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Abstract: We study the behaviour of the χc1(3872), also known as X(3872), in dense nuclear matter.
We begin from a picture in vacuum of the resonance as a pureply molecular (DD̄∗ − c.c.) state, gen-
erated as a bound state from a heavy-quark symmetry leading-order interaction between the charmed
mesons, and analyze the DD̄∗ scattering T−matrix (TDD̄∗) inside of the medium. Next, we consider
also mixed-molecular scenarios and, in all cases, we determine the corresponding X(3872) spectral
function and the DD̄∗ amplitude, with the mesons embedded in the dense environment. We find
important nuclear corrections for TDD̄∗ and the pole position of the resonance, and discuss the de-
pendence of these results on the DD̄∗ molecular component in the X(3872) wave-function. These
predictions could be tested in the finite-density regime that can be accessed in the future CBM and
PANDA experiments at FAIR.
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1 Introduction

The new quarkonium revolution started in 2003 with the discovery of the X(3872) (also known as
χc1(3872)). The X(3872) was firstly observed in B± → K±π+π−J/ψ decays by Belle [1], and subse-
quently confirmed by BaBar [2], CDF [3–5], D∅ [6], LHCb [7, 8] and CMS [9]. The spin-parity quantum
numbers JP = 1++ were extracted at the 8σ level in 2013 from the high-statistic measurements of
the two-pion mode performed in the LHCb experiment [10]. A distinctive feature of the X(3872) is
that the ρJ/ψ and ωJ/ψ branching fractions are similar. This points out to an isospin symmetry vio-
lation [11], which together with the large disparity between ω and ρ meson widths provides a natural
explanation to the observed ρJ/ψ to ωJ/ψ decay ratio [12, 13].

The X(3872) is one of the best studied exotic mesons with a cc̄ content. This state lies extremely
close to the D0D̄∗0 threshold with an upper limit of the width of ΓX < 1.2 MeV. It can be produced
via weak decays of B-mesons, that include two- (referred as ρJ/ψ as it originates from ρ) and three-
pion (named as ωJ/ψ as it comes from ω) modes, or Λb−baryons, as well as in charmonia radiative
decays and through lepto- or photo-production. In addition, exhaustive sensitivity studies for width
and line-shape measurements of the X(3872) have been carried out for the reaction pp̄→ J/ψρ0 with
the PANDA experiment at FAIR [14], and the possibility of X(3872) photo-production off the nucleon
has also been discussed [15].

In spite of all this experimental progress, the nature of the X(3872) is still elusive. From the
point of view of constituent quark models, the most natural possibility for the X(3872) is a 2 3P1 cc̄

charmonium configuration,1 i.e., the χc1(2P ) state. However, the quark model calculations give for
the mass of this state a higher value (see, for example, Refs.[16–18]). Moreover, the isospin symmetry
violation is difficult to explain using a simple cc̄ model. Thus, new interpretations have been put
forward. On the one hand, this state might be interpreted as a compact diquark and antidiquark
(tetraquark) state [19–21]. On the other hand, this state could be an example of a loosely bound
hadron molecule (see, for example, Refs. [11–13, 22–24]). The vicinity to the D0D̄∗0 threshold and the
large decay rate to D0D̄∗0 together with a natural explanation of the isospin symmetry violation have
made this interpretation quite popular. Also, other interpretations include hadrocharmonium [25], a
mixture between charmonium and exotic molecular states [26–28] or some relation with a X atom,
which is a D±D∗∓ composite system with positive charge-conjugation and a mass of ∼ 3880 MeV,
formed mainly due to the Coulomb force [29]. For a detailed review of the present situation, we refer
the reader to the recent reviews [30–37] and references therein.

Most of these interpretations are based on the analysis of the charmonium spectrum and the
comparison with the branching ratios for two- and three-body decays. However, the production of
exotic charmonium in pp reactions or relativistic heavy-ion collisions (HiCs) has become a matter of
recent interest as the production yield of these exotic hadrons could reflect their internal structure.

The high prompt production cross section of the X(3872) measured for pp at CDF [4] and in
CMS [9] has cast doubts on its possible interpretation as a D0D̄∗0 molecule, since it was argued that
the production of a weakly bound state should be strongly suppressed in high-energy collisions [38].
However, this finding has been put into question in Ref. [39], showing that the estimates for the cross
sections using the molecular approach are consistent with the CDF and CMS measurements by an
adequate election of the ultraviolet (UV) cutoff [39], a statement that has been in turn criticized in

1A heavy quark-antiquark bound state, characterized by the radial number n, the orbital angular momentum L,
the spin s and the total angular momentum J , is denoted by n 2s+1LJ . Parity and charge conjugation are given by
P = (−1)L+1 and C = (−1)L+s, respectively.
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Ref. [40]. Also, Ref. [41] questioned the production mechanism of the X(3872) shown in Ref. [38],
while conjecturing a new mechanism. The controversy has still continued in Ref. [42]. In this latter
work, it is shown that the prompt X(3872) cross section at hadron colliders is consistent with those
experimentally observed at CDF and CMS. This is concluded thanks to the derivation of a relation
between the prompt X(3872) cross section and that of a charm-meson pair, taking into account the
threshold enhancement from the X(3872) resonance. More recently, the production rates of promptly
produced X(3872) relative to the ψ(2S) as a function of the final state particle multiplicity, obtained
recently at LHCb, are explained within a comover interaction model if the X(3872) is a tetraquark
[43]. However, this result is again questioned in Ref. [44] as it is argued that the breakup cross section
are not well approximated by a geometric cross section inversely proportional to the binding energy of
X(3872), as assumed in Ref. [43]. As a consequence, a simple modification of the comover model will
give excellent fits to the LHCb data using parameters consistent with X(3872) being a loosely bound
charm-meson molecule. Thus, there is still an ongoing debate on the nature of the X(3872) coming
from the analysis of pp collisions.

Another possible way to gain some insight about the nature of X(3872) is to analyze its behavior
for the extreme conditions present in HiCs at RHIC and LHC energies. The ExHIC Collaboration
[45–47] has shown that, within the coalescence model, the molecular structure for the X(3872) implies
a production yield much larger than for the tetraquark configuration, in particular if one also takes
into account the evolution in the hadronic phase [48, 49]. This is due to the fact that molecules are
bigger than tetraquarks and, hence, the production and absorption cross sections in HiCs are expected
to be larger. This was actually shown in Ref. [49], where the time evolution of the X(3872) abundance
in the hot hadron gas was obtained, based on the all possible hadronic reactions for the production of
X(3782) of Ref. [49, 50]. More recently the nature of X(3872) in HiCs has been studied not only within
instantaneous coalescence models [51, 52], but also using a statistical hadronization model [53] or by
means of a thermal-rate equation approach [54]. In those studies it is advocated that the quantitative
description for a series of standard HiC observables, such as particle yields or the transverse spectra,
might shed some light in the nature of the X(3872).

The studies of the production of X(3872) however do not consider the possible in-medium modifi-
cation of the hot hadronic phase. Only recently the behaviour of X(3872) in a finite-temperature pion
bath has been studied assuming this resonance to be a molecular state generated by the interaction
of DD̄∗ + c.c. pairs and associated coupled channels [55]. The X(3872) develops a substantial width,
of the order of a few tens of MeV, within a hot pionic bath at temperatures 100-150 MeV, whereas its
nominal mass moves above the DD̄∗ threshold.

In the present work we address the behaviour of X(3872) in a nuclear environment, with the
objective of analyzing the finite-density regime that can be accessed in HiCs and the future experiments
at FAIR. An early study of the D∗s0(2317) and theorized X(3700) scalar mesons in a nuclear medium
was performed in Ref. [56], already showing that the experimental analysis of the properties of those
mesons is a valuable test of the nature of the open and hidden charm scalar resonances. More recently,
in Ref. [57] the in-medium mass shift of the X(3872) was obtained using QCD sum rules, revealing
that the mass of the resonance is considerably affected by the nuclear matter.

