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Abstract
Event generators in particle physics play an impor-
tant role in facilitating the studies of high-energy
particle reactions. In this paper, we survey the
state of the art of machine learning (ML) efforts
at building physics event generators. We start from
reviewing the ML generative models used in ML-
based event generators (MLEGs) and their specific
challenges. We then discuss various approaches of
incorporating physics into the ML model designs
to overcome these challenges. Finally, we explore
several open questions related to super-resolution,
fidelity, and extrapolation for physics event genera-
tion based on ML technologies.

1 Introduction
In high-energy nuclear and particle physics, accelerators are
built to gain insight into elementary particles and compos-
ite hadrons and nuclei, by accelerating these to large kinetic
energy and colliding them with each other or with nuclear
targets. The reactions transform the incoming particles into
a set of outgoing particles, referred to as physics “events.”
Existing high-energy accelerators include the LHC at CERN
for proton-proton collisions, CEBAF at Jefferson Lab for po-
larized electron-hadron scattering, RHIC at Brookhaven Na-
tional Lab (BNL) for proton (nucleus)–proton (nucleus) col-
lisions, as well as the future Electron-Ion Collider (EIC). De-
tecting and analyzing the outgoing particles brings insight
into the femto-scale physics involved in these reactions.

Physics event generators, which randomly generate simu-
lated events mimicking those produced in particle accelera-
tors, play a vital role in facilitating the study of matter. The
event generators have a broad spectrum of physics applica-
tions, including estimating the distribution of expected events
for the study of interesting physics scenarios, planning and
designing new detectors, optimizing the detector performance
under experimental constraints, devising strategies to analyze
raw data from experiments, and interpreting observed physics
phenomena with fundamental theory [Lehti and Karimaki,
2010].

Since the early 1970s, the simulation of physics events
has mainly been implemented by Monte Carlo (MC) meth-

ods, which transform random numbers into simulated physics
events. MC event generators (MCEGs) [Mangano and
Stelzer, 2005] are constructed by a combination of high-
precision data from previous experiments and theoretical in-
puts. Commonly used MCEGs include Pythia [Sjostrand et
al., 2008], Herwig [Bahr et al., 2008], and Sherpa [Gleisberg
et al., 2009] for hadronic events; MadGraph [Alwall et al.,
2011] and Whizard [Kilian et al., 2011] for parton events;
GiBUU [Weil et al., 2012] and HIJING [Bı́ró et al., 2019]
for heavy-ion events; GENIE [Andreopoulos et al., 2010]
and NuWro [J., 2009] for neutrino events, as well as special-
ized event generators such as AcerMC [Kerševan and Richter-
Was, 2013], ALPGEN [Mangano et al., 2003], and others.

Recently, along with advances in ML, and particularly deep
learning, ML-based generative models for physics event gen-
eration have received considerable attention. ML-based event
generators (MLEGs) have become an alternative approach
to MC simulations of physical processes. Instead of sim-
ulating physics events from first principles as in MCEGs,
MLEGs employ a data-driven approach to learn from event
samples. ML generative models, including Generative Ad-
versarial Networks (GAN) [Goodfellow et al., 2014], Varia-
tional Autoencoder (VAE) [Kingma and Welling, 2014], and
Normalizing Flows (NF) [Kobyzev et al., 2020], have been
adopted to implement MLEGs.

Compared to MCEGs, MLEGs yield several attractive ad-
vantages. First, MLEGs can be significantly faster than
MCEGs. MC simulations of the complete pipeline of par-
ticle experiments, including detector effect simulations, often
take minutes to generate a single event, even with the support
from modern supercomputers [Buckley, 2020]. In contrast,
MLEGs, after proper training, can produce millions of events
per second. Fast MLEGs can serve as compactified data
storage utilities, eliminating the need for maintaining MCEG
event repositories [Chekanov, 2015]. Second, MCEGs rely
on theoretical assumptions such as factorization and statisti-
cal models, which limit their ability to capture the full range
of possible correlations existing in nature between particles
momenta and spins. On the other hand, MLEGs trained di-
rectly on experimental event data are agnostic of theoretical
assumptions, and are able to explore the true underlying prob-
ability distributions governing the spectrum of particles pro-
duced in a reaction.



