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Detailed analysis of excited state systematics in a lattice QCD calculation of gA
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Excited state contamination remains one of the most challenging sources of systematic uncertainty
to control in lattice QCD calculations of nucleon matrix elements and form factors Most lattice
QCD collaborations advocate for the use of high-statistics calculations at large time-separations
(tsep & 1 fm) in order to combat the signal-to-noise degradation. In this work we demonstrate
that, for the nucleon axial charge, the alternative strategy of utilizing a large number of relatively
low-statistics calculations at short to medium time separations (0.2 . tsep . 1 fm), combined with a
multi-state analysis, provides a more robust and economical method of quantifying and controlling
the excited state systematic uncertainty, including correlated late-time fluctuations that may bias
the ground state. We also demonstrate that two classes of excited states largely cancel, leaving the
third class, the transition matrix elements, as the dominant source of excited state contamination.
On an a ≈ 0.09 fm, mπ ≈ 310 MeV ensemble, we observe the expected exponential suppression of
excited state contamination in the Feynman-Hellmann correlation function relative to the standard
three-point function; the excited states of the regular three-point function reduce to the 1% level
for tsep > 2 fm while for the Feynman-Hellmann correlation function, they are suppressed to 1%
at tsep ≈ 1 fm. Independent analyses of the three-point and Feynman-Hellmann correlators yields
consistent results for the ground state. However, a combined analysis allows for a more detailed
and robust understanding of the excited state contamination, improving the demonstration that
the ground state parameters are stable against variations in the excited state model, the number of
excited states, and the truncation of early-time or late-time numerical data.

I. INTRODUCTION

Lattice QCD (LQCD) calculations of nucleon matrix
elements have reached a level of maturity for inclusion
in the most recent Flavour Lattice Averaging Group
(FLAG) review [1]. It is now common that results are
obtained with multiple lattice spacings, multiple vol-
umes and pion masses at or near the physical pion mass.
Control over the continuum, infinite volume and phys-
ical pion mass extrapolations are necessary to compare

∗ Not all in California; https://callat-qcd.github.io

LQCD results amongst themselves as well as with exper-
iments.

However, there is an additional source of systematic
uncertainty in the calculations which must be brought
under control before the extrapolations can be relied
upon, and that is the excited state contamination of the
correlation functions. The source of the issue is tied to
the well-known signal-to-noise (S/N) problem [2]. At
early time, where the stochastic noise is under control,
the correlation functions have significant contamination
from excited states, while at large time, where there is
ground state saturation, the noise overwhelms the signal.
To date, there are no calculations of nucleon three-point
functions performed at light pion masses with sufficient

https://callat-qcd.github.io
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statistics that the ground state matrix element can be de-
termined without addressing the contributions from ex-
cited states.

The FLAG review summarizes challenges in control-
ling the excited state contamination in these calculations
and the strategies various groups use to do so. In this ar-
ticle, we will focus on two important points that are not
discussed in the FLAG review and which are generally
lacking in the literature:

1. Stability of the ground state matrix element under the
truncation of data and/or the variation in the number
of excited states used in the analysis;

2. Quantification of the excited state contamination.

The first issue is generally not discussed because most
calculations utilize too few values of fixed source-sink
separation times (tsep) for data truncation to be feasi-
ble. The limited number of tsep values used also limits the
number of excited states that can be removed through ex-
trapolation due to the larger number of matrix elements
needed to perform multi-state fits. In the flavor physics
LQCD community, stability of the extracted ground state
observable over an appreciable time range (sufficiently
large to rule out correlated fluctuations) has long been
recognized as crucial for ruling out excited state contam-
ination in two-point and three-point calculations [3–7];
any residual contamination to the ground state observ-
able from excited states will either be observed as a trend
in time of its value, or is smaller than the precision with
which the observable has been extracted. For nucleon
correlation functions, it is even more crucial that this
stability be demonstrated as they are more susceptible to
correlated late-time fluctuations through their degrading
S/N ratios. Care must be taken, however, to demon-
strate this stability before the exponential growth of the
noise erases the ability to detect time dependence in the
observable.

The second issue is typically addressed qualitatively as
most calculations rely upon numerical results with larger
values of the source-sink separation time, where the size
of the excited-state contributions are relatively smaller
and the stochastic noise is larger, thus limiting the ability
to obtain a controlled, quantitative understanding of the
excited state contributions to the correlation function.

In order to address these issues, we have generated
results with a large number of short to intermediate
values of the source-sink separation time (13 values for
tsep ≈ 0.18 − 1.22 fm) on an a09m310 (a ≈ 0.09 fm,
Mπ ≈ 310 MeV) ensemble. The large number of tsep val-
ues with precise numerical results allows us to include up
to five states in the correlation function analysis while
performing a variety of data cuts, as discussed in detail
in Sec. III.

We focus our analysis and discussion on gA, the nu-
cleon matrix element of the axial current in the forward
limit, as this matrix element has proved to be one of
the most challenging regarding control of excited state

contamination. The first LQCD calculation of gA with
relatively light dynamical quarks (mπ & 350 MeV) ap-
peared in 2005 [8], resulting in a value that had a 7%
statistical uncertainty and agreed with the experimental
value after extrapolation to the physical pion mass. This
led the community to anticipate gA would soon become
a precision benchmark quantity for LQCD.

However, subsequent calculations confounded these ex-
pectations with the results remaining roughly indepen-
dent of the pion mass (and below the physical value)
or, worse, trending away from the physical value as the
pion mass was reduced [9–11]. It was speculated that
the issue might be due to finite volume corrections which
were much larger than predicted by chiral perturbation
theory (χPT) [12–14]. As groups investigated the sen-
sitivity of the extracted matrix elements as a function
of tsep, and added an excited state in the fit model for
the correlation function, it became clear that the dom-
inant unresolved issue was contamination from excited
states [15–20]. After this, a number of calculations were
performed [17, 21–34] that were in agreement with the
physical value of gA [35–44]. Following our computa-
tion with the Feynman-Hellmann method described in
Ref. [45], other groups have also utilized a larger number
of tsep values at the physical pion mass [32, 33] and found
an improved understanding of excited states.1

Despite this progress, there remains some tension in
the literature, in particular between our results [27–30]
and those from the PNDME Collaboration [24, 31], both
of which are the only results to utilize three (CalLat) or
four (PNDME) lattice spacings and physical pion masses.
Both sets of results were generated with mixed actions
that use the NF = 2 + 1 + 1 Highly Improved Stag-
gered Quarks (HISQ) [48] in the sea-quark sector gen-
erated by the MILC collaboration [49] and, in the for-
mer case, also by the CalLat Collaboration [50, 51]. The
CalLat results are generated with a Möbius [52] Domain-
Wall [53–55] Fermion (MDWF) valence action [56] and
are computed with a ≈ {0.09, 0.12, 0.15} fm lattice spac-
ings while the PNDME results are generated with a
tadpole improved [57] clover-Wilson valence action with
a ≈ {0.06, 0.09, 0.12, 0.15} fm.

In Ref. [31], it was shown that the tension between the
CalLat and PNDME results is driven by the PNDME
results on the a ≈ 0.06 fm ensembles, which tend to
pull the final result to a smaller value, suggestive that
the discrepancy may be a discretization effect. However,
it was pointed out that the lever-arm in values of tsep

between the smallest and largest source-sink separation
times was the smallest on the a ≈ 0.06 fm ensembles, and
that the high-correlation between neighboring time-slices
on these fine ensembles makes them more susceptible to

1 To the best of our knowledge, the use a large number of tsep val-
ues was first advocated for in Refs. [46, 47], which demonstrated
the benefit with LQCD calculations of heavy-hadron axial matrix
elements using five tsep values.
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correlated fluctuations [58]. Further, subsequent analy-
sis by PNDME demonstrated an under-reported excited-
state fitting systematic in their results which seems to
alleviate the tension [59].

Another difference between the CalLat and PNDME
results is that the PNDME results rely on the more
common fixed source-sink separation method while the
CalLat results utilize a variant of the summation
method [60] which can be derived with the Feynman-
Hellmann Theorem [45]. As was shown in Ref. [17], the
summation method suppresses excited states more than
the standard fixed source-sink separation method, and as
we will discuss in some detail in Sec. II, the Feynman-
Hellmann derived correlator suppresses excited states
even more than the summation method. The excited
state systematic uncertainty, therefore, deserves more
scrutiny, which was recognized by the community as it
was the focus of the most recent review on nucleon struc-
ture from the annual lattice field theory symposium [61].

The challenge of controlling calculations of gA and
other matrix elements has inspired a series of papers
aimed at understanding the excited state contamination
by utilizing chiral perturbation theory [62–67]. This work
has led to further ideas to try to improve the calculation
of the nucleon axial form-factor [68, 69]. It is worth not-
ing, however, that χPT predicts that the excited state
contributions should shift the correlation function above
its asymptotic value, while numerical results from all cal-
culations show that the ground state limit is approached
from below, and thus, there is a significant discrepancy
between this theoretical prediction and the numerical
data. While there are some significant indications that
SU(2) baryon chiral perturbation theory, without ex-
plicit delta degrees of freedom, is not a converging ex-
pansion even at the physical pion mass [28, 30, 70–74],
one might anticipate that the predictions from chiral per-
turbation theory should be at least qualitatively correct.