We begin here from a picture of theX(3872) as a molecularDD̄∗ +c.c. state dynamically generated
from the leading-order interaction of the D and D̄∗ mesons,2 which is constrained by heavy-quark
spin symmetry (HQSS) [58–61]. HQSS predicts that all types of spin interactions vanish for infinitely
massive quarks, that is, the dynamics is unchanged under arbitrary transformations in the spin of the
heavy quark. As a consequence, open charm pseudoscalar and vector mesons become degenerate in the
infinite mass limit. We then implement the changes of the D and D̄∗ propagators in nuclear matter in
order to obtain the in-medium X(3872) scattering amplitude and the corresponding X(3872) spectral

2Mixed and non-molecular scenarios will be also addressed.
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function. In this way, we extract the modification on the mass and the width of X(3872) in nuclear
matter, in view of the forthcoming results on charmed particles in HiCs at CBM in FAIR [62, 63].
Moreover, the present study will be also of interest for PANDA, since it is expected that the X(3872)
will strongly couple to the p̄p channel [14], and therefore, this resonance can be produced also in p̄A

collisions [64]. Actually colliding antiprotons on nuclei with PANDA would allow the A−dependence
of the production of ψ(2S) and X(3872) near threshold to be compared. This may, after appropriate
theoretical study, provide a good way to expose an extended D∗D̄ component of the X(3872) state
function [65].

This work is organized as follows. In Sec. 2 we present the DD̄∗ scattering amplitude and the
X(3872) in vacuum and in isospin-symmetric nuclear matter, while showing the open-charm ground-
state spectral functions in matter. In Sec. 3 we determine the X(3872) self-energy both in vacuum
and in nuclear matter, while connecting the self-energy to the DD̄∗ scattering amplitude. We finish by
presenting our results in Sec. 4, and conclusions and future outlook in Sec. 5. Finally in Appendix A,
we give some details on the approximation used to extend the nuclear medium DD̄∗ T−matrix to the
complex plane, allowing for the search of poles reported in Sec. 4.

2 T -matrix formalism

2.1 DD̄∗ scattering amplitude and X(3872)

To study the X(3872) as a molecular state in the DD̄∗ IG(JPC) = 0+(1++) channel, we start by
considering the interaction in the particle basis:

{D0D̄∗0, D∗0D̄0, D+D̄∗−, D∗+D−} . (2.1)

The unitary T -matrix for this basis is written as:

T−1(s) = V −1(s)− G(s) , (2.2)

with
√
s the energy of any of the pairs in the center of mass (c.m.) frame, and the V and G matrices

are constructed out of the interaction potential and the two-meson loop functions, respectively. From
the leading order HQSS-based Lagrangian, V can be written as a contact interaction [58–61]

V (s) = A−1Vd(s)A , (2.3)

where Vd(s) = diag(C̃0Z , C̃0X , C̃1Z , C̃1X) is a diagonal matrix (the notation for the matrix elements
will be explained below),3 and the matrix A (satisfying AT = A−1 = A) reads:

A = 1
2


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 . (2.4)

The G(s) matrix is diagonal, and contains the loop-function for the different two-meson channels in
the particle basis, Eq. (2.1),

Gi(s) = i

∫
d4q

(2π)4DYi(P − q)DY ′i
(q) . (2.5)

3Note that the C̃i low-energy constants here are dimensionless, while those introduced in [58–61] have dimensions of
fm2. This is because here we adopt relativistic D(∗)−meson propagators and non-relativistic kinematics was used in the
previous works.
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where DYi and DY ′i
are the propagators of the two mesons Yi and Y ′i in the particle basis, Eq. (2.1),

and P 2 = s. In terms of the self-energies ΠY (q) of the latter, they can be written as:

DY (q) = 1
(q0)2 − ω2

Y (~q 2)−ΠY (q0, ~q )
=
∫ ∞

0
dω

(
SY (ω, |~q |)
q0 − ω + iε

− SȲ (ω, |~q |)
q0 + ω − iε

)
(2.6)

with ωY (~q 2) =
√
m2
Y + ~q 2. Note that we will be here only interested in the nuclear medium renormal-

ization of the meson properties. Thus, mY is the meson mass in the free space, while the self-energy
ΠY approaches zero when the nuclear density ρ→ 0. Inserting the above representation into Eq. (2.5)
and integrating over q0 leads to:

Gi(P 0, ~P ) = 1
2π2

∫ ∞
0

dΩ

fYi Y ′i
(Ω, |~P |)

P 0 − Ω + iε
−
f
Y i Y

′
i
(Ω, |~P |)

P 0 + Ω− iε

 , (2.7a)

with:
fUW (Ω, |~P |) = 1

4π

∫ Λ

0
d3~q

∫ Ω

0
dωSU (ω, |~P − ~q |)SW (Ω− ω, |~q | ) , (2.7b)

where U and W stand for Yi and Y ′i or Y i and Y ′i. In the previous equations we have already introduced
a sharp momentum cut-off Λ to regularize the UV behavior of the integration over the modulus of ~q.
Specifically, we take Λ = 0.7 GeV.

2.2 Vacuum

In vacuum, assuming isospin symmetry, mD(∗)0 = mD(∗+) , the loop functions for the four channels are
equal, G(s) = Σ0(s)I4. The function Σ0(s) reduces to a standard loop function regulated via a hard
cutoff Λ, G(s,mD,mD∗), and expressions for this can be found in Ref. [66]. The T -matrix diagonalizes
in the same way as the kernel matrix V (s), i.e.,

T−1(s) = A−1T−1
d (s)A , (2.8)

where:
T−1
d (s) = diag

(
C−1

0Z − Σ0(s), C−1
0X − Σ0(s), C−1

1Z − Σ0(s), C−1
1X − Σ0(s)

)
. (2.9)

From the eigenvectors of T (and V ) one notices that they are DD̄∗ states with well defined isospin I

(I = 0, 1) and C-parity (charge-conjugation) quantum numbers. The notation CIC for the low energy
constants refers to the potential in each of these channels, with isospin and the charge-conjugation
C = +(−) associated with the subindex X(Z).

We consider the X(3872) as a JP = 1+, IC = 0+ state, which is thus associated to the amplitude
T0X ,

T−1
0X (s) = C−1

0X − Σ0(s) . (2.10)

We can thus fix the constant C0X by requiring the presence of a pole at an energy equal to the X(3872)
mass m0,4

C0X = 1/Σ0(m2
0) . (2.11)

2.3 Isospin–symmetric nuclear matter

To consider the possible modification of the X(3872) properties in a nuclear medium, we assume
that the DD̄∗ interaction potentials Vd(s) do not change in nuclear matter,5 and that the T -matrix
is modified through the loop functions because of the D(∗) and D̄(∗) self-energies. We still assume
isospin symmetry, mD(∗)0 = mD(∗)+ , and SD(∗)+ = SD(∗)0 ≡ SD(∗) , SD(∗)− = SD̄(∗)0 ≡ SD̄(∗) . However,

4Note that, due to the regularization procedure, we should actually write C0X(Λ) = Σ0(m2
0; Λ). For the sake of brevity,

we omit this dependence on the UV cutoff throughout the manuscript.
5This approximation is justified because they are short range (contact) interactions.

– 5 –



in general we will have SD̄(∗) 6= SD(∗) in the nuclear environment, since the charmed and anti-charmed
meson–nucleon interactions are quite different.6 In addition, pseudo-scalar-nucleon and vector-nucleon
interactions are also different and hence SD 6= SD∗ and SD̄ 6= SD̄∗ . We discuss the spectral functions
SD̄(∗) and SD(∗) in nuclear matter in Sec. 2.4. Consequently, the G-matrix in a nuclear medium of
density ρ, G(s; ρ), is no longer proportional to the identity, as opposed to the vacuum case. It reads
G(s; ρ) = diag (GDD̄∗(s; ρ),GD∗D̄(s; ρ),GDD̄∗(s; ρ),GD∗D̄(s; ρ)). Hence, the in-medium T -matrix T (s; ρ)
cannot be fully diagonalized, and it can only be put in block diagonal form,

T−1(s; ρ) = V −1(s)− G(s; ρ) = A
(
V −1
d (s)−AG(s; ρ)A

)
A , (2.12)

with
AG(s; ρ)A =

(
G̃(s; ρ) 0

0 G̃(s; ρ)

)
. (2.13)

The 2× 2 matrix G̃ is defined as:

G̃(s; ρ) =
(

Σ(s; ρ) δG(s; ρ)
δG(s; ρ) Σ(s; ρ)

)
, (2.14)

with:
Σ(s; ρ) = GDD̄∗(s; ρ) + GD∗D̄(s; ρ)

2 , (2.15)

and:
δG(s; ρ) = GDD̄∗(s; ρ)− GD∗D̄(s; ρ)

2 . (2.16)

In other words, defining the states |IC〉, we have the following matrix elements:〈
I ′C′

∣∣∣T̂ (s; ρ)
∣∣∣ IC〉 = δI,I′T

(I)
C,C′(s; ρ) (2.17)

The amplitudes T (I)
C,C′ are compactly defined as:

[
T

(I)
XX(s; ρ)

]−1
=
[
T

(I)
X (s; ρ)

]−1
− T (I)

Z (s; ρ)δ2
G(s; ρ) , (2.18a)[

T
(I)
ZZ(s; ρ)

]−1
=
[
T

(I)
Z (s; ρ)

]−1
− T (I)

X (s; ρ)δ2
G(s; ρ) , (2.18b)[

T
(I)
XZ(s; ρ)

]−1
=
[
δG(s; ρ)T (I)

X (s; ρ)T (I)
Z (s; ρ)

]−1
− δG(s; ρ) , (2.18c)

where TX(s; ρ) and TZ(s; ρ) are written as in the diagonal case,[
T

(I)
X (s; ρ)

]−1
= C−1

IX − Σ(s; ρ) , (2.19a)[
T

(I)
Z (s; ρ)

]−1
= C−1

IZ − Σ(s; ρ) . (2.19b)

Equation (2.17) may seem counter intuitive, due to the absence of a δC,C′ factor. However, we must
bear in mind that, in the presence of nuclear matter, the scattering processes are DD̄∗N → DD̄∗N ′.
Due to the presence of the nucleons, the DD̄∗ in the initial and final states do not need to have the
same C-parity.

