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Abstract. Probing [26] is a general technique that is used to reduce the variance of the Hutchin-5
son stochastic estimator for the trace of the inverse of a large, sparse matrix A [19]. The variance of6
the estimator is the sum of the squares of the off-diagonal elements of A−1. Therefore, this technique7
computes probing vectors that when used in the estimator they annihilate the largest off-diagonal8
elements. For matrices that display decay of the magnitude of |A−1

ij | with the graph distance between9

nodes i and j, this is achieved through graph coloring of increasing powers Ap [25]. Equivalently,10
when a matrix stems from a lattice discretization, it is computationally beneficial to find a distance-p11
coloring of the lattice. In [23] a hierarchical coloring was proposed so that p can be increased at12
runtime as needed without discarding previous work.13

In this work, we study probing for the more general problem of computing the trace of a per-14
mutation of A−1, say PA−1. The motivation comes from Lattice QCD where we need to construct15
“disconnected diagrams” to extract flavor-separated Generalized Parton functions. In Lattice QCD,16
where the matrix has a 4D toroidal lattice structure, these non-local operators correspond to a PA−117
where P is the permutation relating to some displacement ~k in one or more dimensions. We focus18
on a single dimension displacement (k) but our methods are general. We show that probing on Ap19
or (PA)p do not annihilate the largest magnitude elements. To resolve this issue, our displacement-20
based probing works on PAp using a new coloring scheme that works directly on appropriately21
displaced neighborhoods on the lattice. We prove lower bounds on the number of colors needed, and22
study the effect of this scheme on variance reduction, both theoretically and experimentally on a23
real-world Lattice QCD calculation. We achieve orders of magnitude speedup over the un-probed or24
the naively probed methods.25
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1. Introduction. The approximation of the trace of a matrix function, f(A), of29

a large sparse matrix A is a computationally challenging problem. Commonly used30

functions are the A−1 and logA (which is used to find the matrix determinant). In this31

paper we focus on f(A) = A−1 which has many applications in statistics [19], quantum32

Monte Carlo [1], and data mining [8]. Our motivating application comes from lattice33

quantum chromodynamics (LQCD). In LQCD, the trace of the inverse of an operator34

discretized on a symmetric, four-dimensional, toroidal lattice representing space-time35

is often used to analyze the interactions, properties, and structure of hadrons on a36

subatomic scale [18]. The trace computations are part of larger scale Monte Carlo37

simulations and therefore do not require high accuracy but must induce no statistical38

bias.39
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Effective methods for computing Tr(A−1) exist for smaller matrices where sparse40

factorizations are possible [4, 9], but as the size of A increases they become compu-41

tationally infeasible and stochastic estimation is the only alternative. A widely used42

method for this is the Hutchinson’s trace estimator [19] which takes the form43

(1.1) Tr(A−1) ≈ 1

s

s∑
i=1

zTi A
−1zi,44

where zi are s i.i.d. random noise vectors (RNV). The computational complexity45

therefore is dominated by the solution of the linear systems with some iterative46

method. The RNVs are chosen to have a Rademacher distribution, where each ele-47

ment is equal to ±1 with probability 0.5. It is known that for this choice the estimator48

has variance49

(1.2) Var(zTA−1z) = 2(‖A−1‖2F −
N∑
i=1

(Ai,i)
2),50

which is minimum over all random distributions for zi when A is real [5]. The variance51

is the same for complex matrices, which is the case in LQCD, when Z4 Rademacher52

vectors are used, i.e., vectors with ±1,±i values with probability 0.25. The variance53

formula shows that large off-diagonal elements contribute significant errors to the54

estimator and cause slow convergence. Many techniques have been introduced and55

studied to reduce the variance of the estimator by choosing vectors that better take56

advantage of the structure of the matrix [5, 8, 17, 26, 28].57

One such technique is classical probing (CP). Probing is a general technique that58

uses graph coloring of the graph of an adjacency matrix A to construct structurally59

orthogonal probing vectors to extract specific non-zero entries of the matrix. For60

example, multiplying a diagonal matrix with a vector of ones recovers its diagonal.61

Similarly, when the adjacency matrix of a graph is k colorable, we can also recover62

the diagonal by multiplying the matrix with k vectors, each vector having ones in63

rows with the same color and zero elsewhere. In numerical optimization probing is64

applied on the graph of A2 in order to compute the Hessian [14]. For trace estimation,65

CP constructs probing vectors from a coloring of the graph of Ap or equivalently the66

distance-p coloring of the graph of A, where p ∈ Z+ [26]. The idea is that for many67

sparse matrices the elements of A−1ij display a Green’s function decay in magnitude68

with the distance between nodes i and j. Although A−1 is not sparse, using these69

probing vectors in the estimator removes from the variance (1.2) all elements (edges)70

of distance-p neighbors. A drawback of PC is that if a coloring for a certain distance71

p does not produce the required variance reduction, a higher distance coloring cannot72

reuse the quadratures computed with the previous probing vectors.73

Hierarchical Probing (HP) was introduced to address the reuse issue [23, 20]. HP74

assigns colors to nodes in a hierarchical way so that two nodes that receive the same75

color for some distance p will never share the same color in higher distances. The76

technique also provided a computationally inexpensive way to produce a distance-p77

coloring for large p when the matrix graph is a regular, toroidal lattice. This toroidal78

structure appears in LQCD matrices which is also the focus of the current paper.79

Deflation has also been used as a variance reduction technique [22, 12]. While80

probing techniques capture large elements from relatively small lattice distances, the81

low rank approximation of A−1 using the lowest magnitude singular triplets of A82

typically captures a large part of of the magnitude of A−1 at long distances. Thus,83
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the two approaches are complementary and, when used in tandem, can significantly84

accelerate the Monte Carlo estimator.85

In this paper we extend probing for computing the trace of a permutation of A−1.86

The motivation comes from LQCD computations of the flavor-separated Generalized87

Parton functions (GPDs) where the so-called “disconnected diagrams” need to be88

calculated [13, 3]. This translates to the need to find the sum of certain off-diagonal89

elements of A−1 that correspond to a displacement along the z dimension of the90

four-dimensional (space-time) LQCD lattice. This is a non-symmetric permutation of91

the rows of A−1, where the index of a node x no longer refers to [x1, x2, x3, x4], but92

instead [x1, x2, x3 + k, x4]. The associated trace problem is more challenging because93

the variance for PA−1 now includes the main diagonal A−1 which is of much larger94

magnitude than the one of PA−1.95

We propose an extension of CP that modifies a greedy coloring algorithm to con-96

sider not the node’s original neighborhood but the neighborhood of its displacement.97

The idea applies to any permutation matrix and can be performed in a hierarchical98

way if desired. For toroidal lattices with z-displacement we prove lower bounds on the99

number of colors and study the effect of the algorithm on variance reduction both the-100

oretically and with LQCD experiments. The method results in orders of magnitude101

variance reduction over conventional probing methods.102

The rest of the paper is organized as follows: Section 2 introduces notation and103

discusses previous variance reduction techniques. Section 3 introduces the coloring104

algorithm with displacements, and studies its properties theoretically. Experimental105

result are shown in Section 4. Conclusions and some open questions are given in106

Section 5.107

2. Background. In this paper we seek the trace of PA−1, where P is a permu-108

tation matrix, and A is a non-singular matrix of dimension N which can be complex109

valued as in the case of LQCD. Although our main idea applies to any P and A, the110

algorithm and the analysis is relevant to matrices stemming from a regular lattice111

discretization. Letting Zn be the multiplicative group of integers modulo n, then a112

d-dimensional toroidal lattice is described as113

(2.1) Zd
D = ZD1

× ...× ZDd
,114

where Di is the size of dimension i. Two lattice nodes x and y are connected by an115

edge if their coordinate vectors [x1, ..., xd] and [y1, ..., yd], satisfy ‖x − y‖1 = 1 (in a116

modulo sense). In LQCD, the lattice represents the 4 dimensional space-time.117

Variance reduction techniques for the Hutchinson trace estimator focus around118

two approaches; one derives an approximation to A−1 such as from deflation or119

preconditioning which we briefly address in Subsection 2.4; the other replaces the120

Rademacher vectors with ones that better take advantage of the structure of the ma-121

trix. Orthogonal columns of the Hadamard or Fourier matrix have been proposed122

[8] which can systematically annihilate specific diagonals of the matrix and thus re-123

duce the variance in (1.2). The variance reduction is monotonic with the number of124

columns used but this method works no better than using solely RNVs as the patterns125

of diagonals removed are not typically the heaviest variance-contributing diagonals of126

