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(Jülich-Bonn-Washington)

1Institute for Nuclear Studies and Department of Physics,
The George Washington University, Washington, DC 20052, USA

2Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

3Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe
Center for Theoretical Physics, Universität Bonn, 53115 Bonn, Germany

4Institute for Advanced Simulation and Jülich Center for Hadron Physics,
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An analysis of pion electroproduction data, off proton targets, with energies 1.13 GeV< W <
1.6 GeV and Q2 below 4 GeV2, is performed using a general parametrization of transition amplitudes
and constraints from gauge invariance and threshold behavior. The model is an extension of the
latest Jülich-Bonn solution incorporating constraints from pion-induced and photoproduction data.
Performing large scale fits (∼ 105 data) we find a set of solutions with χ2

dof = 1.69 − 1.81 which
allows us to assess the systematic uncertainty of the approach.
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1. INTRODUCTION

Our knowledge of the baryon spectrum, as de-
termined from analyses of data, has advanced
rapidly [1] over the past decade. The progress
has been most significant for non-strange baryons,
largely due to the wealth of new and more pre-
cise measurements made at electron accelerators
worldwide. A substantial number of these new mea-
surements have been performed at Jefferson Lab
(JLab) [2] using the CLAS and Hall A detectors,
at MAMI [3], at ELSA [4] with the Crystal Barrel
detector, and also at the BESIII [5] and LEPS [6]
facilities. New baryon experiments are planned or
realized, e.g., at J-PARC [7], BGO-OD at ELSA [8],
and the 12-GeV upgrade at JLab allowing studies of
the electroproduction of baryon resonances to large
four-momentum transfer [9, 10].

Partial-wave analysis provides the link between
large-scale experimental programs and theory ap-
proaches that focus on the intermediate-energy re-
gion, where quark confinement manifests itself in a
rich spectrum of resonances. Improved and extended
techniques are necessary to further our understand-
ing of baryon structure and, in particular, to help
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resolve the missing-resonance problem [11]. Further-
more, partial-wave analysis provides the bridge to
compare experiment with theories such as Quark
Models [12–23], Dyson-Schwinger and related ap-
proaches [24–39], chiral perturbation theory with Δ-
resonance [40–43] or perturbative calculations using
the complex-mass scheme [44, 45], and chiral unitary
calculations [46–61]. For example, in Refs. [46–50]
a gauge-invariant implementation of the full Bethe-
Salpeter equation was used to fit and predict light S-
wave baryons. Furthermore, the spectrum of excited
baryons has become accessible in lattice QCD calcu-
lations [62–73]. The use of meson and baryon-type
operators has also enabled the calculation of bary-
onic scattering amplitudes [74–78] using Lüscher’s
method [79], see also Ref. [80].

While most of the early progress [81–85] in baryon
spectroscopy was based on the analysis of meson-
nucleon scattering data, particularly pion-nucleon
scattering (πN → πN , πN → ππN), photon-
nucleon interactions offer the possibility of detect-
ing unstable intermediate states with small branch-
ings to the πN channel [86]. Many groups have per-
formed either single-channel or multi-channel analy-
ses of these photo-induced reactions. In the more re-
cent single-channel analyses, fits have typically used
isobar models [87–90] with unitarity constraints at
lower energies, K-matrix-based formalisms, having
built-in cuts associated with opening inelastic chan-
nels [91], and dispersion-relation constraints [89, 92].
Multi-channel fits have analyzed data (or, in some
cases, amplitudes) from hadronic scattering data
together with the photon-induced channels. These
approaches have utilized unitarity more directly.
The most active programs are being carried out
by the Bonn-Gatchina [93], Jülich-Bonn JüBo [94],
ANL-Osaka [95], Kent State [85], JPAC [96], and
Giessen [97] groups. At low energies, the chiral
MAID analysis provides a comprehensive description
of photo- and electroproduction data [98].

With the refinement of dynamical and phenomeno-
logical coupled-channel approaches for the analysis
of pseudoscalar-meson photoproduction reactions,
many new states and their properties could be dis-
covered [1]. While the Q2 variation of resonance cou-
plings is expected to provide a link between pertur-
bative QCD and the region where quark confinement
sets in, so far, no unified coupled-channel analysis
of photo- and electroproduction experiments exists
that simultaneously studies the πN , ηN and ΛK fi-
nal states. This study provides a first step in this
direction in form of an analysis of pion electropro-
duction data.

Going from photo- to electroproduction of pseudo-

scalar meson, the number of helicity amplitudes in-
creases from four to six, requiring more measure-
ments for the analogous ‘complete experiment’ [99,
100], with a multipole decomposition adding longi-
tudinal components to the transverse elements an-
chored by photoproduction analyses at Q2 = 0. Vari-
ation of resonance couplings with Q2 is expected to
provide a link between perturbative QCD and a re-
gion where quark confinement requires the use of
lattice QCD, ChPT, or more phenomenological ap-
proaches. Exactly where this transition occurs is not
precisely known. The well-known prediction [101] of
an E2/M1 ratio, for the Δ(1232) state, approach-
ing unity shows no sign of occurring, remaining es-
sentially flat at a small negative value. See also
Ref. [102] for a review. In contrast, other clear reso-
nances, such as the N(1520), do show rapid behavior
in the low-Q2 region, followed by a smooth transition
to higher values of Q2. The reliable determination
of helicity amplitudes for Q2 > 0 is also relevant for
neutrino physics [103, 104]. See Ref. [105] for recent
progress in this direction by the ANL/Osaka group.

Electroproduction experiments, e.g., by the CLAS
Collaboration at JLab, are producing a wealth of
data that, in many cases, still await a detailed anal-
ysis, in pion electroproduction [106–109] (JLab),
[110] (A1 Collaboration at MAMI), η electropro-
duction [111] (JLab), [112] (A1 Collaboration at
MAMI), and kaon electroproduction [3] (A2 Collab-
oration), [113] (JLab). It should also be stressed that
pion and kaon electroproduction experiments with
the new CLAS12 detector at the 12 GeV upgrade of
Jefferson Lab [10, 114] will provide many data that
require a timely analysis.

The ANL-Osaka group extended its dynamical
coupled-channel analysis of pion electroproduc-
tion [115] to higher Q2-values [116]. Plots of the
Δ(1232) amplitudes at the resonance pole position
(yielding a complex amplitude) also seem to quali-
tatively reproduce results found for the MAID and
SAID analyses [117]. However, results have gener-
ally been restricted to the low-energy Δ(1232) and
N(1440) states.

The most widely used single-pion electroproduc-
tion analyses, covering the resonance region, have
been performed by the Mainz (MAID) [87, 118–
121] and Jefferson Lab [2, 122–124] groups. An ex-
tensive single-pion electroproduction database, and
a K-matrix based SAID fit, is also available [125].
Eta electroproduction has been analyzed in the Eta
MAID framework [90], and kaon electroproduction
by the Ghent group [126]. These fits have generally
utilized a Regge [127] or Regge-plus-resonance ap-
proach [128] at high to medium energies. (We men-
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tion here parenthetically that the Ghent Regge ap-
proach can be improved by correctly implementing
the local gauge-invariance constraints [129].) Effec-
tive Lagrangian and isobar models have also been
used [130, 131], with some of these available via the
MAID website [132], for both kaon and eta electro-
production [90].

These are all single-channel analyses with ap-
proaches similar to the associated real-photon fits,
but generally, with the exception of the MAID and
SAID analyses, not including the real-photon data as
a constraint at Q2 = 0. Both the MAID and Jeffer-
son Lab groups have made fits using Breit-Wigner
plus background models with resonance couplings
extended to include a Q2 dependence. In the Jeffer-
son Lab analyses [2], a further fit was again based
on satisfying fixed-t dispersion relation. It should
be mentioned that two-pion electroproduction fits
have also been performed, and compared to the
single-pion results, at Jefferson Lab [133–137]. See
Ref. [134] for a review. Remarkably, a new baryon
resonance has been claimed in an analysis of com-
bined ππN photo and electroproduction [138].