We have checked that the term δG(s; ρ) is small, so we consider throughout this manuscript the
limit δG(s; ρ)→ 0. In this limit, T (I)

XZ(s; ρ) = 0 [Eq. (2.18c)], and Eq. (2.17) is further diagonalized into
DD̄∗ C-parity amplitudes, too. We thus find, for the IC = 0+ channel,7

T−1(s; ρ) = C−1
0X − Σ(s; ρ) . (2.20)

6Note for example that a D̄N resonance would imply a pentaquark-like structure.
7Since from now on-wards the focus will be exclusively on this channel, we will omit the 0X subindex for simplicity.
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Note that, from its definition, Σ(s; ρ) can be written more compactly as:

Σ(P 0, |~P |; ρ) = 1
4π2

∫ ∞
0

dΩ
( 1
P 0 − Ω + iε

− 1
P 0 + Ω− iε

)
×
(
fDD̄∗(Ω, |~P |) + fD∗D̄(Ω, |~P |)

)
(2.21)

where the dependence on the density arises from that of the spectral functions involved in the above
equation. We recall that the expressions for fDD̄∗ , fD∗D̄ are given in Eq. (2.7b). Finally, we note that
in the ρ→ 0 limit, the vacuum amplitudes are recovered.

In principle, given the integral representation in Eq. (2.21), the function Σ(P 0, |~P |; ρ) could be
computed for complex values of the energy P 0. However, we can neither perform its analytical con-
tinuation into the lower half of the complex plane, nor to define the second Riemann sheet for finite
densities. This is because it would require to know the meson spectral functions SU,W for complex
values of its arguments, which cannot be computed within the standard scheme that will be presented
in the next subsection (Subsec. 2.4). Nevertheless, as discussed below in Subsec. 4.2, we will derive a
reasonable approximation for the in-medium loop-function Σ(P 0, |~P |; ρ) of Eq. (2.15), which will allow
for a meaningful extension of the isoscalar T -matrix to the complex plane and the search for poles
also in nuclear matter.

2.4 SD(∗) and SD̄(∗) in nuclear matter

The spectral functions of D(∗) and D̄(∗) in symmetric nuclear matter are obtained following a unitarized
self-consistent procedure in coupled channels, as described in [67, 68] for the D(∗) meson and in [69]
for D̄(∗) meson. In the following we present the main features.

The s-wave transition charmed meson–nucleon kernel of the Bethe-Salpeter equation (BSE) is
derived from an effective Lagrangian that implements HQSS [70–72]. HQSS is an approximate QCD
symmetry that treats on equal footing heavy pseudoscalar and vector mesons, such as charmed and
bottomed mesons [63, 67–69, 73–79]. The effective Lagrangian accounts for the lowest-lying pseu-
doscalar and vector mesons as well as 1/2+ and 3/2+ baryons. It reduces to the Weinberg-Tomozawa
(WT) interaction term in the sector where Goldstone bosons are involved and incorporates HQSS in
the sector where heavy quarks participate. Thus, it is a SU(6)×HQSS model, that is justified in view
of the reasonable semi-qualitative outcome of the SU(6) extension [80] and on a formal plausibleness
on how the SU(4) WT interaction in the heavy pseudoscalar meson-baryon sectors comes out in the
vector-meson exchange picture (see for instance Refs. [81, 82]).

This extended WT meson-baryon potential in the coupled meson-baryon basis with total charm
C, strangeness S, isospin I and spin J , is given by

vCSIJij (
√
t) = DCSIJ

ij

2
√
t−Mi −Mj

4fifj

√
Ei +Mi

2Mi

√
Ej +Mj

2Mj
, (2.22)

where
√
t is the center of mass (C.M.) energy of the meson-baryon system; Ei and Mi are, respectively,

the C.M. on-shell energy and mass of the baryon in the channel i; and fi is the decay constant of the
meson in the i-channel. Symmetry breaking effects are introduced by using physical masses and decay
constants. The DCSIJ

ij are the matrix elements coming from the group structure of the extended WT
interaction.

The amplitudes in nuclear matter, tρ,CSIJ(R0, ~R ) with R = (R0, ~R ) the total meson-baryon
four-momentum (t = R2), are obtained by solving the on-shell BSE using the previously described
potential, vCSIJ(

√
t):

tρ,CSIJ(R) =
[
1− vCSIJ(

√
t) gρCSIJ(R)

]−1
vCSIJ(

√
t) , (2.23)
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where the diagonal gρCSIJ(R) loop-matrix accounts for the charmed meson–baryon loop in nuclear
matter [67, 69]. We focus in the non-strange S = 0 and singly charmed C = 1 sector, where DN and
D∗N are embedded, as well as the C = −1 one, with D̄N and D̄∗N . 8

The D(D̄) and D∗(D̄∗) self-energies in symmetric nuclear matter, Π(E, ~q ; ρ), are obtained by
summing the different isospin transition amplitudes for D(D̄)N and D∗(D̄∗)N over the nucleon Fermi
distribution, pF . For the D(D̄) we have

ΠD(D̄)(q
0, ~q; ρ) =

∫
p6pF

d3p

(2π)3

[
t
ρ,0,1/2
D(D̄)N (R0, ~R ) + 3 tρ,1,1/2

D(D̄)N (R0, ~R )
]
, (2.24)

while for D∗(D̄∗)

ΠD∗(D̄∗)(q
0, ~q ; ρ ) =

∫
p6pF

d3p

(2π)3

[
1
3 t

ρ,0,1/2
D∗(D̄∗)N (R0, ~R ) + t

ρ,1,1/2
D∗(D̄∗)N (R0, ~R )+ (2.25)

2
3 t

ρ,0,3/2
D∗(D̄∗)N (R0, ~R ) + 2 tρ,1,3/2

D∗(D̄∗)N (R0, ~R )
]
.

In the above equations, R0 = q0 + EN (~p ) and ~R = (~q + ~p ) are the total energy and momentum
of the meson-nucleon pair in the nuclear matter rest frame, and (q0, ~q ) and (EN , ~p ) stand for the
energy and momentum of the meson and nucleon, respectively, in that frame. Those self-energies are
determined self-consistently since they are obtained from the in-medium amplitudes which contain the
meson-baryon loop functions, and those quantities themselves are functions of the self-energies.

The D(D̄) and D∗(D̄∗) spectral functions are then defined from the in-medium D(D̄) and D∗(D̄∗)
meson propagators:

Dρ

D(D̄),D∗(D̄∗)(q
0, ~q ) =

(
(q0)2 − ~q 2 −m2 −ΠD(D̄),D∗(D̄∗)(q)

)−1
,

SD(D̄),D∗(D̄∗)(q
0, ~q) = − 1

π
ImDρ

D(D̄),D∗(D̄∗)(q) (for q0 > 0). (2.26)

The D(D̄) and D∗(D̄∗) spectral functions are shown in Fig. 1 as function of the meson energy
E = q0 for zero momentum ~q = 0 and two different densities, ρ = 0.5ρ0 and ρ = ρ0. Apart from the
quasiparticle peak, whose position in energy is obtained from Eqp = ~q 2 +m2 + ReΠ(Eqp(~q ), ~q ), with
m the meson mass, these spectral functions show a rich structure as a result of the presence of several
resonance-hole excitations. The masses and widths of these resonances were obtained in Refs. [73–75].

