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The production of η(′)π pairs constitutes one of the golden channels to search for hybrid exotics,
with explicit gluonic degrees of freedom. Understanding the dynamics and backgrounds associated
to η(′)π production above the resonance region is required to impose additional constraints to the
resonance extraction. We consider the reaction π−p→ π−η(′) p measured by COMPASS. We show
that the data in 2.4 < mη(′)π < 3.0 GeV can be described by amplitudes based on double Regge
exchanges. The angular distribution of the meson pairs, in particular in the η′π channel, can be
attributed to flavor singlet exchanges, suggesting the presence of a large gluon content that couples
strongly to the produced mesons.

I. INTRODUCTION

Since the early days of the quark model, hadron spec-
troscopy has remained central to our understanding of
QCD. High precision data on various reactions that
have recently been collected from experiments at CERN,
JLab, B- and charm factories have produced tantalizing
evidence for the existence of exotic states that do not
naturally fit within the quark model classification [1–
3], e.g. pentaquark and tetraquark candidates [4–6].
The quantum numbers of some exotics are manifestly
incompatible with a simple qq̄ assignment. For exam-
ple, states with JPC = 1−+ have long been speculated
to be hybrids, i.e. mesons where gluons play the role
of constituents [7, 8]. The paucity of data and the need
for a thorough partial wave analysis to disentangle reso-
nance from nonresonant background can be a challeng-
ing endeavor. The COMPASS collaboration extracted
the ηπ and η′π partial waves as a function of the in-
variant mass, mη(′)π < 3.0 GeV from the measurement
of diffractive pion dissociation on a nucleon target at
191 GeV [9]. These odd waves carry exotic quantum num-
bers, JPC = 1−+, 3−+,... The key observations are that
even waves are similar in both reactions, while the P -
wave is significantly larger in η′π. This reflects in a larger
forward-backward asymmetry of the η′π. Both channels
present peaking structures in the P -waves at seemingly
different masses. For a a long time, the two structures
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were interpreted as two different states, the lighter one
coupling mainly to ηπ and the heavier one to η′π. How-
ever, the coupled-channel analysis in [10] showed that
the data is consistent with the existence of a single ex-
otic resonance. These conclusions have been confirmed
by a recent independent analysis [11] and are supported
by the latest lattice QCD computations [12].

At higher invariant masses, the reaction is expected to
be dominated by cross-channel Regge exchanges, which
is consistent with the cross section peaking in the for-
ward and backward directions, with the peaks shrinking
with increasing η(′)π mass cf. Fig. 2 of Ref. [9]. Since
a forward-backward asymmetry arises from the interfer-
ence between even and odd waves, the larger exotic P -
wave in η′π is consistent with the observed larger asym-
metry. This connection between resonances and Regge
exchanges can be formalized via dispersion relations, e.g.
in the form of finite energy sum rules [13–15]. Such rela-
tions can be used to constrain fits in the resonance region
which, in combination with forthcoming high precision
data from GlueX [16, 17] and COMPASS [18], could lead
to a more accurate determination of the exotic meson res-
onance parameters. A necessary step in this procedure
is to fit the high mass region with analytical amplitudes
that respect Regge asymptotic behavior. This is the main
purpose of this work.

The paper is organized as follows. In Section II we
describe the COMPASS partial waves, the procedure to
compute the intensity distribution from them, and the
main features of said distribution. Section III describes
the double-Regge model used to fit the data. In Sec-
tion IV we discuss the consequences of truncating the
partial wave expansion in the analysis of the data and
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how it impacts the comparison to a given model and the
extraction of the dynamics. In Section V we discuss what
are the relevant contributions to the amplitudes, needed
to reproduce the features of the angular and mass de-
pendencies. Section VI describes our fitting strategy, fit
results, and comparison to data. Section VII provides
the connection between the COMPASS partial waves and
the partial waves obtained from the double-Regge model.
Finally, in Section VIII we summarize our results. The
kinematical description of the η(′)π reactions, statistical
analysis, error propagation from the COMPASS partial
waves to the intensity distribution, and other details and
complementary information are left to the Appendices.

II. COMPASS INTENSITIES

In this section we describe the data on reactions

π−(q) + p(p1)→ η(′)(kη) + π−(kπ) + p(p2) , (1)

analyzed by COMPASS in Ref. [9]. The unpolarized cross
sections for both reactions depend on five kinematical
variables. These are, for example, the total center of
mass energy squared s = (q + p1)2, the invariant mass
of the produced meson pair m2 = m2

η(′)π
= (kπ + kη)2,

the square of the momentum transfer between the target
and the recoil nucleon tp = (p1 − p2)2, and the spherical
angle Ω determining the direction of the relative momen-
tum between the two mesons in the rest frame of the pair.
The COMPASS experiment operated with a fixed beam
momentum of plab = 191 GeV; in the analysis of [9] tp was
integrated in the region tp ∈ [−1.0,−0.1] GeV2. Further-
more, since there was no measurement of the initial flux,
the normalization of the event distribution is unknown.
In the partial wave analysis of [9] the angular dependence
of the event distribution, aka intensity function, in bins
of m, was expanded in terms of angular functions,

I(m,Ω) =
∑
ε=±

∣∣∣∣∣∣
∑
L,M

f εLM (m)Ψε
LM (Ω)

∣∣∣∣∣∣
2

, (2)

given by Ψε=+
LM (Ω) =

√
2YML (θ, 0) sinMφ and Ψε=−

LM (Ω) =√
2YML (θ, 0) cosMφ, which are the real spherical har-

monics with ε referred to as the reflectivity. The angular
variables Ω ≡ (θ, φ) determine the direction of the η(′) in
the Gottfried-Jackson (GJ) frame (see Appendix A for
the axes orientation). The complex functions f εLM (m)
are obtained by fitting to the angular distributions for
each energy bin m. In the strict sense they are not par-
tial waves, as they do not depend on the initial and final
nucleon helicities. However, if a single helicity amplitude
happens to dominate the reaction, the f ’s can approach
genuine partial waves. In general however, one should
think of the f ’s as defining an effective parametrization
of the data at the amplitude level. Nevertheless, in the

following we refer to the f ’s as partial waves, as custom-
ary.

In practice, partial wave extraction requires the sum
in Eq. (2) to be truncated. In the COMPASS analysis of
ηπ, seven partial waves were used, (L = 1, . . . , 6;M = 1)
and (L = 2;M = 2), while for the η′π channel it was
six partial waves, namely (L = 1, . . . , 6;M = 1). All
the waves describing the η(′)π system have positive re-
flectivity ε = +. In the Regge asymptotic limit, reflec-
tivity coincides with naturality of the exchange; at the
nucleon vertex, the natural IP and f2 are the dominant
exchanges [19]. A single negative reflectivity wave was
included in the fit, (L,M, ε) = (0, 0,−), that includes
possible reducible backgrounds, was found to contribute
at the 0.5% (1.1%) level to the total ηπ (η′π) intensity,
and will be neglected here.