A−1. The following methods attempt to capture these heaviest elements directly.127

2.1. Classical Probing. The inverse of an N ×N non-singular matrix A where128

‖A‖ < 1 can be represented by the Neumann series A−1 =
∑∞

p=0(I − A)p [25]. As129

a result of this series being convergent, higher powers of (I − A)p provide a smaller130
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contribution to A−1. Many matrices from Partial Differential Equations, Lattice131

QCD, and other applications display a significant decay in the elements of (I − A)p132

for larger values of p, further motivating the idea of Probing [6, 26]. In LQCD, in133

particular, a basic form of probing was first used in [27] and has become more popular134

with the name dilution since [11].135

The CP (classical probing) method is not used to directly approximate A−1,136

but instead to locate its largest elements using graph coloring. Based on the decay137

principle above and since (I − A)p and Ap have the same adjacency matrix, it is138

the first few powers of Ap that contribute to the largest elements of A−1. Note139

that the neighborhood of a node x in the graph of Ap is the same as the distance-p140

neighborhood of x in the graph of A. Therefore, the computation of Ap can be avoided141

by working directly on the graph of A.142

Assume that we have computed a distance-p coloring of the graph of A which143

results in m colors. Conceptually, if we permuted the nodes with the same color144

together, the graph of Ap would have m color-blocks along the diagonal that are145

diagonal matrices. We construct the following structurally orthogonal probing vectors146

zj , j = 1, 2, ...m,147

(2.2) zj(i) =

{
1 if color(i) = j

0 otherwise
.148

Notice that these vectors can recover exactly the trace Tr(Ap) =
∑m

j=1 z
T
j A

pzj , be-149

cause they completely annihilate all matrix elements outside the color-blocks along150

the diagonal of Ap and because the color-blocks are diagonal matrices themselves.151

Although these diagonal blocks are dense matrices in the A−1, using these zj in the152

trace estimator (1.1) has the same effect of annihilating all off-diagonal blocks of A−1,153

or equivalently, any neighbor at distance up to p from any node in the same color154

group. Then the accuracy of the trace estimation is the summation of the variances155

(1.2) of the diagonal color-blocks.156

Figure 1 is used to display this effect. Let A be a 32-node 1D Laplacian matrix157

with periodic boundary conditions shifted by its smallest non-zero eigenvalue so it158

becomes non-singular. A distance-3 coloring of this matrix yields 4 colors. Consider159

the permutation vector perm that lists the indices of all nodes in order of their color160

label, i.e., nodes with color 1 come first, followed by color 2, 3, and 4. Plotting161

the A−1 symmetrically permuted by perm shows the color blocks along the diagonals162

(Figure 1a). Figure 1b shows A−1�HHT permuted the same way, where the columns163

of H consist of the four probing vectors from Equation (2.2). It can be seen that every164

element outside the color-blocks along the main diagonal gets annihilated.165

Computationally, a greedy, linear time coloring algorithm can be used, which166

for most matrices with regular sparsity patterns provides close to optimal number of167

colors. The bulk of the computation is spent on the iterative method that solves for168

the m linear systems A−1zj .169

CP is a deterministic method. Many applications, such as LQCD, require an170

unbiased trace estimator (unless the deterministic accuracy can be guaranteed to be171

well below the statistical significance of the simulation). Moreover, if the probing172

vectors from the distance-p coloring do not provide sufficient accuracy, we seek ways173

to either use the A−1 � HHT as the matrix of the statistical estimator (1.1) or to174

extend CP to higher distances. In either case, the work spent on solving A−1zj should175

be re-used and not discarded. This has been explored in [23, 20] as described next.176
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(a) A−1 permuted into color-blocks (b) Permuted A−1 after probing

Fig. 1: Using a shifted 1D Laplacian A with 32 nodes and boundary conditions,
Figure 1a shows A−1 permuted into color-blocks based on a distance-3 coloring before
probing vectors are applied. Figure 1b shows the result of these color-blocks after the
probing vectors are applied to the shifted Laplacian inverse, A−1 �HH ′.

2.2. Removing Deterministic Bias. The vectors zj in (2.2) consist of a sub-177

vectors of all 1’s. To remove the deterministic bias from the CP estimation, we can178

introduce random noise to the vectors zj similarly to one step of Hutchinson (s = 1).179

Consider the noise vector z0 ∈ ZN
2 and apply a Hadamard product between z0 and180

each of the probing vectors zj , j = 1, ...,m,181

(2.3) V = [z0 � z1, z0 � z2, ..., z0 � zm].182

As shown in [23], V V T = HHT have the same non-zero pattern, but using the vectors183

vj in (1.1) imparts no deterministic bias.184

Moreover, given a sequence of random vectors, z
(i)
0 , i = 1, . . . , s, we can construct185

the vector sets V (1), . . . , V (s) as above. Using these s×m vectors in (1.1) is the same186

as performing s steps of Hutchinson on the variance reduced matrix A−1 �HHT .187

2.3. Hierarchical Probing. Instead of applying the CP method for a fixed188

distance p followed by the Hutchinson stochastic estimator, it is more beneficial to189

continue with probing to higher distances as long as the elements of A−1 continue to190

display strong decay and as long as previous work can still be reused.191

This is the goal of Hierarchical Probing (HP) which was initially proposed for192

matrices with lattice-type structure [23] and was later extended to arbitrary sparsity193

patterns [20]. The idea is to enforce a hierarchical coloring which ensures that probing194

vectors for smaller distance colorings belong in the subspace of the vectors generated195

for larger distances. Therefore the trace estimation reuses the already computed196

quadratures zTj A
−1zj and augments them with those from higher distances.197

On lattices, we can generate a hierarchical coloring by recursively partitioning a198

d-dimensional lattice into 2d sub-lattices, each receiving a different color. The non-199

overlapping sub-lattices guarantee that if two nodes share a color at distance p, they200

must also share a color at any smaller distance, and if two nodes do not share a color201

at distance p, they will not share a color at higher distances. Each recursion step202

doubles the distance between nodes of the same color. The recursion stops when all203

nodes are given a separate color or when the requested distance is reached. A red-204
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black coloring between recursion steps allows for intermediate colorings as the number205

of colors increases by a factor of 2d at each recursion.206

Instead of using (2.2), probing vectors for the HP can be generated efficiently as207

special permutations of the rows and columns of the Hadamard or Fourier matrices.208

The nested coloring implies a nesting of the subspaces of the probing vectors which209

can be used incrementally until the desired accuracy is achieved. Used in its unbiased210

form of (2.3) with s = 1, this method proved particularly flexible and effective in real211

world LQCD problems [16, 15].212

HP was extended to arbitrary lattice sizes and in particularly general sparse213

matrices in [20]. These techniques can also be used with the algorithm of this paper214

if a hierarchical coloring is desired. However, because the number of colors required215

increase by a factor of 3-4 over the non-hierarchical version, we assume that users can216

choose a priori the required distance.217

2.4. Deflation. A different way to reduce the variance of the estimator is to218

deflate the lowest singular triplets of A [12]. Given U and V a number of approximate219

left and right singular vectors of the smallest singular values of A, we can form the220

oblique projector Q = AV (UTAV )−1UT and split the trace computation into two221

parts,222

(2.4) Tr(A−1) = Tr(A−1Q) + Tr(A−1(I −Q)).223

Because Tr(A−1Q) is easily computed as the trace of the small matrix (UTAV )−1,224

we can apply the stochastic estimator on the Tr(A−1(I − Q)) which is expected to225

have smaller variance. The number of singular vectors needed to provide a significant226

variance reduction of the estimator is dependent on the spectral decay of the matrix227