In this study we perform a first step towards a truly
coupled-channel analysis of electroproduction data.
For this, we analyse pion electroproduction data, off
proton targets, in both charge channels for energies
1.13 GeV< W < 1.6 GeV and 0 GeV2 < Q2 <
4 GeV2. Special emphasis is put on gauge invari-
ance and Siegert’s condition [139, 140] that is man-
ifestly included in the parametrization. The electro-
production amplitude is constructed such that at
the photon point Q2 = 0 GeV2 it describes pion, η,
and KΛ photoproduction data in form of the most
recent solution of the Jülich-Bonn analysis effort,
the “JüBo2017” solution [141]. The hadronic part of
that amplitude describes also various pion-induced
reactions. Extensions including η and kaon electro-
production data, as well as the simultaneous fit of
photo- and electroproduction data, are left to future
research. In this context it will be relevant to revise
kaon polarization observables due to recent updates
of the fundamental Λ decay parameter α− [142, 143].

This study is organized as follows. Section 2 con-
tains formal aspects of electroproduction (kinemat-
ics, Siegert’s condition, observables and multipoles)
while the parametrization of electroproduction mul-
tipoles as an extension of the Jülich-Bonn amplitude
is discussed in Sec. 3. Results are presented and dis-
cussed in Sec. 4, and the conclusions can be found
in Sec. 5.

2. PRELIMINARIES

2.1. Kinematics

The pion electroproduction process in question oc-
curs via the following reaction (bold symbols denote
three-momenta throughout the manuscript)

γ∗(q) + p(pi) → π(k) +N(pf) ,

with the virtual photon γ∗(q) being produced via
ein(ke) → eout(k

′
e) + γ∗(q). Thus, the momentum

transfer Q2 = −ω2 + q2 is non-negative for space-
like processes, and acts as an independent kinemat-
ical variable in addition to the total energy in the
center-of-mass (cms) frame, W . In this frame, the
magnitude of the three momentum of the photon
(q = |q|) and produced pion (k = |k|) read

q =

√
λ(W 2,m2,−Q2)

2W
, k =

√
λ(W 2,m2,M2)

2W
,

(2.1)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx
denotes the usual Källén function. Pion and nucleon
mass are denoted throughout this manuscript by M
and m, respectively. From this, the photon energy is
ω = (W 2 −m2 −Q2)/(2W ). The angular structure
of the above process is depicted in Fig. 1, where θe is
the angle of the in/outgoing electron in the scatter-
ing plane, φ is the angle of the reaction plane to the
scattering plane and θ is the cms meson scattering-
angle in the latter plane. The world data on elec-
troproduction is represented with respect to the five
variables

O(Q2,W, φ, θ, ε) ,

where ε = (1+2q2L/Q
2 tan2(θe/2))

−1 and O denotes
observables discussed in the next section. Here, qL
is the photon three-momentum in the lab frame.

There are several important limits/thresholds of this
kinematics which will be discussed later and thus
require an introduction. In particular, we refer to

– Photon point, which corresponds to Q2 ≡ 0,
reducing the process to pion photoproduction. In
this limiting case, denoted by a subscript γ, the
amplitudes are independent of the angle φ and

ωγ = qγ =
W 2 −m2

2W
. (2.2)

The electroproduction amplitudes are constrained
by photoproduction data via the multipoles of the
JüBo model, see Sec. 3.1.
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FIG. 1. Kinematics of an electroproduction experiment. The scattering plane is defined by the respective in/outgoing
electron momenta ke/k

′
e with the electron-scattering angle θe. The reaction plane is spanned by the virtual photon

and the outgoing meson, scattered by an angle θ.

– Production threshold, which refers to the low-
est physical energy of the final meson-baryon pair,
i.e., W = (m+M) ⇔ k ≡ 0.

– Pseudo-threshold, denotes an unphysical point
q = 0 or correspondingly

Q2
PT± = −(W ±m)2 . (2.3)

The particular importance of this kinematic point
arises from Siegert’s condition, which will serve as
a boundary condition for our parametrization of
the multipoles, see Sec. 3.

2.2. Transition amplitudes – Multipoles and
Siegert’s condition

For a general photon induced photo- or electropro-
duction of a meson off a nucleon, the transition am-
plitude takes the form

Tfi =〈f|(−i

∫
d4rAμJμ)|i〉 , (2.4)

with Jμ denoting the electromagnetic current, see,
e.g., the seminal papers [144–146] for more details.
The components of the vector potential Aμ are solu-
tions of the Laplace equation. For instance, for the
time component (scalar potential),(∇2 + q2

)
A0 = 0 . (2.5)

Then, A0 can be decomposed into contributions with
given angular momentum values,

A0 =
∑
jγmγ

∫
dq

2π

q2√
ω
(ajγmγ

uC
jγmγ

+ a†jγmγ
uC∗
jγmγ

) ,

(2.6)

where jγ is the angular momentum of the photon

and a
(†)
jγmγ

≡ a
(†)
jγmγ

(q) are annihilation (creation)

operators. Furthermore,

uC
jγmγ

≡ uC
jγmγ

(q, r) = jjγ (qr)Yjγmγ
(θ, φ) . (2.7)

Everywhere, jjγ (qr) and Ylm(θ, φ) denote the spheri-
cal Bessel functions and spherical harmonics, respec-
tively.

Similarly, the three-vector potential can be ex-
panded in elementary vectors ux with a given an-
gular momentum as in the scalar case,

A =
∑
jγmγ

∑
x

∫
dq

2π

q2√
ω

(
axjγmγ

(q)ux
jγmγ

(q, r)

(2.8)

+ ax†jγmγ
(q)ux∗

jγmγ
(q, r)

)
,

where ω is the photon energy, while x ∈ {E,M,L}
labels electric, magnetic and longitudinal compo-
nents, respectively. The vectors ux can be con-
structed from the scalar uC using differential opera-
tors,

uL
jγmγ

(q, r) =
i

q
∇uC

jγmγ
(q, r) ,

uM
jγmγ

(q, r) =
r ×∇√
jγ(jγ − 1)

uC
jγmγ

(q, r) ,

uE
jγmγ

(q, r) =
∇×L

q
√
jγ(jγ + 1)

uC
jγmγ

(q, r) . (2.9)

Because ∇, L = −ir×∇, and ∇×L commute with
the Laplacian, uL, uM and uE are also solutions
of the Laplace equation, and are orthogonal to each
other. The corresponding Coulomb (C), longitudinal
(L), magnetic (M) and electric (E) multipoles then
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read for a given photon angular momentum state

Cjγmγ
(q) = 〈f|

∫
d3ruC

jγmγ
(q, r)ρ(r)|i〉 ,

Ljγmγ (q) = 〈f|
∫

d3ruL
jγmγ

(q, r) · J(r)|i〉 ,

Ejγmγ
(q) = 〈f|

∫
d3ruE

jγmγ
(q, r) · J(r)|i〉 ,

Mjγmγ (q) = 〈f|
∫

d3ruM
jγmγ

(q, r) · J(r)|i〉 , (2.10)

respectively. Only three multipoles here are indepen-
dent because of the continuity equation for the cur-
rent, thus relating scalar and longitudinal multipoles
according to

ωCjγ (q) = qLjγ (q) , (2.11)

where the mγ dependence of the multipoles can-
cels out by the Wigner-Eckart theorem, see, e.g.,
Ref. [146].