The D meson spectral function is depicted in the upper left-hand side panel. As described in
Ref. [67], the D meson quasiparticle peak moves to lower energies with respect to the free mass position
as density increases. Moreover, several resonant-hole excitations appear around the quasiparticle peak.
In the low-energy tail of the D spectral function, we observe the Λc(2556)N−1 and Λc(2595)N−1

excitations, whereas Σ∗cN−1 excitations appear on the right-hand side of the quasiparticle peak.
With regards to the D∗ meson spectral function shown in Ref. [67] and depicted here in the right-

hand side panel, the quasiparticle peak moves to higher energies with density and fully mixes with
the sub-threshold J = 3/2 Λc(2941) state, while the mixing of J = 1/2 Σc(2868)N−1 and J = 3/2
Σc(2902)N−1 is seen on the left-hand side of the peak. Other dynamically-generated particle-hole
states appear for higher and lower energies.

Finally, the D̄ and D̄∗ spectral functions are shown in the lower left-hand side panel and lower
right-hand side one, respectively. In both cases, the spectral functions show a rich structure due to
the presence of several resonance-hole states. Note that those resonant states have a pentaquark-like
content and have to be taken with caution.

8Note that D denotes D+ and D0, whereas D̄ indicates D̄− and D̄0.
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Figure 1. The D (upper left-hand side), D̄ (lower left-hand side), D∗ (upper right-hand side) and D̄∗ (lower
right-hand side) spectral functions as function of the meson energy E and zero momentum ~q = 0 for two
densities ρ = 0.5ρ0 (green lines) and ρ = ρ0 (blue lines).

On the one hand, the spectral function for D̄ stems from the self-energy of D̄ displayed in Ref. [69].
The position of the quasiparticle peak of D̄ is located below the D̄ mass and below the Θc(2805)N−1

excitation. The C = −1 pentaquark-like resonance Θc(2805) was a theoretical prediction of Ref. [74].
This corresponds to a pole in the free space amplitude of the sector I = 0,J = 1/2 (a weakly bound
state) that strongly couples to D̄N and D̄∗N , also found in Ref. [83], though it has not been observed
yet.

The upper energy tail of the D̄ spectral function shows also the contribution of I = 1 resonant-
hole states. On the other hand, the D̄∗ spectral function depicts the contribution of several I = 0 and
I = 1 resonant-hole states close to the quasiparticle peak, that is located slightly above to 2 GeV. All
these pentaquark-like states are described in Ref. [74].
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Figure 2. Contributions to the X(3872) self-energy in nuclear matter. Circles represent the X(3872) couplings
to the meson pairs, and the squares the interaction of the charm mesons with nuclear matter.

3 Self-energy formalism

From this section on, and since we focus on the IC = 0+ channel, where the X(3872) is located,
for DD̄∗ we mean the appropriate combination of states, (DD̄∗ −D∗D̄)

√
2, with even C−parity and

coupled to zero isospin.

3.1 X(3872) self-energy in vacuum and in a nuclear medium

We shall now discuss the self-energy formalism for the X(3872). Let us consider a “pre-existing” state
with bare mass m̂ and bare coupling squared to each of the four channels ĝ2/4. (The isospin related
factor 1/4 is included for convenience.) The free-space bare propagator ∆̂(q2) is:

∆̂−1(q2) = q2 − m̂2 + iε . (3.1)

Upon resumation of the contributions in Fig. 2, the dressed propagator reads:

∆−1(q2; ρ) = ∆̂−1(q2)− ĝ2Σ(q2; ρ) . (3.2)

This renormalizes the mass and coupling of the state in the medium,

m2(ρ) = m̂2 + ĝ2Σ[m2(ρ); ρ] , (3.3a)

g2(ρ) = ĝ2

1− ĝ2Σ′[m2(ρ); ρ] . (3.3b)

with ρ the nuclear-matter density as in the previous sections, and the derivative taken with respect to
q2 = s. These equations are also true in particular for the ρ = 0 case, so that we can relate the bare
mass and coupling to the vacuum, m0 and g0, ones

m̂2 = m2
0 −

g2
0

1 + g2
0Σ′0(m2

0)
Σ0(m2

0) , (3.4a)

ĝ2 = g2
0

1 + g2
0Σ′0(m2

0)
. (3.4b)

This allows in turn to rewrite the in-medium mass and coupling, m(ρ) and g(ρ), in terms of the
physical ones in vacuum:

m2(ρ) = m2
0 + g2

0
1 + g2

0Σ′0(m2
0)

[
Σ[m2(ρ); ρ]− Σ0(m2

0)
]
, (3.5a)

g2(ρ) = g2
0

1− g2
0
[
Σ′[m2(ρ); ρ]− Σ′0(m2

0)
] . (3.5b)
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Note that m2(ρ) is in general a complex quantity, its imaginary part being originated by that of
Σ[m2(ρ); ρ].9 We can also rewrite the in-medium X(3872) propagator as:

∆−1(q2; ρ) = q2 −m2
0 −

g2
0

1 + g2
0Σ′0(m2

0)

(
Σ(q2; ρ)− Σ0(m2

0)
)
≡ q2 −m2

0 −ΠX(q2; ρ) , (3.6)

ΠX(q2; ρ) = g2
0

1 + g2
0Σ′0(m2

0)

(
Σ(q2; ρ)− Σ0(m2

0)
)
, (3.7)

which defines the X(3872) self-energy in a nuclear medium, ΠX(q2; ρ). We can now rewrite Eqs. (3.5)
as:

m2(ρ) = m2
0 + ΠX [m2(ρ); ρ], (3.8a)

g2(ρ) = ĝ2

1−Π′X [m2(ρ); ρ] = g2
0

1−Π′X(m2
0; ρ = 0)

1−Π′X [m2(ρ); ρ] . (3.8b)

Once the X(3872) propagator or self-energy are known, one can also define the X(3872) spectral
function, SX(q2; ρ),

SX(q2; ρ) = − 1
π

Im∆(q2; ρ) = − 1
π

ImΠX(q2; ρ)[
q2 −m2

0 − ReΠX(q2; ρ)
]2 + [ImΠX(q2; ρ)]2

. (3.9)

The quasi-particle peak energy, Eqp, is defined from the equation:

E2
qp −m2

0 − ReΠ(E2
qp; ρ) = 0 . (3.10)

3.2 Relation with the T -matrix formalism

We now seek for a relation between the T -matrix and the self-energy formalism introduced in the
previous subsection. We consider the in-medium T -matrix, T−1(s; ρ) = V −1(s) − Σ(s; ρ), with a
potential V somewhat more general than a simple constant, C0X . Specifically, we allow for a term
linear in the Mandelstam variable s, and write:

V (s) = 1
Σ0(m2

0)
+ Σ′0(m2

0)
Σ2

0(m2
0)

1− P0
P0

(s−m2
0) (3.11a)

= ĝ2

m2
0 − m̂2 −

ĝ2

(m2
0 − m̂2)2

(
s−m2

0

)
≡ VA(s) . (3.11b)

Note that VA(m2
0) = 1/Σ0(m2

0), which is the same constant term that was previously considered, see
Eq. (2.11). Hence, with this potential, the free-space amplitude T0(s) has a pole at s = m2

0,

T0(s) ' g2
0

s−m2
0

+ · · · , (3.12)

with coupling g0 given by:
1
g2

0
= dT−1

0 (s)
ds

∣∣∣∣∣
s=m2

0

= −Σ′0(m2
0)

P0
. (3.13)

According to the Weinberg compositeness condition [84], the factor −g2
0Σ′0(m2

0) represents the DD̄∗

component in the X(3872) wave function. Hence, the linear term in the potential is chosen so as to
set this probability equal to P0.

9Even assuming that in the free-space the X(3872) is bound, and therefore Σ0(m2
0) is real, the in-medium self-energy

might acquire an imaginary part since new many-body decay modes, induced by the quasi-elastic interactions of the D(∗)

and D̄(∗) with nucleons, are open.
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If there is a pole of the amplitude T (s; ρ) at m2(ρ), then:

0 = T−1[m2(ρ); ρ] = V −1[m2(ρ)]− Σ[m2(ρ); ρ] (3.14)

' Σ0(m2
0) + 1 + g2

0Σ′0(m2
0)

g2
0

(
m2(ρ)−m2

0

)
− Σ[m2(ρ); ρ] ,

from where one obtains the same equation for m2(ρ) than that obtained in Eq. (3.5a) within the
self-energy formalism. Analogously, the in medium coupling g(ρ) would be given by:

1
g2(ρ) = dT−1(s; ρ)

ds

∣∣∣∣∣
s=m2(ρ)

=
[

Σ[m2(ρ); ρ]
Σ0(m2

0)

]2 1 + g2
0Σ′0(m2

0)
g2

0
− Σ′[m2(ρ); ρ] . (3.15)

This latter equation does not give exactly the same result than Eq. (3.5b) because of the factor between
the square brackets. If that factor is taken as 1, one recovers Eq. (3.5b).