In this paper, we provide a comprehensive survey of ML-
based methods for physics event generation. Specifically,
we review the generative models adopted in state of the art
MLEGs and their detector effect simulations. In addition to
the well-known issues in training a generative model, MLEGs
come along with significant physics-related challenges. We
then present the approaches of encoding physics in the ML
models to address these challenges. Finally, we discuss the
following three open questions with respect to the outlook of
MLEG applications:

• Can MLEGs go beyond the statistical precision of the
training event samples?

• Can MLEGs faithfully reproduce physics?

• Can MLEGs provide new physics insights?

2 Machine Learning-based Event Generation
In this section, we first review the generative models used
in MLEGs. Then we describe the simulation of detector ef-
fects, after which we discuss the physics-related challenges
in MLEGs and the methods of incorporating physics into ML
models to address these.

2.1 Generative Models in MLEGs
Generative Adversarial Networks
GANs are the most popularly used generative models in
MLEGs. The regular GAN event generator is composed of
two neural networks: a generator G and a discriminator D.
The former is trained to generate fake event samples, and the
latter is a binary classifier to distinguish the events of the gen-
erated distribution PG from the true events with distribution
PT . G and D are trained under the value function V (D,G)

min
G

max
D

V (D,G) =〈logD(x)〉x∼PT

+ 〈log(1−D(x̃))〉x̃∼PG
.

(1)

As shown in the original GAN paper [Goodfellow et
al., 2014], given an optimal discriminator D∗ =
PT (x)/(PT (x) + PG(x)), training G becomes identical to
minimizing the Jensen-Shannon divergence (JSD)

min
G

V (D∗, G) = −2 log 2 + JSD(PG||PT ). (2)

If JSD becomes 0, then PG = PT .
Although GANs have demonstrated success in many appli-

cations, training a successful GAN model is known to be no-
toriously difficult [Salimans et al., 2016]. Many GAN models
suffer from major problems including mode collapse, non-
convergence, model parameter oscillation, instability, van-
ishing gradient, and overfitting due to unbalanced genera-
tor/discriminator combinations. Studies [Otten et al., 2019;
Hashemi et al., 2019] also reported a less satisfactory perfor-
mance when a regular GAN is used for event generation.

Several improved GAN architectures have been employed
in MLEGs to enhance GAN training:

• Least Squares GAN (LS-GAN): LS-GAN [Mao et al.,
2017] replaces the cross entropy loss function in the dis-

criminator of a regular GAN with a least square term

min
D

V (D) =
1

2
〈(D(x)− b)2〉x∼PT

+
1

2
〈(D(G(x̃))− a)2〉x̃∼PG

,

min
G

V (G) =
1

2
〈(D(G(x))− c)2〉x∼PG

.

(3)

As a result, by setting b − a = 2 and b − c = 1, mini-
mizing the loss function of LS-GAN yields minimizing
the Pearson χ2 divergence. The main advantage of LS-
GAN is that, by penalizing the samples far away from
the decision boundary, the generator is pushed to gener-
ate samples closer to the manifold of the true samples.

• Wasserstein GAN (WGAN): WGAN [Arjovsky et al.,
2017] used Wasserstein or Earth-Mover’s distance [Vil-
lani, 2016] to replace JSD in the regular GAN. Un-
der Kantorovich-Rubinstein duality, the Wasserstein dis-
tance is defined as

W (PG, PT ) = max
w∈W
〈fw(x)〉x∼PT

− 〈fw(G(x̃))〉x̃∼PG
,

(4)
where f is a family of K-Lipschitz continuous func-
tions, fw, parameterized by w in parameter space W .
Instead of directly telling fake events from the true ones,
the discriminator in WGAN is trained to learn a K-
Lipschitz continuous function to minimize the Wasser-
stein distance. Compared to JSD, Wasserstein distance
provides a meaningful and continuous measure of the
distance between the event distribution from the genera-
tor and the true event distribution, even when they have
no overlaps, which helps guide the training of the gen-
erator toward the true event distribution and reduce the
likeliness of mode collapse.

