of candidate Shapelets has been 

widely studied for classification of univariate time series signals.  

However, there is no generalized Shapelet based unsupervised 

clustering of multivariate time series data. Consequently, this 

work proposes a generalized Shapelet learning framework for 

unsupervised multivariate time series clustering. The proposed 

method utilizes spectral clustering and Shapelet similarity 

minimization with least square regularization to obtain the 

optimal multivariate Shapelets for unsupervised clustering. The 

proposed method is evaluated using an in-house multivariate 

time series dataset on detection of radio frequency (RF) faults in 

the Jefferson Labs Continuous Beam Accelerator Facility 

(CEBAF). The dataset constitutes of three-dimensional time 

series recordings of three RF fault types. The proposed method 

shows successful clustering performance with a precision of 

0.732 with a standard deviation of 2.3%, recall of 0.7172 with a 

standard deviation of 1.7%,  F-score of 0.732 with a standard 

deviation of 0.9%, rand index (RI) score of 0.812 with standard 

deviation of 0.9%, and an average normalize mutual 

information (NMI) of 0.56 with a standard deviation of 3.6%, in 

a five-fold cross validation evaluation.        

Keywords—Multivariate time series, Shapelet learning, Rand 

Index, Normalize mutual information.  

I. INTRODUCTION 

Clustering is widely used in unsupervised machine 
learning to partition a given set of data into non-overlapping 
groups. Clustering is also used to reveal the underlying 
structure of the data. Shapelets are subsequences of a given 
time series that contain salient features used to perform 
clustering [11]. Shapelet learning is a process of discovering 
those Shapelets which contains most informative features of 
the time series data. In [11], Shapelet based clustering is 
shown to consistently outperform several other methods for 
univariate time series clustering. However, many real-world 
applications require processing more complex multivariate 
time series data characterized by more than one dependent 
variable.  

Most studies in literature address the problem of univariate 
time series classification and clustering.  Generally, a 
univariate time series signal is considered as a point in 
multidimensional space. Consequently, Euclidian distance is 
often employed to search for similarity in multidimensional 
space [2]. However, due to the complexity introduced by high 
dimensionality, most methods tend to use a dimensionality 
reduction technique such as, Principal Components Analysis 
(PCA)[2], Discrete Fourier Transform (DFT) [19] , Discrete 
Wavelet Transform (DWT)[20], Singular value 
Decomposition (SVD)[21]. Typically, these techniques allow 
only a few coefficients to be chosen to represent the original 
signal. This tends to oversimplify the representation of the 
signals, and therefore reduces the performance of clustering.  

One of the primary challenges of time series data analysis 
is to find the most informative features. Classification of time 
series are based on global properties of a time series which can 
potentially be improved with local patterns [4]. One such local 
pattern representations is known as Shapelets. Consequently, 
the discovery of suitable Shapelet is a research focus that may 
lead to improved classification as well as clustering of time 
series signals. Accordingly, Ye et al. [5] proposes a Shapelet 
based classification method by searching within a group of 
segmented patterns to determine the class of a time series 
signal. They rank each Shapelet based on the distance 
computations and entropy pruning of the information gain. 
The top ranked shepelets are then used for classification of the 
time series signal. Jesin et al. [7] propose a clustering 
algorithm called “u-Shapelets” to cluster univariate unlabeled 
data. The method selects a set of unsupervised Shapelets to 
separate the original dataset by searching and removing a 
subset (outliers) to maximize the gap between different groups 
divided by the unsupervised Shapelets.  John et al. [8] have 
proposed another clustering algorithm called “k-Shapelet”, 
which shows good clustering results on several univariate 
datasets across many disciplines. Although the method [8] 
offers good performance, it requires a costly search over many 
Shapelet candidates. Instead of searching for a large number 
of candidate Shapelets, Grabocka et al. [6] proposes that 
suitable Shapelets can be discovered using a regression 
technique known as Shapelet learning. In this method, an intial 
Shapelet is extracted from the original time series and 
subsequently updated using a regression based learning 
method. This technique reduces time of the typically 
cumbersome Shapelet search process. Utilizing this regression 
based Shapelet learning, Qin et al. [9] have proposed a 
Shapelet learning method to cluster univariate unlabeled time 
series data. However, these Shapelet learning algorithms are 
tailored for univariate time series inputs, and hence not 
directly applicable for complex multivariate inputs.         