The partial waves in Eq. (2) are written as

fLM (m) =
√
ILM (m) eiδLM (m) , (3)

where ILM (m) are the partial wave intensities and the
phases δLM (m) are determined with respect to the phase
of the L = 2,M = 1 wave, i.e. δ21(m) ≡ 0. In our analy-
sis, we use the intensities and phases provided in the cor-
rigendum to Ref. [9]. The simplest way to compare the
COMPASS results with a theoretical model would be to
compare the partial waves. However, for reasons that will
be discussed later in Section IV, we instead fit our ampli-
tude model using an integral form of extended negative
log-likelihood (ENLL) method [20–22] to the intensity
I(m,Ω) reconstructed from the partial waves. There are
two ways to reconstruct the I(m,Ω) from the COMPASS
partial waves. One approach is to use the mean values
of the intensity and phase at a given m, and use Eq. (2)
to obtain I(m,Ω). We call this the mean value recon-
struction (MVR). However, this method ignores the ex-
perimental uncertainties. The second method, which we
refer to as MCR, uses Monte Carlo reconstruction. This
is done by associating a probability distribution to the in-
tensity and phase at each m independently. In doing so,
instead of a single intensity value for each (m,φ, cos θ)
point, we obtain a distribution. We can then compute
the expected (mean) value of the intensity and its asso-
ciated uncertainty at a given confidence level. The sta-
tistical errors are thus propagated from the partial waves
to the intensity. The details on the MCR can be found in
Appendix B. What remains unknown, however, are the
uncertainties associated to the systematics of the COM-
PASS fit and the correlations among partial waves. As
a consequence, the intensities reconstructed using MVR
and MCR differ.

In Figs. 1 and 2 we show the density plots of I(m,Ω)
at three fixed m as well as the φ-integrated distributions

Iθ(m, cos θ) =
∫ 2π

0
dφ I(m,Ω) . (4)

In Fig. 3 we plot Iθ(m, cos θ) for m above 2.3 GeV,
for a total of seventeen mass bins in each channel. This
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FIG. 1. cos θ vs. φ expected value intensity I(mηπ,Ω) density plot for MVR (upper) and MCR (center) of the COMPASS
partial waves of the ηπ channel for three fixed energies (mηπ = 2.36, 2.64, and 2.96 GeV). The lower row provides the φ-
integrated Iθ(mηπ, cos θ) MVR (blue) and MCR (red) 1σ bands. Since the MVR does not propagate uncertainties, we show as
MVR error bands the same computed from the MCR.
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FIG. 2. Same as Fig. 1 for η′π. We note that the η′π backward peak is broader than the ηπ one and that the forward-backward
asymmetry is more pronounced.

can be compared to the plot of the experimental data
shown in Fig. 2 of Ref. [9], although we note that the
data shown in the COMPASS paper are not corrected
for detector acceptance. Several features in Figs. 1, 2,
and 3 are noteworthy:

1. At fixed m, the intensity I(m,Ω) is periodic in
φ with periodicity 2π. Moreover, it presents a
reflection symmetry along the azimuthal angle φ
with symmetry axis at φ = π, i.e. I(m, θ, φ) =
I(m, θ, 2π − φ) with φ ∈ [0, 2π]. Both facts stem
from the definition of the intensity, Eq. (2);



4

2.4 2.5 2.6 2.7 2.8 2.9
m  (GeV)

1.0

0.5

0.0

0.5

1.0
co

s

2.4 2.5 2.6 2.7 2.8 2.9
m ′ (GeV)

1.0

0.5

0.0

0.5

1.0

co
s

0

2000

4000

6000

8000

10000

12000

0

2000

4000

6000

FIG. 3. Intensity Iθ(m, cos θ) density distribution of the MVR
from the ηπ (upper) and η′π (lower) COMPASS partial waves.

2. the intensity peaks in the forward cos θ ∼ 1 and
backward cos θ ∼ −1 regions. In the forward re-
gion, most of the beam momentum is carried by
the η(′), and in the backward region by the π. We
call these clusters the “fast-η” and the “fast-π” re-
gions, respectively;

3. the backward (fast-π) peak is larger than the for-
ward (fast-η) peak, resulting in a forward-backward
asymmetry. This effect is more pronounced in the
case of the η′π channel;

4. the backward peak is broader in η′π than in the ηπ;

5. both the forward and backward peaks become nar-
rower as the invariant mass m increases;

6. the MVR intensities at backward peak are larger
than those of the MCR, and in the small |cos θ|
region the intensity profile becomes smeared out
in the MCR, so more structures are visible in the
MVR in the region where intensities are low. Ap-
pendix C provides more insight on the differences
between MVR and MCR.

These features are typical of diffractive processes, indi-
cating the dominance of double-Regge exchanges in the
energy region m & 2.3 GeV. In the SU(3) flavor symmet-
ric limit the π and the octet η8 are degenerate, and so
are the a2 and f2 Regge trajectories. Furthermore, if the
SU(3) singlet exchanges (e.g. the IP ) are neglected, the
forward and backward intensities are identical [23] for the
production of the octet, and only even (nonexotic) waves
contribute. Since η′ is dominated by the SU(3) singlet
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FIG. 4. Integrated forward F (m) (green), backward B(m)
(red), and total T (m) = F (m) + B(m) (blue) intensities as
defined in Eq. (5) for the MVR (full circles) and MCR (empty
squares). Uncertainties in the MVR are taken from the MCR.
We note that the slope of F (m) for both ηπ and η′π is steepper
than for B(m).

we expect the asymmetry to be larger for the production
of η′π. The broadness of the peaks is related to the rela-
tive strength of the different double-Regge contributions
to the amplitudes and will be addressed in Sections V
and VI.

To quantify the forward-backward asymmetry we de-
fine

F (m) ≡
∫ 1

0
d cos θ Iθ(m, cos θ) , (5a)

B(m) ≡
∫ 0

−1
d cos θ Iθ(m, cos θ) , (5b)

A(m) ≡ F (m)−B(m)
F (m) +B(m) , (5c)

with F (m) and B(m) being the forward and backward
intensities, respectively, and A(m) the forward-backward
asymmetry. Figure 4 shows F (m), B(m), and their sum
T (m) for both MVR and MCR for the two channels. We
find that the slope of F (m) is steeper than that of B(m).
These intensities show clearly the difference between the
MVR and the MCR, even though the total intensity in
the MVR and MCR are similar.

III. DOUBLE REGGE MODEL

We present here a double-Regge exchange model for
the reactions in Eq. (1). Multi-Regge exchange for-
malism has been extensively studied theoretically in the
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FIG. 5. Fast-η (top) and fast-π (bottom) amplitudes.

past [15, 24–28]. An application of such formalism was
presented in [29] for a similar reaction, two-pseudoscalar
mesons production inK± and π± beam diffraction. More
recently the double-Regge exchange was used to describe
the central meson production in the high energy proton-
proton collisions [30–32]. We will adopt the same model
and quote in this section its main features.

The fast-η and fast-π regions correspond to the fast-η
and fast-π double-Regge exchange amplitudes depicted
in Fig. 5. The model assumes the dominance of leading
Regge trajectories. Although it is known that daugh-
ter poles and cuts also contribute at finite energies, i.e.
to polarization observables [33–36], present data are not
sensitive to subleading exchanges.

The top exchange is saturated by the a2 trajectory for
the fast-η amplitude, and by the f2 or IP trajectory for
the fast-π amplitude. The bottom exchange is either the
f2 or IP for both types of amplitude. It is common lore
that, at COMPASS energies, the IP is the only relevant
bottom exchange; however, this hypothesis is incompat-
ible with data, as we will show in Section V.

Consequently, the total amplitude ATh is the sum of
six possible double-Regge amplitudes

ATh(m,Ω) = ca2IP Aa2IP + ca2f2 Aa2f2 + cf2IP Af2IP

+ cf2f2 Af2f2 + cIPIP AIPIP + cIPf2 AIPf2 , (6)

where the {c} are unknown and will be fitted to data.
The intensity of the model is given by

ITh(m,Ω) = k(m) |ATh(m,Ω)|2, (7)

where k(m) = λ
1
2 (m2,m2

η(′) ,m
2
π)/(2m) is the breakup

momentum between the π and the η(′), and λ(x, y, z) =
x2 + y2 + z2 − 2(xy + xz + yz) is the triangle function.