• Wesserstein GAN Gradient Penalty (WGAN-GP): A
problem in WGAN is to use weight clipping to main-
tainK-Lipschitz continuity of fw during training, which
still results in unstable training, slow convergence, and
gradient vanishing. WGAN-GP [Gulrajani et al., 2017]
replaces weight clipping with gradient penalty to en-
sure K-Lipschitz continuity and thus further improve
WGAN stability. The gradient penalty is calculated as

λ〈(||∇x̂fw(x̂)||2 − 1)2〉x̂∈px̂
, (5)

where parameter λ balances the Wasserstein distance
and gradient penalty, and px̂ is uniformly sampled along
lines between event pairs from PT and PG.

• Maximum Mean Discrepancy GAN (MMD-GAN):
MLEGs are particularly concerned about the precise
matching between the generated and the true event dis-
tributions, where MMD-GAN [Li et al., 2017] can be
used to enhance the matching precision. MMD-GAN in-
corporates an MMD term to the generator loss function:

MMD2(PG, PT ) = 〈k(x, x′)〉x,x′∼PG

+ 〈k(y, y′)〉y,y′∼PT
− 2〈k(x, y)〉x∼PG,y∼PT

,
(6)



MLEGs Data Source Detector Effect Reaction/Experiment ML Model
[Hashemi et al., 2019] Pythia8 DELPHES + pile-

up effects
Z → µ+µ− regular GAN

[Otten et al., 2019] MadGraph5 aMC@NLO DELPHES3 e+e− → Z → l+l−,
pp→ tt̄

VAE

[Butter et al., 2019] MadGraph5 aMC@NLO pp→ tt̄→ (bqq̄′)(b̄q̄q′) MMD-GAN
[Di Sipio et al., 2019] MadGraph5, Pythia8 DELPHES + FAST-

JET
2→ 2 parton scattering GAN+CNN

[Ahdida et al., 2019] Pythia8 + GEANT4 Search for Hidden Parti-
cles (SHiP) experiment

regular GAN

[Alanazi et al., 2020b]
[Velasco et al., 2020]

Pythia8 electron-proton scattering MMD-
WGAN-GP,
cGAN

[Martı́nez et al., 2020] Pythia8 DELPHES particle-
flow

proton collision GAN, cGAN

[Gao et al., 2020] Sherpa pp→W/Z + n jets NF
[Howard et al., 2021] MadGraph5 + Pythia8 DELPHES Z → e+e− SWAE
[Choi and Lim, 2021] MadGraph5 + Pythia8 DELPHES pp→ bb̄γγ WGAN-GP

Table 1: List of existing MLEGs.

where k(.) is a kernel function. MMD typically works
well in low dimension; however, the power of MMD
degrades with dimension polynomially [Ramdas et al.,
2015].

A GAN can also be extended to a conditional GAN
(cGAN) [Mirza and Osindero, 2014] to be involved in
MLEGs to generate events based on an initial reaction
condition. For example, [Velasco et al., 2020] generated
electron-proton scattering events conditioned on beam en-
ergy. [Martı́nez et al., 2020] simulated LHC parasitic col-
lisions conditioned on missing transverse energy. The condi-
tion is injected as an input to the generator along with noise
and is then propagated to the discriminator to differentiate
fake and true events under the same condition. The cGAN
allows MLEGs to explore events under unseen conditions, ei-
ther interpolatively or extrapolatively.

Variational Autoencoder
A VAE, composed of an encoder network Ψ and a decoder
network Φ, is an alternative generative model employed in
MLEGs. In MLEGs using a VAE, Ψ projects the events onto
latent variables z, and Φ reconstructs the events from z, while
z is forced to follow a standard normal distribution. Then,
the loss function of the VAE is motivated by variational infer-
ence [Blei et al., 2017] via minimizing the Kullback–Leibler
divergence (KLD) between the posterior p(z|x) and the en-
coded prior distribution q(z) = N (0, 1):

LVAE = ‖x− Φ(Ψ(x))‖2 + ηKLD(q(z)||p(z|x)), (7)
where the first term is the reconstruction error, the second
term computes KLD, and η is the harmonic parameter to bal-
ance the two.