Alternatively, we could have made the linear expansion in 1/V (s) instead of in V (s) [Eq. (3.11a)],
with:

V −1(s) = Σ0(m2
0)− Σ′0(m2

0)1− P0
P0

(s−m2
0) . (3.16a)

Note that this alternate definition of V (s) can also be written as:

V (s) = ĝ2

s− m̂2 ≡ VB(s) . (3.16b)

i.e., the kernel has a “bare” pole at the “bare” mass squared m̂2. Then we would obtain:

1
g2(ρ) = dT−1(s; ρ)

ds

∣∣∣∣∣
s=m2(ρ)

= 1 + g2
0Σ′0(m2

0)
g2

0
− Σ′[m2(ρ); ρ] , (3.17)

which allows to recover Eq. (3.5b). Equation (3.16a) should be a good approximation to (3.11a) for s
in the neighborhood of m2

0 if the factor Σ′0(m2
0)(1 − P0)/P0 is sufficiently small. Indeed, it has been

considered also in Eq. (3.14).) Hence, we find equivalence between both schemes.
Note finally that taking into account the relation P0 = −g2

0Σ′0(m2
0), Eqs. (3.5) can be cast as:

m2(ρ) = m2
0 −

P0
1− P0

Σ[m2(ρ); ρ]− Σ0(m2
0)

Σ′0(m2
0)

, (3.18a)

g2(ρ) = − 1
Σ′[m2(ρ); ρ] + 1−P0

P0
Σ′0(m2

0)
. (3.18b)

3.3 Extreme cases: P0 → 0 and P0 → 1

Let us briefly discuss here the extreme molecular or compact state scenarios, which correspond to
P0 → 1 or P0 → 0, respectively.

We start by considering the case when P0 → 0. In this case one has g0 = 0: the state does not
couple to the two-meson channel. Physically, one would say that the interaction does not renormalize
the bare state. Indeed, one sees also that ĝ = g0 = g(ρ) = 0, and that m̂ = m0 = m(ρ). This case is
nonphysical, since it would require V ′(s = m0) ∼ 1/P0 →∞.

Next we discuss the opposite case P0 → 1. This situation would correspond to the pure hadron-
molecular case, for which V (s) = 1/Σ0(m2

0) is constant, independent of s. The search of a pole in the
nuclear-medium T -matrix would lead to Σ[m2(ρ); ρ] = V −1 = Σ0(m2

0). Actually in this limiting case,

T (s; ρ) = 1
Σ0(m2

0)− Σ(s; ρ)
(3.19)
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which cannot have a pole on the real axis, since Σ(s; ρ) is a complex magnitude, and if there exists
a pole, it will be located for a complex value

√
s = m(ρ) ∈ C (see Subsec. 4.2), and the coupling

from the residue will be given by g2(ρ) = −1/Σ′[m2(ρ); ρ]. These results would also make sense
to the first of the Eqs. (3.18), since there the difference

(
m2(ρ)−m2

0
)

is proportional to the ratio(
Σ[m2(ρ); ρ]− Σ0(m2

0)
)
/(1− P0), where both numerator and denominator would tend to zero in the

limiting case of P0 → 1. Physically, taking P0 → 1 means that the state is a purely molecular one.
The “pre-existing” component is null, and one cannot think about a bare mass nor coupling. Indeed,
for P0 → 1, the factor 1/(1 − P0) diverges and so it does 1/

(
1 + g2

0Σ′0(m2
0)
)
, and hence ĝ → ∞ and

m̂→∞, in Eq. (3.4).
For simplicity, in the discussion above, we have not considered the pathological case in which the

bound state in vacuum is placed exactly at threshold. In that case Σ′0(m2
0) diverges, and this singular

behaviour needs to be taken into account.

4 Results

4.1 In medium modification of the amplitudes

We now discuss the results that we obtain in a nuclear medium for the DD̄∗ amplitude10 |T (E; ρ)|2

[cf. Eq. (2.20), using a very general energy dependent potential instead of just a constant C0X ], the
X(3872) self-energy ΠX(E; ρ) [cf. Eq. (3.7)] (or, equivalently, the inverse of the propagator ∆−1(E; ρ)
[cf. Eq. (3.6)]), and its spectral function SX(E; ρ) [cf. Eq. (3.9)]. Note that we use the energy, E, of the
DD̄∗-pair in the c.m. frame, with s = E2. In order to compute all these quantities, we need the energy-
dependent potential V (s) [cf. Eq. (3.11a)] and the in-medium modified DD̄∗ loop function Σ(s; ρ) [cf.
Eq. (2.21)]. In the upper plot of Fig. 3 we show the real (solid lines) and imaginary (dot-dashed lines)
parts of the loop function Σ(s; ρ) computed for different densities ρ in the range 0 6 ρ 6 ρ0, where ρ0
is the normal nuclear density, ρ0 = 0.17 fm−3. We see that the sharp DD̄∗ threshold observed in the
vacuum case (ρ = 0) is progressively smoothed out for increasing densities, being almost inappreciable
for ρ = ρ0. This is due to the width acquired by the D, D̄, D∗ and D̄∗ mesons in the nuclear medium.
We also notice that the real part of the loop function is smaller in magnitude for increasing densities.
Naively, this would imply that the effect of the medium is to generate repulsion in the DD̄∗ interaction,
in the sense that a more attractive potential would be necessary to compensate this change of the
loop function. However, this repulsive effect is not clear, because the imaginary part of Σ(E; ρ) is also
large, and below threshold, it turns out that |ImΣ(E; ρ)| > |Re (Σ(E; ρ)− Σ0(E))|.

Within the present approach, the DD̄∗ T−matrix in the nuclear environment is determined from
the X(3872) mass and its DD̄∗ probability (m0 and P0) in the vacuum (ρ = 0). As we work on
the isospin limit, mD(∗) = (mD(∗)+ +mD(∗)0) /2, we cannot consider the physical X(3872) mass. We
instead take a binding energy B = 2 MeV with respect to the DD̄∗ threshold, m0 = mD +mD∗ −B.
Throughout this manuscript, we will study the in-medium effects for different molecular probabilities
P0, that enter into the calculation of the amplitude through the potentials VA(s) or VB(s), Eqs. (3.11)
and (3.16), respectively. Indeed, in the lower plots of Fig. 3, we show these interaction kernels com-
puted for different values of P0. Both types of interactions give the same pole position at m2

0 and
probability P0 (alternatively, the same coupling g0) for the vacuum T -matrix, although they have
different analytical properties (VA(s) has a zero, while VB(s) presents a bare pole) and, hence, they
might produce differences in the medium T -matrix, as we will discuss below. In the lower panels of
Fig. 3 we observe, on the one hand, that for values of P0 above P0 = 0.8 both kernels are very similar
in the energy region explored. This is due to the fact that the zero of VA(s) and the bare pole of
VB(s) are far from the energies considered. On the other hand, for lower values of P0, e.g. P0 = 0.2,

10We recall here again that, we are working on the IC = 0+ channel, where the X(3872) is located, and that for DD̄∗

we mean the appropriate combination of states, (DD̄∗ −D∗D̄)
√

2, with even C−parity and coupled to zero isospin.
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Figure 3. Top panel: The loop function Σ(E; ρ), with E2 = s, for different densities ρ in the range 0 6 ρ 6 ρ0 as
a function of the center-of-mass energy of the DD̄∗ pair. The solid (dashed) lines stand for the real (imaginary)
parts. Bottom panels: Two different parameterizations of the energy-dependent potential V (s). On the left
[right] plot, VA(s) [VB(s)], as given in Eq. (3.11) [Eq. (3.16)] .

both potentials are quite different, because the zero of VA(s) and the bare pole VB(s) come closer to
the energy region of interest. Therefore, one should expect that they lead to significantly different in
medium T -matrices.

Once discussed the in-medium modified DD̄∗ loop function and the energy-dependent potential,
in Fig. 4 we show, for different nuclear densities and molecular probabilities P0 = 1, 0.9 and 0.8, the
squared modulus of the amplitudes T (E; ρ), normalized to be one at the maximum Emax (top panels),
the inverse of theX(3872) propagator, ∆−1(E; ρ) (medium panels), and the spectral function, SX(E; ρ)
(bottom panels), conveniently scaled by Z0 = (1 − P0) and Z−1

0 , respectively. The calculations are
performed using the potential VA(s), introduced in Eqs. (3.11), though as, shown above, for these
high-molecular component scenarios the VB(s)−type interaction (Eqs. (3.16)) leads to very similar
predictions, with differences that would be difficult to appreciate in the plots.