Regge amplitudes are expressed in terms of Lorentz
invariants. In addition to s, tp and m, as depicted in
Fig. 5, for the fast-η and π amplitudes, the GJ angles are
related to the following Lorentz invariants

fast-η : tη = (q − kη)2, sπp = (kπ + p2)2 , (8a)
fast-π : tπ = (q − kπ)2, sηp = (kη + p2)2 . (8b)

There are only five independent variables. The fast-π
invariant tπ and sηp can be expressed as linear combina-
tions of the five fast-η variables. Appendix A summarizes
the relevant kinematical relations.

The analytic structure is the same for all double-Regge
amplitudes. The dependence in the momentum trans-
ferred (tη, tp) for fast-η and (tπ, tp) for fast-π enters only
via the trajectories (α1, α2), where α1 corresponds to the
top exchange and α2 to the bottom one. Hence, for fast-
η amplitudes α1 ≡ αa2(tη) and for fast-π amplitudes
α1 ≡ αf2(tπ) or α1 ≡ αIP (tπ). The bottom trajectory
is α2 ≡ αf2(tp) or α2 ≡ αIP (tp) for both types depending
on the bottom exchange.

Regge theory predicts the dependence in the invari-
ant masses squared (s1, s2) with (s1, s2) = (sηπ, sπp) for
the fast-η amplitudes and (s1, s2) = (sηπ, sηp) for the
fast-π amplitudes. Since the nucleons play a spectator
role given the large total energy, their spins can be ig-
nored. For five spinless particles with an odd number of
pseudoscalars, the generic amplitude for a double-Regge
exchange is [15, 29]

T (α1, α2; s1, s2) = K Γ(1− α1) Γ(1− α2) (α′s1)α1(α′s2)α2

α′s

[
ξ1 ξ21

κα1
V (α1, α2, κ) + ξ2 ξ12

κα2
V (α2, α1, κ)

]
. (9)

The double-Regge limit corresponds to s, s1, s2 → ∞
with κ−1 ≡ s/(α′s1s2) fixed, which is related to the co-
sine of the Toller angle [15]. We set the scale parameter
α′ = 0.8 GeV−2. Changing this value induces a smooth

exponential dependence on the momentum transfer vari-
ables. We have found that fitting simultaneously {c} and
α′ does not lead to stable solutions, as the coefficients and
the scale parameter are strongly correlated. Moreover, α′
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should be of the order of the hadronic scale, O(GeV−2).
We let α′ vary in exploratory fits and found the above
choice to be optimal. The kinematical factor K is de-
tailed in Appendix A.

The presence of two symmetric terms in the bracket of
Eq. (9) is imposed from general considerations of the an-
alytic structure of double-Regge amplitudes. The inter-
ested readers will find the technical details in Section 3.3
of Ref. [15].

The double-Regge amplitude of Eq. (9) has poles for
positive integer values of the trajectories α1 and α2,
which are related to the spins of the physical particles
in the t channel. Since only poles with even signature
(−1)J = +1 can couple to ηπ and ππ, odd signature
poles are removed by the signature factors

ξn = 1 + e−iπαn

2 , (10a)

ξnm = 1 + e−iπ(αn−αm)

2 . (10b)

The vertex function V (α1, α2, κ) is an analytic function
of its arguments. Its most general form involves an infi-
nite number of Reggeon-Reggeon-particle couplings and
reduces to a polynomial in κ−1 for integer α1 and α2 [24].
In a dual model, all Reggeon-Reggeon-particle couplings
are equal and the vertex simplifies to [15, 37]

V (α1, α2, κ) = Γ(α1 − α2)
Γ(1− α2) 1F1 (1− α1, 1− α1 + α2,−κ) ,

(11)
where 1F1 is the confluent hypergeometric function of the
first kind.

As explained in Ref. [29], the V (α1, α2, κ) functions
used in Eq. (9) and defined in Eq. (11) have poles at
α1 − α2 (and α2 − α1 for V (α2, α1, κ)) equal to non-
positive integers. However, these poles cancel between
the two terms in Eq. (9). For example, when α2 > α1
the pole in the gamma function in Eq. (11) cancels out
with the pole in the hypergeometric function from the
second term Eq. (9).

The six contributions in Eq. (6) are obtained from the
generic double-Regge amplitude (9) with the following
substitutions:

Aa2IP = T (αa2(tη), αIP (tp); sηπ, sπp) , (12a)
Aa2f2 = T (αa2(tη), αf2(tp); sηπ, sπp) , (12b)
Af2IP = T (αf2(tπ), αIP (tp); sηπ, sηp) , (12c)
Af2f2 = T (αf2(tπ), αf2(tp); sηπ, sηp) , (12d)
AIPIP = T (αIP (tπ), αIP (tp); sηπ, sηp) , (12e)
AIPf2 = T (αIP (tπ), αf2(tp); sηπ, sηp) . (12f)

Since the momentum transferred between the initial
and final nucleon has been integrated over in the COM-
PASS analysis, we do not have access to the tp distri-
bution. This distribution would allow us to discriminate

between the bottom exchanges. Since the amplitude de-
creases exponentially with tp, we fix tp close to the COM-
PASS lowest limit, tp = −0.2 GeV2. Results are stable
against small variation of this value.

Finally, we need to specify the Regge trajectories

αa2(t) = 0.53 + 0.90 t, (13a)
αf2(t) = 0.47 + 0.89 t, (13b)
αIP (t) = 1.08 + 0.25 t, (13c)

where we adopted the standard parametrization for the
IP [38] and the f2 [39] trajectories. Phenomenologically,
the a2 trajectory is very similar to that of ρ, which is re-
ferred as exchange degeneracy (EXD) [28, 40]. Our model
is thus entirely specified by the six real parameters {c}.
Each {c} in Eq. (6) is a product of two particle-Reggeon-
particle couplings (top and bottom vertices) and one
Reggeon-particle-Reggeon coupling (middle vertex). The
particle-Reggeon-particle couplings could be extracted
from quasi-two-body reactions [41, 42], but the Reggeon-
particle-Reggeon couplings are largely unknown. In prin-
ciple, all couplings have residual dependence on t’s that
cannot be disentangled. This prevents us from imposing
further relations among the η and η′ amplitude parame-
ters.

IV. PARTIAL WAVE TRUNCATION BEYOND
THE RESONANCE REGION

COMPASS extracted partial waves under the assump-
tion that only a limited number of them contribute. This
is justifiable in the resonance region, but as the invariant
mass of the η(′)π system increases so does the number of
relevant waves. Since the overall intensity decreases in
the high energy region, the significance of higher waves
(L > 6) could not be established and, hence, they were
neglected.

The Regge model developed in the previous Section is
not based on a partial wave expansion and therefore im-
plicitly includes all partial waves. One can thus study
whether the approximation to truncate to L 6 6 waves
is appropriate for our model. In Fig. 6 we show how
the truncation affects the total intensity in the ηπ chan-
nel. We expand each amplitude into partial waves and
then sum back only the ones considered in the COMPASS
analysis. For example, at mηπ = 2.64 GeV, the seven par-
tial waves considered by COMPASS account for ∼ 80%
of the intensity at the peak for the f2/f2 exchange. At
this mηπ, only for the IP/IP and IP/f2 amplitudes this
truncation adequately reproduces the intensity (> 99%
and > 97%, respectively). If we include the partial waves
up to L = 10 with M = 1 and M = 2, the intensity of
the amplitudes is almost completely recovered (> 99%
for all amplitudes except for a2/f2, which is > 93%). In
Fig. 7 we show the same plots for the η′π channel. In
this case, the main disagreement happens in the forward
peak (a2/IP and a2/f2 amplitudes), where only between
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60% and 80% of the peak strength is accounted for by
the COMPASS partial waves.