Finally, and following Ref. [146], we note that in the
long-wavelength limit (q → 0) (pseudo-threshold)
jjγ (qr) → (qr)jγ/(2jγ + 1)!!. Using then Eq. (2.7)

and ∇×L(rjγYjγmγ
) = i(jγ +1)∇(rjγYjγmγ

) yields
straightforwardly

uE
jγ (k, r) →

i

q

√
jγ + 1

jγ
∇uC

jγ (q, r) . (2.12)

Then, substituting this into Eqs. (2.9) and (2.10)
results in an exact relation between electric and lon-
gitudinal multipole at the pseudo-threshold,

Ejγ =

√
jγ + 1

jγ
Ljγ , at q = 0 , (2.13)

called Siegert’s theorem that provides an important
constraint on our parametrization of the electropro-
duction multipoles. The practical implementation of
it will be discussed in the next section.

2.3. Transition amplitudes – CGLN and
Helicity amplitudes

To find a practical access to the (ELM) multi-
poles (2.10), introduced above, we follow the sem-
inal works [144, 147] utilizing the nomenclature of
Ref. [145]. Taking the z-axis as the quantization axis
and working in the center of mass of the final pion-
nucleon system which yields the general Lorentz co-
variant transition matrix element

Tfi = 8πW χ†
f

6∑
a=1

(
FaGa

)
χi . (2.14)

Note that charge conservation is already imple-
mented here thus reducing the number of indepen-
dent structures to six. Here, χ denotes the two-
component spinor, and Fa are the CGLN ampli-
tudes1, being coefficients of

G = {i(σ · a), (σ · k̂) (σ · (q̂ × a)),

i(σ · q̂)(k̂ · a), i(σ · k̂)(k̂ · a),
i(σ · q̂)(q̂ · a), i(σ · k̂)(q̂ · a)} (2.15)

with aμ = εμ − (ε0/ω)qμ (ε0 being the 0-component
of the polarization vector εμ [144]), and hat denoting
the normalization of a respective three-vector.

The six types of transitions (2.14) can be related
to the eigenamplitudes of definite parity and rel-
ative angular momentum of the pion-nucleon pair
(
) [148]. These amplitudes are identified with elec-
tric E�±, magnetic M�± and scalar or Coulomb mul-
tipoles (2.11), see Eqs. (2.10). Expanding with re-
spect to the Legendre polynomials P�(cos θ) yields

F1 =
∑
�≥0

(
(
M�+ + E�+)P

′
�+1

+ ((
+ 1)M�− + E�−)P ′
�−1

)
,

F2 =
∑
�≥1

((
+ 1)M�+ + 
M�−)P ′
� ,

F3 =
∑
�≥1

(
(E�+ −M�+)P

′′
�+1 + (E�− +M�−)P ′′

�−1

)
,

F4 =
∑
�≥2

(M�+ − E�+ −M�− − E�−)P ′′
� ,

F5 =
∑
�≥0

(
(
+ 1)L�+P

′
�+1 − 
 L�−P ′

�−1

)
,

F6 =
∑
�≥1

(
L�− − (
+ 1)L�+)P
′
� . (2.16)

Here we have suppressed the dependence of the mul-
tipoles onW andQ2 for simplicity. The total angular
momentum is given by J = 
± 1/2 = 
±. The mul-
tipole decomposition yields a certain behavior of the
multipoles at the physical and pseudo-threshold,

k → 0 q → 0

E�+ and L�+ for 
 ≥ 0 k� q�

L�− for 
 = 1 k q
M�+ and M�− for 
 ≥ 1 k� q�

E�− and L�− for 
 ≥ 2 k� q�−2

(2.17)

1 Referring to the authors of Ref. [147] (Chew, Goldberger,
Low, Nambu) those amplitudes were originaly derived for
the photoproduction amplitudes, but extended later by
Dennery [144] to electroproduction.
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Finally, coming back to Siegert’s theorem (2.13), we
note that the multipoles in the previous section are
labeled with the incident photon angular momen-
tum, jγ , while in the current section they are in-
dexed by the final-state orbital angular momentum

. Transforming to the latter basis Siegert’s theorem
takes the form [140]

E�+

L�+
= 1 and

E�−
L�−

=



1− 

, at q = 0 , (2.18)

which is also the form employed in this work at Q2 =
Q2

PT−, referring to it as Siegert’s condition2. This
is crucial, since the current parametrization relies
on the continuation of the available photoproduction
solution to Q2 > 0, see Sec. 3. The latter, however,
do not restrict the longitudinal multipoles. Equating
the latter to the electric multipole at the pseudo-
threshold provides a solution to this problem and is
employed in this work.

2.4. Response functions and observables

Free parameters for the various multipoles will be
determined by fits to data of differential cross sec-
tions and other observables. These observables are
written in terms of response functions, R(W,Q2, θ)
which can be related to the transition amplitudes,
conveniently employing the helicity formalism [149].
In particular, the differential cross section is a func-
tion of five kinematic variables discussed in Sec. 2.1
(W,Q2, θ, φ, ε) defined as

dσ

dΩfdEfdΩ
=

(
α

2π2

Ef

Ei

qL
Q2

1

1− ε

)
dσv

dΩ
, (2.19)

where Ω refers to the angles of the final meson
baryon system (θ, φ) and Ωf are the angles of the
final electron at energy Ef . The differential cross
section dσv/dΩ for the virtual photon sub-process
is commonly further decomposed as

dσv

dΩ
=σT + εσL +

√
2ε(1 + ε)σLT cosφ

+ εσTT cos 2φ+ h
√
2ε(1− ε)σLT ′ sinφ ,

(2.20)

where h is the helicity of the incoming electron. The
quantities {σx|x = (T, TT, LT, L, LT ′)} are referred

2 We do not employ the same condition at the second pseudo-
threshold, since it is located much further away from the
physical region.

to as structure functions. Data involving polarized
quantities are included from Jefferson Lab exper-
iments: (1) From Ref. [150, 151] via longitudinal-
transverse structure functions σLT ′ and (2) The
K1D = {KX

1D|X = A,B, .., T} observables from
Ref. [152] related to the response functions as shown
in Tab. II in Appendix 1. In general, and following
the convention of Ref. [99], the structure functions in
Eq. (2.20) are obtained from the response functions
R. The latter denote the coefficients that expand
the azimuthal angle dependence of the general differ-
ential cross section of an electroproduction reaction
when all polarizations are taking into account, see
e.g., Ref. [99]. In our case, and using qγ ≡ q(Q2 = 0)
from Eq. (2.2), the required connection reduces to

σT =
k

qγ
R00

T , σL =
k

qγ

Q2

ω2
R00

L , σTT =
k

qγ
R00

TT

σLT =
k

qγ

√
Q2

ω
R00

LT , σLT ′ =
k

qγ

√
Q2

ω
R00

LT ′ .

(2.21)

The response functions can be expressed in terms of
helicity amplitudes (H),

R00
T =

(|H1|2 + |H2|2 + |H3|2 + |H4|2
)
/2 ,

R00
L =

(|H5|2 + |H6|2
)
,

R00
LT = ((H1 −H4)H

∗
5 + (H2 +H3)H

∗
6 ) /

√
2 ,

R00
TT = Re (H3H

∗
2 −H4H

∗
1 ) ,

R00
LT ′ = Im ((H4 −H1)H

∗
5 − (H2 +H3)H

∗
6 ) /

√
2 ,

R0Y
LT = −Re ((H2 +H3)H

∗
5 + (H4 −H1)H

∗
6 ) /

√
2 ,

(2.22)

where where the connection to CGLN F amplitudes
is given by

H1 = sin θ cos θ/2(−F3 −F4)/
√
2 ,

H2 =
√
2 cos θ/2

(F2 −F1 + (F3 −F4) sin
2 θ/2

)
,

H3 = sin θ sin θ/2(F3 −F4)/
√
2 ,

H4 =
√
2 sin θ/2

(F1 + F2 + (F3 + F4) cos
2 θ/2

)
,

H5 = cos θ/2(F5 + F6) ,

H6 = sin θ/2(F6 −F5) , (2.23)

following again the phase convention of Refs. [149,
153]. Several other observables are included in the
fits as described in Sec. 4.1,

PY = −
√

2ε(1 + ε)
ω√
Q2

R0Y
LT

R00
T + εω2/Q2R00

L

,

ρLT =
√
2ε(1 + ε)

R00
LT

R00
T + ε(R00

L +R00
TT )

,

ρLT ′ =
√
2ε(1− ε) sinφ

σLT ′

dσv/dΩ
, (2.24)
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while theKD1-observables are given explicitly in Ap-
pendix 1.