The VAE can be further improved as a Wasserstein Au-
toencoder (WAE) [Tolstikhin et al., 2018] by replacing the
KLD term with Wasserstein distance in the loss function, for
a similar reason as for the GAN:
LWAE = ‖x− Φ(Ψ(x))‖2 + η′W (q(z), p(z|x)), (8)

where η′ is the harmonic parameter. [Howard et al., 2021]
adopted a Sliced Wasserstein Autoencoder (SWAE) [Kolouri
et al., 2018] for their MLEG, using a sliced Wasserstein dis-
tance to approximate W (q(z), p(z|x)).

Normalizing Flow
Without adopting adversarial learning, the NF is another gen-
erative model that has been used in MLEGs. The fundamen-
tal idea underlying NFs is the change of variables in proba-
bility functions. Under some mild conditions, the transfor-
mation can lead to complex probability distributions of the
transformed variables. NFs use an invertible mapping (bijec-
tion) function f , often implemented as a neural network, to
transform a distribution of x ∈ RD into y ∈ RD. The trans-
formed probability density function q(y) becomes

q(y) = p(x)

∣∣∣∣det
∂f

∂x

∣∣∣∣−1. (9)

With a series of mappings f1 . . . fk, an NF is obtained:

xk = fk ◦ · · · ◦ f1(x0), x0 ∼ q0(x0). (10)

The NF is able to transform a simple distribution into a com-
plex multi-modal distribution, and has demonstrated success
in collider physics simulations [Gao et al., 2020].

Existing MLEGs
Table 1 lists the existing MLEGs. In the literature, GANs,
VAEs, NFs, and their various improved architectures, have
been used to simulate physics events from different reactions
and training datasets. Both [Otten et al., 2019] and [Butter
and Plehn, 2020] reported that the LS-GAN yields better
performance than other generative models, not only in terms
of better precision, but also that in the explored scenarios
they were faster. However, at this point, it is too early to rule
out the optimal generative model architecture for general
MLEGs, which requires not only computational verification,
but also rigorous theoretical justifications.



(a) CLAS Detector - downstream
view.

(b) px − py plot reflecting detector
configuration.

(c) px, py , pz distributions, where sharp peaks, deep holes, and steep edges are observed.

Figure 1: Momentum components distributions of experimental data from an electron scattering experiment with the CLAS detector (a) at
the Jefferson National Accelerator Facility. (b) and (c) are generated using 75k samples.

2.2 Detector Effects
Any event generator, whether an MCEG or MLEG, that at-
tempts to faithfully reproduce a specific reaction channel,
as seen by a specific experimental apparatus, needs to take
into account not only the primary interaction at its vertex but
also the interactions of the emergent particles with materi-
als, along their trajectories, and with the devices detecting
them. The former should take into account energy losses, de-
cay, new particle production, as well as multiple scattering
effects, while the latter should carefully model detector re-
sponses to particles being detected.

The experimental setup introduces a detection volume, or
acceptance, which is usually quite complicated. The accep-
tance covers only a portion of the phase space of the reac-
tion, and has to be modeled employing MC packages, such as
GEANT4 [Agostinelli et al., 2003], DELPHES [Ovyn et al.,
2009], FLUKA [Böhlen et al., 2014], or similar.

We can classify the detector effects into three categories:
acceptance-, smearing-, and misidentification-related. All
these effects are mitigated in the MLEGs by using well de-
signed procedures that allow either to remove or to introduce
these effects into the synthetic data. The former is known as
“unfolding”, and the latter as “folding.” These procedures
usually involve training GANs with additional information
introduced by modifying loss functions to improve stability
and convergence [Musella and Pandolfi, 2018], using fully
conditional GAN (FCGAN), where the conditioning is done
on the detector response [Bellagente et al., 2020], or employ-
ing Wasserstein distance based loss function in a conditional

GAN framework (WGAN) [Erdmann et al., 2018].