In this work, we take a data-driven approach and ask,
given a large dataset, what can we learn about the excited
state contamination of the nucleon axial-vector three-
point function? We begin with a summary of the spectral
representation of the three point functions in Sec. II, then
we turn to our numerical results and analysis in Sec. III.
We offer some observations and conclusions in Sec. IV,
and we present extensive details of our results and anal-
ysis in the appendices.

II. SPECTRAL DECOMPOSITION

Lattice QCD calculations are performed in Euclidean
space in a mixed time-momentum basis. In this paper,
we focus on the forward matrix element at zero momen-
tum. Most LQCD calculations are performed with a local
creation operator and a momentum-space annihilation
operator. With such a setup, the relevant two-point cor-
relation function at zero momentum and time separation

tsep is given by

C2(tsep) =
∑
x

〈Ω|N(tsep,x)N†(0,0)|Ω〉

=

∞∑
n=0

|zn|2e−Entsep

= |z0|2e−E0tsep

[
1 +

∞∑
n=1

|rn|2e−∆n0tsep

]
. (1)

In this expression, we assume that the overlap factors,
zn = 〈Ω|N |n〉, used to create (N†) and annihilate (N)
the states with quantum numbers of the nucleon from
the vacuum (|Ω〉) are conjugate to each other.2 In the
last line, we have defined the energy splitting and ratio
of overlap factors:

∆mn = Em − En , rn =
zn
z0
. (2)

The parameterization of Eq. (1) recasts all excited-state
parameters with respect to the ground-state, and yields
a more universal set of excited-state distributions, sim-
plifying the estimation of their starting values in a fre-
quentist minimization or prior distribution in a Bayesian
minimization [75].

A. Three-point correlators

The matrix elements of interest (with Dirac structure
Γ) are determined through an analysis of three-point cor-
relation functions which are also computed in a mixed
time-momentum basis. The most common strategy is
to use a sink with fixed definite spatial momentum at
t = tsep with a current insertion (jΓ) at τ inbetween the
source (N†) at t = 0 and the sink (N). In the limit of
zero momentum and zero-momentum transfer, the three-
point function is given by

CΓ(tsep, τ) =
∑
y,x

〈Ω|N(tsep,y) jΓ(τ,x)N†(0,0)|Ω〉

=
∑
n

|zn|2 gΓ
nn e

−Entsep

+ 2
∑
n<m

znz
†
m gΓ

nm e−(En+ ∆mn
2 )tsep

× cosh

[
∆mn

(
τ − tsep

2

)]
, (3)

where the matrix elements of interest are given by

gΓ
mn = 〈m|jΓ|n〉 , (4)

2 We are using the non-relativistic normalization 〈n|m〉 = δnm
and 1 ≡ |Ω〉〈Ω|+

∑∞
n=0 |n〉〈n|. We assume that the contributions

from the thermal bath or alternate temporal boundary conditions
are sufficiently suppressed that they can be ignored.
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and we have assumed

znz
†
m gΓ

nm = zmz
†
n g

Γ
mn , (5)

which holds in the forward limit at zero momentum.
ANDRÉ: I assume this is true - haven’t checked

Typically one determines the ground state matrix ele-
ment, gΓ

00, by performing the computation for 1, 2, 3 or
sometimes 4 values of tsep in the range tsep ≈ 1− 1.5 fm
while utilizing local three-quark interpolating fields for
the creation and annihilation operators. The correlation
functions are then analyzed using models with zero, one,
or more excited states [17, 21–34], with some analysis us-
ing up to four states [59, 76, 77]. There are several chal-
lenges and shortcomings with this strategy, which we will
summarize. However, one should note that this method
has been used, as so far, it has seemed the most econom-
ical. Improvements upon this strategy would require a
substantial increase in computational complexity, effort
to employ, and amount of computing resources.

The ground state (gs) matrix element gΓ
00 is typically

determined by constructing the ratio correlation function

RΓ(tsep, τ) =
CΓ(tsep, τ)

C2(tsep)
, (6)

which gives the ground state in the limit

lim
tsep→∞

RΓ(tsep, τ ≈ tsep/2) = gΓ
00 . (7)

The energies and overlap factors can be constrained
from the two-point function, leaving the three-point func-
tion to constrain the matrix elements gΓ

nn and gΓ
nm.3

From Eq. (3), one observes that only the transition terms
(n 6= m) are sensitive to the current insertion time τ . To
isolate the ground state matrix element, the minimum
number of values of tsep required is at least one greater
than the number of states used in the analysis in order to
have a 1-degree-of-freedom fit. For example, a two-state
fit requires the determination of gΓ

00, gΓ
11 and gΓ

01: the
latter can be constrained from the τ dependence leaving
the remaining tsep dependence to constrain the former
two matrix elements. In this minimum scenario, compu-
tations which utilize three values of tsep (or less) are not
able to perform a systematic study on omitting values of
tsep, or changing the number of states used in the analy-
sis. This prohibits a verification that the full uncertainty
on gΓ

00 associated with this excited state contamination
has been correctly captured. In other words, we would
have to assign an unquantified systematic uncertainty to
the ground state matrix element.

Another significant challenge is that lattice computa-
tions of three-point functions are typically performed for

3 Some groups fix the overlap factors and energies from the two-
point correlation function and then pass the central or correlated
values into a three-point function analysis. Instead, we perform
a simultaneous fit to the two- and three-point functions.

tsep & 1 fm, which is roughly the time separation when
the stochastic noise is becoming significant. Again, be-
cause of the limited values of tsep typically used, one can-
not determine if the data at this time is susceptible to
a correlated fluctuation or not, which, if present, would
cause a bias in the results. We will return to this point
in Sec. III.

To understand the various sources of excited state (es)
contamination, we reorder Eq. (6) in a way which delib-
erately disentangles the different types of excited state
contributions. For the two-point correlation function, it
is straightforward to separate the ground state from the
excited states

C2(tsep) = Cgs
2 (tsep) + Ces

2 (tsep) ,

Cgs
2 (tsep) = |z0|2e−E0tsep ,

Ces
2 (tsep) =

∑
n≥1

|zn|2e−Entsep . (8)

For the three-point functions, we define the n-to-n as
scattering (sc) states and the n-to-m as transition (tr)
states such that

CΓ(tsep, τ) = Cgs
Γ (tsep) + Csc

Γ (tsep) + Ctr
Γ (tsep, τ) ,

Cgs
Γ (tsep) = |z0|2gΓ

00e
−E0tsep ,

Csc
Γ (tsep) =

∑
n≥1

|zn|2gΓ
nne
−Entsep ,

Ctr
Γ (tsep, τ) =

∑
n<m

znz
†
m 2gΓ

nm e−(En+ ∆mn
2 )tsep

× cosh

[
∆mn

(
τ − tsep

2

)]
. (9)

The ratio correlation function can then be expressed as

RΓ(tsep, τ) = gΓ
00 +

Csc
Γ (tsep)− gΓ

00C
es
2 (tsep)

C2(tsep)

+
Ctr

Γ (tsep, τ)

C2(tsep)

= gΓ
00 +

∑
n≥1(gΓ

nn − gΓ
00)|zn|2e−Entsep

C2(tsep)

+
Ctr

Γ (tsep, τ)

C2(tsep)
. (10)

Consider the leading excited state contamination to gΓ
00

arising from gΓ
11, and gΓ

01

RΓ(tsep, τ) ≈ gΓ
00 + |r1|2(gΓ

11 − gΓ
00)e−∆10tsep

+ 2r†1g
Γ
01e
−∆10

tsep
2 cosh

[
∆10

(
τ − tsep

2

)]
+ · · · (11)

where the · · · includes terms from higher excited states
as well as from the first excited state, but further sup-
pressed by extra powers of exp(−∆10tsep). The scattering
and two-point excited state contributions, in addition to
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cancelling against each other for same-sign values of gΓ
11

and gΓ
00, are suppressed by the full tsep, exp(−∆10tsep).

In contrast, the transition excited states are only sup-
pressed by half the time separation, exp(−∆10

tsep

2 ), and
so they are expected to be the dominant source of excited
state contamination.

B. Feynman-Hellmann and Summed Correlators

Rather than analyzing the three-point functions, one
can construct a correlation function in which the current
insertion time is summed over

ΣΓ(tsep, τc) =

tsep−τc∑
τ=τc

CΓ(tsep, τ)

=
∑
n

|zn|2(tsep + 1− 2τc)g
Γ
nne
−Entsep

+ 2
∑
n<m

znz
†
mg

Γ
nme

−(En+ ∆mn
2 )tsep

× sinh
[

∆mn

2 (tsep + 1− 2τc)
]

sinh
(

∆mn

2

) . (12)

The original implementation of the idea included a sum
over all timeslices, including when the the time ordering
of the current was before the source and after the sink
as well as equal to the source (τ = 0) and sink (τ =
tsep) where contact terms arise [60]. Given a set of fixed
source-sink separation datasets, one is of course free to
perform the sum in a variety of ways, e.g. excluding data
from the out-of-time-order regions, excluding the source
and sink time (setting τc = 1 in Eq. (12)) or also cutting
time near the source and sink (τc > 1).