Focusing first on the squared amplitudes, it can be seen that the density behaviour is qualitatively
different for the three examined probabilities. Thus, while for P0 = 0.8 the maximum of the squared
modulus is shifted to the right when the density grows (towards higher DD̄∗ c.m. energies), it however
moves to the left in the purely molecular (P0 = 1) scenarios. The results for P0 = 1 stem from the
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Figure 4. Top panels: Squared modulus of the amplitudes T (E; ρ), normalized to be one at the maximum, Emax
as a function of the energy of the DD̄∗-pair in the c.m. frame. The amplitudes are computed with Eq. (2.20),
using the energy dependent potential of Eq. (3.11) instead of the constant C0X . Middle panels: Real (solid
lines) and imaginary parts (dashed lines) of the inverse of the propagator ∆(E; ρ) (Eq. (3.6)) multiplied by
Z0 = (1−P0), as a function of the energy of the DD̄∗-pair in the c.m. frame. Bottom panels: Spectral function
of the X(3872) (Eq. (3.9)) multiplied by Z−1

0 , as a function of the energy of the DD̄∗-pair in the c.m. frame.
From left to right, the three columns show the cases P0 = 1, 0.9, and 0.8. For these high molecular probabilities,
the numerical differences due to the use of VA(s) or of VB(s) potentials [Eqs. (3.11) and (3.16), respectively]
are very small. The different colors in each figure represent calculations performed at different nuclear densities
0 6 ρ 6 ρ0.

energy and density behaviour of the factor
∣∣Σ0(m2

0)− Σ(E; ρ)
∣∣ in Eq. (3.19), by taking into account

the in-medium two-meson loop function Σ(E; ρ) depicted in Fig. 3. For the P0 = 0.8 case, the energy
dependence of the VA potential, shown in the left-bottom plot of Fig. 3, leads to the mild shift towards
higher energies of the maximum as the density increases. The position of the peak hardly changes in
the intermediate P0 = 0.9 case, displayed in the second-column plot, but as expected, the width of
the in-medium X(3872) peak significantly increases with density.

Actually, in the second row of plots of Fig. 4, we see that the energy dependence of ImΠX(E; ρ) for
finite density clearly departs from the sharp step-function shape obtained in vacuum, with ImΠX(E; ρ)
becoming an increasingly smoother function of E, as the density grows. We moreover observe non-
vanishing values below the free-space threshold, which increase with the density, due to the appear-
ance of new many-body decay channels, like DD̄∗N → DD̄∗N ′, driven by the self-energies of the
(anti)charmed mesons embedded in the nuclear medium. Above the free-space threshold, ImΠX(E; ρ)
decreases when the density grows. This behaviour can be inferred from the imaginary part of Σ(E; ρ)
shown in the top plot of Fig. 3.

– 15 –



We should also note that ImΠX(E; ρ) strongly depends on P0, and it behaves as g2
0/[1+g2

0Σ′0(m2
0)] ∝

P0/(1 − P0), as deduced from Eq. (3.7). Looking now at real part of ∆−1(E; ρ), we observe that for
P0 = 1, there is not quasi-particle solution (Eq. (3.10)) for densities higher than about one tenth of
the normal nuclear matter density, with an increasingly flatter E−dependence of Re[∆−1(E; ρ)] as
the density grows. Hence, the behavior exhibited in the P0 = 1 case in left-top plot for the modulus
squared of the amplitude, with the maximum displaced to the left with increasing densities, can be
correlated to the growth of ImΠX(E; ρ), both with the density and the c.m. energy. On the contrary,
for P0 = 0.8, we find solutions for the quasi-particle equation for all densities, at energies above
threshold that move away of it as the density increases.

The spectral function plotted in the bottom panels of Fig. 4 is determined by Im[∆(E; ρ)], and its
dependence on E, ρ and the molecular probability P0 can be deduced from the discussion above on the
real and imaginary parts of ∆−1(E; ρ) in the second-row panels of this figure. We should make here
two remarks. First, we observe that the typical delta-function shape expected for the spectral function
of a narrow state in the free space gets diluted as the density grows. This is due to the enhancement of
the X(3872) width with density. Second, we find that, for purely molecular case (P0 = 1), the features
of the modulus squared of the T−matrix (top-left plot) can not be inferred from the spectral function
SX(E; ρ). This situation slowly changes as the molecular probability decreases. Indeed, for P0 = 0.8,
we observe already some resemblances between |T (E; ρ)|2 and SX(E; ρ). Nevertheless, the squared
amplitude |T (E; ρ)|2 is the observable that elucidates the properties of the X(3872) in the medium,
especially in cases of high (dominant) molecular components in its vacuum structure.

Next, in Figs. 5 and 6 we consider smaller molecular components, P0 = 0.4 and P0 = 0.2. As we
discussed in Fig. 3, for these probabilities, the VA(s) [Eq. (3.11)] and VB(s) [Eq. (3.16)] potentials,
despite leading to the same mass (m0) and DD̄∗ coupling (g0) of the X(3872) in the free space,
considerably differ in the region of interest for the present study. Hence, the corresponding T−matrices
are different, even in the free space. Those deduced from VA show the zero that this potential has
below m0. As the molecular probability decreases, this zero gets closer to the X(3872) vacuum mass,
since the slope of VA(s) grows (in absolute value) as 1/P0. The position of the zero is independent of
the nuclear density, being, however, the dependence of the amplitude on the density clearly visible,
both for energies below and above the energy, E0, for which the potential and scattering amplitude
vanish. Density effects for energies lower (higher) than E0 become more (less) relevant for the P0 = 0.2
case than for the P0 = 0.4 one.

In sharp contrast to the results stemming from VA(s), when |T (E; ρ)|2 is computed using the
VB(s) interaction, we see little structure beyond the peak induced by the bare pole present in the
potential. The effects due to the medium dressing are small for P0 = 0.4 and already quite difficult
to disentangle for P0 = 0.2. Hence, experimental input on |T (E; ρ)|2, especially for energies below E0,
might shed light into the dynamics of the interacting DD̄∗ pair that cannot be inferred from their
scattering in the free space.

In Figs. 5 and 6 we also show the inverse propagator ∆−1(E; ρ) and the spectral function SX(E; ρ).
These quantities do not depend on the type of potential employed –VA(s) or VB(s)–, since they are
determined by the vacuum X(3872) and the in-medium two-meson loop function Σ(E; ρ) given in
Fig. 3. In what respects to the Im[∆−1(E; ρ)], the results here are the same as those discussed above
in Fig 4, scaled down by the corresponding factor P0/(1− P0). On the other hand, the plots for real
part of ∆−1(E; ρ) show that, for small molecular components, there is always a quasi-particle solution
very close to m0, and very little affected by the nuclear matter density. Finally, the spectral function
SX(E; ρ) embodies the main features of |T (E; ρ)|2 when the potential VB is used. However, it does
not account for the medium modifications observed in the T− matrix below E0 when VA is employed.

To conclude, in Figs. 7 and 8, we show the positions Emax and Espe of the maxima of |T (E; ρ)|2

and SX(E; ρ), respectively, for all molecular probabilities considered above in Figs. 4–6. We also give
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Figure 5. Top plots: Squared modulus of the amplitude T (E; ρ), normalized to be one at the maximum,
Emax, as a function of the center-of-mass energy of the DD̄∗ pair, for a vacuum molecular probability P0 = 0.4.
The amplitudes are used computed using Eq. (2.20) and the potentials VA(s) in Eq. (3.11) (left plot) or VB(s)
in Eq. (3.16) (right plot). Bottom plots: Inverse of the propagator ∆(E; ρ) (left) and the spectral function
SX(E; ρ) (right) for P0 = 0.4, and multiplied by Z0 = (1− P0) and Z−1

0 , respectively. Neither the propagator,
nor the spectral function depend on the kernel V (s), since they are determined by the vacuum X(3872) and
the in-medium two-meson loop function Σ(E; ρ).

the quasi-particle energies, Eqp, obtained by solving Re[∆−1(E; ρ)] = 0 when they exist. For low values
of P0 (Fig. 8), we provide separately Emax obtained from VA(s) or of VB(s) potentials. The results
in these two figures reinforce the conclusions previously outlined. Indeed, we graphically see for the
highest values of P0, the appreciable difference between Emax and Espe, with even an opposite density
slope in the P0 = 1 case. In Fig. 7, we only observe for P0 = 0.8 some resemblances between the
maxima of |T (E; ρ)|2 and SX(E; ρ), with quasi-particle energies well separated from both of them and
exhibiting a significantly larger sensitivity with density. Medium effects are much smaller in Fig. 8,
where results for P0 = 0.2 and P0 = 0.4 are collected. Some differences between Emax obtained from VA
or VB potentials are visible, even for the lowest of the molecular probabilities, for densities close to ρ0.
The quasi-particle and spectral-function energies are closer, and for P0 = 0.2 become indistinguishable
from Emax computed using VB. This supports that, in this case, one is dealing with a compact state
little affected by the dressing of the meson loops in the medium.