Multivariate time series analysis for unsupervised 
clustering has not been extensively explored. Multivariate 
time series data are widely available in various fields such as 
multimedia, medicine, and finance [2]. In a human and 
computer interface, CyberGlove uses 22 sensors each 
generating 90 records per second, producing large scale 
multivariate time series [17,18]. Typically, in the clustering 
literature, multivariate time series are first transformed into 
univariate time series, using various dimensionality reduction 
techniques [1]. However, each variable of the multivariate 
time series may be significantly correlated to other variables. 
This naïve process of multivariate to univariate conversion [1] 
applied in typical clustering algorithms may result in a loss of 
some valuable information. Consequently, Shen et al [23] 
introduce a multivariate clustering method characterized by 
statistical features extracted on temporal patterns that exist 
between the multivariate signals.  Many of the discovered 
patterns are less useful as features for classification and 
prediction. [24]. 



  

  

Fig. 1: (a) and (b) represent two original multivariate time-series 
signals of length 300. (c) and (d) presents the multivariate 
Shapelet of length 50 which taken from the original time series  
(a) and (b) respectively. 

In the classification literature, there is example where the 
multivariate data is considered without dimensionality 
reduction. Bostrom et al. [3] perform multivariate time series 
classification using a Shapelet transform method, which 
inspires our work in developing a novel multivariate Shapelet 
learning scheme for unsupervised multivariate Shapelet based 
time series clustering. 

This work proposes a generalization of the Shapelet 
learning method to multivariate time series clustering. This 
requires a reformulation of the cost function and the learning 
algorithm. In this method, we consider multivariate dependent 
Shapelets which are designed to maintain the phase across the 
channels. First, the multivariate Shapelet is converted into a 
Shapelet space matrix using a distance measure between the 
time series signal and each Shapelet. Then, the Shapelets are 
updated using spectral clustering, Shapelet similarity 
minimization and least square minimization techniques. To 
validate the proposed generalized Shapelet algorithm, we test 
our clustering on a multivariate time series dataset collected 
from RF cavity faults generated at Jefferson Lab CEBAF, 
which we describe in the motivation section. The performance 
is analyzed on a five-fold cross validation scheme using 
multiple performance indicators such as: Precision, Recall, F-
score, Rand Index and Normalize Mutual Information. 

Section II of this paper describes the motivation of this 
work. Section III describes the methodology of this work. 
Section IV discuss the experimental setup and results. Finally, 
section V concludes the work.  

II. MOTIVATION 

      The Continuous Electron Beam Accelerator Facility 

(CEBAF) in Jefferson Lab (JLab) has two linear accelerators 

that consist of 25 cryomodules each containing eight cavities. 

Operational disruptions in the whole CEBAF system can be 

traced back to cavity faults. Manual identification, discovery, 

and labeling of fault types requires substantial effort and 

manpower with subject matter expertise. There is a very 

strong coupling between cavity to cavity in cryomodules 

[13], which motivates an analysis of time series data from 

fault event in a multivariate paradigm. The proposed 

generalized multivariate clustering approach is expected to 

lead the development of a tool for automated fault 

identification and unsupervised data analytics for fault 

discovery.  

III. METHODOLOGY 

       A typical example for a multivariate signal obtained at 

CEBAF runtime is shown in fig. 1. Figure 1 (a) and (b) shows 

two different signals, each with three dimensions. A small 

part of the multivariate time series signal is used as an initial 

multivariate Shapelet as presented in Fig. 1(c) and (d).  In the 

proposed multivariate Shapelet learning method, each 

multivariate Shapelet is moved throughout the time series 

signals to determine the minimum distance between the 

Shapelet and the time series signal by maintaining phase 

across the channels. For each multivariate Shapelet, there is a 

minimum distance between the Shapelet and each time series 

input signal. For example, if a dataset contains 50 

multivariate input signals and we consider 3 multivariate 

Shapelets randomly from the multivariate time series dataset, 

there will be total 50 X 3 minimum distances between the 

Shapelets and input signals. Accordingly, the three minimum 

distance measures for each input signal is considered as a 

three-dimensional data point in the Shapelet space. The time 

series data represented in Shapelet space are placed into 

groups called pseudo-classes. The boundary of the class label 

represents a pseudo-classifier. Shapelets are subsequently 

updated using spectral clustering, Shapelet similarity 

minimization, and least square minimization techniques, as 

discussed below. The updated Shapelet is used to determine 

the optimal pseudo class labels and pseudo-class boundary.  