The summed correlation function at large tsep

ΣΓ(tsep, τc) = |z0|2e−E0tsep

{
(tsep + 1− 2τc)

[
gΓ

00 + |r1|2gΓ
11e
−∆10tsep

]
+ r†1g

Γ
01

e
∆10

2 (1−2τc) − e−∆10(tsep+ 1
2−τc)

sinh(∆10

2 )

}
+ · · · , (13)

can be used to determine the leading excited state con-
tamination. Of note, the ground state and the scattering
(n-to-n) states are relatively enhanced by tsep + 1− 2τc.
The transition matrix elements (m-to-n) lead to a tsep in-
dependent term and those that depend upon tsep become
exponentially suppressed by the full excited state gap
(e−∆10tsep) rather than half the gap, as with the three-
point function, Eq. (11), as noted in Ref. [17]. Thus,
one expects that the excited state contamination of the
summed correlation function is smaller than for the stan-
dard fixed source-sink separation time three-point corre-
lation function, up to this tsep independent term.

This summed correlation function has received some
attention in the literature [17, 78–80]. More recently,

there have been calculations which utilize a Feynman-
Hellmann approach, by performing a computation in the
presence of background fields and extracting the matrix
elements through the linear response of the spectrum to
the background field [81–83]. In Ref. [45], it was shown
that the application of the Feynman-Hellmann theorem
to the effective mass directly leads to a derivative of the
summed correlation function [60], relating the matrix el-
ement to the spectrum without the need for an explicit
background field. We call this the Feynman-Hellmann
(FH) correlation function4

FHΓ(tsep, τc, dt) =

tsep−τc∑
τ=τc

RΓ(tsep + dt, τ)−RΓ(tsep, τ)

dt

=
1

dt

[
ΣΓ(tsep + dt, τc)

C2(tsep + dt)
− ΣΓ(tsep, τc)

C2(tsep)

]
,

FHΓ(tsep, τc) ≡ FHΓ(tsep, τc, dt = 1) . (14)

Since the FH correlation function is constructed from
ΣΓ(tsep, τc), it enjoys the larger suppression of excited
states, with the leading excited state contamination scal-
ing as exp(−∆10tsep) rather than with ∆10/2 (the tsep in-
dependent pieces exactly cancel in the numerical deriva-
tive). Additionally, this numerical derivative serves to
both isolate the ground state, whose contribution grows
linearly in tsep, as well as to further suppress the scatter-
ing (n-to-n) and transition (m-to-n) excited states which
do not strongly differ from one timeslice to the next. This
stronger suppression of excited states is what allowed us
to utilize earlier Euclidean time data [27–29] than is com-
mon in the three-point correlation function analysis and
to enjoy the benefits of the lower stochastic noise. We
will show this in some details in Sec. III A.

III. LATTICE CALCULATION

For the present study, we use results from our MDWF
on gradient-flowed HISQ action [56] on the a09m310 en-
semble, which has a lattice spacing of a ≈ 0.09 fm and a
pion mass of mπ ≈ 310 MeV. We use the same parame-
ters as in Refs. [27, 28, 56] except for the quark-smearing,
we use the parameters σsmr = 3.5 and Nsmr = 45 that
go in the GAUGE COVARIANT GAUSSIAN smearing
routine in Chroma [84].

We generate 16 sources per gauge configuration on 784
configurations. We generate the three-point functions us-
ing a sequential-propagator through the sink at 13 values
of tsep,

tsep/a09 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} . (15)

4 In the original implementation [45], the sum over the current
time is over all time-slices, which we denote τc = none, as in the
original summation method [60].
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FIG. 1. Left: (Psychedelic Moose/Water Buffalo plot) We plot the numerical results of RA3(tsep, τ) for tsep = 2 (the single
gray point in the middle) to tsep = 14, the top (red) dataset. In addition, we plot the resulting posterior description of the
correlation function from our 5-state fit as the (correspondingly colored) fit bands. The (gray) squares in the upper left/right
of the “moose antlers” are not included in the analysis, as indicated by the break in the fit band from the from the inner
region. The horizontal (gray) band is the ground state matrix element, g̊A. Right: The FHA3(tsep, τc = 1) numerical data from
the global analysis is plotted along with the posterior description of the correlation function. The time-axis is converted from
lattice units (top) to fm (bottom) using our scale-setting [51].

Our sources and sinks are generated with a local three-
quark interpolating field using only the upper-spin com-
ponents of the quark field in the Dirac-Pauli basis (lower
components for the negative parity states), which was
shown to give the largest overlap onto the ground state
of the nucleon at rest [85, 86]. In App. A, we present fur-
ther details of our computation such as the cost benefit
analysis of improving the stochastic sampling by combin-
ing 8 coherent sinks [10] for each sequential propagator,
the use of spin up and spin down sources and sinks (ver-
sus utilizing a spin-projector that isolates one of the spin
states) and the use of time-reversed negative parity cor-
relators.

A. Full results

We begin with a presentation of our final results which
come from a fully-correlated Bayesian constrained curve-
fitting [3] with a five-state model to describe

C2(tsep) , RA3
(tsep, τ) , RV4

(tsep, τ) ,

FHA3(tsep, τc = 1) , FHV4(tsep, τc = 1) .

The final result is obtained with all values of τ between
the source and sink time, τ = [1, tsep−1]. For RΓ(tsep, τ),
the results are symmetrized about τ = tsep/2 and half the
data (plus τ = tsep/2 point for even values of tsep) is used
in the analysis.

In the left panel of Fig. 1 (the “Psychedelic Moose”),
we plot the numerical results for the ratio of the three-
point function generated with the A3 = q̄γ3γ5τ3q current,
divided by the two-point function at the given value of
tsep (cfr. Eq. (6)). We also plot the resulting posterior
description with our 5-state model. The fit quality is
good and visually one can see that the model accurately

0.5 1.0 1.5 2.0
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FIG. 2. We plot the numerical FHA3(tsep, τc) data for various
values of τc as well as the posterior reconstruction of these
correlation functions from the global analysis that uses τc = 1.

describes the numerical results over the full range of tsep

and τ used in the analysis. The horizontal (gray) band
is the value of the ground state matrix element g̊A. In
the right panel we plot the FHA3(tsep, τc = 1) data that
are used in the global fit as well as the resulting posterior
distribution of this correlation function.

In Fig. 2, we explore the FHA3
(tsep, τc) data as the

number of data near the source and sink time are cut from
the sum over current insertion time denoted by increasing
τc. The posterior fit bands are from the global analysis
that uses τc = 1. As τc is increased, for a fixed tsep,
one observes that the excited state contribution becomes
larger. This can be understood by looking at the leading
excited state contribution to FHΓ(tsep, τc) that depends
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upon τc

FHΓ(tsep, τc) 3 e∆10(τc+ 1
2 )r†1g

Γ
01

e−∆10tsep − e−∆10(tsep+1)

sinh ∆10

2

.

As is evident from Fig. 1, which is common to all LQCD
calculations of gA, the transition matrix element gA3

01 < 0.
Therefore, the leading excited state contamination that
depends upon τc is negative and grows exponentially with
increasing τc, consistent with the results.

In order to have confidence in our final results for
mN = E0, g̊A and g̊V ,5 as well as the ability to quan-
tify and control the excited state contamination, we dis-
cuss our analysis strategy and the stability of our results
under model-variation and data truncation.

B. Analysis strategy

We have two goals with this work:

1. Identify the ground state mass and matrix elements,
g̊A (and g̊V ), with a complete systematic uncertainty;

2. Obtain a quantitative understanding of the excited
state contamination of the correlation functions used
in the analysis.

The former is possible without the latter through a
demonstration that the extracted ground state mass and
matrix elements are invariant under modifications of the
fit model (i.e. the number of excited states and the model
of their mass-gap) and truncations in the time range used
in the analysis.

A robust identification of the excited state spectrum
and matrix elements would require the use of a varia-
tional basis that includes multi-hadron operators [87–89].
For this reason, our second goal is to obtain a quantita-
tive understanding of the sum of all excited state contri-
butions, and in particular, to quantify how they contam-
inate the ground state values. To achieve this goal it is
essential that the fit model accurately describes the cor-
relation function over the full range of time separations
without over-fitting the data.

In App. B, we provide a detailed description of the
analysis and the sensitivity of the ground state posteriors
under variations in the number of states used, the model
of excited states and the fit ranges in tsep and τ . Here,
we summarize the findings of this study.

We begin with a discussion of the model for the excited
states. The lowest-lying excited states consist roughly of
either a nucleon-pion in a relative P-wave or a nucleon
with a two-pion excitation. With mπL ≈ 4 the non-
interacting energy levels of these two states are nearly

5 With our action, the axial-vector and vector renormalization fac-
tors are equal to 10−4 so the renormalized axial charge is given
by the ratio of the bare matrix elements, gA = g̊A/̊gV [28].

identical and so a calculation without multi-hadron op-
erators can not distinguish them. Therefore, they are
treated as a single excited state. We then use three
different models for the spectrum of excitations and
parametrize the energy gaps ∆En, where n indicates the
nth state, as:

nth energy level En = E0 +

n∑
l=1

∆El ,

harmonic oscillator (HO) ∆En = 2mπ ,

inverse n (1/n) ∆En = 2mπ/n ,

inverse n2 (1/n2) ∆En = 2mπ/n
2 . (16)

For each model, for each level n < Nmax, we set the prior
as ∆Ẽn = (∆En,mπ) where the first entry is the prior
mean and the second is the prior width. For the highest
state, which we expect to be a “garbage can”, we set the
prior width to be 5mπ. We observe two important facts
when we vary the excited state model:

1. The ground state posteriors are insensitive to the
model used;

2. The excited state posteriors are mostly insensitive to
the model used, even when the posterior is in signifi-
cant conflict with the prior. This is a strong indicator
that the extracted energy levels are dictated by the
numerical data and not the priors used.