4.2 Poles in the complex plane

As already mentioned, the integral representation of Eq. (2.21) for the in-medium loop function Σ(s; ρ)
is not well suited for its continuation into the whole complex plane. The rich dynamical structure of the
spectral functions SD(∗) and SD̄(∗) shown in Fig. 1 is washed out by the Ω and ω integrations implicit
in Eq. (2.21) (see also Eq. (2.7)). Thus, almost no trace of the several peaks present in Fig. 1 can be
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Figure 6. Same as Fig. 5, but for P0 = 0.2.
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Figure 7. Positions Emax and Espe of the maxima of |T (E; ρ)| and SX(E; ρ), respectively, as a function of
the nuclear matter density. From left to right, the three plots show the cases P0 = 1, 0.9, and 0.8. In the
latter case, we also give the quasi-particle energy, Eqp, obtained by solving Re[∆−1(E; ρ)] = 0. For these high
molecular probabilities, the numerical differences due to the use of VA(s) or of VB(s) potentials [Eqs. (3.11) and
(3.16), respectively] are very small. The black dashed-double dotted line represents the vacuum DD̄∗ threshold,
whereas the empty circle at ρ = 0 is the X(3872) vacuum mass m0 of the X(3872).
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Figure 8. Same as Fig. 7, but for small molecular components, P0 = 0.4 and 0.2. We show separately Emax
obtained from V (s) = VA(s) or V (s) = VB(s) [Eqs. (3.11) and (3.16), respectively].

distinctly appreciated in the resulting loop functions Σ(s, ρ) depicted in Fig. 3 for several densities.
Actually, the latter are essentially equivalent to the loop function of a two-meson system regulated via
a hard cutoff Λ, but evaluated with complex masses. Hence, we make the following approximation:

Σ(s; ρ) ' G(eff)(s; ρ) ≡ G(s,m(eff)
D (ρ),m(eff)

D∗ (ρ)) , (4.1)

with m
(eff)
D(∗) complex valued, and the superscript “(eff)” is included to remark that these are density-

dependent effective masses, and do not correspond to the pole positions associated to the D(∗) and
D̄(∗) peaks in Fig. 1. Additional details, including a discussion on the accuracy of the approximation,
can be found in Appendix A.

By means of the approximation in Eq. (4.1) we can now compute the in-medium TDD̄∗(s; ρ) in the
whole complex plane, for the different medium densities ρ and vacuum probabilities P0, and search
for poles in the complex plane. We find a pole on the first Riemann sheet of the amplitude (as defined
in Appendix A). This does not represent any violation of the analyticity properties of the complete-
system scattering T−matrix, because of the procedure used to take into account the many body
channels of the type DD̄∗N → DD̄∗N ′. In the present scheme, they are not explicitly considered in
the coupled-channel space and only their effects on DD̄∗ → DD̄∗ are included through the in-medium
charmed-meson self-energies.

The pole position depends on the nuclear medium density ρ and on the value chosen for the
parameter P0, the X(3872) molecular probability in the vacuum. The pole position is represented
in Fig. 9 for different values of P0 and ρ, with each of the colors associated to a particular density,
and both VA(s) (left) and VB(s) (right) free space DD̄∗−potentials considered in this work. For each
density, the zigzag lines represent the loop function G(eff)(s; ρ) right hand cut:

√
s ∈ C

/[
Im p2(s,m(eff)

D(∗) ,m
(eff)
D ) = 0

]
and

[
Re p2(s,m(eff)

D(∗) ,m
(eff)
D ) > 0

]
(4.2)

extending to the right and starting at the branch point,
√
s = (m(eff)

D(∗) + m
(eff)
D ), where p2(s) = 0. In

addition, p(s) is defined in the Appendix. The dotted lines extending to the left represent the segments
in which Im p2(s) = 0 and Re p2(s) < 0, where the density-dependent loop functions are thus real,11

11Because of the limited range in Re
√

s explored in Fig. 9, the curves in which Im p2(s) = 0 (the zigzag and dotted
lines) look like straight lines, parallel to the real axis, although in general they are not, and have some curvature.
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Figure 9. Complex pole position of the X(3872) for different nuclear densities (ρ) and vacuum molecular
probabilities (P0). Results in the left and right plots have been obtained using amplitudes computed with
V (s) = VA(s) [cf. Eq. (3.11)] and V (s) = VB(s) [cf. Eq. (3.16)], respectively. The dashed curves show the
continuous variation of the pole position with P0, and the points represent steps in the probability ∆P0 = 0.1.
Different colors correspond to different nuclear densities, as detailed in the legend of the plots. The zigzag lines
stand for the cut of the G(eff)(s; ρ) function (see text and Appendix A for further details).

ImG(eff)(s; ρ) = 0. The dashed lines show the continuous variation of the pole position with P0, where
the points represent steps in the probability ∆P0 = 0.1. When P0 → 0, i.e., when the X(3872)
molecular component tends to vanish, the coupling of the X(3872) to the D∗D̄ channel tends to zero,
and therefore, in this case, the pole remains at the original position in vacuum, independently of the
nuclear density. On the other end, when P0 → 1, i.e., when the X(3872) tends to be a purely molecular
state, the pole appears to the left of the effective complex threshold, exactly in the segment where
Im p2(s) = 0. This happens because, in this limit, the derivative term of the kernel VA(s) [cf. Eq. (3.11)]
vanishes, and VA(s) is just a real constant.12 Therefore the pole, solution of [1−VA(s)G(eff)(s; ρ) = 0],
should also satisfy ImG(eff)(s; ρ) = 0. We also see in Fig. 9 that the in-medium X(3872) pole position
satisfies

∣∣Im√sP ∣∣ 6 ∣∣∣Im (
m

(eff)
D +m

(eff)
D∗

)∣∣∣, i.e., the X(3872) width is always smaller than the sum of
the D and D̄∗ effective widths. One can say that the pole position is dragged by the effective threshold
(m(eff)

D +m
(eff)
D∗ ), and that the effect is large or small depending on whether the in-vacuum probability

P0 is close to 1 or to 0, respectively. We also observe some dependence of the pole position, which as
expected grows as the molecular content P0 deviates from 1, on the used DD̄∗ interaction in the free
space.

In our amplitudes, the vacuum molecular probability P0 is a free parameter that we have varied
to explore different scenarios. We can define the quantity P̃ρ,

P̃ρ = −g2(ρ) dG(eff)(s; ρ)
ds

∣∣∣∣∣
s=m2(ρ)

, (4.3)

which generalizes to the nuclear medium the formula for the vacuum probability [cf. Eq. (3.13)]. Since
the pole position is in general complex, so will be this quantity. Therefore, in general, it will not be
possible to interpret it as a probability. In Fig. 10, we show P̃ρ for different nuclear densities as a
function of the vacuum probability P0. This figure complements the results of Fig. 9. We also observe

12Note that, as previously discussed, there is little difference between the results obtained with VA(s) or VB(s) when
P0 is close to one. Therefore, the argument presented here with VA(s) can be readily applied to the case of VB(s).
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Figure 10. Dependence of the quantity P̃ρ [cf. Eq. (4.3)] with the vacuum molecular probability P0 for different
densities. The solid (dashed) lines represent the real (imaginary) part of P̃ρ. The left and right plots correspond
to the cases V (s) = VA(s) and V (s) = VB(s), respectively.

for this magnitude distinctive (ρ, P0)−patterns depending on the used DD̄∗−interaction, which might
be used to shed light on the actual structure of the X(3872) resonance. In the intermediate regions, far
from the end points P0 = 0 and P0 = 1, the imaginary part of P̃ρ can be sizeable, and for most of these
values it increases with the density. In general, the effect of the nuclear medium in this intermediate
P0 region is to decrease both the real part and the modulus of P̃ρ with respect to its original value
P0. However, we see that for both ends P0 → 0 or P0 → 1, we have that ImP̃ρ ' 0, and P̃ρ ' P0.
We thus see that in these cases the X(3872) state can be said to conserve its original nature in the
nuclear medium.