A and can be computed using an iterative SVD solver on A [12] or as approximations228

from the coarse grid space of multigrid [22].229

Deflation works complementary to probing. While probing effectively captures230

heavy elements of A−1 occurring within some distance p between nodes, deflation231

captures heavy connections between elements at long range distances. Therefore232

combining the two techniques has shown significant improvements over using one of233

these methods individually.234

3. Probing for Permutations. Consider the problem of finding the trace of235

PA−1 where P is a permutation matrix. The problem arises in Lattice QCD where P236

corresponds to one or more displacements in the lattice. We will study this problem237

shortly, but let us first consider the problem for a general P .238

The question is how to achieve the probing goals for PA−1. The CP method would239

take powers of the matrix APT which does not relate to how information propagates240

through powers of A to generate A−1. In other words, this method may not capture241

the largest elements of A−1 which are at close graph distances for each node, and242

thus does not satisfy the design goal of probing. Moreover, the powers (APT )p are243

much denser than the corresponding Ap which means a larger number of colors and244

thus probing vectors. Finally, APT is a non symmetric matrix so the graph coloring245

problem is not well defined, although this problem can be avoided by coloring the246

graph of the symmetric part of a matrix.247

The solution is conceptually simple. Since PA−1 = P
∑∞

p=0(I −A)p, we can first248

take powers of the matrix A, permute them, and then find the coloring on the associ-249

ated graph of PAp, or rather its symmetric part PAp+(PAp)T . Despite its simplicity,250

when this method is applied to toroidal lattices stemming from our LQCD application251
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it creates connectivity patterns that our HP method cannot handle. However, these252

patterns allow for a CP-based algorithm specifically tailored for this application.253

In LQCD, the application of disconnected diagrams requires the trace of a certain254

projected operator which for the purpose of this discussion can abstracted as the sum255

of all the elements of A−1 that correspond to a displacement k ∈ Zd
+, i.e.,

∑
xA
−1
ij ,256

where i is the index of the lattice node x = [x1, . . . , xd] and j is the index of node257

x+[k1, . . . , kd]. Let P be the permutation matrix that places the required off-diagonal258

elements onto the main diagonal. The corresponding permutation index is computed259

in MATLAB as260

perm = Coord2Index(mod(Index2Coord([1:N],D)+k,D), D);261

where the two functions are the maps between lattice coordinates and the particular262

index ordering of the application. The inverse permutation PT simply maps a lattice263

point y to y− [k1, . . . , kd]. The idea of coloring the graph of PAp + (PAp)T is shown264

in Figure 2 for a 1D lattice with k = 10 and p = 4.265

(a) Matrix A, 1D torus (b) Matrix of A4 (c) Displace by 10 (d) Symmetrized

Fig. 2: Applying a power and displacement to a matrix representation of a 1D toroidal
lattice. The red diagonal represents the locations of the elements corresponding to
the wanted displacement.

As with CP we use a greedy linear time algorithm to color PAp + (PAp)T . How-266

ever, by working directly on the lattice we are able to speed up the distance-p col-267

oring process. Given a node x with lattice coordinates [x1, .., xd], we do not find the268

distance-p neighborhood of x, but rather the distance-p neighborhoods centered at269

(3.1) x+ = [x1 + k1, . . . , xd + kd] and x− = [x1 − k1, . . . , xd − kd].270

Displacements in both k and −k directions enforce a symmetric matrix structure. We271

denote the distance-p neighborhood of x for displacement k as,272

Nd(x, k, p) = Nd(x+, 0, p) ∪Nd(x−, 0, p)

= {y : ‖y − x+‖1 ≤ p} ∪ {y : ‖y − x−‖1 ≤ p}.
(3.2)273

274

During coloring, we exclude {x} from the neighborhood, and when the dimension d275

is implied, we omit the superscript.276

We make three observations. First, the main diagonal of the original A−1, whose277

elements are typically of the largest magnitude, is part of the off-diagonal structure278

of PA−1 and contributes to the estimator variance. However, the (x, x) elements of279

this diagonal are now displaced to the (x, x−) links in the Nd(x, k, 0), so our new280

method eliminates them immediately for any probing distance. Second, because of281

the assumed decay, the elements of next-highest magnitude in A−1 will be in the282
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diagonals closest to the main or at distance p = 1 from it. The decay continues283

with higher distances p. Therefore the new algorithm includes in the neighborhoods284

Nd(x, k, p) all original distance-p neighbors of the points x+ and x− as these will285

have the largest weight. Finally, we note that although p = 0 removes the old main286

diagonal (the graph of P + PT ), in practice probing is meaningful for p ≥ 1.287

3.1. Coloring with Displacements Algorithm. Once we have defined the288

neighborhood of each node in the displacement graph we can use a simple greedy289

approach to color it [21]. The number of colors translates to the number of iterations290

in the stochastic estimator. It is not as critical to minimize this number as more291

vectors/iterations could imply a larger variance reduction. However, this additional292

reduction beyond the best distance-p coloring is hard to quantify and may not be293

more effective than using extra random noise vectors. The order in which nodes are294

visited by the greedy algorithm is thus important.295

We have experimented with some common visitation orders such as natural and296

red-black orderings, a completely random order, and a random red-black where the297

order of the nodes within a color is random. In addition, we tested a domain de-298

composition idea, where an independent set of the graph of Ai was constructed for299

various i’s, and then breadth first search was used to add neighborhoods to each of300

these centers (for i = 1 this reverts to red-black). After extensive testing we observed301

that in most cases, natural and red-black orders achieved the least amount of colors.302

Surprisingly, thousands of runs of the random variants yielded only marginal improve-303

ments, and the domain decomposition idea deteriorated with increasing i. We believe304

this is due to the well-structured connections of the lattice.305

Algorithm 3.1 shows how to work directly on the lattice Zd
D to apply the greedy306

distance-p coloring algorithm for a displacement vector k, and for a user-defined vis-307

itation order. It returns a vector Colors which can be used in (2.2) to generate308

the probing vectors. To avoid re-computing the neighborhood for each lattice point,309

Algorithm 3.2 builds first a “stencil” of coordinate offsets that when added to the co-310

ordinates of some point x return the coordinates of the points in N(x, k, p). Because311

every lattice node is of the same degree, it is clear that the maximum number of colors312

produced by the greedy algorithm is one more than the degree of a node, i.e., colors313

are less or equal to |N(x, k, p)| + 1 = len(Stencil(:, 1)) + 1. A bit array of this size314

can be used to record the colors used for each neighborhood and find the first color315

not in use. The colors returned by Algorithm 3.1 are used in (2.2) and then (2.3) to316

generate the unbiased probing vectors to be applied on the displaced inverse PA−1.317

The size of the distance-p L1 ball on the lattice is O(pd) and the stencil contains318

two such balls in N(x, k, p). To union the two stencil balls we have to remove dupli-319

cates when the balls overlap, which can be obtained by sorting the elements. This320

gives a complexity O(pdd log p) to generate the stencil. The dominant part of the321

complexity is the linear time greedy algorithm which visits the N(x, k, p) for each x,322

and therefore the algorithm’s complexity is O(Npd).323

Although the algorithm we presented is for any d-dimensional displacement, in324

practical LQCD problems the displacement occurs only in the z space-time direction.325

For convenience our theoretical discussion considers the displacement to be in the 1st326

dimension, i.e., k = k1 and k2 = . . . = kd = 0.327

3.2. Lower Bound on the Number of Colors. The chromatic number of a328

graph must be at least the size of its maximal clique. In our problem, the neighborhood329

of every lattice node is the union of two L1 balls so we seek to identify its maximal330

clique. This is complicated by the wrap-around property of the torus which adds331
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Algorithm 3.1 Displacement Coloring on a d-Dimensional Lattice

Input:
k = Displacement array of length d
D = Array of lattice dimension sizes of length d
p = Coloring distance

Output:
Colors = Array of lattice colors

1 N = prod(D); Colors = zeros(N, 1);
2 Stencil = Create Stencil(p, k, 1, zeros(1, len(D))); # Find neighborhood offsets

3 for i = Make Visiting Order(N) do
4 ix = Index2Coord(i,D); # Convert the node index to a lattice coordinate

# For each offset in the stencil, add it to ix to find ix’s neighborhood

5 Neighbor Colors = [];
6 for s = Stencil do
7 n = Coord2Index(mod(ix+ s, D));
8 Neighbor Colors = [Neighbor Colors, Colors(n)];

# Create a logical array to mark which colors are already in use

9 Colors In Use = false(len(Stencil(:, 1)));
10 for c = Neighbor Colors do
11 if c > 0 then
12 Colors In Use(c) = true;

# Find the first color not in use and set that to be i’s color

13 for j = 1 :len(Colors In Use) do
14 if ∼ Colors In Use(j) then
15 Colors(i) = j;
16 break;

Algorithm 3.2 Find coordinate offsets for each node in a neighborhood

Input:
x = d-dimensional array to store an offset; p = Coloring distance
k = Displacement array of length d; dim = Recursion/dimension level