Thus, as mentioned earlier, in this energy region
COMPASS waves should be considered as an effective
parametrization of the data, rather than being directly

compared with genuine partial waves from a model that
contains an infinite number of waves. However, given
that they have been extracted under the constraint of
summing up to the total intensity, we can reconstruct
I(m,Ω) from the partial waves using Eq. (2) with the



8

 10 1

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

F(
m

) /
 F

(2
.1

 G
eV

)

a2/IP
a2/f2 ′

2.2 2.4 2.6 2.8 3.0
m (GeV)

10 1

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

B(
m

) /
 B

(2
.1

 G
eV

)

f2/IP
f2/f2 ′

FIG. 8. Forward (upper) and backward (lower) intensities
as defined in Eq. (5) for the top-a2 and top-f2 amplitudes,
respectively. Solid lines correspond to ηπ and dashed to η′π.
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2.1 GeV. In circles and diamonds we show the experimental
data arbitrarily rescaled, as obtained by MVR.

two methods (MVR and MCR) explained in Section II
and fit them with our model. In Section VII we will
discuss how the model partial waves compare to the f ’s
extracted from the data by COMPASS.

V. THE MINIMAL SET OF AMPLITUDES

Our model described in Section III is completely de-
termined by the six coefficients of the double-Regge ex-
change amplitudes. As a first approach, we fitted the in-
tensity with all the six parameters unconstrained. How-
ever, those fits did not lead to a unique solution, some-
times having coefficients compatible with zero. The error
estimation was unreliable. In order to make the fits to
reach stable solutions, we have to restrict the parame-
ters to at most four. Consequently, to establish which
amplitudes must be neglected or included in the fits, in
this Section we compare the angular and mass dependen-
cies of the individual exchanges to the experimental ones
from MVR shown in Figs. 1–4. Conclusions are identical
for MCR.

In the SU(3) limit, the event distribution of ηπ be-

comes symmetric in cos θ. At the amplitude level, this
is manifested via EXD, meaning that the parameters of
the a2 and f2 Regge poles are equal, including the cou-
plings, ca2IP ' −cf2IP and ca2f2 ' −cf2f2 .1 Deviations
from the EXD relation are manifested in the nonvanish-
ing forward-backward asymmetry. The cos θ dependence
is correlated to the tπ or tη dependence arising from the
top exchange trajectory. We thus expect the amplitudes
with the same top exchange to have similar cos θ behav-
ior. Both a2/f2 and a2/IP amplitudes will be collectively
denoted as top-a2 amplitudes, and similarly for the top-
f2 and top-IP amplitudes. By EXD, we expect that both
top-a2 and -f2 matter.

As shown in Figs. 6 and 7, the top-a2 and top-f2 am-
plitudes produce a narrow forward and a narrow back-
ward peak, respectively. The top-IP amplitudes produce
a wider backward peak, which is due to the smaller slope
of the IP trajectory. Given that the widths of the ex-
perimental backward peaks in ηπ and η′π are similar to
what is expected from the top-f2 exchange, we conclude
that the f2/f2 and/or f2/IP amplitudes should account
for most of the backward intensity. The residual con-
tribution from the IP/IP and IP/f2 amplitudes may be
needed to further widen the peak. In particular, the top-
IP contributions might be necessary for the η′π channel.

We next investigate the mass dependence of the top-a2
and top-f2 amplitudes. In Fig. 4 we find that F (m) is
steeper than B(m). The slope of the distribution is deter-
mined by the slopes of the trajectories in Eq. (13) of both
top and bottom exchanges, once the angular variables
have been integrated over. The m dependence for indi-
vidual amplitudes in Fig. 8 shows this effect. A steeper
slope of the intensity is observed when the bottom ex-
change is IP . Hence, the steeper F (m) favors a bottom-
IP , while the flatter B(m) a bottom-f2. Consequently,
both the a2/IP and f2/f2 amplitudes should be included.

Another important feature is the φ dependence. In
Fig. 9 we compare the φ dependence in the forward re-
gion of I(m,Ω) and the top-a2 amplitudes. We see that a
single amplitude cannot reproduce the experimental dis-
tributions at all m. Therefore, we will include both a2/f2
and a2/IP amplitudes in our fits.

In Fig. 10 we make the same comparison for the back-
ward region. The f2/IP and IP/f2 amplitudes do not
peak at the correct position at any m. On the other
hand, the f2/f2 and the IP/IP match better the data.
As explained above, the f2/f2 amplitude is already fa-
vored by the observed B(m) slope.

In conclusion, the minimal set of amplitudes (MIN)
common to both channels, consists of a2/IP , a2/f2, and
f2/f2.

Additionally, as discussed earlier, we may extend this
set in order to take into account the width of the back-
ward peak. In particular, the η′π peak is broader than

1 The minus sign is due to the kinematic factor K being odd under
permutation of the π and η momenta.
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predicted by the f2/f2 amplitude. Including the IP/f2
would help. However, it may disrupt the φ distribution
as shown in Fig. 10. An option would be to include both
IP/f2 and f2/IP . However, as stated earlier in this Sec-
tion, including more than four amplitudes makes the fits
unstable. For this reason we do not include the IP/f2
amplitude in any fits.

Therefore, we are left with two options to broaden the
backward peak: either IP/IP or f2/IP . The IP/IP am-
plitude allows to broaden the backward peak without af-
fecting much the φ dependence. It also would make the
backward peak broader than the f2/IP exchange. The
f2/IP exchange shifts the φ distribution to peak below
π/2, but by interfering with f2/f2 this shift may be re-
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duced. Hence, we explore adding either the f2/IP or
IP/IP amplitudes to the MIN set for fitting the intensi-
ties.

To summarize, the sets of amplitudes we explore are:

(i) MIN, that includes the a2/IP , a2/f2 and f2/f2 am-
plitudes, i.e. parameter set {ca2IP , ca2f2 , cf2f2};

(ii) MIN+f/IP , with parameter set
{ca2IP , ca2f2 , cf2IP , cf2f2};

(iii) MIN+IP/IP , with parameter set
{ca2IP , ca2f2 , cf2f2 , cIPIP }.

VI. RESULTS

A. Extended negative log-likelihood fit

The contribution of each amplitude in a given set
(MIN, MIN+f/IP , and MIN+IP/IP ) is determined by fit-
ting the MVR and the MCR distributions for each η(′)π
channel independently.

We first discuss how to fit the MVR. In each mass
bin, the intensity I(m,Ω) depends on two angles Ω =
(φ, cos θ). The continuous variables prevent us from using
a standard χ2 fit. Besides, we need to take into account
the fact that the total intensity is a fixed quantity. Hence,
we use an integral form of the extended negative log-
likelihood function (ENLL) [20, 21]:

L({c}) =
∑
i

∫
dΩ [ITh(mi,Ω|{c})

−IExp(mi,Ω) log ITh(mi,Ω|{c})] , (14)

where the experimental intensity IExp(m,Ω) is the fitting
objective function computed using Eq. (2) with MVR,
and the theoretical intensity ITh(m,Ω|{c}) is computed
from Eq. (7). The experimental distributions are fitted
simultaneously in 15 bins of {m}, in the range 2.38 <
m < 2.98 GeV. Varying slightly this interval leaves the
results unchanged. We minimize L using MINUIT [43]
to obtain the {c} parameters weighting each theoretical
amplitude.

We note that the ENLL makes the total intensity of
the model as close as possible to the total intensity of
data. We remind the normalization of data is unknown,
thus the {c} cannot be directly compared to normalized
couplings. The overall sign of the amplitude is also un-
determined, so we fix ca2IP to be positive. As said above,
we expect cf2IP to be negative. The best fits found are
reported in Table I. Local minima that do not follow
the sign expectations were found, although with worse L
than the reported best fit values.