In Fig. 3, we show the sensitivity of g̊A and the spec-
trum on the excited state model versus the tmin

sep of the
two-point correlation function (in all cases for the full
five-state, five-correlation function analysis). The lowest
panel is the relative weight determined from the three
models at a given tmin

sep

wi =
elogGBFi∑

j∈models e
logGBFj

, (17)

where logGBF is the log of the Gaussian Bayes Factor.
The next panel gives the Q ∈ [0, 1] value which is a mea-
sure of the fit-quality. For the values of g̊A and En, the
light (red) horizontal band is the value of the given quan-
tity from the chosen fit from the HO model at tmin

sep = 3,
to guide the eye, which is also denoted by the markers
with a black border. The vertical bars represent the prior
width for the given quantity and are aligned in the same
vertical column as their corresponding posterior values
(for g̊A and E0, the prior widths are larger than the dis-
played y-limits and so they are not shown).6 Finally, the
horizontal dashed lines give the non-interacting P -wave

6 The energy spectrum is priored with a series of ordered energy
splittings. Therefore, to construct the priors shown in Fig. 3, we
plot Ẽn = Ê0 +

∑n−1
l=1 ∆Êl + ∆Ẽn where the priors are denoted

with a tilde and the posteriors are denoted with a hat.
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FIG. 3. Sensitivity of the extracted spectrum and g̊A on the model of excited states used as a function of tmin
sep in the C2(tsep)

correlation function. For a given tmin
sep , from left to right, offset for visual clarity, we plot the prior (vertical (colored) box) and

posterior values (filled markers) of g̊A, E0 and En for the harmonic-oscillator (HO), inverse n (1/n) and inverse n2 (1/n2)
excited state models, Eq. (16). The prior width on g̊A and E0 are larger than the displayed y-limits, and thus not shown. The
horizontal light (red) bands (to guide the eye) are from the chosen fit denoted with the black-border on the markers. The
horizontal dashed lines denote the non-interacting energy levels of the P -wave Nπ states. See the text for more details.

N(q)π(−q) energy levels, which one can see are quite
dense. The lowest non-interacting N(q + p)π(−q)π(−p)
level where all hadrons are at rest is nearly degenerate
with the lowest N(q)π(−q) level. Of note,

1. The extracted posteriors are consistent between mod-
els which all have a high fit-quality, even when the
posterior value is in tension with the prior. This is
a strong indicator the extracted spectrum is highly
constrained by the numerical data and not the priors,
even for the high-lying energy levels.

2. The first excited state is consistent with the lowest
lying Nπ state (which is nearly degenerate with the
Nππ state). The higher lying states have an uncer-
tainty that spans several anticipated energy levels, in-
dicating that they are likely a linear combination of
eigenstates.

Next, we examine the stability of g̊A as we remove
data from the fit (all fits still use the set of five cor-
relation functions). We examine the sensitivity as we
increase tmin

sep in the analysis, as we reduce tmax
sep and also

through using only even or odd values of tsep in the three-
point functions. For each choice of which values of tsep to
use, FHΓ(tsep, τc = 1, dt) is constructed from the set of
RΓ(tsep, τ). When we use consecutive values of tsep, we
take dt = 1 in FHΓ(tsep, τc = 1, dt). When we use only
even or odd values of tsep, we take dt = 2.

The left panel of Fig. 4 shows g̊A as a function of the
minimum and maximum value of tsep used in the analysis.
When tmin

sep is varied, tmax
sep is held fixed at 14. When tmax

sep is

varied, tmin
sep is fixed at 2. In the middle panel of Fig. 4, we

show the value of g̊A as a function of tmax
sep when only even

values of tsep are used in the analysis of RΓ(tsep, τ) and
FHΓ(tsep). The right panel is the same as the middle one
except we only use the odd values of tsep in the analysis.

When the three-point functions are computed with a
sufficiently large number of tsep values, the ground state
parameters are very stable under data truncation and the
excited state model. Of note, it is sufficient to use every
other value of tsep at this a ≈ 0.09 fm lattice spacing.

C. Excited State Breakdown

Given a model that is demonstrated to accurately de-
scribe the correlation functions over the full range of tsep

and τ used in the analysis, we can separate the various
sources of excited state contamination into the “scatter-
ing” (n-to-n) and “transition” (m-to-n) sources as well
as those arising from the excited states of the two-point
function (see Sec. II A). While we can accurately de-
scribe these various sources of excited state contamina-
tion, we can not claim to have a rigorous determination
of the spectrum, since the creation and annihilation oper-
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FIG. 4. Stability of the determination of g̊A under data truncation. The horizontal band is the value of g̊A determined from
the full analysis, to guide the eye. The bottom part of each panel represents the fit quality Q ∈ [0, 1]. The left panel shows the
stability as we increase tmin

sep while holding tmax
sep = 14 to the left of the vertical dashed line and, similarly, the result as tmax

sep is

increased with tmin
sep = 2 to the right of the dashed line. The middle and right panels show the tmax

sep stability when only even or
odd values of tsep are used in RΓ(tsep, τ) and FHΓ(tsep, τc = 1, dt = 2).

ators we have used are purely local three-quark operators
which are known to have poor overlap with the nucleon-
pion scattering states [88]. However, since only the tran-
sition excited states depend upon the current insertion
time τ , we can confidently separate the excited states
into these various classes of excited state contamination.

In Fig. 5, we plot the percent contamination of
various sources of excited state contamination to the
ground state for RA3(tsep, τ = tsep/2)/̊gA (left) and
FHA3(tsep, τc = 1)/̊gA (right). From these plots, there
are several observations and conclusions one can make:

1. There is a significant cancellation between the scatter-
ing excited states and two-point excited states;

2. The transition excited states are the dominant source
of excited states and they are relative suppressed in
FHA3

(tsep, τc) as compared to RA3
(tsep, τ = tsep/2);

3. The total excited state contamination at tsep ≈ 1 fm
is ≈ 8% for RA3

(tsep, τ = tsep/2) and ≈ 1% for
FHA3

(tsep, τc).

In Eq. (10) we see an explicit cancellation between the
scattering (3pt sc) and two-point excited state (2pt es)
contamination, as is implied from the proportionality of
the nth excited state to gΓ

nn − gΓ
00. In order for this can-

cellation to be significant, as observed in the posterior
determination of the two classes of excited states, one
explanation is that gΓ

nn ≈ gΓ
00 for all n. For the vector

current, we know that in infinite volume, the vector oper-
ator measures the iso-vector charge of the system, which
in the isospin limit, is exactly equal to gV4

00 . It has fur-
ther been demonstrated that in the forward scattering
limit, the finite volume interaction amplitudes conspire
with the finite volume Lellouch-Lüscher factors to ensure
that gΓ

nn = gΓ
00 for two-particle states [90].

This result, while not surprising, demonstrates charge
conservation in finite volume by allowing one to relate n-
point Greens functions to (n− 1)-point Greens functions
through the Ward-Takahashi equations. In the case of
the axial-vector matrix element, it is plausible that in the

forward scattering limit, the corrections to such a relation
arising from the partially conserved nature of the axial-
vector current would also vanish, such that in this limit,
the Lellouch-Lüscher factors are similarly removed. For
example, for the nucleon, we know the induced pseudo-
scalar form factor vanishes in the forward limit. We leave
a detailed study of this question to future work.

In the left panel of Fig. 5 we see that the scattering ex-
cited state contribution (the upper (red) band/data) are
roughly equal and opposite in sign to the excited states
coming from the two-point function (the middle (purple)
band/data). The hatched curve which is mostly white
with gray hash lines, is the sum of these two contribu-
tions and it lies between them. We observe that the sum
of these two sources of excited state contributions decay
to a 1% correction (the horizontal dashed (red) lines) at
tsep ≈ 1 fm. In contrast, the transition (3pt tr) excited
states depicted by the lowest (blue) band/data do not
decay to the 1% level until tsep ≈ 2.2 fm.