Output:
Stencil = A mapping of a lattice coordinate’s neighbors

Create Stencil(x, p, k, dim)

1 if dim == 1 then
2 Stencil = []; # Empty array to hold all neighbor offsets

3 if dim == len(x)+1 then
# Append the positively and negatively displaced offset to the stencil

4 return unique([Stencil; x+ k; x− k], ‘rows’);

# Find the distance-p neighborhood around x

5 for j = −p : p do
6 x(dim) = j
7 Stencil = [Stencil, Create Stencil(x, p− |j|, k, dim+ 1)]

8 return Stencil
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additional constraints to the coloring and thus the results depend not only on k and332

p, but also on the size Di of each dimension. To avoid this complication, we ignore333

the toroidal property which, for sufficiently large Di, is equivalent to considering the334

lattice Zd
∞ which is infinite in all d dimensions. By removing these constraints from335

the coloring algorithm, the size of the maximal clique of the infinite lattice may be336

smaller, and thus its size will still be a lower bound to the chromatic number of the337

finite toroidal lattice. We call the number of colors required to distance-p color the338

infinite lattice with displacement k in dimension 1, col(Zd
∞, k, p).339

Without displacement, k = 0, each neighborhood N(x, 0, p) is an L1 ball of radius340

p. Any two points in this ball are at L1 distance 2p or less. Therefore, the maximal341

clique of the distance-p graph of N(x, 0, p) should be the nodes inside the L1 ball of342

radius bp2c. If p is odd, this L1 ball is extended by one point in one dimension. The343

lower bound on the chromatic number is given by the size of this clique344

(3.3) col(Zd
∞, 0, p) =

{
|Nd(0, 0, p2 )| if p is even
|Nd(0, 0, bp2c)|+ |N

d−1(0, 0, bp2c)| if p is odd
,345

where 0 = [0, ..., 0] is chosen as a representative neighborhood center. Recurrence346

relations can be derived to compute this number for any dimension, although general347

closed forms for an arbitrary number of dimensions are not known. More details can348

be found in [7, 23, 20].349

With displacement (k > 0), the L1 balls of a neighborhood N(x, k, p) are not350

centered around the node x, resulting in different coloring patterns. We characterize351

the number of colors needed, first for k ≥ p and then for k < p. Proofs are given in352

Appendix A.353

Theorem 3.1. Let x ∈ Zd
∞. If k ≥ p, then ∀y 6= x with y1 = x1, it holds354

y /∈ N(x, k, p).355

The above theorem implies that when k ≥ p all nodes with the same x1-coordinate356

can share the same color, reducing the d-dimensional coloring problem to a 1D prob-357

lem. An example of this can be seen in Figure 3. To find the lower bound on the358

number of colors we consider the two sub-cases, k = p and k > p, separately.359

(a) N2(x, 4, 4) (b) N2(x, 6, 4)

Fig. 3: The neighborhood N2(0, k, p) and how 1D coloring is sufficient when k ≥ p.

Theorem 3.2. If k = p, then col(Zd
∞, k, p) = 2p+ 1.360

Theorem 3.3. If k > p, then col(Zd
∞, k, p) = d 2k

k−pe = d 2p
k−pe+ 2.361
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When k < p, the two L1 balls centered around x− and x+ overlap. Next, we362

identify the maximal clique in this neighborhood for which all points are at distance363

p or less considering displacement k. As before, we center the neighborhood at x = 0.364

Theorem 3.4. Assume (p + k) is even and k < p. Let, α = bp+k
2 c, β = bp−k2 c,365

and define the set366

(3.4) C(d, α, β) =

{
x : ‖x‖1 ≤ α and

d∑
i=2

|xi| ≤ β

}
.367

Then ∀x, y ∈ C(d, α, β), x ∈ N(y, k, p), i.e., C(d, α, β) constitutes a distance-p clique.368

(a) p = 6, k = 0 (b) p = 6, k = 2 (c) p = 6, k = 4

Fig. 4: The distance-p clique shown in grey of the neighborhood N3(0, k, p) which is
shown as wire frames, when p > k and (p+ k) is even as described in Theorem 3.4.

For (p+ k) is odd, (3.3) shows that when k = 0 the clique needs to be extended369

by one hyper-surface. In Theorem 3.5 we prove that for k > 0 the clique requires two370

additional hyper-surfaces as depicted in Figure 5.371

(a) p = 7, k = 0 (b) p = 7, k = 2 (c) p = 7, k = 4

Fig. 5: Distance-p cliques of N3(0, k, p) when (p+k) is odd as shown in Theorem 3.5.
Set C(d, α, β) is the grey set in the center, set S is the red hyper-surface on the right,
T is the blue hyper-surface on the top.

Theorem 3.5. Assume (p+ k) is odd and p > k. Define C ′ = C(d, α, β)∪T ∪S,372

where C(d, α, β) is defined in (3.4) and373

T = {x : −(k − 1) ≤ x1 ≤ k and 1 ≤ x2 < β + 1 and
∑d

i=2
|xi| = β + 1},(3.5)374

S = {x : k + 1 ≤ x1 ≤ α+ 1 and |x2| ≤ β and ‖x‖1 = α+ 1}.(3.6)375376
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Then ∀x, y ∈ C ′, x ∈ N(y, k, p), i.e., C ′ constitutes a distance-p clique.377

Finally, to count the number of points in the clique for any combination of d, k, p378

we can use the recursive Algorithm 3.3. Table 1 shows the analytic formulas for the379

size of C(d, k, p) obtained by the nested summations of points over all dimensions for380

lattices with d = 1, 2, 3, 4 when p + k is even and p > k. For p + k odd, we need to381

add also the size of d − 1 dimensional hyper-surfaces S and T . It is not hard to see382

that |S| + |T | = |C(d − 1, α, β)|. Therefore, we arrive at the following general lower383

bound for the number of colors of our algorithm,384

(3.7) col(Zd
∞, k, p) =


2p+ 1 if p = k
d 2k
k−pe if p < k

|C(d, α, β)| if p > k, p+ k even
|C(d, α, β)|+ |C(d− 1, α, β)| if p > k, p+ k odd

.385

Algorithm 3.3 Recursive Function to Find the Lower Bound on Colors Needed

Input:
p = Coloring distance; k = Displacement (in the first dimension)
s = The current distance traveled; d = Current dimension level
min Colors = Number of colors needed so far

Min Num Colors(p, k, s, d,min Colors)
1 if k > p then

2 min Colors = d 2*p
k−pe+ 2;

3 return min Colors

4 if d == 0 then
5 min Colors = min Colors+ 1;
6 return min Colors

7 if d == 1 then

8 min Colors = min Colors+ 2*(bp−k2 c − s) + 1;
9 return min Colors

10 for i = −bp−k2 c+ s : bp−k2 c − s do
11 min Colors =Min Num Colors(p, k, s+ |i| , d− 1,min Colors);

12 return min Colors

d Size of the clique C(d, α, β) for p > k and (p+ k) even

1 2α+ 1
2 −2β2 + 4αβ + 2α+ 1
3 − 8

3β
3 + (4α− 2)β2 + (4α+ 2

3 )β + 2α+ 1
4 1

3 (2(4β3 + 6β2 + 8β + 3)α− 6β4 − 8β3 − 6β2 + 2β + 3)

Table 1: Formulas for size of the clique |C(d, α, β)|, if p > k and (p+ k) is even, with
α = bp+k

2 c and β = bp−k2 c. If (p+ k) is odd, use (3.7).

3.3. Clearances. The LQCD application of disconnected diagrams requires the386

computation of traces not only for one but for multiple displacements (e.g., k =387

This manuscript is for review purposes only.