5 Conclusions

In this work we have studied the behaviour of the χc1(3872), also known as X(3872), in dense nuclear
matter. The X(3872) appears in the vacuum as a pole in the DD̄∗ scattering amplitudes, which are
parametrized in a quite general form. The in-medium effects have been incorporated by dressing the
DD̄∗ loop functions with the corresponding spectral functions of the charmed mesons. As a result,
the DD̄∗ amplitudes, when the charmed mesons are embedded in the nuclear medium, have been
determined for energies around the nominal X(3872) mass. The X(3872) spectral function has been
also obtained for densities ranging up to that of nuclear matter saturation.

For the kernel of the DD̄∗ scattering, we have used two possible energy-dependent potentials,
each of them depending on two free parameters. Imposing that the vacuum amplitude has a pole in
the physical Riemann sheet, these two parameters allow to fix the nominal X(3872) mass and its
coupling to the DD̄∗ channel, or, alternatively, the mass and the molecular probability P0. Therefore,
both types of interactions allow for the study of the X(3872) as either a pure hadron-molecule state
or a genuine quark state, as well as intermediate possibilities, in terms of P0. However, both types of
interactions have different analytical properties, which can give rise to different scattering amplitudes
at finite density.

Using these two models for the interaction, we have explored the connection between the in-
medium behaviour of the X(3872) and its nature. In the case of the X(3872) being mostly a molecular
state, both interaction potentials behave similarly and lead to equivalent results for the in-medium
amplitudes. In this case, we have found that the DD̄∗ amplitudes strongly depend on the density. The
width of the X(3872)-peak significantly grows when the density is increased, while its position moves
to higher energies, as the molecular component is lowered. The X(3872) spectral function follows the
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imaginary part of the X(3872) self-energy, that increases with density due to the appearance of new
many-body decay channels in matter. On the other hand, when smaller molecular components are
considered, the DD̄∗ amplitudes depend on the choice of the energy-dependent potential, specially
for energies below the free-space X(3872) mass. Hence, the experimental input on the amplitudes at
finite density might shed light into the dynamics of the DD̄∗ interaction in the case of a state with
a large genuine constituent quark component. Moreover, in this case, the X(3872) spectral function,
which is independent of the potential employed, is very little affected by the density.

The in-medium DD̄∗ loop functions strongly depend on the interaction of D, D∗, D̄ and D̄∗

with nuclear matter. However, one can reasonably approximate them by a standard loop function
evaluated with complex, effective masses of the D(∗) and D̄(∗) mesons. This fact allows for an analytical
continuation of the loop function, and hence of the scattering amplitude, to the whole complex plane
and to the second Riemann sheet. In turn, this allows for the search of the pole associated to the
X(3872) in the nuclear medium. For finite density, the pole is found in the first Riemann sheet, but in
the complex energy plane. However, this does not represent any violation of the analyticity properties
of the T−matrix, because, in the present scheme, the DD̄∗N → DD̄∗N ′ many-body channels are not
explicitly considered in the coupled-channel space, since their effects on DD̄∗ → DD̄∗ are included
via the in-medium charmed-meson self-energies. The behaviour of the X(3872) pole with density is
moreover fully in line with the change in matter of the squared modulus of the T−matrix amplitudes
for real energies. Complex poles for the X(3872) produced inside of a nuclear medium are collected
in Fig. 9, for different densities and free-space molecular probabilities. In the light of these results, we
conclude that for the nuclear matter saturation density and molecular components of the order of 60%
for the X(3872), the many-body modes considered in this work provide widths for this resonance of
around 30-40 MeV, and more modest mass-shifts (repulsive) with a maximum of 10 MeV. This latter
outcome contradicts the results obtained in the QCD-sum-rule calculation carried out in Ref. [57] and
based on a diquark-antidiquark picture for the X(3872). Indeed, in the approach of Ref. [57], the mass-
shift due to the nuclear matter is negative and is about 25% (∼ 800-900 MeV) when the saturation
density is used. Therefore, any experimental analyses on the in-medium properties of X(3872) and
comparison of those with the results of the present study can increase our knowledge of the X(3872)
and help us gain useful information on the not well-known structure of this exotic state.

In this work we have studied the contribution of the dominant DD̄∗ channel to the X(3872) dy-
namics. In the future, we aim at extending our calculation to a more realistic situation by incorporating
also coupled channels involving hidden-charm mesons, such as J/ψ π. Also, the results presented in
this manuscript are based on a specific model for the D(∗)N and D̄(∗)N interactions, which determine
the in-medium modifications of the DD̄∗ loop functions. Different or more elaborate models for these
amplitudes could also be employed in the formalism we have derived here. In any case, our results indi-
cate a very different behaviour with density of the DD̄∗ amplitudes and the X(3872) spectral function
depending on the nature of the X(3872). Thus, experiments that can access the nuclear finite-density
regime, such as HiCs like CBM or those with fixed nuclear targets such as p̄-nuclei in PANDA, are
necessary and complementary to the spectroscopic analyses so as to discern the nature of X(3872).
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A Further details on G(eff)(s; ρ)

In this Appendix we give further details on the approximation made in Sec. 4.2, and on the analytical
properties of the loop function employed. The approximation is:

Σ(s; ρ) ' G(eff)(s; ρ) ≡ G(s,m(eff)
D (ρ),m(eff)

D∗ (ρ)) , (4.1)

where G(s,m1,m2) can be computed using the explicit formula given for instance in Eq. A1 of Ref. [66]
(see the erratum published in Phys. Rev. D75), regulated with a momentum cutoff of 0.7 GeV. In
addition, we take for the density dependent effective masses

m
(eff)
D (ρ) = mD + ∆m(ρ)− iΓ(ρ)

2 , (A.1a)

m
(eff)
D∗ (ρ) = mD∗ + ∆m(ρ)− iΓ(ρ)

2 . (A.1b)

with mD(∗) , the vacuum masses, and ∆m(ρ) and Γ(ρ) real quantities. We note that in the m(eff)
D and

m
(eff)
D∗ definitions we have forced a common shift ∆m(ρ) − iΓ(ρ)

2 with respect to the vacuum masses.
Being this an effective representation, we find that this ansatz is enough to approximate the original
loop function, Σ(s, ρ). In Fig. 11 we show in the left (right) panel the imaginary (real) part of the
loop function Σ(s, ρ) together with the approximation determined by Eq. (4.1), computed with the
parameters ∆m(ρ) and Γ(ρ) collected in Table 1. The latter are chosen so as to approximately match
the original loop functions Σ(s; ρ) for the different densities considered in this work. As can be seen,
the approximation works reasonably well.

ρ/ρ0 ∆m(ρ) (MeV) −Γ(ρ)
2 (MeV)

0.10 +0.04 −2.5
0.30 +0.07 −7.1
0.50 −0.01 −11.6
0.75 −0.26 −17.0
1.00 −0.65 −22.3

Table 1. Parameter values used to determine the effective masses m(eff)
D (ρ) and m(eff)

D∗ (ρ) [Eqs. (A.1)] for different
nuclear densities ρ.

The loop function G(eff)(s; ρ) can be continued analytically to the whole complex plane, and the
second (or nonphysical) Riemann sheet is defined as:

G
(eff)
II (s; ρ) = G(eff)(s; ρ) + i

p[s,m(eff)
D (ρ),m(eff)

D∗ (ρ)]
4π
√
s

,

p(s,m1,m2) =
[
s− (m1 +m2)2] 1

2
[
s− (m1 −m2)2] 1

2

2
√
s

(A.2)

In Fig. 12 and for ρ = ρ0/2, we show in blue (red) the physical (nonphysical) Riemann sheet of the
function G(eff)(s; ρ) in the

√
s−complex plane. The cut of G(eff)(s; ρ) lies on a curve for the variable√

s, given in Eq. (4.2) of the main text, which in the free space (ρ → 0) is the usual right hand cut,√
s > (mD +mD∗) on the real axis, with

√
s = (mD +mD∗) the branch point. For finite density and

therefore complex masses, this branch point moves from the real axis into the complex plane, and the
cut does not lie in the real axis either.
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Figure 11. The original loop function Σ(s; ρ) (solid lines), shown in Fig. 3, compared with the approximated
one, G(eff)(s; ρ), obtained from Eq. (4.1) (dashed lines). The imaginary and real parts of both functions, as a
function of the c.m. energy of the DD̄∗ pair are displayed in the left and right plots, respectively.
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Figure 12. The function G(eff)(s; ρ) for the case ρ = ρ0/2 on the
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s−complex plane. The first (second) Riemann

sheet is shown in blue (red).
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