In the right panel of Fig. 5 we show the same ex-
cited state breakdown for the Feynman-Hellmann cor-
relation function. Of note, the sign of the scattering
and two-point excited state contributions are opposite
of what they are for RA3(tsep, τ = tsep/2). This sign
change can be understood from Eq. (14). It is also inter-
esting to note that the magnitude of the transition ex-
cited state contributions at tsep ≈ 1 fm go from ≈ 7.5%
for RA3(tsep, τ = tsep/2) to ≈ 2.5% for FHA3(tsep, τc =
1). Finally, for RA3(tsep, τ = tsep/2), the sum of the
scattering and two-point excited state contributions are
equal in sign to the transition excited states, while for
FHA3

(tsep, τc = 1) they are opposite in sign at intermedi-
ate and large tsep. Thus, the total excited state contami-
nation decays to the 1% level for the Feynman-Hellmann
correlation function at tsep ≈ 1 fm while this does not
happen till tsep > 2 fm for RA3

(tsep, τ = tsep/2). There
is no proof that this fortunate cancellation must happen,
however, an examination of our results in Ref. [28] shows
a consistent picture that the excited state contamination
of the FHA3

(tsep, τc = none) correlation function decays
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FIG. 5. Ratio of excited state contributions to the ground state contribution for RA3(tsep, τ) (left, 3pt) and FHA3(tsep, τc = 1)
(right, fh). Each panel contains three types of data points: the n-to-n scattering (sc) excited states, the n-to-m transition (tr)
excited states, and the excited states from the two-point (2pt es) function. The separation of the numerical data into these
three classes of excited state contamination depends upon our posterior reconstruction of the correlation functions (2pt, 3pt
and FH). In addition to plotting the corresponding posterior contribution from each class of excited state, we plot two hatched
bands. The white hatched band is the sum of the 3pt sc and 2pt es contributions, which are observed to largely cancel, as
indicated in Eq. (10). The gray hatched band is the sum of all excited state contributions (the full posterior distribution,
minus the ground state, normalized by the ground state). The 3pt sc contribution is positive for RA3(tsep, τ) and it becomes
negative for FHA3(tsep, τc = 1) at tsep > 0.5 fm. The opposite is true for the 2pt es contribution. The sum of the scattering
and two-point excited state contributions is opposite in sign to the transition excited state contributions, unlike for RA3(tsep, τ)
in which they are the same sign, leading to an even stronger suppression of the total excited state contributions beyond the
expected suppression, as described in the text. The horizontal red dashed lines represent the threshold of a 1% contribution of
excited state contamination to the ground state value.

to the 1% level by roughly 1 fm over a broad range of
pion masses, 130 . mπ . 400 MeV.

D. Comparison with late-time only results

In this section, we perform the correlator analysis on
late time separation data, tsep = [10, 12, 14], which is
directly comparable to the results in Refs. [24, 31] that
were performed on the same ensembles, and otherwise
mimicking the more common strategy used for example
in Refs. [17, 21–23, 25, 26, 34].

The results are obtained with a simultaneous fit to the
two- and three-point functions using the same priors as
our main fit, given in App. B 1. We also demonstrate the
sensitivity of the ground-state parameters posterior dis-
tributions to changes in the input priors as in App. B 2.
Because we have only three values of tsep, we use a min-
imal number of excited states: with one excited state,
there is only one degree of freedom in describing the tsep

dependence of RΓ(tsep, τ), after which, the analysis relies
upon the priors for the excited state matrix elements.

With the quark smearing we have used we have to
apply a relatively aggressive truncation on the current
insertion time in order for the model to describe the nu-
merical data, restricting the analysis to the “center” of
the current insertion time τ . We illustrate the region of
τ used for each tsep in Fig. 6 and depict the stability of
the ground state axial matrix element in Fig. 7. The op-
timal result is chosen as the fit with the largest amount
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FIG. 6. We plot the numerical data for RA3(tsep, τ) and
resulting posterior fit bands obtained from a combined two-
point and three-point analysis when only tsep = [10, 12, 14]
are used in the analysis. The inner (colored) numerical data
are used in the analysis. There is a break in the fit band
and the outer (gray) band and data indicate regions of τ not
used in the analysis. The horizontal gray band is the resulting
posterior value of the ground state, g̊A.

of numerical data while maintaining a good fit quality
(cfr. the lower panel of Fig. 7). We refer to the opti-
mal choice of data included for this 2-state model fit as
τinc = τopt

inc , but we also show results for the ground state

posteriors when one more (τopt
inc +1) or one less (τopt

inc −1)
value of τ is included in the fit. While not depicted, the
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insertion times and number of states used in the analysis.
The bottom panel shows the corresponding fit quality Q. The
dark horizontal band indicates the optimal fit from the late-
tsep only analysis while the light horizontal band above it
represent the optimal fit from the full analysis presented in
Sec. III A.

ground state posteriors are also stable under variation of
the choice of tmin

sep in the two-point function.

We observe that for this specific dataset, the late-tsep

result is in ≈ 2σ tension with the result from the full
analysis that includes much earlier values of tsep. This is
indicative that late-tsep data can be subject to correlated
fluctuations which are difficult to identify without having
results at smaller values of tsep which can point out the
trend.

The same systematic effect can be seen in a simpler
case using a fit to the two-point correlation function. In
Fig. 8, we show the result of the ground state energy
extracted from the two-point correlation function under
varying tmin

sep . We highlight the best fit ground-state en-
ergy, which is supported by a robust plateau in the di-
mension of tmin

sep with high Q-value. However, we see that
at late time beyond 1 fm, a second plateau develops ap-
proximately two standard deviation above our best fit.
Also note that we observe the fluctuation in the effective
mass occur approximately 0.2 fm later than the matrix
elements, see the top panel of Fig. 11 in App. B. This sec-
ond “stable” plateau is also the logical result for a one-
state fit. Analogous to the three-point analysis, if the
model is insufficent at describing excited-state contami-
nations, the model must extract ground-state parameters
at late time. These values are then sensitive to uncon-
trolled statistical fluctuations. Similar to the three-point
analysis, in the absence of a more holistic view as granted
by analyzing more source-sink separation data, there is
no measure on the size of how large the potential under-
estimation of errors are.

Without using more than three values of tsep, it is not
possible to identify if one is susceptible to such a fluctua-
tion, and therefore, it is not possible to fully quantify the
uncertainty on the posterior distribution of the ground
state parameters.
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FIG. 8. The extracted ground state energy as a function
of tmin

sep and the number of states (ns) used in the analysis.
The late-tsep data is subject to a correlated fluctuation, as
observed in the 2σ increase in E0 around tmin

sep = 12.
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FIG. 9. Comparison of g̊A determined from the three analysis
strategies described in the text with our result from Ref. [28]
which utilized the Feynman-Hellmann correlator with a sum
over all current insertion times [45].

E. Comparison with the 2-state FH analysis

In this final section, we compare our result with that
from Ref. [28] on the same a09m310 ensemble. Those re-
sults were obtained using the Feynman-Hellmann method
as described in Ref. [45], which is the same as Eq. (14)
with the sum over current insertion time running over
the full time extent, which includes contributions from
contact operators at τ ∈ {0, tsep} and from out-of-time
region, τ < 0 and/or τ > tsep. A two-state model and
a frequentist analysis were used on the data from the
two-point and Feynman-Hellmann correlation functions.

In Fig. 9 we show the extracted value of g̊A with three
different fully-correlated analysis strategies:

23s : Fit to C2(tsep), RΓ(tsep, τ) and FHΓ(tsep, τc = 1);

2s : Fit to C2(tsep) and FHΓ(tsep, τc = 1);

23 : Fit to C2(tsep) and RΓ(tsep, τ).
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FIG. 10. Comparison of our FHA3(tsep, τc = none) numer-
ical results and analysis from Ref. [28] using a two-state fre-
quentist analysis (top data/band) to the FHA3(tsep, τc = 1)
numerical data and posterior description of the correlation
function from the fully-correlated five-state Bayesian analysis
to C2(tsep), FHΓ(tsep, τc = 1) and RΓ(tsep, τ) in the present
work (bottom data/band).

The horizontal gray band is the result from Ref. [28].
These results show the consistency between the four
computational and analysis strategies. Even though the
FHΓ(tsep, τc) correlation functions are constructed from
the RΓ(tsep, τ) correlation functions, they are subject to
a different pattern of excited state contamination (cfr.
Sec. II). Therefore it is useful to include them in the
fully-correlated analysis. The combined fit yields both a
robust and consistent fitting strategy while also yielding
precise extractions of hadronic matrix elements at zero-
momentum transfer. Whether an analogous strategy can
be pursued for non-zero momentum transfer is left for
future work.

In Fig. 10, we present the posterior correlation func-
tion on top of the numerical data for both the results in
Ref. [28] as well as from the FHA3(tsep, τc = 1) dataset
in the present work. The FHA3(tsep, τc = none) dataset
from Ref. [28] is observed to have significantly less ex-
cited state contamination at early tsep as compared to
FHA3

(tsep, τc = 1). This is what enabled a two-state
analysis in Ref. [28]. The combined fit (23s) in the
present work enables a determination of significantly
more excited state parameters through the precise early-
tsep data. Moreover, as shown in this section, a confident
extraction of the ground state posterior distributions is
attained: as depicted in the figure, both strategies yield
precise and consistent extractions of the large-tsep extrap-
olation of the results. The former result is more econom-
ical for obtaining a precise value of g̊A, while the method
in this work also enables a determination of non-zero mo-
mentum transfer results which can be used to determine
the form factors.

IV. OBSERVATIONS AND CONCLUSIONS

In this work, we have computed the three-point corre-
lation functions that are used to determine the nucleon
axial charge for 13 values of the source-sink separation
time in the range tsep ≈ 0.17 − 1.22 fm on an ensem-
ble with a ≈ 0.09 fm and Mπ ≈ 310 MeV. This large
numerical dataset (Fig. 1) has enabled us to robustly de-
termine the ground state mass and matrix elements with
a fully-quantified systematic uncertainty arising from ex-
cited states. It further enabled us to quantify the ex-
cited state contribution to the correlation function with
greater detail than has been previously achieved in the
literature. We were able to demonstrate that the ground
state parameters are stable against the model of excited
states (Eq. (16) and Fig. 3), the number of excited states
used in the analysis, and truncations of either small tsep

or large tsep results as well as through the use of only
even or odd values of tsep results (Fig. 4).