PROBING FOR TRACE ESTIMATION OF A PERMUTED MATRIX INVERSE 13

0, . . . , 8). Using different colorings to individually find each of the traces is computa-388

tionally prohibitive as we would have to solve a different set of linear systems for each389

of the nine displacements. Therefore, it is natural to ask whether the probing vectors390

from one displacement can be used effectively for other ones. Theorem 3.6 shows that391

if a distance-p coloring generated for displacement k is used for displacement k+λ or392

k − λ, then it clears at least distance max(p− λ, 0).393

Theorem 3.6. N(0, k ± λ, p− λ) ⊆ N(0, k, p), for any λ ≤ p.394

Based on this theorem, a specific (k, p)-coloring, i.e., a distance p-coloring for395

displacement k, will also be effective in reducing variance for nearby displacements.396

However, its effectiveness declines for farther displacements. In our LQCD experi-397

ments we show that choosing larger valued (k, p) pairs is more beneficial.398

3.4. Multiple Displacements. The diminishing clearance achieved from (k, p)-399

coloring to farther displacements motivates the idea of finding a single distance-p400

coloring for a graph stemming from multiple displacements. The goal is to spread the401

effectiveness of a power p to more values of k, instead of using one k and a high p402

value, while still using less colors than all displacements individually. Given a list of403

displacements, k1, k2, . . . , kn, the neighborhood of a node x can be constructed as,404

(3.8) N(x, [k1, ..., kn], p) = N(x, k1, p) ∪ . . . ∪N(x, kn, p).405

Algorithm 3.1 can be modified to do this by calling Create Stencil for multiple dif-406

ferent k vectors and unioning the created stencils together.407

As expected from Theorem 3.6, we observed that the resulting clique is smaller408

when the displacements k1, k2, . . . , kn are successive. In fact, when the distance be-409

tween displacements is more than p, this method returns similar number of colors to410

coloring each displacement separately. However, in our LQCD experiments even suc-411

cessive multiple displacements did not yield improvements in variance over just using412

one of the higher displacements (say kn) with distance larger than p. We believe this413

is due to the fact that smaller displacement traces have significant higher magnitude414

thus requiring less variance reduction. This is discussed in the experiments section.415

3.5. Tiles. Despite the linear complexity of Algorithm 3.1, practical lattice sizes416

reach 644 and often larger, and the neighborhood size is O(p4) (e.g., for k = 0, p = 10417

there are 8361 neighbors to visit). It is clear therefore that we should avoid running418

the method every time a new trace problem is solved. One solution is to generate419

and save in a database colorings for most useful lattice sizes. However, the regular420

structure of the lattice results in coloring patterns that repeat across the lattice. This421

is one of the motivations for tiling: we color a smaller toroidal lattice, the tile, and422

repeat its coloring throughout the lattice. Small tiles can be generated at runtime,423

and several common larger tiles can be saved in the aforementioned database.424

The second motivation comes from the effect of lattice size to the number of colors.425

While our analysis was based on Zd
∞, with a wrap-around structure the additional426

constraints make the number of colors sensitive to the lattice size. For example,427

the distance-1 coloring of a non-periodic 1D lattice requires 2 colors, while for the428

toroidal lattice we need 2 colors when D1 is even and 3 colors when D1 is odd. These429

effects are amplified in higher dimensions and larger distances. Interestingly, for a430

given combination (k, p), increasing the lattice size often results in a larger number431

of colors. Therefore, it is beneficial if a lattice can be composed with smaller tiles.432

There are certain constraints that the tile size must satisfy. First, because the433

periodicity in the tile must match that of the lattice, a hyper-cubic tile must be used.434
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Second, the tile needs to be large enough to include an entire N(x, k, p) neighborhood.435

Otherwise, the neighborhood will wrap-around the boundary and thus require more436

colors than a larger tile would need. This means that in dimensions without displace-437

ment the length needs to be at least 2p + 1. The dimension with the displacement438

should have length at least 2(p+ k) + 1. For example, a (k = 8, p = 8)-coloring on a439

4D lattice would require a tile of size at least 34× 183.440

A third constraint is that the tile dimensions must divide the dimensions of the441

lattice to ensure a valid coloring. In LQCD lattices have dimensions that are a power442

of two in size, occasionally including a factor of three. Therefore, the minimum size443

34 × 183 tile of the previous example cannot be used. One solution is to consider444

tiles with each dimension length being the smallest power of two that is greater than445

the minimum required length. In the previous example, the tile size required for the446

(8, 8)-coloring on a 4D lattice would be 64×323. The drawback of this requirement is447

that tiles may become too large and some of their dimensions (in particular the one448

with displacement) may be longer than the size of the actual lattice. In such cases, we449

may limit the tile size in the offending dimension to Di. This ensures a valid coloring,450

although with possibly a few more colors, but also standardizes the number of tiles we451

need to pre-compute and store. In the example above, if the lattice is of size 32×643,452

then the size of the (8, 8)-coloring tile becomes 324.453

p Displacement

0 1 2 3 4 5 6 7 8

1 44 8 × 43 8 × 43 16 × 43 16 × 43 16 × 43 16 × 43 32 × 43 32 × 43

2 84 84 16 × 83 16 × 83 16 × 83 16 × 83 32 × 83 32 × 83 32 × 83

3 84 16 × 83 16 × 83 16 × 83 16 × 83 32 × 83 32 × 83 32 × 83 32 × 83

4 164 164 164 164 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163

5 164 164 164 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163

6 164 164 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163

7 164 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163 32 × 163

8 324 324 324 324 324 324 324 324 324

9 324 324 324 324 324 324 324 324 324

10 324 324 324 324 324 324 324 324 324

Table 2: Tile sizes for each (k, p)-coloring for a 323× 64 lattice with the displacement
in the first dimension (corresponding to the z, x, y, t dimensions of the application).

Table 2 shows the tiles sizes for different (k, p)-colorings chosen with the above454

policy for a 4-dimensional toroidal lattice of size 323 × 64. This is the lattice of our455

experiments in the next section. For clarity the table shows the displacement in the456

first direction, although our LQCD application requires it in the third dimension.457

4. Experiments. We have implemented our code in C and in MATLAB. The458

computation of all lattice tiles in Table 2 was performed with the C code. All tests459

were run on the Femto subcluster at William & Mary where each compute node is a460

32-core 960 Xeon Skylake with a clock speed of 2.1GHz. The timings for each of the461

(k, p)-colorings on a single thread are shown in Table 3, but the code can be easily462

parallelized. While iterating through each node must be sequential in nature to avoid463

coloring conflicts, gathering the color labels of a single node’s neighbors is a read-464

only process that can be done independently. For example, the maximum number465

of neighbors each node can have for an (8, 10)-coloring is 16,681, allowing for decent466

speedups. A red-black scheme can also obviously be done in parallel, as the red nodes467

and black nodes can be separated and colored independently.468
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p Displacement

0 1 2 3 4 5 6 7 8

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.01 0.01

3 0.01 0.02 0.02 0.02 0.03 0.05 0.04 0.04 0.04

4 0.21 0.33 0.39 0.41 0.82 0.82 0.82 0.83 0.83

5 0.44 0.67 0.79 1.70 1.74 1.75 1.75 1.75 1.76

6 0.84 1.22 2.92 3.16 3.29 3.32 3.32 3.34 3.33

7 1.44 4.13 4.93 5.44 5.68 5.79 5.82 5.84 5.85

8 38.88 55.23 64.81 71.35 77.19 76.69 77.84 78.54 77.99

9 61.63 85.06 97.91 108.21 114.82 119.90 121.16 121.22 122.22

10 91.16 121.33 143.77 157.81 167.94 175.82 179.13 180.09 180.38

Table 3: Time (in seconds) to run each (k, p)-coloring with tile sizes outlined in Table 2
and the resulting number of colors is shown in Table 4.

4.1. Number of Colors Computed. As the number of colors equates to the469

number of linear systems needing to be solved in Equation (1.1), we are interested in470

studying how close the number returned by the greedy algorithm is to the theoretical471

lower bounds summarized in (3.7). As discussed in Subsection 3.5, the lower bounds472

are for lattices without boundary restrictions so depending on lattice size we expect473

variability in the deviation from the lower bound.474

p Displacement

0 1 2 3 4 5 6 7 8

1 2/2 5/3 4/4 5/3 3/3 4/3 4/4 3/3 3/3

2 16/9 9/6 6/5 10/6 4/4 6/4 5/3 4/3 3/3

3 16/16 32/23 11/10 9/7 8/8 6/5 7/4 5/4 4/4

4 119/41 64/40 92/37 17/14 14/9 12/10 10/6 6/5 4/4

5 170/66 324/91 92/64 64/51 27/18 21/11 19/12 9/7 6/6

6 256/129 442/142 586/141 128/88 104/65 34/22 19/13 18/14 8/8

7 256/192 815/255 795/218 866/192 192/112 172/79 37/26 17/15 16/16

8 1037/321 976/368 1024/381 1206/294 1254/241 336/136 160/93 33/30 30/17

9 1298/450 2031/579 1024/544 1760/507 1577/370 1556/291 288/160 128/107 52/34

10 2220/681 2462/790 3238/837 1922/720 2082/633 1976/446 1954/341 256/184 264/121

Table 4: The first number is the smallest number of colors achieved for distance-p,
displacement k, on the tiles of size as noted in Table 2. The second number is the
lower bound for that (k, p) from (3.7).