We note that the absolute value of the parameters is
not a measure of the importance of any given amplitude
contribution, because the A’s in Eq. (12) have largely
different magnitudes. In particular, bottom-IP are much
larger than bottom-f2.
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FIG. 11. ENLL LMCR distributions for the 104 bootstrap
fits with the three models to the MCR distributions for ηπ
(upper) and η′π (lower) channels.

Fitting the MCR is more challenging. Each pseudo-
dataset j is fitted using Eq. (14), obtaining an indepen-
dent set of parameters {c}j . We estimate the expecta-
tion value of the parameters by averaging over N = 104

fits and the uncertainties from the appropriate quantiles.
This number of pseudodatasets allows us to obtain the
probability distribution of each parameter and the cor-
relations with a 2% statistical uncertainty (more details
Appendix B).

B. Fit results

Table I gives the value of the ENLL for the three mod-
els fitted to the MVR and MCR for both channels, as well
as the resulting fit parameters. The distribution of the
ENLL for the MCR fits is shown in Fig. 11. We see that
the all models have similar ENLL, with a nonsignificant
preference for MIN+IP/IP fit, in particular for the η′π
channel. In Appendix D we analyze this difference more
systematically and conclude that, statistically, there is
indeed a preference for the MIN+IP/IP model for the
η′π channel.

In Appendices C and E we compare MVR and MCR
observables and fits, respectively, finding that MCR fits
are more reliable. Here we summarize the results of the
MCR fits and leave the MVR fit results for Appendix E.

1. ηπ MCR fits

The three models give consistent values for ca2IP and
ca2f2 , providing almost identical descriptions of the for-
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TABLE I. ENLL and fit parameters {c} (in appropriate GeV units) for both MVR and MCR. For MVR, L corresponds to the
best fit found, while for MCR the value and error of L correspond to the mean value and dispersion of the best ENLL for each
pseudodataset. The L distributions are depicted in Fig. 11, while the parameter distributions are discussed in Appendix F.

Channel MIN MIN+f/IP MIN+IP/IP

MVR MCR MVR MCR MVR MCR

L × 10−4 −22.8 −21.9± 0.9 −22.7 −22.0± 0.9 −22.8 −22.1± 0.8

ca2IP 0.29 0.42± 0.03 0.28 0.40± 0.04 0.29 0.36± 0.04

ca2f2 3.67 3.3± 0.4 3.70 3.4± 0.4 3.59 3.8± 0.4

ηπ cf2IP — — −0.20 −0.30± 0.05 — —

cf2f2 −11.82 −11.0± 0.3 −8.99 −6.6± 0.7 −10.86 −8.9± 0.4

cIPIP — — — — 0.0073 0.0135± 0.002

L × 10−4 −11.7 −10.9± 1.0 −11.7 −11.0± 1.0 −11.8 −11.4± 1.0

ca2IP 0.16 0.37± 0.07 0.16 0.34± 0.05 0.19 0.35± 0.05

ca2f2 1.50 0.4± 0.6 1.51 0.7± 0.5 1.22 0.6± 0.5

η′π cf2IP — — −0.21 −0.29± 0.03 — —

cf2f2 −11.42 −11.0± 0.5 −7.73 −5.5± 0.7 −9.01 −7.1± 0.6

cIPIP — — — — 0.012 0.018± 0.002

ward peak. This can be appreciated in Fig. 12, where
the experimental Iθ(mηπ, cos θ) MCR for the fast-η re-
gion is compared to the three models for all the fitted
mηπ bins. The three models agree very well. Figure 13
shows the same results for the fast-π region. Here the
differences among models can be appreciated. As ex-
pected from Fig. 6, the MIN+IP/IP provides a wider
peak, and, since the normalization is fixed in a ENLL
fit, the maximum intensity at the peak is smaller than
the MIN and MIN+f/IP results. The latter two fits are
similar, with their uncertainty bands overlapping, except
in the highest mηπ bin. We note that for some ener-
gies the MIN+IP/IP provides a better description of the
experimental distribution, while for others the MIN and
MIN+f/IP fits look better.

Further insight can be obtained by examining the
three-dimensional I(mηπ,Ω) distributions. We define

D(mηπ,Ω) = ĪExp(mηπ,Ω)− ĪTh(mηπ,Ω)√
[∆IExp(mηπ,Ω)]2 + [∆ITh(mηπ,Ω)]2

,

(15)

where Ī and ∆I are the mean and dispersion of the ex-
perimental and theoretical distributions as obtained from
MCR.2 This quantifies point-by-point how similar the

2 We do not take into account the fact that both the theoretical
and experimental distributions are evaluated out of the same
pseudodatasets, and therefore correlated. However, this still
gives a qualitative description of the discrepancy between the-
ory and experiment.

MCR and the theoretical distributions are. Figure 14
shows these distributions for the ηπ channel in two mass
bins. Comparing the model and data distributions, one
concludes that the former has more structure in the for-
ward region. The experimental peak has two symmetric
blobs in φ while the theory is rather asymmetric. As
shown in Fig. 9, this is due to the asymmetry in φ of
the top-a2 amplitudes. We remind that the symmetry of
the experimental φ distribution is exact and stems from
Eq. (2). This symmetry is not imposed in the model, and
is approximately reached by having both top-a2 ampli-
tudes interfering. All the three models peak at roughly
the correct φ = π/2 and 3π/2. The situation is different
for the backward peak. The MIN fit peaks slightly below
(above) the experimental value of φ = 3π/2 (φ = π/2).
Hence, we do not favor the MIN model, i.e. the f2/f2
amplitude is not enough to reproduce the φ dependence
of the fast-π region.

From the bootstrap fits, we can study the parameter
distributions and their correlations, summarized in Ap-
pendix F. The correlations confirm that the fast-π and
fast-η amplitudes are essentially independent. The pa-
rameters are generally well determined and exhibit Gaus-
sian behavior, except the IP/IP coefficient cIPIP that has
a bimodal distribution.

Finally, although including a bottom-IP amplitude
is necessary to describe the backward region, data do
not show a clear preference for either MIN+f/IP or
MIN+IP/IP . Since the two models point to different
values for the f2/f2 coupling, the latter cannot be de-
termined unambiguously either. Currently, we do not
have enough precision in the data to determine the con-
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(red) and MIN+IP/IP (green) fits. Bands correspond to the 68% confidence level. The three model curves mostly overlap.

tributions from the individual exchanges in the backward
region.

2. η′π MCR fits

The fit parameters for the three models are presented
in the MCR columns of Table I. As for ηπ, the three mod-
els give consistent values for ca2IP and ca2f2 , providing al-
most identical descriptions of the forward peak. However,
ca2f2 is compatible with zero at a 2σ level. This suggests
larger level of EXD breaking in the η′π channel. Fig-
ures 15 and 16, compare the experimental Iθ(mη′π, cos θ)
with the three models in the forward and backward re-
gions, respectively. The models completely agree in the
forward region, while the MIN+IP/IP provides a wider
backward peak, in better agreement with the data.

The three-dimensional distributions for η′π are shown
in Figure 17 for the three models and MCR at mη′π =

2.60 and 2.80 GeV. As for ηπ, the MIN does not peak at
the correct value of φ in the backward region. Results and
conclusions are qualitatively similar to the ηπ channel. In
particular, the preference for a MIN+IP/IP is clear. This
points to a large affinity of η′ to gluons as discussed in
the literature [44].