A re-writing of the spectral decomposition of the
three-point correlation functions revealed a prospective
cancellation between two classes of excited states aris-
ing from the n-to-n scattering states and those arising
from the two-point correlation function used to construct
RΓ(tsep, τ), Eq. (10) (there is an exact cancellation for

the vector matrix element for which gV4
nn = gV4

00 = 1 up to
renormalization). For our calculation, this cancellation
seems to materialize for gA (Fig. 5) leaving the domi-
nant excited state contributions to be the n-to-m tran-
sition terms. In the standard fixed source-sink separa-
tion method, the excited state contributions do not de-
cay down to the 1% contamination level until tsep & 2 fm
while in the Feynman-Hellmann correlation function,
Eq. (14), they decay to the 1% level at tsep ≈ 1 fm. We
further observed that the Feynman-Hellmann correlation
function constructed with a sum over the entire time ex-
tent of the lattice [45] (FHΓ(tsep, τc = none)), rather than
just between the source and the sink (FHΓ(tsep, τc = 1)),
leads to an even further suppression of excited state con-
tamination (Fig. 10). This stronger cancellation of ex-
cited states is what enabled us to compute gA with a
≈ 1% uncertainty by utilizing early-time data [27–30],
which demonstrated this higher suppression of excited
states over a broad range of pion masses, 130 . mπ .
400 MeV.

By utilizing a large number of early to mid-time data,
one is able to detect if the late-time data is subject to
a correlated fluctuation which might otherwise bias the
ground state matrix elements (Figs. 7 and 8). With only
three values of tsep at late time, it is not possible to per-
form such a data truncation study that could identify this
issue. We have found that, even though the Feynman-
Hellmann correlation functions, which are constructed
from the three-point functions as in Eq. (14), are highly
correlated with RΓ(tsep, τ), including them in a global
fully-correlated analysis improves the stability and pre-
cision of the extracted ground state parameters (Fig. 9)
as the excited states present themselves differently in the
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two sets of matrix-element correlation functions.
Due to the exponential degradation of the signal-

to-noise of the nucleon’s two- and three-point correla-
tion functions as tsep is increased, which requires ex-
ponentially more computational resources to control the
stochastic precision, the strategy we present in this work
offers a more economical method of obtaining the ground
state matrix elements than that which is more commonly
advocated for in the literature, which is to use high-
statistics calculations at tsep ≈ 1 − 2 fm or larger. In
future work, we will investigate the same strategy for
non-zero momentum transfer correlation functions which
are used to determine the nucleon form factors.

Data availability: The computations were performed
utilizing LaLiBe [91] which utilizes the Chroma software
suite [84] with QUDA solvers [92, 93] and HDF5 [94] for
I/O [95]. They were efficiently managed with METAQ [96,
97] and status of tasks logged with EspressoDB [98].
The final extrapolation analysis utilized gvar [99] and
lsqfit [100]. The analysis and data for this work can be
found at https://github.com/callat-qcd/project_
fh_vs_3pt.
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Appendix A: Discrete symmetry systematics

“Coherent sink technique” [10]: We reduce the numer-
ical cost of the computations by solving for a single
sequential-propagator from many sequential sinks simul-
taneously. We found that we can combine eight sinks
into a single coherent sink generated with two sources
per timeslice, with a 10-20% loss in statistical precision
as compared to solving a single sequential-propagator for
each of the eight sources separately. For each t0, a ran-
dom origin (O) is chosen and then the anti-pode (A) lo-
cation is also chosen [101]

sO(t0) = (x0, y0, z0)

sA(t0) =

[
sO(t0) +

L

2
(1, 1, 1)

]
mod L .

We repeat this for four values of t0 spaced by T/4. We
generate all 16 sources by running a second set of eight
sources shifted by T/8 from the first set of sources.
Spin-averaging: We find that combining the spin-

up–to–spin-up and spin-down–to–spin-down correlation
functions (with a + sign for V4 and a − sign for A3) leads

to a near perfect
√

2 reduction in the stochasitc uncer-
tainty of the numerical data. We further observe that the
non-symmetric behavior of RΓ(tsep, τ) about τ = tsep/2
for larger values of tsep, which must vanish in the infinite
statistics limit, are less pronounced when we perform this
spin-averaging.
Time-reversal symmetry: We find that combining the

backwards temporal propagation of the negative-parity
two- and three-point functions – the time-reversed cor-
relation functions (negative parity three-point functions
with negative values of the source-sink separation time
tsep = tsnk − tsrc < 0) with the positive parity three-
point functions generated with tsep > 0 leads to a near-

perfect
√

2 reduction in stochastic uncertainty, allowing
us to make use of both the positive and negative parity
components of the quark propagators.

Appendix B: Analysis Details

In this appendix, we discuss in detail the analysis of
the various correlation functions and what led us to our
final strategy presented in Sec. III.

To analyze the two-point (2pt), Eq. (1), three-point
(3pt), Eq. (6) and Feynman-Hellmann (FH), Eq. (14)
correlation functions and determine the parameters of
the fit model, we perform a multi-exponential Bayesian
analysis. We explore analyzing three combinations of
correlation functions in a global (simultaneous) analysis:

23s : C2(tsep), RΓ(tsep, τ) and FHΓ(tsep, τc = 1);

https://github.com/callat-qcd/project_fh_vs_3pt
https://github.com/callat-qcd/project_fh_vs_3pt
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2s : C2(tsep) and FHΓ(tsep, τc = 1);

23 : C2(tsep) and RΓ(tsep, τ).

1. Prior selection

The first step in the analysis is to choose prior dis-
tributions for the parameters. In order to estimate the
ground state priors, we use the effective mass, the effec-
tive overlap and an effective gA plot:7

meff(tsep) = ln

(
C2(tsep)

C2(tsep + 1)

)
,

z2
eff(tsep) = emeff (tsep)tsepC2(tsep) ,

geff
A = FHA3

(tsep, τc = 1) . (B1)

In Fig. 11, we plot these effective quantities which all
asymptote to their ground state values in the large tsep

limit. We choose conservative ground state priors to be

Ẽ0 = 0.50(5) , g̃A = 1.2(2) ,

z̃0 = 0.00034(34) , g̃V = 1.0(2) , (B2)

which are plotted as the wide gray horizontal bands. We
also plot the resulting posterior distribution of the effec-
tive parameter correlation functions resulting from our
final analysis.

For the excited state energies we explore three mod-
els of excited states, Eq. (16). As shown in Fig. 3, the
posterior energies are largely insensitive to the model.
We therefore focus the discussion on the spectrum of our
chosen model, ∆En = 2mπ for all n. The lowest-lying
excitation is a nucleon-pion P-wave or a nucleon with
two-pions at rest, up to interaction energies which are a
small fraction of the total energy. For our mπL, these
two energy levels are practically degenerate and there-
fore modeled as a single excitation. We prior all the ∆En
with a log-normal distribution, ln(∆En) = (ln(2mπ), 0.5)
such that the resulting energies, En = E0 +

∑n
l=1 ∆El

are ordered.
While the creation and annihilation operators are con-

jugate to each other, this does not fix the absolute sign of
zn. Further, there is a redundancy in sign of the transi-
tion matrix elements: if all the overlap factors are taken
to be positive, zn > 0, a negative contribution will man-
ifest in a negative value of gnm. Only the combination
znz
†
mgnm has a well defined sign.

To be conservative, we prior the central values of the
excited state overlap factors with a central value of 0.
For the first excited state, we chose a slighty smaller prior
width with respect to the ground state and for the higher
excited states, use use agagin a slightly smaller width:

z̃1 = 0(0.00025) , z̃n≥2 = 0(0.00015) . (B3)

7 We do not show the effective gV plot since with our action, gV
is very close to 1.
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FIG. 11. The effective mass (Top), overlap factor (Middle)
and gA correlation functions (Bottom). The wide horizontal
gray bands are the chosen ground state priors, while the blue
overlay bands are the reconstructed effective quantities using
the posterior distributions from the final analysis.

These slight reductions are motivated by the use of a
smeared quark source, which suppresses excited state
overlap factors compared to the ground state.

For the vector matrix elements, the conserved charge
protects the charge of all states to be gVnn = 1, even
in finite volume [90]. For the transition matrix elements,
we postulate that these are the same order of magnitude,
but with an unknown sign. For the axial-vector matrix
elements, we postulate the excited state matrix elements
and transition matrix elements are are of the same order
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of magnitude as gA. This leads us to the prior values of

gVnn = 1.0(2) , gAnn = 1.2(2) ,

gVnm = 0(1) , gAnm = 0(1) . (B4)

A complete list of the prior, and posterior distributions
of all fit parameters is provided in App. C.

When performing a multi-exponential fit, it is expected
that the highest state used in the analysis serves as a
“garbage” can that is contaminated by the tower of more
highly-excited states not included in the analysis. The
3pt and FH correlation functions have different paramet-
ric dependence upon the excited states. Therefore, when
exploring the parameter space of fits, if the number of
states used for example in the FH correlation functions
differs from the 2pt function, we allow the highest lying
state in each correlation function to have different pri-
ors. Specifically, if the 2pt uses five states and the FH
uses three-states, then the energy and overlap priors of
the third FH state are decoupled from the third state
of the 2pt function. When the number of states used
is the same, we find we are able to describe the correla-
tion functions well when keeping the highest garbage-can
state the same in all correlation functions.