Table 4 shows the least amount of colors achieved between natural and red-black475

orderings for our different (k, p)-colorings. Next to this number is the theoretical lower476

bound for each (k, p) combination where k ∈ {0, 1, ..., 8} and p ∈ {1, 2, ..., 10}.477

The ratio between the two numbers for all combinations is plotted in Figure 6.478

We observe that when k ≥ p, the achieved number of colors is very close to the lower479

bound as the coloring problem becomes one-dimensional, which provides significantly480

fewer clique constraints. However, once the two displaced neighborhoods begin to481

overlap, the number of constraints increases and we see the boundary effects of the482

tiles. Nevertheless, the ratios for the most useful (k, p) combinations are 3 or less.483

4.2. Comparisons to Other Methods. Based on the tiles outlined in Table 2,484

we generated probing vectors that were used in trace estimation experiments using485

the Chroma library from Jefferson Laboratory [10]. The 323 × 64 lattice generated486

by Chroma used a Clover fermion action with quark mass of -0.239. The gauge487

configuration is from the same ensemble listed as Ensemble B in [12]. More details488

about this ensemble can be found in [29]. As suggested in [12], we deflate with 200489

largest singular vectors of A−1 which are computed using the PRIMME library [24].490

The solution of linear systems is performed with the MG-proto library of Chroma 1.491

1http://jeffersonlab.github.io/qphix and github.com/jeffersonlab/mg
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Fig. 6: The ratio of the minimum number of colors achieved with a (k, p)-coloring to
the theoretical lower bound in Table 4. Each column is a different displacement.

We compare our displacement probing method against the unprobed Hutchinson492

method and against CP without displacement. Because in LQCD each lattice point493

has 12 degrees of freedom (for all spin-color combinations), all methods perform a494

probing of these 12 components (called spin-color dilution in the literature [6]). This495

amounts to taking a Kronecker product of each probing or random vector with a496

12 × 12 identity matrix, and thus implies twelve linear systems must be solved for497

each random or probing vector. We also assume that the matrix A has already been498

deflated with 200 singular triplets.499

Let v(PkA
−1) be a shorthand for the variance (1.2) for the matrix PkA

−1, where500

Pk is the permutation matrix that places the elements of A−1 corresponding to dis-501

placement k in the main diagonal (clearly P0 = I). The unprobed Hutchinson method502

is run with s1 = 1, 000 Rademacher vectors to estimate the trace and variance of503

PkA
−1. For the probing with displacements and the CP methods, let H be the504

N × m matrix with the required m probing vectors as columns, and considering505

s2 = 10 Rademacher vectors, construct the m× s2 vectors V (1), . . . , V (s2) as in Sub-506

section 2.2. These are used to estimate the trace and variance for each PkA
−1.507

To compare the methods in a meaningful way we must consider their effect under508

the same number of linear systems solved. For the Hutchinson method the computed509

variance of the s1 quadrature values computed in (1.1) provides a good estimation of510

v(PkA
−1). Similarly for the probing variants after s2 Hutchinson steps we expect a511

good estimation of v((PkA
−1) �HHT ). However, each of the s2 stochastic steps of512

the probing variants solves m linear systems, which implies that the speedup is513

(4.1) Speedup over random =
v(PkA

−1)

m× v((PkA−1)�HHT )
.514

Table 6 shows the detailed results for trace and variance estimations as well as515

speedups for Hutchinson and for our new method for different combinations of k,516

p. The speedups for probing with displacements over solely random noise are also517

graphed in Figure 7. We make a few observations. First, the larger the displacement518
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k, the larger the speedup of the new method over random noise. Second, as mentioned519

before, distance 1 probing has the biggest impact as it removes the main diagonal of520

A−1, as well as the elements at distance-1 away from the main diagonal. Third, the521

speedup increases with p but peaks at a certain distance, typically around p = 6 for522

smaller displacements and around p = 9 for larger displacements. This is expected523

as the elements of A−1 decay at higher distances making it less beneficial to probe524

them directly instead of randomly. Finally, for k = 0, probing is equivalent to CP525

and gives a speedup of 16 over Hutchinson which is slightly better than our previous526

HP method albeit giving up the hierarchical property.527

Speedup of Probing with Displacements over Unprobed Hutchinson
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Fig. 7: Speedups of probing with displacements over unprobed Hutchinson using each
(k, p)-coloring from Table 6 to find tr(PkA

−1).

To solve the problem with displacements, practitioners had previously attempted528

to use CP or HP [2] or a more localized hopping parameter expansion [30]. We want529

to show the improvements of our method over CP. Let mk be the number of probing530

vectors produced in the (k, p)-coloring to form Hk. Clearly the m0 vectors forming531

H0 are the CP vectors, which could be used to reduce the variance of the estimator532

for PkA
−1. The speedup of probing with displacements over CP is then,533

(4.2) Speedup =
v((PkA

−1)�H0H
T
0 )×m0

v((PkA−1)�HkHT
k )×mk

.534

In Figure 8 we can see this speedup increasing with displacement, although for535

small displacements it decreases with distance. This is because CP builds its neigh-536

borhood outward from the new diagonal, so it can only eliminate the original main537

diagonal when p ≥ k. Even then, as the displacement grows the number of colors the538

new method needs to achieve a distance-p coloring becomes much smaller. For exam-539

ple, a (0, 7)-coloring uses 256 colors, while an (8, 7)-coloring only uses 16. Therefore,540

even if CP does remove the high-magnitude elements eventually, it can take many541

more probing vectors to do so.542

4.3. Using one coloring for all displacements. Theorem 3.6 showed that a543

(k0, p0)-coloring would clear all nodes up to distance p = max(0, p0 − |k0 − k|) for a544
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Speedup of Probing with Displacements over Classical Probing
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Fig. 8: Speedup of probing with displacements with (k, p)-colorings over classical
probing with (0, k)-colorings to find tr(PkA

−1) using (4.2).

displacement of k. Table 5 confirms this experimentally for the (8, 10)-coloring but545

also shows how many nodes are not annihilated beyond the distance described by the546

theorem. To obtain this, for each pair of (k, p), k = 0, . . . , 8, p = 1, . . . , 12, we go547

through every node x in the lattice and compute the percentage of nodes exactly at548

distance-p from x+ or x− that share the same color label as x. These are distance-p549

neighbors that are not annihilated by the (8, 10)-coloring. We report the average of550

this percentage over all N nodes. When the percentage is 0.00, it means that distance551

is “cleared”, i.e., all nodes of that distance are annihilated from the variance.552

Distance Displacement
0 1 2 3 4 5 6 7 8

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 4.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 9.38 1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 3.33 3.41 0.63 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 1.40 1.76 0.35 0.00 0.00 0.00 0.00 0.00
7 2.52 0.00 0.78 1.05 0.22 0.00 0.00 0.00 0.00
8 4.69 1.29 0.00 0.49 0.69 0.15 0.00 0.00 0.00
9 2.01 2.56 0.79 0.00 0.33 0.47 0.10 0.00 0.00
10 0.00 1.16 1.64 0.53 0.00 0.24 0.34 0.07 0.00
11 1.66 0.00 0.77 1.14 0.38 0.00 0.18 0.26 0.06
12 3.13 1.05 0.00 0.54 0.83 0.29 0.00 0.13 0.20

Table 5: The average percentage of neighbors at exactly distance-p that do not get
eliminated from the trace estimator when using a (8, 10)-coloring to find other dis-
placements. The lattice size used is 323 × 64 with a tile size of 324.