3. Forward and backward intensities and asymmetry

Figures 18 and 19 show the forward, backward, and
total intensities. We show that MIN+f/IP for ηπ and
MIN+IP/IP for η′π reproduce all the intensities rather
well.

We also note that the integrated forward intensity is
systematically larger for the MCR. The opposite is true
for the the backward one, which is systematically larger
for the MVR. Consequently, the forward-backward asym-
metry A(m), defined in Eq. (5c), is, in absolute value,
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FIG. 13. Same as Fig. 12 for the ηπ backward region. Model differences are now apparent.

larger for the MVR than for the MCR, as shown in
Fig. 20. The existence of the asymmetry is a consequence
of the odd (exotic) partial waves contribution. Taking
into account the uncertainties in the partial waves makes
the asymmetry less acute, but it is still sizeable and neg-
ative for both channels. The asymmetry is larger for the
η′π reaction, making this channel appropriate to search
for hybrid candidates [7, 8, 44].

VII. CONSTRAINED PARTIAL WAVE
ANALYSIS

As discussed earlier in Section IV, the
[
f+
LM (m)

]
Exp

amplitudes extracted by COMPASS are not exactly gen-
uine partial waves. It is rather a parametrization that
minimizes the ENLL estimator used to fit the actual
event distributions. The ENLL fit makes a finite set
of amplitudes reproduce the total intensity. Hence, any
contribution from higher partial waves gets redistributed

into the set included in the fit. Our model contains an
infinite number of partial waves, which leads to a mis-
match between the model partial waves and the COM-
PASS ones. The comparison can still be done if we
project the model onto partial waves applying the same
constrained procedure implemented by COMPASS. For
simplicity, we consider ITh(m,Ω) of Eq. (7), as obtained
from MVR. We follow the conventions in Eq. (2). For
each energy bin mi, we extract the constrained partial
waves (cPW) by minimizing the ENLL estimator

L({fi}) =
∫

dΩ [IcPW(mi,Ω |{fi})

−ITh(mi,Ω) log IcPW(mi,Ω |{fi})] , (16)

where IcPW is given by

IcPW(mi,Ω |{fi}) =

∣∣∣∣∣∣
∑
L,M

[
f+
LM (m)

]
cPW Ψ+

LM (Ω)

∣∣∣∣∣∣
2

.

(17)
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The L,M employed are the same truncated set as COM-
PASS.

The truncated set of partial waves suffers from the
problem of discrete ambiguities, the so-called Barrelet
zeros [45]. The intensity IcPW(mi,Ω|{fi}) with L =
1, . . . , 6; M = 1 is identical for 25 different sets of param-
eters {fi}, leading to 32 different minima of the L({fi})
function. These are exact degeneracy forη′π. While the
presence of M = 2 in ηπ resolves the exact degeneracy of
the solutions. However, these solutions remain as nearly-
indistinguishable local minima due to the small size of
the M = 2 components for ηπ. We select the solution
{fi} the closest to the COMPASS f+

LM (mi) values.
The unconstrained partial waves (uPW) are computed

using

[
f+
LM (m)

]
uPW =

√
k(m)

∫
dΩ ATh(m,Ω) Ψ+

LM (Ω) ,

(18)

The cPW, uPW and COMPASS waves are shown in
Figs. 21 and 22. As anticipated, the cPW agree with the
COMPASS data very well, while the uPW can be quite
different. Indeed, the truncation of uPW to the COM-
PASS set would reduce the integrated intensity to 86%
for ηπ and 95% for η′π. This is in agreement with the
expectations from Figs. 6 and 7, where truncation effects

were shown to be critical for ηπ. The dominant (2, 1)
intensity in the ηπ channel is noteworthy. The uncon-
strained wave is very small compared to the COMPASS
one, but the cPW matches the data, showing how the
truncation makes low-lying partial waves to absorb the
intensity of higher waves.

VIII. SUMMARY AND CONCLUSIONS

We studied the COMPASS data on the π−p→ η(′)π− p
reactions for m > 2.38 GeV where the dynamics is ex-
pected to be dominated by Regge phenomenology. We
considered a double-Regge model composed of up to
six amplitudes that account for the possible top/bottom
Regge exchanges. In particular, we included a2/IP and
a2/f2 to describe the fast-η (forward) region, and f2/IP ,
f2/f2, IP/IP , IP/f2 for the fast-π (backward) region.

The COMPASS collaboration reported partial waves
extracted from data under the assumption that only
seven (six) partial waves contributed to the ηπ (η′π)
channel. This is justifiable in the resonance region, i.e.
mη(′)π . 2 GeV. For higher energies, the number of rel-
evant partial waves increases. Our Regge model is not
based on a partial wave expansion and therefore implic-
itly includes all partial waves. Truncating to the set of
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FIG. 15. Same as Fig. 12 for η′π.

waves used by COMPASS is not appropriate for this en-
ergy region, as in our model the discarded higher partial
waves amount to a nonnegligible contribution to the in-
tensities. Nevertheless, we reconstructed the total inten-
sities from the COMPASS partial waves and fitted with
our double-Regge model. We found that the ηπ inten-
sity can be well described with four amplitudes, a2/IP ,
a2/f2, f2/f2, and either f2/IP or IP/IP . The inclusion
of either bottom-IP amplitude is necessary to describe
the forward region, but the data do not show a clear
preference for either f2/IP or IP/IP amplitudes. For this
reason, we could not disentangle the contributions from
the individual exchanges in the backward direction.

In the η′π channel, we found that the best model to
reproduce the data consists of a2/IP , a2/f2, f2/f2, and
IP/IP amplitudes. The IP/IP contribution is necessary
to describe the data and points to a large gluon affinity
of the η′π system, potentially related to the existence of
hybrid mesons. This is also consistent with the observed

breakdown of exchange degeneracy between a2 and f2 in
η′π production.

The importance of the bottom-f2 exchange, as shown
in the slope of the integrated backward intensity, contra-
dicts the common lore that, at COMPASS energies, the
η(′)π pairs are produced via IP exchange only, at least for
this range of mη(′)π.

A consequence of having an amplitude model that con-
tains an infinite number of partial waves is that these
cannot match the truncated waves from COMPASS. To
bridge this apparent contradiction, we performed a con-
strained partial wave analysis of the model, using the
same procedure as COMPASS. We found that these
waves indeed agree well with the COMPASS ones. This
proves the importance of studying the full amplitude
rather than a truncated partial wave decomposition once
the double-Regge regime is reached.
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Appendix A: Kinematics

The momenta of the reaction in Eq. (1) in the GJ frame
are represented in Fig. 23. In this frame,

q = (Eq,q) , p1,2 = (E1,2,p1,2) , (A1a)
kη = (Eη,k) , kπ = (Eπ,−k) . (A1b)

In the ηπ center-of-mass, the ẑ-axis is along the beam
and the ŷ-axis, perpendicular to the production plane, is
parallel to q × p2.