3. MULTIPOLE PARAMETRIZATION

3.1. The Jülich-Bonn dynamical
coupled-channel approach

The input at the photon point is provided by
the Jülich-Bonn (JüBo) framework, a dynamical
coupled-channel approach that aims at the extrac-
tion of the nucleon resonance spectrum in a com-
bined analysis of pion- and photon-induced hadronic
reactions. In this approach, two-body unitarity and
analyticity are respected and the baryon resonance
spectrum is determined in terms of poles in the com-
plex energy plane on the second Riemann sheet. A
detailed description of the model can be found in
Refs. [154, 155] and in references therein.

The purely hadronic scattering process of a meson-
baryon pair ν is described in a field-theoretical
framework by potentials Vμν , that are derived from
a chiral Lagrangian and iterated in a Lippmann-
Schwinger equation

Tμν(k, p
′,W ) = Vμν(k, p

′,W ) (3.1)

+
∑
κ

∞∫
0

dp p2 Vμκ(k, p,W )Gκ(p,W )Tκν(p, p
′,W ) ,

where the indices μ, ν and κ denote the outgoing,
incoming and intermediate meson-baryon channels,
respectively. The model incorporates the two-body
channels πN , ηN , KΛ, and KΣ and the channels
ρN , σN and πΔ, which effectively parameterize the
ππN channel. In Eq. (3.1), k (p′) indicates the mod-
ulus of the outgoing (incoming) three-momentum in
the c.m. system, which can be on- or off-shell. The
propagator Gκ is given by

Gκ(p,W ) =
1

W − Ea(p)− Eb(p) + iε
, (3.2)

with the on-mass-shell energies Ea =
√
m2

a + p2

and Eb =
√
m2

b + p2 of the intermediate particles
a and b in channel κ with masses ma and mb. While
Eq. (3.2) applies to the channels κ = πN , ηN , KΛ,
or KΣ, the propagator is of a more complex form
for channels with unstable particles, i.e. ρN , σN and
πΔ [156, 157]. The scattering potential Vμν is con-
structed from s-channel processes that account for
genuine resonances, t- and u-channel exchanges of
mesons and baryons, and contact diagrams that are

included to absorb physics beyond the explicitly in-
cluded processes.

The photoproduction process is described in the
semi-phenomenological approach of Ref. [155], where
the electric or magnetic photoproduction multipole
amplitude (see Eq. 2.10) is given by

Mμγ(k,W ) = Vμγ(k,W ) (3.3)

+
∑
κ

∞∫
0

dp p2 Tμκ(k, p,W )Gκ(p,W )Vκγ(p,W ) .

Here, the index γ denotes the initial γN channel and
μ (κ) the final (intermediate) meson-baryon pair,
while Tμκ is the hadronic half-off-shell matrix of
Eq. (3.1) and k denotes, again, the momentum of
the outgoing meson.

The photoproduction kernel Vμγ is constructed as

Vμγ(p,W ) = αNP
μγ (p,W ) +

∑
i

γa
μ;i(p) γ

c
γ;i(W )

W −mb
i

,

(3.4)

where γc
γ;i describes the interaction of the photon

with the resonance state i with bare mass mb
i and

αNP
μγ accounts for the coupling of the photon to the

so-called background or non-pole part of the ampli-
tude. Both quantities are parametrized by energy-
dependent polynomials. See Appendix 2 for details.
In particular, we note that the hadronic resonance
vertex function γa

μ;i in Eq. (3.4) is the same as in the
hadronic scattering potential to ensure the cancella-
tion of the poles in Eq. (3.4). Explicit expressions
for γa

μ;i can be found in Ref. [158].

The hadronic scattering potential Vμν and the poly-
nomials in γc

γ;i and αNP
μγ contain free parameters

that are fitted to the data in a χ2 minimization us-
ing MINUIT on the JURECA supercomputer at the
Jülich Supercomputing Centre [159]. In its most re-
cent form [141] the JüBo model describes the re-
actions πN → πN , ηN , KΛ and KΣ in addition
to pion, eta and K+Λ photoproduction off the pro-
ton. More than 48,000 data points were analyzed in
simultaneous fits and the N and Δ spectrum was
determined.

3.2. Extension of the JüBo formalism to
electroproduction

To include electroproduction reactions in the JüBo
formalism, the photoproduction formalism outlined
in the previous section is extended to handle virtual
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γ∗p → π0p

Type Ndata Ref

• ρLT 45 [160, 161]

� ρLT ′ 2644 [150, 152, 162–164]

� σL –

� dσ/dΩ 39942 [152, 162, 165–185]

� σT + εσL 318 [160, 162, 165, 179, 180, 186–188]

◦ σT 10 [183]

� σLT 312 [160, 162, 165, 179, 180, 186–188]

♦ σLT ′ 198 [150, 179, 186, 187]

� σTT 266 [165, 179, 180, 187, 188]

� KD1 1527 [152]

• PY 2 [189, 190]

γ∗p → π+n

Type Ndata Ref

• ρLT – –

� ρLT ′ 4354 [151, 191]

� σL 2 [192]

� dσ/dΩ 32813 [169, 185, 191, 193–202]

� σT + εσL 144 [194, 199]

◦ σT 2 [192]

� σLT 106 [194, 199]

♦ σLT ′ 192 [150]

� σTT 91 [194, 199]

� KD1 – –

• PY – –

FIG. 2. Overview of the experimental data used in the main fits (0 < Q2 < 4 GeV2, 1.13 < W < 1.6 GeV) for
aggregated values of θ, φ, ε. Symbol shapes differentiate between different observable types, while the total number
of data is 82968. See Sec. 2.4 and Appendix 1 for definition of observables.

photons with Q2 > 0. Following Eq. (3.3) we first
introduce a generic function (M̄) for each electro-
magnetic multipole (Mμγ∗ ∈ {Eμ, Lμ,Mμ}) as

M̄μγ∗(k,W,Q2) = Vμγ∗(k,W,Q2) (3.5)

+
∑
κ

∞∫
0

dpp2Tμκ(k, p,W )Gκ(p,W )Vκγ∗(p,W,Q2) ,

with κ ∈ {πN, ηN,KΛ,KΣ, πΔ, ρN} and γ∗ denot-
ing the ingoing γ∗N state. The electroproduction

kernel Vμγ∗ in Eq. (3.5) is parametrized as

Vμγ∗(p,W,Q2) = αNP
μγ∗(p,W,Q2)

+

imax∑
i=1

γa
μ;i(p)γ

c
γ∗;i(W,Q2)

W −mb
i

, (3.6)

introducing the Q2-dependence via a separable
ansatz,

αNP
μγ∗(p,W,Q2) = F̃μ(Q2)αNP

μγ (p,W )

γc
γ∗;i(W,Q2) = F̃i(Q

2)γc
γ;i(W ) , (3.7)
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Fit
σL dσ/dΩ σT + εσL σT σLT σLT ′ σTT KD1 PY ρLT ρLT ′