The presence of zeros for any p ≤ 10 − |k − 8| confirms Theorem 3.6. For each553

k, we also observe a zero at distances 4i + (p0 − |k0 − k|),∀i ∈ Z+ which may be554

attributed to wrap-around effects and/or the red-black ordering that was used for the555
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(8, 10)-coloring. More importantly, however, the percentages of uncleared elements556

at larger distances is still very small, often less than 1%. This is because a coloring557

annihilates the distance-p neighbors of all nodes of the same color. For example, if558

x1 and x2 have the same color, some of the neighbors of x1 may be longer distance559

neighbors of x2 but they are annihilated for this p.560

Next, we study the effects of this strategy on variance reduction. For each k, we561

take the (k, pk)-coloring that gives the best speedup over random noise (from Figure 7)562

and use it to find the variance v((PnA
−1) �HkH

T
k ) for all other displacements n =563

0, . . . , 8. Figure 9 shows nine lines, one for each k, plotting its speedup over the564

Hutchinson method for all n. Each line achieves its maximum speedup at n = k or565

for smaller k, at n = k + 1 . It is unclear why this happens for smaller k, e.g., most566

pronounced for the (0, 7)-coloring, but it may have to do with the symmetrization.567

More importantly, the speedup does not reduce as steeply away from k as Theorem 3.6568

would suggest because these colorings work very well for nearby displacements and569

still work well for more distant ones as described in Table 5.570
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Fig. 9: The speedups over unprobed Hutchinson for each (k, pk)-coloring to find
tr(PnA

−1), ∀n ∈ {0, ..., 8}

The above results help ascertain the efficiency of the approach, but they cannot571

help determine which coloring should be used to perform all displacement experiments.572

There are two reasons. First, the speedups reported depend on the number of probing573

vectors used. For example, the (8, 9)-coloring obtains a speedup of 300 at k = 8 but574

it’s because it uses only 52 colors. Its variance is actually four times larger than that575

of (7, 10)-coloring which however uses 250 vectors and thus gets a lower speedup of576

250. For a more accurate answer, the (7, 10)-coloring would be a better choice.577

Second, a smaller variance is only meaningful relative to the value of the trace, and578

traces for different displacements vary significantly. In Table 6 we see that a variance579

of 3.275 for the (0, 4)-coloring gives 5 digits of accuracy for the trace of k = 0, while580

a variance of 2.332 for the (8, 9)-coloring hardly attains a digit for the trace of k = 8.581

Therefore, to compare colorings over different displacements we introduce the nor-582

malized relative error metric which normalizes with respect to both the trace and the583

number of probing vectors needed. As before, for each k we pick the (k, pk)-coloring584

with the best speedup over random. Let mk be the number of colors it requires, and585

let M be the maximum number of colors over all colorings being compared (in this586
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case, M = 815). Then, for all n = 0, . . . , 9, the normalized relative error is given by,587

(4.3)

√
v((PnA−1)�HkHT

k )mk

M

tr(PnA−1)
.588

The normalization to M ensures all colorings are compared as if they use the same589

number of probing vectors. The results of this shown in Figure 10.590
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Fig. 10: The relative error (4.3) for each (k, pk)-coloring used to find tr(PnA
−1),

∀n ∈ {0, ..., 8}.

The fact that the trace decreases significantly in higher displacements provides591

a much clearer evaluation picture. For 2 ≤ n ≤ 6, all (k, pk)-colorings have similar592

normalized relative errors. However, the colorings from larger displacements, e.g.,593

(7, 10) or (8, 9), yield at least 1 to 2.5 digits better accuracy for the same amount594

of work than colorings from small displacements. Because for displacements less595

than 4 the errors are already very small, the effort must be focused on the small596

traces of higher displacements. Therefore, it is best to use the (7, 10)-coloring for all597

displacements, and increase its distance if needed.598

5. Conclusion. We have extended the idea of probing for variance reduction of599

the Hutchinson’s trace estimator to the case of permuted matrices and in particular600

when this permutation corresponds to a lattice displacement k. This has an important601

application on disconnected diagrams in LQCD. The method works by computing a602

distance-p coloring not of the original neighborhood of each lattice point x but rather603

the points within a distance p around centers x± k.604

We have provided a lower bound of the number of colors needed for a particular605

(k, p)-coloring, and discussed the impact of the lattice size on the number of colors606

achieved. We have also studied theoretically and experimentally the effect of using a607

single k, p-coloring for displacements other than k. We have shown that the variance608

reduction of using probing with displacements is orders of magnitude lower than609

solely using random noise vectors or than using classical probing that does not take610

the displacement into consideration. Also, as expected, the trace is smaller as the611

displacement increases which means that a (k, p)-coloring for larger k needs to be612

computed and then reused for lower k. This practically gives an additional 10-fold613

speedup for the LQCD application.614
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A few open problems could be considered further. The greedy orderings we con-615

sidered in the greedy coloring approach did not vary substantially in the resulting616

number of colors, staying within a factor of 3 from the lower bound. It is unclear617

whether a different ordering can provide considerable reduction in the current num-618

ber of colors. A second direction is to study the effect of the lattice or tile size to the619

coloring. Understanding this theoretically rather than experimentally, and providing620

also a lower bound on the number of colors based on a finite lattice size could be621

useful in understanding the limitations of the current approach. Finally, it is worth622

extending the theory and algorithms to the case where the decay of the elements in623

the matrix inverse depends on the L2 distance, which is closer to what LQCD theory624

predicts for long range distances.625
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Appendix A.717

718

Proof for Theorem 3.1: From the definition of x+, x−, the assumption k ≥ p719

implies |x1−x+1 | = |x1−x
−
1 | ≥ p, and

∑d
i=2 |xi−x

+
i | =

∑d
i=2 |xi−x

−
i | = 0. Let y ∈ Zd

∞720

with y 6= x and y1 = x1. Since |y1−x+1 | ≥ p, ‖y−x+‖1 = |x1−x+1 |+
∑d

i=2 |xi−x
+
i | > p.721

The same argument applies for the distance from x−. Therefore, y /∈ N(x, k, p). �722

Proof for Theorem 3.2: From Theorem 3.1, if k = p, the coloring problem reduces723

to coloring in one dimension. Then the neighborhood definition covers 4p+ 1 indices724

in the first dimension, from −2p to +2p. The maximal clique size of the 2p-distance725

graph of these nodes is the 1D unit ball of half the size which includes indices from726

−p to +p. The size of this clique is exactly 2p+ 1 nodes which is also the number of727

colors needed. �728
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Proof for Theorem 3.3: As previously noted, if k ≥ p, the coloring problem gets729

reduced to one dimension. Consider two nodes on Z1
∞ that are exactly 2k links apart,730

i.e., node i and i + 2k. Because k > p, node i + 2k does not belong in N(i, k, p)731

and thus the two nodes can take the same color. Therefore, the problem reduces to732

coloring a tile of 2k consecutive nodes that can then repeat to color the entire Z1
∞733

lattice.734

Consider 2k consecutive nodes, 0 to 2k − 1. The first k − p can share color 1 as735

they do not belong in each other’s neighborhood. The following k−p+1, . . . , 2(k−p)736

nodes have at least one of the nodes in the first group as neighbor so they must take a737

different color, say 2. Similarly, every k−p group of nodes must take a different color.738

The last node has neighbors i ≥ 2k−k−p = k−p, so it cannot reuse any color including739

color 1 because the tile needs to repeat. Then the total number of colors is the740

partitioning of 2k nodes in k−p groups. Note that d 2k
k−pe = d 2(p+k−p)

k−p e = d 2p
(k−p)e+2.741

�742

Proof for Theorem 3.4: First note that α − β = k. Let x, y ∈ C(d, α, β). Then743

the following hold:744

|x1|+
d∑

i=2

|xi| ≤ α, |y1|+
d∑

i=2

|yi| ≤ α(5.1)745

d∑
i=2

|xi| ≤ β,
d∑

i=2

|yi| ≤ β.(5.2)746

747

WLOG assume x1 ≤ y1. Then it is sufficient to show that x belongs in the left748

neighborhood around y−, i.e., x ∈ N(y−, 0, p) or |y−1 − x1|+
∑n

i=2 |yi − xi| ≤ p.749

We distinguish two cases for the distance between x1 and y1.750

(a) y1 − x1 ≥ k > 0. Then using (5.1), we have |y−1 − x1| +
∑n

i=2 |yi − xi| =751

y−1 −x1+
∑n

i=2 |yi−xi| ≤ |y1|+|x1|−k+
∑n

i=2 |yi|+
∑n

i=2 |xi| ≤ p+k−k = p.752

(b) 0 ≤ y1 − x1 < k. Then using (5.2), we have: |y−1 − x1| +
∑n

i=2 |yi − xi| =753

−y1 + x1 + k +
∑n

i=2 |yi − xi| ≤ k +
∑n

i=2 |yi|+
∑n

i=2 |xi| ≤ k + p− k = p.754

�755

Proof for Theorem 3.5: For brevity we denote C = C(d, α, β). Let x, y ∈ C ′, i.e.,756

they belong in one of the sets C, T, S. Because of symmetry, we consider the following757

pairs of conditions for (x, y): (C,C), (T, T ), (S, S), (C, T ), (C, S), (T, S).758

Notice that the set C is the clique obtained by p′ = p − 1 and k. Then, case759

(C,C) is covered by Theorem 3.4 which bounds the (displaced) distance of any two760

points in C by p′ = p − 1 < p. This observation can be used to show similarly the761

cases (C, T ) and (C, S). Specifically for (C, T ), x ∈ C and any y ∈ T will be exactly762

at distance 1 from some point in C, which means ‖x− y‖ ≤ p′ + 1 = p. For (C, S), a763

y ∈ S is also at distance 1 from any point in C by extending the first dimension.764

As in Theorem 3.4, we assume x1 ≤ y1 and show that x belongs in the left neighbor-765

hood around y−, i.e., x ∈ N(y−, 0, p) or δ = |y−1 − x1|+
∑d

i=2 |yi − xi| ≤ p. We also766

use the following property of absolute values,767

|f − g| − |f | − |g| =
{

0, if fg ≤ 0,
−2 min(|f |, |g|), otherwise.