2. Sensitivity analysis

For each set of correlation functions, the best fit is
chosen after a careful study of the posterior distribution
sensitivity on input fit parameters including fit ranges,
number of states in the fit model, prior widths, and model
dependence of the excited state spectrum. In the follow-
ing sections, we discuss the best fit under the context of
three different fit strategies, 23, 2s and 23s, and then
the costs and benefits of these different strategies.

a. Fit region and nstate stability analysis

Due to the structure of excited state contamination,
the posterior distributions are most sensitive to changes
in tmin

sep , the minimum source-sink time, and the number
of excited states chosen in the model. In this section we
discuss the stability of the best fit under changing inputs
to these two dimensions.

Two-point with Feynman-Hellmann analysis (2s)

Fig. 12 shows the dependence on the axial-vector ma-
trix element fit parameter, g̊A, under varying two-point
and FH tmin

sep , and their corresponding nstates. Typically,
stability plots demonstrate that the best fit lies at a lo-
cally optimal point in the parameter space. The simplest
strategy is to simply fix all but one parameter, such as
tmin
sep or nstates in this section. If results surrounding the

best fit are absent of spurious correlations, then the sta-
bility plots provide evidence that systematic errors aris-
ing from the fit procedure are all accounted for. However,
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FIG. 12. Stability analysis for the axial coupling for the com-
bined two-point and Feynman-Hellmann fit for (Top) vary-
ing tmin of the two-point function and (Bottom) Feynman-
Hellmann correlation function. In both cases, results of
ns = [1, 2, 3] state fit ansatzes are shown. The best fit for
a given ns is highlighted by a solid marker and corresponding
horizontal band. The filled horizontal red band for the ns = 2
result highlights the best fit out of the entire explored param-
eter space. The corresponding Q-values are also provided.

in the case of the FH form of the corrlation function, the
time dependence observed is analogous to a two-point
correlation function. And similar to the two-point func-
tion, the best fit for a given number of excited states,
requires a more careful choice of tmin

sep . For example, a
two-point fit with many excited states may successfully
describe the data at small source-sink separation times,
but will surely fail when the model is simplified. There-
fore, for the stability plots shown in Fig. 12, the analy-
sis varies tmin

sep around the best fit for a given number of

states in the model. For simplicity, we vary the tmin
sep of

the vector and axial-vector matrix elements in tandem.
After the summation, the three-point correlation func-

tion only has one degree of freedom per time slice. Cou-
pled with the fact that the signal-to-noise is exponentially
worse compared to the two-point (see Fig. 11), means
that in order to prevent over-fitting the data, simpler fit
models with less excited states should be chosen. There-
fore, the stability shown in Fig. 12 is checked for fits with
1, 2, and 3 states. Beyond three states, the model will
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FIG. 13. Stability analysis for the axial coupling for the
combined two-point and Feynman-Hellmann fit for varying
tmax of the two-point function. The best fit highlighted by a
solid marker and corresponding horizontal band is identical
to the one shown in Fig. 12. The corresponding Q-values are
provided.

have comparable or more parameters than data. While
this can in principle be alleviated with careful choices of
priors, strategies that rely more heavily on prior informa-
tion may also inadvertantly introduce possible systematic
errors.

For a single state, we observe the fit to be stable at
approximately a source-sink separation time of 1 fm and
identifies the length scale in which all excited-states have
decayed to below the noise given a percent-level determi-
nation of the matrix element. This observation is consis-
tent with what is observed in our previous work [28, 45].
With two and three state fits, we observe that the best fit
tmin
sep can encompass progressively shorter source-sink sep-

aration times, in agreement with expectation. Further-
more, the best fit for the three models, and neighboring
results, are all consistent within one standard deviation
with no appreciable systematic trend.

A two-state fit allows us to capture some of the ex-
cited state dependence in order to not rely entirely on the
correlator reaching the plateau region. Simultaneously,
fitting to two states avoids the possibility of over-fitting
since an introduction of three additional fit parameters
(ground state and first excited state matrix elements) can
be extracted from 10 data points in this specific analysis
(tmin

sep of 5 to 14). We assume that the overlap and en-
ergies are well constrained by the two-point correlation
function in this counting. The three-state fit introduces
6 new matrix element parameters, and is at the edge of
what is naively allowed by data. Fitting to three states
allows tmin

sep to encompass down to tsep = 4, resulting in 12
data points. However, since lattice correlation functions
have an exponential signal-to-noise problem, data points
do not carry equal weight in determining the posterior
distributions. In particular, the weighted loss function
penalizes larger time separation data with the inverse of
the variance. Referring back to Fig. 11, we see for this
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FIG. 14. Stability analysis for g̊A for the combined two-point
and three-point fit for (Top) varying tmin of the two-point
function and (Bottom) three-point correlation function. In
both cases, results of ns = [4, 5, 6, 7] state fit ansatzes are
shown. The filled marker and horizontal green band for the
ns = 5 result highlights the best fit. The corresponding Q-
values are provided. The Bayes Factors for a given tmin are
shown at the bottom panel of each plot labelled w.

specific example, data beyond t of 9 have little impact on
the outcome of the result. This can be seen for example
in Fig. 13 where the results are given for varying tmax

of the two-point function. As a result, the three state
fit with 6 extra parameters is effectively constrained by
approximately 6 data points. It follows that more com-
plicated fit functions run into the danger of over-fitting.
We conclude that fits to the FH correlation function are
best performed with two states.

Two-point with three-point analysis (23)

Rather than constructing the FH combination, we ex-
plore the possibility of fitting directly to the three-point
correlator as a function of both source-sink and current-
sink insertion time. Due to the complexity involved in
choosing a two-dimensional fit region, we simplify the de-
cision making process by fitting to all valid insertion-sink
time separation times (the contact terms are dropped)
as shown in Fig. 15. This choice reduces the tmin

sep stabil-
ity study to again a single dimension. To capture this
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FIG. 15. This figure depicts the regions in tsep and τ used
in the analysis. The numerical results have been averaged
about τ = tsep/2 denoted by the light-shaded squares on the
right half of the figure. The outer-most (red) squares for each
tsep are the points τ = 0 or τ = tsep which are excluded
from the analysis. For tsep > 10, the values of τ = 1 and
τ = tsep − 1 are also excluded from the optimal fit. Moving
in, the (black) squares represent the values of τ closest to the
source/sink times included in the optimal analysis (with all
“inner” values of τ also included), τopt

inc . Cutting an additional
value of τ closest to the source/sink times is τopt

inc − 1 denoted
by the lighter (blue) squares. The lighter (green) squares
denote τopt

inc − 2 and the innermost (yellow) squares denote
τopt
inc − 3. When cutting values of τ , we always keep one (for

even tsep) or two (for odd tsep) values of τ in the middle of
the source-sink separation time.

curvature, a large number of excited states are required.
However, unlike the FH correlator, the three-point cor-
relator supplies many data points as shown in Fig. ??,
and can be used to fully capture the complicated excited-
state structure. Additionally, conservative smearing on
the interpolating operator yields a two-point correlator
that provides corroborating support to a large number
of excited states when fit to small source-sink separation
times. Due to the large number of states, stability with
respect to tmin

sep are less sensitive to nstates. As a result,
we further simplify the study by showing only stability
with respect to the final result, instead of first identifying
nstates-dependent best fits shown in Fig. 12.

Fig. 14 shows the stability of the best fit for the two-
point and three-point simultaneous fit under varying tmin

sep

for the two-point and three-point function. Similar to the
FH fit in the previous section, we simplify the analysis
by varying the tmin

sep for the vector and axial-vector ma-
trix elements simultaneously. The best fit presumably
can be slightly improved if this condition is relaxed. Due
to the choice of fitting all current insertion times (aside
from the source and sink time), the best fit is observed
to require a 5 state model, and includes source-sink sep-
aration times that are commensurate to the inclusion of
small insertion-sink times. The best fit lies in the re-
gion of stability, and is chosen to incorporate the most
data possible given a fit model. Alternatively, given a fit
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FIG. 16. Stability analysis for the combined C2(tsep) and
RΓ(tsep, τ) analysis for varying regions of current-insertion
time. The best fit given by τopt

inc is defined in Table III (see
also Fig. 15 for a graphical depiction of τopt

inc − n). The filled
marker and horizontal green band highlights the best fit and is
identical to the best fit in Fig. 14. The Q-values are provided.

region, the simplest model is chosen (fewest number of
states). For example, the best fit with a three-point tmin

sep

of 3 includes 5 states even though 6 or 7 states yields sim-
ilar ground state posterior distributions. This decision is
corroborated with the set of Bayes factors normalized to
a fixed fit region. For example, Fig. 14 suggests that
5 state and 7 state fit have comparable probability for
reproducing the underlying data.

While we make the choice of fitting data over all cur-
rent insertion times, the ground-state posterior distribu-
tions are stable when extracted from a subset of the data.
In Fig. 16, the fit region with respect to current inser-
tion time is symmetrically truncated, keeping however,
at least one data point per source-sink separation time
(e.g. tsep = 3 includes τ = [1, 2], so a τc = 1 will not elim-
inate any data since otherwise the entire dataset for t = 3
would be eliminiated). It is also observed that while cur-
vature in τ is dependent predominantly on excited-state
behavior, aggressively truncating data still leads to larger
statistical uncertainty in ground state parameters since
less data is being included in the analysis.

We conclude that a simultaneous fit to the two- and
three-point correlators is best performed by fitting to the
maximum amount of data while choosing the simplest
model which can describe the data. In particular, we
observe that the under this strategy, the accompany two-
point correlator also provides sufficient constraints on the
excited state overlap and energy parameters.