χ2
dof

π0p π+n π0p π+n π0p π+n π0p π+n π0p π+n π0p π+n π0p π+n π0p π+n π0p π+n π0p π+n π0p π+n

F1 – 9 65355 53229 870 418 87 88 1212 133 862 762 4400 251 4493 – 234 – 525 – 3300 10294 1.77

F2 – 4 69472 55889 1081 619 65 78 1780 150 1225 822 4274 237 4518 – 325 – 590 – 3545 10629 1.69

F3 – 8 66981 54979 568 388 84 95 1863 181 1201 437 3934 339 4296 – 686 – 687 – 3556 9377 1.81

F4 – 22 63113 52616 562 378 153 107 1270 146 1198 1015 4385 218 5929 – 699 – 604 – 3548 11028 1.78

F5 – 20 65724 53340 536 528 125 81 1507 219 1075 756 4134 230 5236 – 692 – 554 – 3580 11254 1.81

F6 – 18 71982 58434 1075 501 29 68 1353 135 1600 1810 3935 291 5364 – 421 – 587 – 3932 11475 1.78

TABLE I. Fit quality for various fit scenarios described in the main text. All numbers represent χ2 contributions
with respect to different channels and observable types as defined in Eq. (4.1). Total number of data is 82968 and
91896 for scenarios 1/3/4/5 and 2/6, respectively. Cases with no data are marked by ”–”. Rightmost column shows
the aggregated χ2

dof .

with a channel-dependent form-factor F̃μ(Q2) and

another channel-independent form-factor F̃i(Q
2)

that depends on the resonance number i. Note that
the channel-dependence is inherited from the struc-
ture of the photoproduction ansatz of Eq. (3.4),
which separates the photon-induced vertex (γc) from
the decay vertex of a resonance to the final meson-
baryon pair (γa

μ).

Both F̃μ(Q2) and F̃i(Q
2) are chosen as

F̃ (Q2) = F̃D(Q2) e−β0Q
2/m2

PN (Q2/m2) , (3.8)

where

F̃D(Q2) =
1

(1 +Q2/b2)2
1 + e−Q2

r/Q
2
w

1 + e(Q
2−Q2

r)/Q
2
w

(3.9)

is a combination of the empirical dipole form-factor
with b2 = 0.71 GeV2, usually implemented in such
problems, see, e.g., Ref. [203], as well as a Woods-
Saxon form factor with Q2

w = 0.5 GeV2 and Q2
r =

4.0 GeV2, which is introduced to ensure that at large
Q2 the multipoles vanish sufficiently rapidly. Fur-
thermore, the polynomial PN (x) = 1+β1x+β2x

2+
...+βNxN is to be fitted to data, along with the pa-
rameter β0. A similar parametrization is chosen in
Refs. [116, 204].

For electric and magnetic multipoles, the quantities
γa
μ;i, α

NP
μγ , γc

γ;i, and mb
i in the electroproduction am-

plitude of Eqs. (3.6) and (3.7), as well as Tμκ in
Eq. (3.5), represent the input at the photo-point
in the current analysis. Numerical values are taken
from the JüBo2017 solution of Ref. [141].

For longitudinal multipoles there is no information
on αNP

μγ∗ or γc
γ∗;i at the photo-point. To overcome this

we employ the following strategy.

1) Following the Siegert’s condition (2.18) we apply

αNP
L�±(Q

2) =
ω(Q2)

ω(Q2
PT−)

αNP
E�±(Q

2
PT−)

F̃D(Q2
PT−)

F̃D(Q2)D�±(Q2) ,

(3.10)

and similarly for γγ∗;i. The photon energy ω was
defined below Eq. (2.1). The new functions D�±(Q2)
incorporate Siegert’s condition exactly, ensuring at
the same time a Q2 falloff behavior. Explicitly they
read

D�+(Q
2) = e−β0k/kγ PN (k/kγ) ,

D�−(Q2) = −
− 1



e−β0k/kγ PN (k/kγ) , (3.11)

where kγ = k(0) and k from Eq. (2.1).

2) For the two cases with vanishing electric mul-
tipole, i.e., (
±, I) = (1−, 1/2) and (
±, I) =
(1−, 3/2), the longitudinal multipole is obtained
from the magnetic one via

αNP
L�±(Q

2) = ζNP ω(Q2)

ω(Q2
PT−)

F̃μ(Q2)αNP
M�±(p,W ) ,

(3.12)

and similarly for γγ∗;i. The new real-valued normal-
ization constants ζNP will be determined from the
fit.

Imposing the pseudothreshold-constraints of Ta-
ble (2.17), a q and 
-dependent factor is introduced
in the parametrization of Mμγ∗ ,

Mμγ∗(k,W,Q2) = R�′(λ, q/qγ)M̄μγ∗(k,W,Q2) ,
(3.13)

with qγ of Eq. (2.2); λ is a parameter to be fitted,
and

R�′(λ, x) =
B�′(λx)

B�′(λ)
(3.14)
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with the Blatt-Weisskopf barrier-penetration factors
B�′(r) [205, 206] with the limits

B�′(r) ∼ O(r�
′
) and B�′(r) ∼ O(r0) , (3.15)

for small and large arguments of B�′(r), respectively.
The index 
′ relates to J = 
± as


′ =
{

 for (E�+, L�+, L1−,M�+,M�−) ,

− 2 for (E�−, L�− and 
 ≥ 2) ,

(3.16)

which ensures that the pseudothreshold constraints
summarized in Table 2.17 are satisfied. Explicit
forms of B�(r), for values of 
 from zero to five, are
given in Appendix 3. Note that the transition from
small to large arguments in Eq. (3.15) should happen
on a natural scale, i.e., λ which is unitless, should
be of order one. The threshold behavior M ∼ k�

of Table 2.17 is automatically satisfied by the elec-
troproduction multipoles because it is already built
into the photoproduction amplitude and this carries
over to the virtual-photon case.

To summarize the structure of the fit, each multi-
pole Eμγ∗ and Mμγ∗ carries (1 + N) fit parameters

β0, ..., βN for the non-pole part F̃μ, plus (1+N) pa-

rameters for each F̃i of the imax resonances in the
pertinent partial wave. The channel-dependence of
the non-pole form-factor F̃μ(Q2) is not fully used in
the current fits, because only pion electroproduction
data are analyzed. In F̃μ we therefore set those βi to
zero that couple to the photon but do not correspond
to the πN channel, i.e., (μ ∈ {ηN,KΛ, πΔ} [141]).

Furthermore, one could also fit the parameters Qw

and Qr of Eq. (3.9) to data, but we chose to fix them
to the quoted values to avoid over-parametrization.
In addition, there is one Blatt-Weisskopf range fac-
tor λ per multipole. The longitudinal multipoles ex-
hibit the exact same structure of fit parameters as
the E and M multipoles, through the functions D�±
of Eq. (3.11). For the two exceptions ((
±, I) ∈
{(1−, 1/2), (1−, 3/2)}), there are (1 + imax) addi-
tional fit parameters ζNP for each longitudinal mul-
tipole as indicated in Eq. (3.12) for the non-pole
part and, similarly, for each of the imax resonances.
In total, we allow for 209 fit parameters in the
parametrization, but we have also explored variants
as discussed in Sec. 4.2.

4. FITS TO DATA

4.1. Database

The data used in this study were taken from the ex-
tensive SAID database [207], containing on the or-
der of 105 data for the electroproduction of charged
and neutral pions off proton targets. See Fig. 2 for
an overview of the coverage of the Q2–W plane as
well as the number of data points for each observ-
able. More measurements, both in number and type,
are available for neutral-pion than for charged pion
electroproduction. For both final states, the SAID
database is dominated by unpolarized differential
cross sections.