2.3 Additional Physics-related Challenges
Compared to many applications employing machine learning
generative models to produce images, music, and arts, using
MLEGs to simulate events from particle reactions poses new
additional physics-related challenges for machine learning:

i Events generated by MLEGs should not violate physics
laws, such as energy and momentum conservation;

ii MLEGs for generating particle physics events are re-
quired to model the distributions of event features and
their correlations sufficiently precisely for the nature of
particle reactions to be correctly replicated;

iii The distributions of events exhibit natural, physics
driven patterns, such as discrete attributes, prominent
and narrow peaks, or symmetric behavior of certain
physical quantities. On top of that they also exhibit
artificial, detector-related, patterns, such as acceptance
induced holes and gaps, and efficiency based regions
of lower particle occupancy, which complicate MLEGs;
and

iv The outgoing particles, with increasing incident en-
ergy, will yield increased dimensionality of the emergent
products.

It is important to note that all existing MLEGs listed in
Table 1 are trained using simulated data generated from
MCEGs, such as Pythia, MadGraph, and Sherpa. When



learning from real experimental data, it adds an additional
level of complications to the MLEGs. Figure 1 shows the mo-
menta plots of experimental data from an electron scattering
experiment with the CEBAF Large Acceptance Spectrome-
ter (CLAS) detector at the Jefferson National Accelerator Fa-
cility. Due to the configuration of superconducting coils of
the torus magnet, spaced by angles of 60◦, the detector pack-
ages [Adams et al., 2001] shown in Figure 1a are accordingly
divided into six sectors so events that fall into the coils are
not detected, leaving six gaps in any particle transverse mo-
mentum components plot, px and py , shown in Figure 1b. As
a result, the 1D plots of px, py , and the remaining longitudi-
nal component, pz , as shown in Figure 1c, yield spikes, deep
holes, and sharp edges, which pose difficulty for MLEGs to
precisely learn their inherent physics laws as well as the de-
tector patterns.

2.4 Incorporating Physics into ML Model
To address the above physics-related challenges, an important
approach is to incorporate physics laws into the generative
models. When physics laws are appropriately encoded into
the generative models, it can lead to a reduction of the degrees
of freedom of the problem and thus improves the performance
of MLEGs.

Figure 2: Shows the distribution of pz generated by GAN with the
transformed features (red), and the direct simulation GAN (green),
and the true distribution from Pythia (black).

One way to incorporate a physics law into the generative
models is via feature engineering. When simulating the in-
clusive scattering electrons, [Alanazi et al., 2020b] found that
direct simulation GAN generates non-physical events violat-
ing energy conservation law. As shown in Fig. 2, a sharp edge
in the particle energy E distribution arises from energy con-
servation, which restricts E to be less than the input beam
energy, Eb. This sharp edge is very difficult to learn for
the inclusive GAN, whose output is the momenta 3-vector
(px, py, pz) of the electron, as non-physical events can be
generated with E > Eb, which the discriminator is not sensi-
tive enough to differentiate from the eligible physics events,
particularly when Eb − E is small. To address this problem,
a transformation T (pz) = log(Eb − pz) is applied to replace
pz as the output variable of the generator, which avoids the
production of non-physical particles. As shown in Fig. 2, the
transformation T (pz) improves the sensitivity of the discrim-
inator, yielding a significantly better match of pz distribution

with the data. Another example is, [Hashemi et al., 2019]
took into account the symmetries of process Z → µ+µ− and
pre-processed the event samples so that the azimuthal angle
of the leading charged lepton is always zero, which resulted
in a substantial improvement in terms of agreement with the
testing samples.

Another approach to incorporate physics into generative
models is to make the latent variables physically meaning-
ful. Typically, the noise fed to GAN or the latent variables
in VAE follow certain well-known, easy-to-generate distri-
butions such as Gaussian or uniform without physics mean-
ings. [Howard et al., 2021] expressed the latent distributions
in SWAE with quantum field theory and thus sampling the
latent space became efficient and was able to infer physics.

3 Open Questions
Compared to MCEGs which have been dedicatedly devel-
oped in over 50 years, MLEGs are in their infant stage, bring-
ing a lot of anticipations as well as many challenges and ques-
tions without clear answers yet. In this section, we discuss
three open questions/arguments with respect to the applica-
tions of MLEGs.

3.1 Can MLEGs Display Super-Resolution?
One of the very attractive properties of generative models is
super-resolution [Ledig et al., 2017], i.e., generating samples
going beyond the resolution of its training samples. Corre-
spondingly, in physics event generation, a question that has
been debated in literature is whether the generated events can
add statistics beyond that of the training sample or not. That
is, can the MLEG generate data that does not only reproduce
the examples seen in the training data, but produces addi-
tional, diverse, and realistic samples that are more useful for
downstream tasks than the original training data?