The particle energies can be expressed in terms of in-
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variants as

Eq = (m2
ηπ − tp +m2

π)/2mηπ, (A2a)
E1 = (s−m2

p + tp −m2
π)/2mηπ, (A2b)

E2 = (s− sηπ −m2
p)/2mηπ, (A2c)

Eπ = (m2
ηπ +m2

π −m2
η)/2mηπ, (A2d)

Eη = (m2
ηπ +m2

η −m2
π)/2mηπ. (A2e)

ξ and ε are the angles between the beam and the target,
and between the beam and the recoil, respectively. They
are given by

2|q||p1| cos ξ = s− 2Eq E1 −m2
p −m2

π , (A3a)
2|q||p2| cos ε = s− 2Eq E2 −m2

p −m2
ηπ + tp , (A3b)

where tη and sπp are defined in Eq. (8a). The energies
and the nucleon angles depend only on s, m2

ηπ and tp.
The polar and azimuthal angles of the η must then de-
pend on the remaining independent invariants. Indeed
we obtain

tη =m2
π +m2

η − 2EqEη + 2|q||k| cos θ , (A4a)
sπp =m2

π +m2
p + 2E2Eπ

− 2|p2||k| (sin ε sin θ cosφ+ cos ε cos θ) . (A4b)

The invariants tπ and sηp needed in fast-π amplitudes
and defined in Eq. (8b) are related to the other Mandel-
stam variables by

sηp = s− sπp −m2
ηπ +m2

η +m2
π +m2

p, (A5a)
tπ = tp − tη −m2

ηπ +m2
η + 2m2

π. (A5b)

The kinematic function K that appears in Eq. (9) is
given by

K = εαβγδ(q + p2)α(q − p2)β(kη + kπ)γ(kη − kπ)δ

= 4mηπ|q||k||p2| sin ε sin θ sinφ . (A6)

Appendix B: MCR and bootstrap

We describe how the MCR is performed, and conse-
quently the bootstrap fit to it. The first step is to asso-
ciate a probability distribution with each intensity and
phase shift and, then, to resample the distributions N
times (in our case N = 104) to achieve enough precision
in the extracted distributions. If uncertainties are only
of statistical origin, the uncertainty in percentage can be
computed as ±

√
N/N × 100%, which for N = 104 is

±1%, i.e. a total 2% uncertainty. For each resampling
we can compute the value of a given observable, namely
I(m,Ω), Iθ(m, cos θ), F (m), B(m), T (m), and A(m),
and we can fit the pseudodataset obtaining the corre-
sponding parameters {c} (bootstrap fit) [46–48]. Then,
the expected value (mean) of each observable and the as-
sociated uncertainty (16% and 84% quantiles to obtain
the 68% error bands) can be computed. Equivalently
for the {c} distributions and any observable computed
for them. For the intensities, we associate to each data
point a Gaussian distribution

f(x|µ, σ) = 1√
2π σ

e−
1
2 ( x−µσ )2

, (B1)
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FIG. 18. Forward (upper), backward (center), and total
(lower) intensities for the ηπ channel as defined in Eq. (5)
for the MCR and MVR and their respective MIN+f/IP fits.

with µ equal to the mean value reported by COMPASS,
and σ equal to the uncertainty. Hence, we assume that
the uncertainties are statistical only, that all intensities
within a given partial wave are statistically independent,
and that the partial waves are uncorrelated. This is not
a true assumption but a necessary one given that the cor-
relation information is not available from the COMPASS
analysis. This assumption leads to an overestimation of
the error bands. There is an additional caveat: some of
the uncertainties are large enough to make the intensi-
ties negative, which is unphysical. Hence, if a resampling
provides a negative intensity for a given m, we set that
particular intensity to zero. We checked the impact of
this choice by taking the absolute value of the intensity
and subtracting it in Eq. (2) instead of setting the value
to zero. We found the effect to be negligible in the re-
sulting MCR distributions and fits. For the phase shifts,
we use the [−π, π] periodic equivalent to the Gaussian
distribution, i.e. the von Mises distribution

f(x|µ, κ) = 1
2πI0(κ̂)eκ cos(x−µ) , (B2)

where I0(κ̂) is the modified Bessel function of order 0.
The µ parameter is equivalent to the mean in a Gaus-
sian distribution and we set it to the mean value of each
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FIG. 19. Same as Fig. 18 for the η′π data and the MIN+IP/IP
model.

phase shift. The concentration parameter κ̂ is the re-
ciprocal measurement of the dispersion. Hence 1/κ̂ is
analogous to σ2 in a Gaussian distribution and has to be
determined. If the phase shift uncertainty is small, the
Gaussian distribution with σ equal to the experimental
uncertainty is almost equal to the von Mises distribution
with κ̂ = 1/σ2 as shown in the upper plot in Fig. 24.
However, for larger values of the uncertainty, the Gaus-
sian and the von Mises distributions are quite different.
In the lower plot in Fig. 24 we compare for a phase shift
of 0 ± 96.59o (this uncertainty value corresponds to one
of the largest in the COMPASS phase shifts) the follow-
ing three cases: (i) Gaussian distribution with µ = 0 and
σ = 96.59π/180; (ii) von Mises distribution with µ = 0
and κ̂ = 1/σ2; and (iii) von Mises distribution with µ = 0
and κ̂ = 0.56 given by a fit to the Gaussian distribution
in (i). In this third scenario we build the closest von
Mises distribution to the Gaussian that would be asso-
ciated with the COMPASS phase shift and uncertainty.
The grey bands in Fig. 24 provide the region outside the
[−π, π] range and highlight how the Gaussian distribu-
tion would be inappropriate to describe a periodic phase
shift. For small phase shift uncertainties (which we set
to be ≤ 16 degrees) we use option (ii) as both Gaus-
sian and von Mises are essentially equal, while for larger
uncertainties we prefer option (iii). The reason is that
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option (iii) is closer to the spread expectation from a
Gaussian distribution, and hence, we believe convenes a
better description of the actual experimental uncertain-
ties. Nevertheless, we computed the MCR with the three
options for the phase shifts distributions and we did not
find a relevant difference among the results.

Appendix C: MVR vs. MCR observables

In Section II we mentioned that there were mean-
ingful differences between the MVR and MCR. These
differences are highlighted in the Iθ(m, cos θ) distribu-
tions, Eq. (4), the forward F (m) and backward B(m)
intensities, and the forward-backward asymmetry A(m),
Eq. (5). In particular, for Iθ(m, cos θ) the fast-η peak is
smaller for the MVR than for the MCR. This can be no-
ticed in both Fig. 1 for the ηπ channel and in Fig. 2 for
the η′π. It can also be noticed in the integrated forward
intensity of Figs. 18 and 19, where F (m) is systematically
larger for the MCR. The opposite is true for the fast-π
peak and B(m), which are systematically larger for the
MVR. Consequently, the forward-backward asymmetry
A(m), defined in Eq. (5c), is, in absolute value, larger for

the MVR than for the MCR, as shown in Fig. 20. The
total intensity T (m) is very similar for both MCR and
MVR, as displayed in Fig. 4.

The difference between MVR and MCR is also ap-
parent if we inspect the small | cos θ| region for the
Iθ(m, cos θ) observable. The inclusion of the uncertain-
ties and the calculation of expected values in the MCR
leads to a smearing that flattens the experimental dis-
tribution. This effect is shown in Fig. 25. The double-
Regge approximation is designed to describe the fast-π
and fast-η regions, and hence is not reliable in the small
| cos θ| region. Consequently, the fits to the MVR present
the problem that they try to match structures that are
mostly wiped out by the uncertainties. Hence, the fits to
the MVR are more sensitive to details in the small angle
region. Removing the small | cos θ| region from the fits is
not feasible given that the total intensity is an important
experimental constraint. Consequently, we consider the
physics extracted from the MCR fits more reliable.

Appendix D: Statistical analyses of the likelihood

As mentioned in Section VI B, because of the contin-
uous nature of the angular variables and the fact that
L is constructed to match the experimental total inten-
sity, we cannot compare models with a different num-
ber of parameters. However, we can compare fits with
the same number of parameters such as MIN+f/IP and
MIN+IP/IP . In Table Iwe saw that the MIN+IP/IP fit
was slightly better than the MIN+f/IP for both LMVR
and LMCR, although it did not look significant enough.
The comparison between the two models can be formal-
ized by checking if, for any given resampling of the inten-
sities and phase shifts, one of the models is systematically
better. In doing so, we build 103 resampled datasets for
each channel and we fit each dataset j with both models.
Then we compute the difference between the two ENLL

∆Lj = Lj(MIN + f/IP )− Lj(MIN + IP/IP ) . (D1)

Figure 26 shows the result of this exercise. We find
that for η′π (lower plot), LMCR for the MIN+IP/IP fits
is not only better on average than the MIN+f/IP fits
as shown in Table Iand Fig. 11, but that it is better
systematically and significantly for any given resampling
of the COMPASS intensities and phase shifts. This leads
us to prefer the MIN+IP/IP for the η′π channel.