Statistically, it is better to fit differential cross
sections instead of their components according to
Eq. (2.19) because on the one hand, it avoids po-
tential bias in the extraction of the components; on
the other hand, the data of the components are nec-
essarily correlated but those correlations are typi-
cally not quoted in experimental papers. Therefore,
we have generally fitted differential cross sections di-
rectly, if available, rather than the separated compo-
nents σT , σL, σTT , σLT , and σLT ′ . However, to have
simpler comparisons with previous analyses, we have
included plots of predicted structure function data
as well, see Sec. 4.3.

The largest sets of polarized data, included in this fit,
involve ratios of structure functions (2.24), and the
recoil-polarization measurements of Kelly. The Kelly
data [152] give substantial constraints on neutral-
pion production at Q2 = 1 GeV2. In a recent
study [99] of the data types required for model-
independent complete-experiment or partial-wave
analyses, a subset of the Kelly data was shown to
be sufficient for a partial-wave analysis up to P-
waves. It should be noted, however, that this study of
experimental completeness assumed error-free mea-
surements. In the Kelly paper [208], fits with dif-
ferent angular-momentum cutoffs were attempted,
showing sensitivity to approximations made in their
multipole analysis.

Substantial use of SAID and the MAID electropro-
duction websites [132, 207] and codes allowed checks
for consistency of conventions, definitions and nam-
ing schemes within the SAID database. As described
below, a website is being constructed to compare fits
by MAID, SAID, and the present analysis to plotted
data [209].
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4.2. Fit scenarios

The parametrization of the multipoles introduced in
Sec. 3.2 is subject to a large set of free parameters.
In particular, considering S-, P- and D-waves and
both isospin-channels I = (1/2, 3/2) leads to 62 new
parameters for each new order in the expansion of
PN used to parametrize E, M and L multipoles.
In this context, our preliminary fits have shown that
N = 2 (see Eqs. (3.8) and (3.11)) yields a sufficiently
flexible parametrization, without clear over-fitting of
data. See discussion at the end of Sec. 3.2 for addi-
tional details. More extensive statistical studies are
beyond the scope of the present paper and will be
discussed in a future work.

In addition to the β-type parameters, pseudo-
threshold regulating parameters (λ) and normal-
ization factors (ζ) for two longitudinal multipoles
(L1−,1/2 and L1−,3/2) not fixed by Siegert’s condi-
tions add 18 and 5 new parameters, respectively.
Thus, the total number of parameters sums up to
209.

The free parameters are fit to reproduce the
database described in Sec. 4.1 by minimizing the χ2

function

χ2 =

Ndata∑
i=1

( Oexp
i −Oi

Δstat
i +Δsyst

i

)2

. (4.1)

To report the results we also define χ2
dof =

χ2/(Ndata − 209). We note that inclusion of system-

FIG. 3. Values of 62 β0 parameters with respect to dif-
ferent fit scenarios (Fi) and partial wave (
±, I) where I
denotes isospin.

atic errors can be done at different levels of rigor. For
example, the SAID group allows data to be “floated”
with a χ2 penalty determined by the overall system-
atic error [210]. The JuBo/GW group used similar
normalization freedom in some of the more recently
included data sets [211, 212]. In this study, we add
the systematic error to the statistical one as indi-
cated in Eq. (4.1) following a procedure widely used
in the field; effectively, one neglects the correlations
between data due to systematic effects. As there is
no reason to believe that systematic effects should be
Gaussian, we simply add the uncertainties linearly.
In some baryon resonance analyses data are weighted
with factors enhancing the influence of sparsely mea-
sured observables. In the present study, we did not
follow this procedure.

Given the high dimensionality of the minimization
problem, an obvious question arises about the sta-
tistical significance of the present solution. To our
knowledge, a systematic way to answer this question
does not exist. Thus, to get an understanding of the
χ2 landscape we have performed a series of fits —
denoted by Fi with respect to kinematic ranges, and
strategy of a minimization. For example, in F1 vs. F3

vs. F4, we have studied the importance of the choice
of starting values by performing preliminary fits to
various subsets of data, i.e., 1/32, 1/128 and com-
plete set, respectively. In {F1, ..,F4} vs. {F5,F6} we
have changed the fitting strategy from sequential fits
(increasing step-wise the number of free parameters
from 32 to 209 by including higher and higher par-
tial waves) to simultaneous fits with 209 parameters,
all of them set to zero initially. Finally, we have also
checked in F1 vs. F2 and in F5 vs. F6 the stability
of the results when adding more data by increasing
the limit Q2 < 4 GeV → Q2 < 6 GeV correspond-
ing to Ndata = 82968 → Ndata = 91896. We expect
that systematic effects associated with these strate-
gies significantly exceed the statistical uncertainties.

4.3. Fit results

The quality of the obtained best fits Fi is recorded
in Table I. There we also record contributions from
each observable type to the total χ2. We note that
the best χ2 is found to be consistent among all fit
strategies, which indicates the overall flexibility of
the parametrization. As to the question whether the
found minima are identical, the 209-dimensional pa-
rameter space is unwieldy to use in addressing this
question. Instead, a cut through the 62 dimensions
of the crucial β0 parameters, shown in Fig. 3, sug-
gests no clear similarity between the best-fit param-
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FIG. 4. Comparison of the best fits to the Kelly data [152] (open circles with error bars) at Q2 = 1 GeV2, W =
1.23 GeV, φ = 15◦ in the π0p channel. Different curves correspond to various fit strategies, representing systematic
uncertainty of our approach. Note that ρLT ′ is unitless, while others are given in [μb/sr]. In this and subsequent
figures, the shading between the curves is included to guide the eye.

eters of individual fits. While any conclusion drawn
from this observation is prone to possibly large cor-
relations between different parameters, it seems that
the solutions shown in Table I represent different lo-
cal minima of the χ2 landscape. This strengthens
our previous assumption that including various fit
scenarios is indeed a fair representation of the un-
certainties.

The fit results suggest that the approach is suffi-
ciently flexible to provide a good overall fit to the
data. Going beyond arguments based on the overall
χ2, we display the fit quality for selected observ-
ables. In particular, a large set of differential cross
section and recoil polarization data is provided by
Kelly [152], see Sec. 4.1. Fig. 4 shows the quality of
fit to the Kelly data for a representative kinematical
configuration. Except for a few points, the data are
described very well. While the Kelly set has a higher
χ2 per datum than displayed in Table I for the full
database, i.e. a χ2 ≈ 3 per data point, approximately
1/3 of the χ2 comes from 1% outliers. Similar char-
acteristics are found in other observables. In cases
where the outliers could be attributed to simple er-
rors in digitizing older data sets, they were not in-
cluded in our fits.

Another large set of data, taken in a dedicated

Jefferson Lab experiment [150, 170] was analyzed
by EBAC (Excited Baryon Analysis Center) in
Ref. [115]. The data considered in the EBAC anal-
ysis was composed of structure functions {σT +
εσL, σTT , σLT , σLT ′}, in contrast to the present fit,
where we included the data of Refs. [150, 170] via
dσ/dΩ, A0Y ′ and σLT ′ observables. Note also, that
Ref. [115] covered a smaller kinematical range, but
the model used there had fewer free parameters. The
present fits versus structure functions are shown in
Fig. 5 for Q2 = 0.4 GeV2 and 0.9 GeV2. We note
that the description of the structure functions does
indeed agree with the results of Refs. [150, 170] in
nearly all cases, apart from a discrepancy in σLT at
W = 1.14 GeV. This energy lies only 10 MeV above
the lower limit of data considered in this study and
structure functions were not used in the fits directly.