 

       Consider a set of n multivariate time series (MTS) with 

length q and m number of variables: 𝑇𝑆 =
{𝑇1, 𝑇2, 𝑇3, … 𝑇𝑛}  ∈ ℝ

𝑛×𝑞×𝑚  . A single multivariate time 

series can be described as matrix 𝑇 = {𝑡1, 𝑡2 𝑡3, …… . . , 𝑡𝑞} ∈

ℝ𝑞×𝑚. The initial Shapelet is obtained as a small part of the 

time series signal. We consider a set of 𝑘  multivariate 

Shapelets (MVS) of length 𝑙 and 𝑚 variables which can be 

written as 𝑀𝑉𝑆 = {𝑆1, 𝑆2, 𝑆3, … 𝑆𝑘}  ∈ ℝ
𝑘×𝑙×𝑚 . A single 

multivariate Shapelet can be described as a matrix 𝑆 =
{𝑠1, 𝑠2 𝑠3, …… . . , 𝑠𝑙} ∈ ℝ

𝑙×𝑚 . A multidimensional Shapelet 

method is implemented in [3] for multivariate time series 

classification. In this method, multidimensional Shapelets are 

generated and the minimum distance for each multivariate 

series with respect to each Shapelet is calculated. By using 

only, a single distance for each multidimensional signal, we 

are effectively defining a transform that allows the algorithm 

to handle multivariate data. 

        We obtain the multivariate generalization of the 

Shapelet transformation introduced by Qin et al. [11] to 

reduce a long time series to a much shorter vector in Shapelet 

space. The Shapelet transform space, 𝑋 ∈ ℝ𝑘×𝑛 is presented 

by calculating the minimum distance between the 

multivariate time series T and the multivariate Shapelet S. 



The minimum distance between time series 𝑇𝑗 and Shapelet 

𝑆𝑖 is presented as 𝑋(𝑆𝑖,𝑇𝑗) or 𝑋(𝑖,𝑗). 

𝑋(𝑖,𝑗) = min
𝑢=1,2,..,𝑣̅

1

𝑙𝑖
∑ ∑ (𝑇𝑗,𝑟+𝑢−1,𝑧 − 𝑆𝑖,𝑟,𝑧)

2𝑚
𝑧=1

𝑙𝑖
𝑟=1   (1)                             

Where 𝑣̅ = 𝑞𝑗 − 𝑙𝑖 + 1 denotes the number of segments of 

length 𝑙𝑖  in the time series signal 𝑇𝑗 . The function in the 

equation (1) is non differential as the partial derivative 
𝑑𝑋(𝑖,𝑗)

𝑑𝑆(𝑖,𝑟,𝑧)
 

is not defined. Therefore (1) approximated using soft 

minimum function [10] as follows: 

               𝑋(𝑖,𝑗)≈
∑ 𝑑𝑖𝑗𝑣𝑒

𝛼𝑑𝑖𝑗𝑣𝑣̅
𝑣=1

∑ 𝑒
𝛼𝑑𝑖𝑗𝑣𝑣̅

𝑣=1

                                        (2) 

Where 𝑑𝑖𝑗𝑣 =
1

𝑙𝑖
∑ ∑ (𝑇𝑗,𝑟+𝑣−1,𝑧 − 𝑆𝑖,𝑟,𝑧)

2𝑚
𝑧=1

𝑙𝑖
𝑟=1 .  

The parameter 𝛼  is the control precision. If 𝛼 → −∞ , 

equation (2) become same as equation (1). In our case we 

have set 𝛼 = 100 following the method in [9]. 

Similarity matrix: A similarity measure is a real valued 

function that quantifies the similarity between two objects. 

The similarity between Shapelet transformed time series 𝑋 is 

presented [11] by 𝐴 ∈ ℝ𝑛×𝑛 as follows: 

             𝐴𝑖,𝑗 = 𝑒
−
‖𝑋(:,𝑖)−𝑋(:,𝑗)‖

2

2𝜎2                                                      (3) 

Where σ is the radial basis function kernel. 

Accordingly, the similarity between the Shapelet 𝑆𝑖  and 𝑆𝑗 is 

presented [11] by Shapelet similarity matrix 𝑃 ∈ ℝ𝑘×𝑘.  The 

similarity between 𝑆𝑖  and 𝑆𝑗 can be calculated as: 

               Pi,j = e
−
‖bi,j‖

2

2σ2                                                (4) 

Where 𝑏𝑖,𝑗  is the distance between Shapelet 𝑆𝑖   and 𝑆𝑗 
obtained using equation (2).  