(5.3)768
769

• Case (T, T ):770

Using the last two conditions of (3.5), the corresponding part of (5.3) for x2, y2, and771
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2β = p− k − 1 we have,772 ∑d

i=2
|yi − xi| ≤ |y2 − x2|+

∑d

i=3
|yi|+

∑d

i=3
|xi|773

≤ |y2 − x2|+ (β + 1− |y2|) + (β + 1− |x2|)774

= 2β + 2− 2 min(|x2|, |y2|) ≤ p− k − 1.775776

Then δ = |y−1 −x1|+
∑d

i=2 |yi−xi| ≤ |y1−k−x1|+p−k−1. Using the first condition777

in (3.5) we have,778

If y1−k ≥ x1 then δ ≤ y1−k−x1+p−k−1 ≤ (k)−k+(k−1)+(p−k−1) = p−2 < p.779

If y1 − k < x1 or y1 − x1 < k then δ ≤ x1 − y1 + k + (p− k − 1) ≤ k + p− k − 1 < p.780

• Case (S, S):781

Again we prove x ∈ N(y−, 0, p). Based on the conditions in (3.6),
∑d

i=3 |xi| = α +782

1− x1 − |x2|, and
∑d

i=3 |yi| = α+ 1− y1 − |y2|, and since 2α = p+ k − 1 we have,783

δ ≤ |y−1 − x1|+ |y2 − x2|+
∑d

i=3
|yi|+

∑d

i=3
|xi|784

= |y−1 − x1|+ |y2 − x2|+ 2α+ 2− |x2| − |y2| − x1 − y1785

= p+ k + 1 + (|y1 − k − x1| − x1 − y1) + (|y2 − x2| − |x2| − |y2|)786

≤ p+ k + 1 + (k + |y1 − x1| − x1 − y1)− 2 min(|x2|, |y2|)787

≤ p+ 2k + 1− 2 min(|x1|, |y1|)− 2 min(|x2|, |y2|)788

= p+ 2k + 1− 2(k + 1) = p− 1 < p.789790

• Case (T, S):791

Let x ∈ T , y ∈ S. From the defining conditions, x1 ≤ k < y1. We work similarly with792

the previous cases, replacing the
∑d

i=3, and noting that α+ β = p− 1,793

δ ≤ |y−1 − x1|+ |y2 − x2|+ (α+ 1− |y1| − |y2|) + (β + 1− |x2|)794

= p+ 1 + (|y1 − k − x1| − |y1|) + (|y2 − x2| − |y2| − |x2|)795

≤ p+ 1 + (|y1 − k − x1| − |y1|).796797

If y1−k ≥ x1, then |y1−k−x1|−|y1| = y1−k−x1−y1 = −k−x1 ≤ −k+(k−1) = −1.798

Thus δ ≤ p.799

If y1 − k ≤ x1, then |y1 − k − x1| − |y1| = x1 + k − y1 − y1 ≤ 2k − 2(k + 1) = −2.800

Thus, δ ≤ p− 1 < p. �801

Proof for Theorem 3.6: We consider only the k + λ case as the k − λ has a802

similar proof. Because of symmetry, we also consider only the positive displacements803

x+ and y+ from (3.1). It is sufficient to show that if x ∈ N(0, k + λ, p − λ), then804

x ∈ N(y+, 0, p). From (3.2) we have
∑n

i=2 |xi|+|x1 − (k + λ)| ≤ p−λ. We distinguish805

the following cases.806

(a) If x1 − k ≥ λ, then also x1 ≥ k, and thus
∑n

i=2 |xi|+ x1 − k − λ ≤ p− λ ⇒807 ∑n
i=2 |xi|+ |x1 − k| ≤ p⇒ x ∈ N(0, k, p).808

(b) If x1 < k+λ, then
∑n

i=2 |xi|−x1 +k ≤ p−2λ. We distinguish two sub-cases.809

(b.1) If x1 ≤ k, then
∑n

i=2 |xi|+ |x1 − k| ≤ p− 2λ ≤ p⇒ x ∈ N(0, k, p).810

(b.2) If x1 > k and since x1 − k < λ, then
∑n

i=2 |xi| + k − x1 ≤ p − 2λ ⇒811 ∑n
i=2 |xi|+x1−k ≤ p−2λ+2(x1−k) < p−2λ+2λ = p⇒ x ∈ N(0, k, p).812

�813

Appendix B814

815
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1,000 RNVs w/o Probing 10 RNVs w/ Probing
k p Approx. Trace Variance Colors Variance Speedup

0

1

6,339,643.7 249,827.7

2 35,075.3 3.56
2 16 2,502.5 6.24
3 16 2,501.2 6.24
4 119 209.6 10.02
5 170 134.2 10.95
6 256 59.4 16.43
7 256 59.1 16.50

1

1

652,636.1 2,341,455.9

5 9,721.2 48.17
2 9 3,861.4 67.38
3 32 943.5 77.55
4 64 330.2 110.78
5 324 63.4 113.94
6 442 45.2 117.08
7 815 19.1 150.13
8 976 19.0 126.21

2

1

185,764.9 2,360,726.0

4 8,415.7 70.13
2 6 4,362.0 90.20
3 11 1,949.6 110.08
4 92 264.9 96.87
5 96 207.2 118.70
6 586 29.6 135.95
7 795 23.8 124.73

3

1

56,047.8 2,364,612.0

5 6,076.0 77.84
2 10 2,180.4 108.45
3 9 2,115.0 124.22
4 17 982.1 141.63
5 64 234.1 157.82
6 128 111.4 165.89
7 866 21.8 125.41

4

1

17,893.6 2,388,516.5

3 7,420.1 107.30
2 4 4,285.6 139.33
3 8 1,880.1 158.81
4 14 1,323.9 128.87
5 27 631.8 140.02
6 104 141.2 162.67
7 192 72.9 170.66

5

1

6,059.5 2,358,840.1

4 4,186.9 140.85
2 6 2,379.5 165.22
3 6 2,425.6 162.08
4 12 1,137.2 172.86
5 21 712.8 157.58
6 34 379.3 182.90
7 172 92.4 148.40
8 332 48.4 146.65

6

1

2,183.3 2,392,640.1

4 4,375.9 136.70
2 5 2,948.7 162.29
3 7 1,990.8 171.69
4 10 1,267.6 188.75
5 19 638.1 197.36
6 19 592.9 212.40
7 37 312.5 206.92
8 160 71.2 210.12
9 288 38.7 214.56

7

1

836.9 2,378,138.9

3 5,081.5 156.00
2 4 3,463.9 171.64
3 5 2,435.2 195.31
4 6 1,798.8 220.35
5 9 1,185.9 222.82
6 18 596.2 221.62
7 17 624.3 224.07
8 33 299.3 240.76
9 128 79.2 234.68
10 256 38.1 243.95

8

1

339.3 2,381,007.2

3 5,719.0 138.78
2 3 3,814.9 208.04
3 4 3,151.8 188.86
4 4 2,502.7 237.85
5 6 1,737.5 228.40
6 8 1,162.5 256.02
7 16 616.1 241.53
8 30 292.7 271.18
9 52 149.2 306.80
10 264 36.7 245.51

Table 6: The estimation of traces and variances for 1,000 RNVs run without probing
for different values of k and p compared to probing with displacements and 10 RNVs.
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