Two-point, three-point and FH Analysis (23s)

Finally, we perform a simultaneous fit to the two-point
correlator along with all FH and three-point correlators.
Since the FH correlator exposes different excited-state
dependence when compared to the three-point correla-
tor, it may be possible to extract a more robust calcula-
tion of the ground state parameters. Unfortunately, the
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FIG. 17. Stability analysis for the combined two-point,
three-point, and Feynman-Hellmann analysis. These plots
follow what is shown in Fig. 14.

overall strategy of the previous two studies are incom-
patible with one another. In the case of the FH analysis,
the strategy is to fit simpler models in order to avoid
overfitting, while for the three-point analysis overfitting
is much less of a concern and instead a majority of clean
data is fitted with more complex models. A successful
combined fit will need to reconcile these differences.

We take a simple approach by recognizing that the
excited state information extracted from the three-point
analysis can be used to constrain a more complex FH
fit function. Following this logic, the best combined fit
follows the same 5 state model as the two-point with

1.1

1.2

1.3

g̊ A

τ opt
inc + 1 τ opt

inc τ opt
inc − 1 τ opt

inc − 2 τ opt
inc − 3

0

1

Q

FIG. 18. Stability analysis for the combined two-point,
three-point, and Feynman-Hellmann analysis for varying re-
gions of current-insertion time. This plot follows what is
shown in Fig. 16.

three-point correlator fit discussed previously, while the
FH fit is now modelled by 5 states with the intention
of relying on the three-point correlator to constrain high
excited state parameters. Fig. 17 demonstrates the sta-
bility of the combined best fit under changes in tmin

sep of the
two-point, three-point and FH correlators. We observe
that in the combined fit the ground-state parameters are
insensitive to changes in tmin

sep for all datasets, including
the FH correlation functions. This observation lends ev-
idence to the hypothesis that the three-point correlator
lends support to high excited-state contributions which
is consistent with the predicted spectral decomposition
for both correlation functions. Additionally, while the
best fit tmin

sep for the three-point is kept the same as the

three-point with two-point fit, the best-fit FH tmin
sep is now

extends down to tsep = 3 (where previously in the 2 state
fit the best fit tmin

sep is 5) due to the inclusion of more states
in the model.

Finally, sensitivity under varying current insertion
time for the three-point correlator is studied. Unlike
the simpler three-point with two-point correlator anal-
ysis, we have to drop one additional data point away
from the contact interaction at t = 11 to t = 14 for the
ground-state posterior distributions to be insensitive to
changes in fit region. Fig. 18 shows the varying fit region
with respect to the best fit. In particular, the τopt

inc + 1 fit
is to all current insertion dependence between the source
and sink, τ = [1, tsep−1] for all tsep. The colored regions
in Fig. 15 highlights the various τinc regions with the col-
ored boxes. The black region denotes the best fit region.
We observe that the best fit lies in a region that is in-
sensitive to varying subsets of the three-point correlator.
Conversely, the combined fit suggests that at large values
of tsep, where the distribution of the correlator become
under-sampled, the three-point data shows signs of being
inconsistent with the FH data, leading to the instability
seen in τopt

inc + 1 fit.
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FIG. 19. Sensitivity analysis of the best fit result from the
combined two-point, three-point, and Feynman-Hellmann fit
under varying prior widths for the ground-state (red) and to-
gether with the first-excited state (blue). The x-axis indicates
that the study performed variations from 0.1 to 10 times the
best fit prior width. The filled marker and horizontal green
band highlights the best fit and is identical to the result shown
in Fig. 17.

We conclude that the three-point correlator provides
enough information to constrain the excited-states of the
FH correlator. A combined fit is therefore, best per-
formed by rooting the calculation in a two-point with
three-point strategy and extending the analysis to en-
compass as much of the FH correlator as is describable
by the truncated spectral decomposition.

b. Prior width analysis

Our overall strategy is to extract ground-state param-
eters from a multi-exponential fit, subject to prior con-
straints. Since the objective function now depends on
prior distributions in addition to data, we check that
the posterior distributions of interest are insensitive to
our prior knowledge. The purpose of introducing priors
in this context is not to supplement additional informa-
tion, but to constrain the search space of the numerical
minimization for faster convergence. Lower computation
costs allow us to explore more thoroughly investigate the
sensitivity of ground state posterior distributions, which
in turn lends to more robust results. It follows then, that
we enforce the expectation that choices of priors should
not yield changes in the posterior distributions of ground-
state parameters.

Fig. 19 demonstrates the robustness of our quoted re-
sults under varying prior widths of the ground-state and
first-excited state prior widths for the combined fit. The
study indicates that the extracted matrix elements are
unconstrained by prior distributions until the widths are

reduced by a factor of 10, while broading the prior dis-
tribution by a factor of 10 leaves the matrix elements
unchanged. Similar conclusions hold for the vector ma-

TABLE I. We list the prior and posterior energies and over-
lap factors, in lattice units, for each of the parameters deter-
mined that describe the two-point correlation function. The
prior and posterior values are listed in (µ, σ) pairs. The en-
ergy splittings are priored with a log-normal distribution with
∆En = (2mπ,mπ), except for the highest state which has a
prior width of 5mπ, with the total energy given by the sum
in Eq. (16). For the optimal fit, all energy splittings are given
a central value of 2mπ.

Parameter Prior Posterior
E0 (0.50, 0.05) (0.4904, 0.0016)

∆En<4 (0.29, 0.14) (0.3, 0.028)
E1 (0.79, 0.15) (0.79, 0.028)
E2 (1.07, 0.21) (1.136, 0.099)
E3 (1.36, 0.25) (1.66, 0.16)

∆E4 (0.29, 0.72) (1.119, 0.033)
E4 (1.65, 0.76) (2.78, 0.16)
z0 (0.00034, 0.00034) (0.0003211, 0.0000039)
z1 (0, 0.00025) (0.000333, 0.000031)
z2 (0, 0.00015) (−0.000331, 0.000062)
z3 (0, 0.00015) (0.000617, 0.000034)
z4 (0, 0.00015) (0.00032, 0.00011)

TABLE II. Priors and posteriors of the vector and axial-
vector matrix elements. The values are listed in (µ, σ) pairs.

gAnm Prior Posterior gVnm Prior Posterior

gA00 (1.2, 0.2) (1.253, 0.019) gV00 (1, 0.2) (1.02238, 0.00087)

gA01 (0, 1) (−0.271, 0.068) gV01 (0, 1) (−0.0041, 0.004)

gA11 (0, 1) (0.89, 0.2) gV11 (1, 0.2) (0.997, 0.02)

gA02 (0, 1) (−0.16, 0.11) gV02 (0, 1) (0.002, 0.013)

gA12 (0, 1) (−0.05, 0.3) gV12 (0, 1) (0.013, 0.042)

gA22 (0, 1) (0.71, 0.53) gV22 (1, 0.2) (1.05, 0.12)

gA03 (0, 1) (0.1, 0.043) gV03 (0, 1) (0.0798, 0.0075)

gA13 (0, 1) (0.14, 0.14) gV13 (0, 1) (0.071, 0.025)

gA23 (0, 1) (0.25, 0.31) gV23 (0, 1) (−0.011, 0.062)

gA33 (0, 1) (0.87, 0.22) gV33 (1, 0.2) (0.789, 0.047)

gA04 (0, 1) (0.61, 0.21) gV04 (0, 1) (0.35, 0.12)

gA14 (0, 1) (0.4, 0.25) gV14 (0, 1) (0.33, 0.13)

gA24 (0, 1) (−1.06, 0.52) gV24 (0, 1) (−0.34, 0.16)

gA34 (0, 1) (0.72, 0.39) gV34 (0, 1) (0.63, 0.24)

gA44 (0, 1) (−0.32, 0.95) gV44 (1, 0.2) (1, 0.2)

trix element for the two-point with sub-subtracted, and
two-point with three-point strategies.

Appendix C: Prior and posterior distributions

In Table 17, we list the prior and posterior distribu-
tions of the energies and overlap factors used in our final
analysis. The matrix element prior and posterior distri-
butions are given in Table II. In Table III, we list the
range of tsep values used in the three sets of correlation
functions that are analyzed.
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TABLE III. We list the range of tsep values used in our opti-
mal fits for each of the three sets of correlation functions we
analyze. We also list the values of the current insertion time,
τ , for which the optimal fit uses τ = [1, tsep − 1] for the 23
analysis (2pt and 3pt). When we perform the 23s (2pt, 3pt
and FH) analysis, there is mild tension when including the
current times τ = 1 and τ = tsep − 1 for tsep > 10 and so our
optimal fit removes one extra current insertion time for these
later tsep values. For FH, the τ range indicates the values
used in the summation over current time.

(2pt, 3pt) (2pt, FH) (2pt, 3pt, FH)
2pt tsep range [3, 17] [5, 17] [3, 17]
3pt tsep range [3, 14] – [3, 14]
FH tsep range – [5, 13] [3, 13]

3pt τ range [1,tsep − 1] [1,tsep − 1] [1,tsep − 1], tsep ≤ 10
[1,tsep − 1] [2,tsep − 2], tsep > 10

FH τ range – [1,tsep − 1] [1,tsep − 1]
nstates 5 2 5
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Söldner, Philipp Wein, Simon Weishäupl, and Thomas
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