 

Pseudo-class labels and pseudo class boundary: The main 

challenge of unsupervised learning is the unlabeled data. To 

cluster the unlabeled data, a pseudo-class label is introduced 

following [11]. If n numbers of unlabeled data belongs to c 

categories, then pseudo-class label matrix is 𝑍 ∈ ℝ𝑐×𝑛  . 

Maximum value of each column of matrix Z represents the 

class label of the corresponding time series data.  Pseudo-

class labels make c categories of n time series signals with a 

class boundary  𝑊 ∈ ℝ𝑘×𝑐. 
      The least square method is use in regression analysis to 
minimize the error. Consequently, to improve the clustering 
we apply the following least square minimization function 
[11]: 

                min
                        𝑤

‖𝑊𝑇𝑋 − 𝑍‖𝐹
2                              (5) 

Spectral analysis: Spectral analysis is a process by which the 
frequency contents of a continuous-time signal is determined 
in the discrete domain [22]. Spectral analysis is widely used 

in the clustering [12]. The similarity matrix 𝐴  determines the 
similarity of the data set. The spectral regularization term can 
be formulated as [11]: 

  

1

2
∑∑𝐴𝑖,𝑗‖𝑍(:,𝑖) − 𝑍(:,𝑗)‖2

2
𝑛

𝑗=1

𝑛

𝑖=1

 

= 𝑡𝑟(𝑍(𝐷 − 𝐴)𝑍𝑇)

= 𝑡𝑟(𝑍𝐿𝑍𝑇)                                        (6) 
Where, 𝐷𝑖,𝑖 = ∑ 𝐴𝑖,𝑗

𝑛
𝑗=1  is the degree matrix and L is 

known as Laplacian matrix. 
 
Unsupervised learning model: Based on the spectral 
analysis, least square minimization and Shapelet similarity 
minimization the unsupervised learning model presented [11] 
in the eqn. (7) below.  

min
W,S,Z

𝐹 = min
W,S,Z

1

2
(tr(ZLZT) + γ2‖W

TX − Z‖F
2 + γ1‖P(S)‖F

2

+ γ3‖W‖F
2)                                           (7)       

 
Where, γ1, γ2 and γ3 are regularization parameters. The eqn. 
(7) is the objective function, F has three variables W, Z and 
S. We update each variable by keeping other two constant.  
Updates for pseudo class boundary or pseudo classifier W, 
and pseudo class label Z can be found by solving eqn. (7). 
Pseudo classifier W is found by derivative of eqn. (7) while 
Z and S is fixed. We obtain the updated value for W by setting 
∂F(W)

∂W
 =0. We apply similar procedure to obtain updates for 

Z.   

W = γ2(γ2XX
T + γ3I)

−1XZT                                                   (8) 
 
Z = γ2W

TX(L + γ2I)
−1                                                            (9) 

 
Updated value of S can be found by fixing Z and W from eqn. 
(7), as shown below: 

min
𝑆
𝐹(𝑆) =

1

2
(𝑡𝑟(𝑍𝐿(𝑆)𝑍𝑇) + 𝛾1‖𝑃(𝑆)‖𝐹

2

+ 𝛾2‖𝑊
𝑇𝑋(𝑆) − 𝑍‖𝐹

2)                  (10) 
The function in equation (10) is non-convex with respect to 
Shapelet S. To optimize the objective function, we follow an 
iterative algorithm. The updated Shapelet after following the 

iterative algorithm will be 𝑆𝑖+1 = 𝑆𝑖 − 𝜂∇𝑆𝑖 . Where, 

∇𝑆𝑖 =
𝜕𝐹(𝑆𝑖)

𝜕𝑆
 and 𝜂 is the learning rate. 

The derivative of the function in equation (12) will be: 

           
∂F(S)

∂Sks,ls,ms
= 𝐹1 + 𝐹2 + 𝐹3                                          (11) 

With F1, F2, and F3 are defined as follows: 

            F1 =
1

2
(Z

∂L(S)

∂Sks,ls,ms
ZT) 

            F2 = γ1P(S)
∂P(S)T

∂Sks,ls,ms
 

            F3 = γ2W(W
TX − Z)

∂X(S)T

∂Sks,ls,ms
 

where 𝑘𝑠 = 1,2,… . 𝑘, 𝑙𝑠 = 1,2… . . 𝑙𝑖 , 𝑎𝑛𝑑  𝑚𝑠 =

1,2…… . ,𝑚. 