It has been claimed in [Matchev and Shyamsundar, 2020]
that, since the network does not add any physics knowledge,
one can only achieve as much statistical precision as the train-
ing sample’s. The main reason for this statement was that
an MLEG does not learn to mimic the true event generator
of the training sample, but rather the data of the sample it
was trained on. This would imply that one cannot improve
the model or parameter discrimination by increasing statis-
tics with the MLEG. In addition, the statistical uncertainty of
the training samples would enter the MLEG as systematical
uncertainty, thus creating an even more stringent overall un-
certainty than in the original data. It is stated, nevertheless,
that the MLEG could still offer a better relation between ac-
curacy and computational and storage resources than MCEGs
or real experimental data.

However, the findings in [Butter et al., 2020] show em-
pirically that the above claim of [Matchev and Shyamsun-
dar, 2020] is neither well founded nor fulfilled, thus declaring
MLEG as a promising venue for the amplification of training
statistics. Moreover, that work quantifies to which extent the
events can be amplified before being limited by the statistics
of the training samples. The argumentation in favor of aug-
mentation feasibility relies on the fact that MLEG are power-
ful interpolation tools even in high-dimensional spaces. De-
spite of being model-agnostic interpolators, the interpolation



functions do fulfill basic properties such as smoothness, and
therefore can add to the discrete data sets in a reliable fashion,
by enabling denser binning, i.e., higher resolution. In fact, it
was shown that an MLEG can achieve the same precision as
the minimal precision of a fit with a known functional form,
saturating at when a number of generated events is reached
that is up to orders of magnitude larger than the size of the
original training set. While this means that the MLEG cannot
outperform the precision of a functional fit, at the same time
it reassures us that in those cases where the functional form
of the fitting curve is unknown – which represents most of the
realistic physics scenarios –, the MLEG becomes a powerful
tool for precision augmentation.

3.2 Can MLEGs Faithfully Reproduce Physics?
Whether MLEGs can fully represent the underlying physics
of a reaction and then faithfully reproduce physical events or
not is critical to many applications where MLEGs are pro-
posed. In the existing MLEGs listed in Table 1, the agree-
ment between the events generated by MLEGs and the sample
events is mostly measured in 1D using χ2 or other statistical
metrics. In practice, physicists are often interested in the cor-
relation among event feature distributions. Another issue is
related to the rare events occurring in the reaction, which are
often precisely those of significant interest to physics. How-
ever, these rare events pose a difficult challenge to MLEGs,
which often bias to more frequent events during their training
process.

The methods of incorporating physics into MLEGs, as de-
scribed in Section 2.4, certainly help improve the precision
of MLEGs. Augmenting the generated features of MLEGs
to other important physics properties of interest, as described
in [Alanazi et al., 2020a], also increases the sensitivity of
the discriminator in the GAN event generator and thus en-
hances the quality of the generated events. Nevertheless, at
this point, there is lack of a comprehensive evaluation frame-
work to thoroughly evaluate the quality of MLEG events in
comparison with those from MCEGs or from experiments,
particularly in quantifying the correlation among event fea-
tures with physics meanings as well as measuring the quality
of the rare events.

3.3 Can MLEGs Provide New Physics Insights?
Can an MLEG go beyond the manifold of its training event
data and bring physical insight into regions without any train-
ing (experimental) data? We start the discussion of this ques-
tion from the extrapolation capability of neural networks. A
major drawback of a neural network is its difficulty in ex-
trapolation. The theoretical explanation is rooted from the
“universal approximation property” of a feedforward neural
network [Scarselli and Tsoi, 1998], i.e., a neural network can
approximate any continuous function and many discontinu-
ous functions by adjusting its parameters with respect to its
training samples. Therefore, for the space outside of the range
of the training samples, the output of a neural network is not
reliable. MLEGs trained using GAN, VAE, or NF are fun-
damentally neural networks, which thus inherit the extrapo-
lation disadvantage. [Velasco et al., 2020] showed that the

MLEG based on cGAN yields good agreement for interpolat-
ing events between training beam energy levels but less good
agreement for extrapolating events beyond training beam en-
ergy levels, particularly for events related to beam energies
further away from the training beam energies. This is consis-
tent with the above analysis.