With the sets of model parameters determined, we
are now able to plot the E, L and M multipoles
as a function of Q2 and W . This is demonstrated
in a set of plots for some fixed typical values of Q2

and W . In particular, in Figs. 8, 9 and 10 of Ap-
pendix 4 we have evaluated the obtained multipoles
at fixed energies corresponding to either the Breit-
Wigner mass or real part of the pole position as-
sociated with the Δ(1232), N(1440), and N(1535);
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FIG. 5. Best fits to electroproduction data for Q2 = 0.4 GeV2 (top) and Q2 = 0.9 GeV2 (bottom) compared to the
structure functions from Refs. [150, 170], shown by open circles with statistical and sum of statistical and system-
atic error bars, respectively. All units are [μb/sr]. Different curves correspond to various fit strategies, representing
systematic uncertainty of our approach.

W =1230 MeV, 1380 MeV, and 1535 MeV respec-
tively. We observe that in many cases the otherwise
very weakly constrained longitudinal multipoles are
indeed restricted by coupling them to the electric
ones at the pseudothreshold point. Then, for two val-
ues Q2 = 0.2 GeV2 and 1.0 GeV2, we demonstrate

the full set of multipoles, up to J = 2+, in Figs. 11
and 12, respectively. Results of the MAID2007 anal-
ysis [87] are displayed there for comparison (open
circles refer to the MAID2007 energy-dependent so-
lution evaluated at a discrete set ofW and Q2). Note
that also near the photon point the MAID2007 [87]
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FIG. 6. Selected results (representative fit F1) for multipoles associated with Δ(1232), N(1440), N(1520) and
N(1535), respectively. At Q2 = 0 GeV2 the solution is constrained by pion-induced and photoproduction data via
the Jülich-Bonn model (red line), while the extension into Q2 > 0 is facilitated by the current parametrization. All
in units of mfm.

and JüBo [141], analyses show sizable differences in
some photoproduction multipoles.

Examples of multipoles dominated by nucleon res-
onances are depicted in Fig. 6. The Δ(1232) and
N(1520) display canonical resonance behavior while
the η threshold cusp is evident for the N(1535).
While the Δ(1232) shape disappears at higher Q2,
the N(1535) disappears slower. The ‘profile’ of the
enigmatic Roper resonance, N(1440), shows a non-
trivial Q2 behavior, including zeroes for real and
imaginary parts. A better quantitative understand-
ing of the Q2 dependence of resonance will be fa-
cilitated by an upcoming analysis at the resonance

FIG. 7. M
3/2
1+ multipole at W = 1230 MeV for six best

fits (color coding as in Fig. 4). Results of MAID2007
analysis [87] are given by gray circles for compari-
son only. Dashed vertical lines show pseudo-threshold,
photo-point and Q2(ω = 0), respectively.

poles. But it is already reassuring that, e.g., the mul-
tipole of the Roper resonance exhibits zeros similar
to the pertinent resonance helicity coupling from ex-
periment [2, 34, 122, 213, 214] that is predicted by
theoretical approaches [31].

An extended plot of the M
3/2
1+ multipole is given in

Fig. 7 with a comparison to the MAID values. All fits
agree with rather small uncertainties. Note that the
first vertical line corresponds to a pseudo-threshold
point, QPT−, at which condition (2.17) and Siegert’s
condition (2.18) are implemented by construction,
whereas the results of MAID2007 [87] are restricted
to Q2 ≥ 0. While we expect the very large imaginary
part of the multipole to be similar in all fits, includ-
ing MAID, we also observe close agreement for the
real part.

A direct comparison with the EBAC fit [115] is not
possible but the variations in their single-Q2 fits
emphasize the lack of sufficient data constraints in
the low-Q2 region, and a benefit from including the
Q2 = 0 values obtained in photoproduction analy-
ses.

5. CONCLUSIONS AND OUTLOOK

In the current paper, we have introduced a novel
phenomenological parametrization of the meson
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electroproduction multipoles. This parametrization
builds upon the latest Jülich-Bonn solution which in-
cludes information from a large database on meson-
baryon scattering and meson photoproduction, and
takes into account constraints from unitarity, analyt-
icity and chiral symmetry. This approach is extended
to the electroproduction sector by parametrizing the
Q2 dependence with a general analytic form in-
corporating constraints from Siegert’s theorem and
(pseudo)threshold behavior of production ampli-
tudes. Additionally, form factors are included to en-
sure the fall-off of multipoles at large Q2.

Overall, multipoles of up to D-waves are fitted
with respect to 209 parameters to reproduce world
pion electroproduction data over a large range of
1.13 GeV< W < 1.6 GeV and Q2 < 6 GeV2. This
is similar to the studies of Ref. [116]. We found a
good description (χ2

dof = 1.69−1.81) of an extensive
database (∼ 105 data) including observables of po-
larized and unpolarized types. Additionally, we have
provided an uncertainty estimate on obtained mul-
tipoles by exploring several fitting scenarios. Taking
these uncertainties into account, the predicted mul-
tipoles agree qualitatively with those of the previous
MAID2007 analysis. This is a non-trivial result keep-
ing in mind the large variety of studied fit strategies:
by different starting values, different strategies, and
even with all parameters initially set to zero.

In parallel, a website is being developed [209] that
has an SQL database, a more modern framework
(Django), and interactive graphics (Plotly). This
serves as a platform to compare different analyses
against the existing data. Presently included codes
are from the Jülich-Bonn fits (JüBo2017), describ-
ing photoproduction of pions, kaons, and etas, plus

MAID2007 [87], ETA-MAID [88, 90], and KAON-
MAID [215] for photo- and electroproduction of pi-
ons, etas, and kaons. A current version of our elec-
troproduction fit will be included in the future.

In the future, we plan to extend the formalism
to include ηN and KΛ final states. While techni-
cally straightforward, the further expansion of the
parameter-space may need to be reassessed using
e.g., model selection techniques as done in Ref. [216].
Later a combined fit of pion induced, photo- and
electroproduction data is planned, which will allow
for a more reliable extraction of the helicity cou-
plings of resonances.
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[81] G. Höhler, Methods and Results of Phenomeno-
logical Analyses / Methoden und Ergebnisse
phänomenologischer Analysen, edited by H. Schop-
per, Landolt-Boernstein - Group I Elementary Par-
ticles, Nuclei and Atoms, Vol. 9b2 (Springer, 1983).

[82] R. E. Cutkosky, R. E. Hendrick, J. W. Alcock,
Y. A. Chao, R. G. Lipes, J. C. Sandusky, and
R. L. Kelly, Phys. Rev. D 20, 2804 (1979).

[83] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and
R. L. Workman, Phys. Rev. C 74, 045205 (2006),
arXiv:nucl-th/0605082.

[84] R. A. Arndt, W. J. Briscoe, M. W. Paris, I. I.
Strakovsky, and R. L. Workman, Chin. Phys. C
33, 1063 (2009), arXiv:0906.3709 [nucl-th].

[85] M. Shrestha and D. M. Manley, Phys. Rev. C 86,
055203 (2012), arXiv:1208.2710 [hep-ph].

[86] D. G. Ireland, E. Pasyuk, and I. Strakovsky,
Prog. Part. Nucl. Phys. 111, 103752 (2020),
arXiv:1906.04228 [nucl-ex].

[87] D. Drechsel, S. S. Kamalov, and L. Tiator, Eur.
Phys. J. A 34, 69 (2007), arXiv:0710.0306 [nucl-

th].
[88] L. Tiator, M. Gorchtein, V. L. Kashevarov,

K. Nikonov, M. Ostrick, M. Hadžimehmedović,
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[210] M. Döring, J. Revier, D. Rönchen, and R. L.

Workman, Phys. Rev. C 93, 065205 (2016),
arXiv:1603.07265 [nucl-th].