We know from equation (6) that, L=D-A, 𝐷𝑖,𝑖 = ∑ 𝐴𝑖,𝑗
𝑛
𝑗=1 . 

Therefore,  
𝜕𝐿(𝑆)

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
 can be obtained by calculating 

𝜕𝐴(𝑆)

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
 

as follows; 

∂An1,n2
∂Sks,ls,ms

=
∂

∂Sks,ls,ms
(𝑒
−
‖𝑋(:,𝑖)−𝑋(:,𝑗)‖

2

2𝜎2 ) 

                    =
−An1,n2
2σ2

(Xn1,ks − Xn2,ks)(
∂Xn1,ks
∂Sks,ls,ms

−
∂Xn2,ks
∂Sks,ls,ms

) 

∂Xn1,ks
𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠

=

𝐺1
∂𝐺2

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
− 𝐺2

∂𝐺1
𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠

𝐺1
2  

 

Where,  𝐺1 = ∑ 𝑒𝛼𝑑n1,ks,v𝑣̅
𝑣=1  

               𝐺2 =∑𝑑n1,ks,v𝑒
𝛼𝑑n1,ks,v

𝑣̅

𝑣=1

 

∂𝐺1
𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠

=∑(1 + 𝛼𝑑n1,ks,v)𝑒
𝛼𝑑n1,ks,v

∂𝑑n1,ks,v
𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠

𝑣̅

𝑣=1

 

∂𝐺2
𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠

=∑𝛼𝑒𝛼𝑑n1,ks,v

𝑣̅

𝑣=1

∂𝑑n1,ks,v
𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠

 

∂𝑑n1,v,ks
𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠

=
∂

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
(
1

𝑙𝑖
∑∑(𝑇𝑘𝑠,𝑟+𝑣−1,𝑧 − 𝑆𝑛1,𝑟,𝑧)

2
𝑚

𝑧=1

𝑙𝑖

𝑟=1

)  

                  = −
2

𝑙𝑖
(𝑇𝑘𝑠,𝑙𝑠+𝑣−1,𝑚𝑠 − 𝑆𝑛1,𝑙𝑠,𝑚𝑠) 

∂𝑃i,j

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
= −

1

𝜎2
𝑃i,j𝑏i,j

∂𝑏i,j

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
 

𝑏i,j is the distance between Shapelet i and Shapelet j. If both 

Shapelet is equal in length, we can write the derivative 
∂𝑏i,j

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
  as follows: 

 
∂𝑏i,j

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
=

∂

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
(
1

𝑙𝑖
∑ ∑ (𝑆𝑗,𝑟,𝑧 − 𝑆𝑖,𝑟,𝑧)

2𝑚
𝑧=1

𝑙𝑖
𝑟=1 ) 

=
2

𝑙𝑖
∑∑(𝑆𝑗,𝑟,𝑧 − 𝑆𝑖,𝑟,𝑧)(

∂𝑆𝑗,𝑟,𝑧

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
−

∂𝑆𝑖,𝑟,𝑧
𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠

)

𝑚

𝑧=1

𝑙𝑖

𝑟=1

 

=

{
 
 

 
 
2

𝑙𝑖
(𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠− 𝑆𝑖,𝑙𝑠,𝑚𝑠)            𝑓𝑜𝑟 𝑗 = 𝑘𝑠, 𝑖 ≠ 𝑘𝑠

2

𝑙𝑖
(𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠− 𝑆𝑗,𝑙𝑠,𝑚𝑠)          𝑓𝑜𝑟 𝑖 = 𝑘𝑠, 𝑗 ≠ 𝑘𝑠

0                                              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

   

Fig. 2: Examples of dataset signals for different channels  and 
different faults 

If lengths of Shapelet i and Shapelet j are not equal then 
∂𝑏i,j

𝜕𝑆𝑘𝑠,𝑙𝑠,𝑚𝑠
 can be calculated using the derivative of eqn. (2). 