There are two potential ways to extend MLEGs to gener-
ate correct events in the unknown regions. One is to apply
regularization, which forces the generator to adopt a simple
model to limit the degrees of freedom of its neural network
and avoid overfitting. More specifically, incorporating known
physics laws into the regularizers helps generalize the neural
networks and reduce their variation to explore the unknown
physics laws and theories. The other way is to generate artifi-
cial data samples within the unknown region by either physics
theory or simulation to correct the behavior of MLEGs. Both
approaches can also be combined to allow MLEGs, at least at
some extent, to extrapolate.

4 Conclusion and Outlook
Along with the advance of ML methods, MLEGs emerge
as an alternative approach to MCEGs to generate simulated
physical events mimicking those generated in high energy
physics accelerators. Compared to MCEGs, MLEGs demon-
strate attractive advantages including the fast event generation
and the quality of being agnostic of theoretical assumptions.

The development of MLEGs is still in its early stage. In
this survey paper, we review the ML generative models used
in existing MLEGs, including GAN, VAE, NF, and their en-
hanced architectures. Some studies reported that LS-GAN
yields better event quality over other generative architectures,
but they lack theoretical justifications. MLEGs, as practical
tools to simulate physical events, pose additional challenges
related to physics. We also review the methods of incorporat-
ing physics into MLEGs to address these challenges. We fur-
ther explore the open questions on the capability of MLEGs
on super-resolution, faithful reproduction of physics, and ex-
trapolation. The answers to these open questions will have
significant impact on the applications of MLEGs.

It is important to note that MLEGs are not likely to re-
place MCEGs, which are used to verify the underlying theory
when compared with experimental data. MLEGs, on the other
hand, can serve the purpose of remedying MCEGs’ statistical
weakness, particularly if the MLEGs’ super-resolution capa-
bility is confirmed. If MLEGs are extended with extrapola-
tion capability, they may interest broad applications to bring
in new physics insights. When MLEGs’ faithfulness of re-
producing physics is well-justified, MLEGs can also be used
as a compactified data storage utility to efficiently store and
regenerate physical events.

Unlike many generative model applications, such as pro-
ducing sharp looking images or fancy objects, where the dis-
tribution agreement between the generated samples and the
truths is often not strictly enforced, the general requirements
underlying MLEGs are to precisely reproduce a specific tar-
get distribution. The generative models developed in MLEGs,
which incorporate domain knowledge into the machine learn-
ing algorithms to faithfully generate samples mimicking com-



plex target distributions, have the potential to be applied to
broader applications, such as bioinformatics [Liu et al., 2019]
and cosmology [Li et al., 2021].
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A. Fassò, A. Ferrari, P. G. Ortega, A. Mairani, P. R. Sala,
G. Smirnov, and V. Vlachoudis. The FLUKA Code: De-
velopments and Challenges for High Energy and Medical
Applications. Nucl. Data Sheets, 120:211–214, 2014.

[Chekanov, 2015] S. V. Chekanov. Hepsim: A repository
with predictions for high-energy physics experiments. Ad-
vances in High Energy Physics, 2015:1–7, 2015.

[Choi and Lim, 2021] S. Choi and J. Lim. A data-driven
event generator for hadron colliders using wasserstein gen-
erative adversarial network. Journal of the Korean Physi-
cal Society, Feb 2021.

[Di Sipio et al., 2019] R. Di Sipio, M. Faucci Giannelli,
S. Ketabchi Haghighat, and S. Palazzo. DijetGAN: A
Generative-Adversarial Network Approach for the Simu-
lation of QCD Dijet Events at the LHC. JHEP, 08:110,
2019.

[Erdmann et al., 2018] M. Erdmann, L. Geiger, J. Glomb-
itza, and D. Schmidt. Generating and refining particle de-
tector simulations using the wasserstein distance in adver-
sarial networks. arXiv, 1802.03325, 2018.

[Gao et al., 2020] C. Gao, S. Höche, J. Isaacson, C. Krause,
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