For ηπ we also find that the MIN+IP/IP model is
slightly better, although the result is not as appealing
as in the η′π case. For 96.5% of the resampled datasets3

the MIN+IP/IP is preferred, and the ∆Lj average is not
that large. Hence, there is a slight preference for the
MIN+IP/IP model, but we show in Section VI B 1 that
this preference is not conclusive.

3 We note that the uncertainty in the percentage is expected to be
approximately ±

√
N/N × 100%, which for N = 103 is ±3.2%.
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Appendix E: MVR fits

The fit parameters to the MVR for the three models
in both channels are presented in the MVR columns of
Table I. No error is provided as none can be reliably
computed.

For the fast-η amplitudes, i.e. a2/IP and a2/f2, we
find that the ca2IP and ca2f2 parameters are similar for
the three models. This is not unexpected, as for the
forward peak all three models are the same and the cor-
relation between forward and backward peaks has to be
very small. The largest difference between the top-a2 pa-
rameters appears when comparing the MIN+IP/IP model
to MIN and MIN+f/IP , particularly in the η′π channel.
This is due to the wider nature of the IP/IP amplitude
(see Figs. 6 and 7) in the cos θ variable, interfering with
the top-a2 amplitudes in the central region. However,
our double-Regge model is based on the leading Regge
poles and describes best the physics at small scattering
angles, not in the central region where corrections (cuts
and daughters) are expected. Hence, any correlation or
interplay among the amplitudes in the central region can-
not be trusted.

The fast-π f2/f2 amplitude is common to the three

models. If SU(3) symmetry were realized we should ob-
tain ca2f2 = −cf2f2 . Our result shows that SU(3) sym-
metry is broken for both channels, with larger breaking
for η′ than for η, regardless of the inclusion of additional
amplitudes such as IP/IP or f2/IP . The cf2f2 parameter
is larger for the MIN fit than for either MIN+f2/IP or
MIN+IP/IP . The reason is that the total intensity is a
constraint in the fit, and in the MIN fit the forward in-
tensity has to be matched only by the f2/f2 amplitude,
while for the other two fits it is distributed between two
amplitudes instead of one. Further comparison among
the parameters is meaningless due to the lack of uncer-
tainties.

1. MVR vs. MCR fits

The differences between the MVR and the MCR fits
show up in the fitted parameters displayed in Table I.
Let us compare MVR and MCR parameters using the
MVR ones as reference. For the ηπ channel we notice
that the ca2IP parameter, a2/IP amplitude, is larger for
the MCR while the ca2f2 , a2/f2 amplitude, is very similar
for both MVR and MCR fits. This happens for all of the
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FIG. 22. Same as Fig. 21 for the η′π system and the MIN+IP/IP fit.

FIG. 23. GJ reference frame. See text in Appendix A for the
definition of the variables and vectors.

MIN, MIN+f/IP , and MIN+IP/IP models and it means
that the extra strength in the MCR is embedded in the
a2/IP contribution while the a2/f2 stays the same. For
the η′π channel we find the same behavior for ca2IP , i.e.

it is larger for the MCR fits and very similar for all the
models. However, the ca2f2 parameter value is very dif-
ferent for the MVR and the MCR fits. For the MCR, the
three models provide similar results, within uncertain-
ties. Moreover, the a2/f2 exchange is compatible with
zero for the three models within a 2σ confidence level (1σ
for MIN), signaling a large EXD breaking. For the MVR
fits, the a2/f2 amplitude is larger than for the MCR and
yields very similar results for the MIN and MIN+f/IP
models. The MIN+IP/IP ca2f2 is not very dissimilar to
the other two models, but clearly smaller. This is due to
the non-negligible interference between the top-a2 am-
plitudes and the IP/IP contribution. Hence, MVR and
MCR fits provide a very different balance between the
two fast-η amplitudes. For the fast-π region, we find
that the cf2f2 parameter is larger for the MVR fits than
for the MCR ones for both channels, as expected. Re-
garding the asymmetry, for both ηπ and η′π channels it
is negative, as shown in Fig. 20. Taking into account the
uncertainties in the partial waves makes the asymmetry
less acute, but it is still sizeable.
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Appendix F: Parameter distributions and
correlations

The bootstrap fits to the MCR provide the parameter
distributions and their correlations. We show the corre-
lation matrices in Fig. 27 and the fit parameter distri-
butions in Fig. 28 for both MIN+f/IP and MIN+IP/IP
fits to both channels. We do not show the results for
the MIN fits as they were discarded in Sections VI B 1
and VI B 2 as an appropriate description of the I(m,Ω)
distributions.

From the correlation matrices the independence be-
tween fast-π and fast-η amplitudes is apparent for both
models and channels. A certain unavoidable correlation
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is present because of the fixed total intensity constraint
and the overlap in the small | cos θ| region, but both re-
gions can be regarded as mostly independent.

For the ηπ channel, the parameters for the MIN+f/IP
model are well determined and display a Gaussian behav-
ior. However, this does not happen for the MIN+IP/IP
model, where the IP/IP amplitude parameter is not well
determined and presents a bimodal distribution. The fit
to the MVR using the MIN+IP/IP model presents a sin-
gle and isolated absolute minimum, so the appearance of
a two peak structure in the fit to the MCR is entirely
due to the inclusion of the uncertainties, and the IP/IP
amplitude parameter cIPIP cannot be well determined.
The parameter distributions for a2/IP and a2/f2 for both
MIN+f/IP (red) and MIN+IP/IP (green) mostly over-
lap. For f2/f2, the MIN+f/IP and MIN+IP/IP distri-
butions barely overlap, as a consequence of the differences
between the f2/IP and IP/IP amplitudes.

For the η′π channel, all the parameters for both mod-
els are well determined and display a Gaussian behav-
ior. The ca2f2 distribution is compatible with zero at
a 2σ level for both models, indicating that it is possi-
ble that the associated amplitude vanishes. This would
mean a large violation of the EXD between the a2 and
f2 Regge poles. Given that both the statistical analy-
sis in Appendix D and the comparison to the data in
Section VI B 2 favor the MIN+IP/IP , we find that the
contribution of all four amplitudes (a2/IP , a2/f2, f2/f2,
and IP/IP ) to the η′π process can be well established



23

0 200 400 600 800 1000
 pseudodata set

-1

0

1

2

3
[

(M
IN

+
f/IP

)
(M

IN
+

IP/
IP)

]×
10

3

0 0.1 0.2 0.3
Frequency

0 200 400 600 800 1000
′  pseudodata set

0

2

4

6

8

10

[
(M

IN
+

f/IP
)

(M
IN

+
IP/

IP)
]×

10
3 ′

0 0.05 0.1
Frequency

FIG. 26. Extended negative log-likelihood difference ∆Lj for
103 MCR ηπ (upper, red) and 103 MCR η′π (lower, green)
resamples. For each MCR resampled dataset we perform both
MIN+f/IP and MIN+IP/IP and compute the difference. The
right plots provide the density distributions for the ∆Lj . The
red (green) line is the mean of the distribution and the band
represents the 68% confidence level. The grey line in the
upper plot marks the zero value of the ∆Lj .
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