Grid search: We identify five different hyperparameters that 
must be obtained through a grid search. First parameter is the 
length of Shapelet, li. We have varied the length of the 
Shapelet, {0.1, 0.15,…..,0.25}×Ti, where Ti is the length of 
the original time series signal. The second parameter is the 
number of Shapelets k. We vary the number of k from 1 to 5. 
We have searched other three weight parameters (γ1, γ2, γ3) in 
the range of {10−6, 10−4, …… . . , 104, 106 }. We have used 
maximum internal iteration of 30 and learning rate η=0.001. 
For each combination of training dataset, we do grid search 
to find optimal pseudo class label and pseudo classifier. 

      The proposed multivariate Shapelet learning scheme with 
above steps is illustrated in the Algorithm below. The goal of 
this work is to learn the best Shapelets that optimizes the 
clustering and class boundary for multivariate time series. 
Initial value of Shapelet S0 is an arbitrary segment of the input 
multivariate time series signal. Initial clustering for the 
Shapelet transform values can found by applying k-means 
clustering algorithm. The initial value of the pseudo classifier 
can be found by the center of the K-means clustering.   

 

Algorithm: Multivariate time series clustering 

Inputs:  

       Multivariate time series signal 

        𝛾1, 𝛾2, 𝛾2: Regularization parameters 

        𝑙𝑖 , 𝑘: length and number of Shapelets 

       η, 𝑖𝑚𝑎𝑥: learning rate and maximum iteration 

        O: Optimization threshold value 

Outputs: 𝑍,𝑊, 𝑆 

Initialization: 𝑆0,𝑊0 

       Repeat: 

               Calculate: 𝑋𝑡 and 𝐿𝑡  using eqn. (2) and eqn. (6) 

               Determine updated value of Z and W: 

                           𝑍t+1 = γ2Wt
TXt(Lt + γ2I)

−1XZT 

                           Wt+1 = γ2(γ2XtXt
T + γ3I)

−1 

               For i=1,2,3….,𝑖𝑚𝑎𝑥 

                     Calculate: 𝑋𝑖 , 𝐿𝑖 , 𝑎𝑛𝑑  𝑃𝑖   using 

                                       eqn. (2), eqn. (6), and eqn. (4) 

                       Calculate:  ∇𝑆𝑖 =
𝜕𝐹(𝑆𝑖)

𝜕𝑆
 using eqn. (11)              

                      Update: 𝑆𝑖+1 = 𝑆𝑖 − 𝜂∇𝑆𝑖 
                      i=i+1 

                end for 

                  𝑆𝑡+1 = 𝑆𝑖𝑚𝑎𝑥                     

                t=t+1 

                Calculate: F using eqn. (7) 

          Until:  F<O 

            𝑅𝑒𝑡𝑢𝑟𝑛    𝑍 = 𝑍𝑡+1, 𝑆 = 𝑆𝑡+1, 𝑊 = 𝑊𝑡+1   

 

IV. EXPERIMENTS 

A. Data acquisition and datasets description 

The data acquisition system in C100 cryomodule 
synchronously acquires timestamps and saves waveform 
records of 17 different rf signals from each of the eight cavities 
in the cryomodule. The data acquisition system included two 
primary components, the LLRF and experimental physics and 
industrial control systems (EPICS), along with a collection of 
high-level applications [14]. These two components work 



together to generate and save data for further analysis. Each of 
the recorded 17 signals are 8192 points long. The recorded 
data are arranged approximately 94% before the faults and 6% 
after the occurrence of the faults. The duration of the recorded 
signals is approximately 1535 ms and sample rate is 0.2ms.   

In the data preprocessing stage, we normalize the data 
which removes the mean and scales each feature/variable to 
unit variance.  This operation is performed feature-wise in an 
independent way. RF cavity faults dataset contain long time 
sequences with 8192 steps. One of the major issues of time 
series data analysis is that large signal length drastically 
increases the processing time. To improve the processing 
time, we preprocess the signals in two steps as follows: 1) we 
crop the signal from around 600 ms before fault to 50ms after 
fault to retain the maximum valuable information of the faults. 
2) We down sample the signal after applying an antialiasing 
filter to further reduce the signal length. For this experimental 
analysis we consider three different faults named as Equench, 
Quench100ms and Microphonics. Signals from three different 
channel/dimension named as GASK, DETA2 and CRFP are 
taken from total of 17 channels based on expert opinion. The 
full dataset obtained for this analysis includes 358 multivariate 
time series examples. There are 161 examples for 
Microphonics fault, 100 for Equench and 97 for quench100ms 
fault. Figure 2 presents the examples of different faults and 
signal from different channels after preprocessing. Fig. 2(a) 
presents the Equench, Quench100ms and Microphonics faults 
signal collected from channel named as GASK. Similarly, Fig. 
2 (b) and Fig. 2(c) presents those faults collected from channel 
CRFP and DETA2. 