[211] P. Collins et al. (CLAS), Phys. Lett. B 771, 213
(2017), arXiv:1703.00433 [nucl-ex].

[212] S. Strauch et al. (CLAS), Phys. Lett. B 750, 53
(2015), arXiv:1503.05163 [nucl-ex].

[213] M. Dugger et al. (CLAS), Phys. Rev. C 79, 065206
(2009), arXiv:0903.1110 [hep-ex].

[214] V. I. Mokeev and I. G. Aznauryan, Int. J.
Mod. Phys. Conf. Ser. 26, 1460080 (2014),
arXiv:1310.1101 [nucl-ex].

[215] C. Bennhold, H. Haberzettl, and T. Mart, in 2nd
ICTP International Conference on Perspectives in
Hadronic Physics (1999) pp. 328–337, arXiv:nucl-
th/9909022.



20

[216] J. Landay, M. Mai, M. Döring, H. Haberzettl, and
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APPENDIX:

1. Definition of K1D observables

SAID/current notation Kelly Notation Expression in Helicity amplitudes (Hi)

1 KA
D1 RL (H2

5 +H2
6 )/ℵ2

2 KB
D1 RL(n) Im(−H6H

∗
5 )2/(ℵ2 sin θ)

3 KC
D1 RT (H2

1 +H2
2 +H2

3 +H2
4 )/2

4 KD
D1 RT(n) Im(+H3H

∗
1 +H4H

∗
2 )/ sin θ

5 KE
D1 RLT Re(+H5H

∗
1 −H5H

∗
4 +H6H

∗
2 +H6H

∗
3 )/(

√
2ℵ sin θ)

6 KF
D1 RLT(n) Im(−H2H

∗
5 −H3H

∗
5 +H1H

∗
6 −H4H

∗
6 )/(

√
2ℵ)

7 KG
D1 RLT(l) Im(H1H

∗
5 +H4H

∗
5 +H2H

∗
6 −H3H

∗
6 )/(

√
2ℵ sin θ)

8 KH
D1 RLT(t) Im(+H2H

∗
5 −H3H

∗
5 −H1H

∗
6 −H4H

∗
6 )/(

√
2ℵ)

9 KI
D1 RLT(h) Im(−H1H

∗
5 +H4H

∗
5 −H2H

∗
6 −H3H

∗
6 )/(

√
2ℵ sin θ)

10 KJ
D1 RLT(hn) Re(−H5H

∗
2 −H5H

∗
3 +H6H

∗
1 −H6H

∗
4 )/(

√
2ℵ)

11 KK
D1 RLT(hl) Re(−H5H

∗
1 −H5H

∗
4 −H6H

∗
2 +H6H

∗
3 )/(

√
2ℵ sin θ)

12 KL
D1 RLT(ht) Re(−H5H

∗
2 +H5H

∗
3 +H6H

∗
1 +H6H

∗
4 )/(

√
2ℵ)

13 KM
D1 RTT Re(−H1H

∗
4 +H2H

∗
3 )/(sin θ)

2

14 KN
D1 RTT(n) Im(−H2H

∗
1 −H4H

∗
3 )/ sin θ

15 KO
D1 RTT(l) Im(H4H

∗
1 −H3H

∗
2 )/(sin θ)

2

16 KP
D1 RTT(t) Im(+H2H

∗
1 −H4H

∗
3 )/ sin θ

17 KQ
D1 RTT(hl) Re(−H1H

∗
1 −H2H

∗
2 +H3H

∗
3 +H4H

∗
4 )/2

18 KR
D1 RTT(ht) Re(+H1H

∗
3 +H2H

∗
4 )/ sin θ

19 KS
D1 RL+RT(n) (H2

5 +H2
6 )/ℵ2 − Im(H∗

3H1 +H∗
4H2)/ sin(θ)

20 KT
D1 RL+RT (H2

1 +H2
2 +H2

3 +H2
4 )/2 + (H2

5 +H2
6 )/ℵ2

TABLE II. Conversion of Kelly observables [152] to the SAID [207] notation. Last column shows the implementation

in terms of the Helicity amplitudes as employed in this work, while ℵ = ω/
√

Q2.

2. Photoproduction kernel in the JüBo model

In the JüBo approach the photoproduction kernel Vμγ in Eq. (3.4) is parameterized by the quantities γc
γ;i

and αNP which are constructed with energy-dependent polynomials PP and PNP:

αNP
μγ (p,W ) =

γ̃a
μ(p)√
mN

PNP
μ (W )

γc
γ;i(W ) =

√
mNPP

i (W ) . (A1)

The vertex function γ̃a
μ is equal to γa

μ;i but independent of the resonance number i. The polynomials P are
explicitly given by:

PP
i (W ) =

�i∑
j=1

gPi,j

(
W − Es

mN

)j

e−λP
i (W−Es)

PNP
μ (W ) =

�μ∑
j=0

gNP
μ,j

(
W −Ws

mN

)j

e−λNP
μ (W−Ws) .

Here, gP(NP) and λP(NP) > 0 are multipole-dependent free parameters that are fitted to data. The upper
limits of the summation li and lμ are chosen as demanded by the data. In Ref. [141], which is used as input
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for the present study, li, lμ ≤ 3 is sufficient to achieve a good fit result. The expansion point Es is chosen as
Ws = 1077 MeV in order to be close to the πN threshold.

3. Blatt-Weisskopf barrier-penetration factors

For l = 0 to 5 the Blatt-Weisskopf barrier-penetration factors [205, 206] are explicitly given by

B0(r) = 1 ,

B1(r) = r/
√
1 + r2 ,

B2(r) = r2/
√
9 + 3r2 + r4 ,

B3(r) = r3/
√
225 + 45r2 + 6r4 + r6 ,

B4(r) = r4/
√
11025 + 1575r2 + 135r4 + 10r6 + r8 ,

B5(r) = r5/
√
893025 + 99225r2 + 6300r4 + 315r6 + 15r8 + r10 . (A2)
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4. Multipoles for fixed W
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FIG. 8. Fit results for multipoles in [mfm] at W = 1.230 GeV as a function of Q2. Different curves correspond to
various fit strategies, representing systematic uncertainty of our approach – shading between the curves is included
to guide the eye. Results of MAID2007 analysis [87] are shown by gray circles for comparison. Dashed vertical lines
show virtualities corresponding to q = 0 and ω = 0, respectively.
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FIG. 9. Fit results for multipoles in [mfm] at W = 1.380 GeV as a function of Q2. Different curves correspond to
various fit strategies, representing systematic uncertainty of our approach – shading between the curves is included
to guide the eye. Results of MAID2007 analysis [87] are shown by gray circles for comparison. Dashed vertical lines
show virtualities corresponding to q = 0 and ω = 0, respectively.
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FIG. 10. Fit results for multipoles in [mfm] at W = 1.535 GeV as a function of Q2. Different curves correspond to
various fit strategies, representing systematic uncertainty of our approach – shading between the curves is included
to guide the eye. Results of MAID2007 analysis [87] are shown by gray circles for comparison. Dashed vertical lines
show virtualities corresponding to q = 0 and ω = 0, respectively.
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5. Multipoles for fixed Q2
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FIG. 11. Fit results for multipoles in [mfm] at Q2 = 0.2 GeV2 as a function of W . Different curves correspond to
various fit strategies, representing systematic uncertainty of our approach – shading between the curves is included
to guide the eye. Results of MAID2007 analysis [87] are shown by gray circles for comparison.
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FIG. 12. Fit results for multipoles in [mfm] at Q2 = 1.0 GeV2 as a function of W . Different curves correspond to
various fit strategies, representing systematic uncertainty of our approach – shading between the curves is included
to guide the eye. Results of MAID2007 analysis [87] are shown by gray circles for comparison.