B. Performance measures 

We utilize several clustering performance measures such 
as: normalized mutual information (NMI)[15], Rand index 
(RI) [16], along with Precision, recall and F-score to measure 
the performance of the pseudo-classifier in the proposed 
algorithm. The performance measures are defined as follows:  

Rand index: Rand index is computed by using the following 
formula: 

                    𝑅𝐼 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

Where, TP represents the true positive, TN denotes the 
true negative, FP indicates false positive and  FN represents 
the false positive. 

NMI: NMI can be computed by using following formula: 

               𝑁𝑀𝐼(𝑌, 𝐶) =
2×𝐼(𝑌;𝐶)

[𝐻(𝑌)+𝐻(𝐶)]
 

TABLE I.  PERFORMANCE OF MULTIVARIATE CLUSTERING  

Dataset 
Performance parameter 

Precision Recall F-score RI NMI 

Fold 1 0.768 0.713 0.739 0.822 0.606 

Fold 2 0.736 0.724 0.724 0.814 0.593 

Fold 2 0.706 0.692 0.699 0.796 0.573 

Fold 4 0.716 0.739 0.728 0.81 0.549 

Fold 5 0.734 0.718 0.726 0.814 0.515 

 

Where Y= class labels, C= cluster labels, H(Y)= entropy 
of the class labels, H(C)= entropy of the cluster labels and I(Y; 
C)= mutual information between Y and C. 

Precision: Precision determines the percentage of properly 

classified examples within the same cluster. 

              𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall: Recall determines the percentage of elements that are 

properly included in the same cluster. 

               𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
 

F-measure: The F-measure combines precision and recall. F-

measure determine how the clustering method is precise.  

               𝐹 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   

C. Results and discussion 

We apply our generalized Shapelet learning scheme to 
perform unsupervised clustering of RF cavity faults of particle 
accelerator data in Jefferson Lab. All folds are properly 
stratified to ensure representation from all three classes. We 
perform 5-fold cross validation to analyze the performance of 
the proposed algorithm. All folds are properly stratified to 
ensure representation from all three classes. The detailed five-
fold performance figures are presented in Table I. Average 
precision value of the five-fold is 0.732 with a standard 
deviation of 2.3%. Which indicate that the multivariate 
Shapelet learning model can cluster on average 73.2%  of 
relevant instances among the retrieved instances from the test 
dataset.  Average recall value of the fivefold is 0.7172 with a 
standard deviation of 1.7%. The recall value indicates that 
71.72%  of relevant instances that are retrieved from the test 
examples.  Average F-score value of the experiment is 0.7232 
with a standard deviation of 0.9%. The model rand index is 
more in fold 1 which is 0.822. Mean RI is 0.8112 and standard 
deviation of 0.95%. Lower standard deviation indicate that 
model performance is stable if the training and test dataset 
changes.  The maximum NMI were achieved in fold 1 and 
minimum in fold 5. The average NMI is 0.56 and standard 
deviation 3.6% for the cross validation.   

The clustering output is shown in Fig.3. This output is 
generated from one of  the hyperparameter combination. It is 
the Shapelet space transform representation using 3 Shapelets. 
We apply PCA to reduce the Shapelet dimension for 2D 
visualization purposes. 

 

Fig. 3: Clustering output of the multivariate Shapelet learning 
method 



V. CONCLUSION AND FUTURE WORKS 

This work proposes a generalized Shapelet learning 
scheme for multivariate unsupervised time series clustering. 
The proposed method automatically learns multivariate 
Shapelet functions based on spectral clustering, least square 
minimization, and a pseudo-classification process. The 
performance of the proposed model is extensively evaluated 
using a 5-fold cross-validation scheme applied to a 
challenging multivariate time-series dataset obtained from the 
Jefferson Labs CEBAF hardware fault detection study. The 
results suggest that the model successfully clusters 
multivariate input, identifying the different RF fault types 
represented in the dataset.   

In future we plan to benchmark the proposed method by 
extensive performance comparison with other works in 
literature. Additionally, we plan further improvements to the 
proposed method to efficiently perform multivariate Shapelet 
learning with large-scale multi-class input towards full 
automation of the fault discovery process in Jefferson Labs 
CEBAF hardware system.  
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