
Prepared for submission to JHEP JLAB-THY-XX-XXXX

The Continuum and Leading Twist Limits of
Parton Distribution Functions in Lattice QCD

Joseph Karpiea , Kostas Orginosb,c , Anatoly Radyushkind,c and Savvas Zafeiropoulose

(for the HadStruc Collaboration)
aPhysics Department, Columbia University,
New York City, New York 10027, USA
bDepartment of Physics, The College of William & Mary,
Williamsburg, VA 23187, USA
cThomas Jefferson National Accelerator Facility,
Newport News, VA 23606, USA
dOld Dominion University,
Norfolk, VA 23529, USA
eAix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

E-mail: jmk2289@columbia.edu, kostas@wm.edu, radyush@jlab.org,
savvas.zafeiropoulos@cpt.univ-mrs.fr

Abstract: In this study, we present continuum limit results for the unpolarized parton
distribution function of the nucleon computed in lattice QCD. This study is the first contin-
uum limit using the pseudo-PDF approach with Short Distance Factorization for factorizing
lattice QCD calculable matrix elements. Our findings are also compared with the pertinent
phenomenological determinations. Inter alia, we are employing the summation Generalized
Eigenvalue Problem (sGEVP) technique in order to optimize our control over the excited
state contamination which can be one of the most serious systematic errors in this type of
calculations. A crucial novel ingredient of our analysis is the parameterization of system-
atic errors using Jacobi polynomials to characterize and remove both lattice spacing and
higher twist contaminations, as well as the leading twist distribution. This method can be
expanded in further studies to remove all other systematic errors.

mailto:jmk2289@columbia.edu
mailto:kostas@wm.edu
mailto:radyush@jlab.org
mailto:savvas.zafeiropoulos@cpt.univ-mrs.fr


Contents

1 Introduction 1

2 Ioffe time pseudo-distributions 3

3 Determination of the continuum limit PDF and nuisance parameters 7
3.1 Separating continuum PDFs from systematic errors 9
3.2 Parameterization of unknown functions 10

4 Lattice QCD calculation 14
4.1 sGEVP matrix element extraction 15
4.2 Fitting matrix elements 18

5 Fits with Bayesian Priors 18

6 PDF results 21
6.1 Inclusion of nuisance terms 22
6.2 Effects of prior distributions 23
6.3 Varying the number of parameters 26
6.4 Model weighted averages 28
6.5 Comparison with global fits 31

7 Conclusions 46

8 Acknowledgements 46

1 Introduction

Ever since the pioneering deep inelastic lepton-proton scattering (DIS) experiments at SLAC
in 1973 which yielded the first evidence for proton structure, the excitement towards the
understanding of the fundamental constituents of the nucleon lead to a culmination of
theoretical and experimental results. From the theoretical side the QCD factorization the-
orem allows for a separation of the hadronic cross sections into a perturbative, process
dependent partonic cross section and nonperturbative, process independent parton distri-
bution functions (PDFs). Thus, in order to decipher the information coming from the Large
Hadron Collider (LHC) experiments, and in order to capitalize maximally the potential of
the upcoming Electron-Ion Collider (EIC), it is of vital importance to accurately determine
the PDFs. The calculation of the momentum distribution that bound quarks and gluons
carry within the proton is a nonperturbative problem which due to the lightcone nature
of the PDFs was elusive to lattice QCD calculations until very recently. Consequently,
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progress was being made through global fits of experimental data or modelling. PDFs have
a huge phenomenological value since they constitute a fundamental limit for the Higgs
boson characterization in terms of its couplings, they are the dominant systematics for pre-
cision Standard Model (SM) measurements, such as theW boson mass, but also the biggest
uncertainties for beyond the SM heavy particle production. Therefore a precise knowledge
of the PDFs can help to rule out a broad class of BSM models. For a comprehensive review
we refer the reader to [1].

A series of lattice methodologies have been developed to circumvent the issues stemming
from the light-cone nature of PDFs and in the recent years there has been a new dawn in the
ab-initio determination of lightcone parton distributions via numerical lattice simulations.
The first such approach [2–4] was to directly calculate the hadronic tensor and factorize
it in a similar way that one adopts when interpreting DIS data. In this direct approach,
one can study not only the DIS regime, but also the Resonance and Shallow Inelastic
regimes, which makes it unique amongst the lattice approaches. A related approach [5]
was proposed to calculate Distribution Amplitudes where between the two currents a scalar
quark will be inserted instead. The most widely adopted approach, which is also the one
most responsible for today’s vast amount of activity in lattice calculations of PDFs, is
the Large Momentum Effective Theory (LaMET) method [6]. In this approach, a matrix
element of an operator with a spacelike separation is Fourier transformed with respect
to the separation length to get a so-called quasi-distribution. A factorization theorem is
applied when the matrix element has sufficiently large external momentum, hence the name
LaMET. The next approach [7–10], called OPE-without-OPE, is to calculate either the
hadronic tensor or the matrix elements with spacelike separations used in later approaches.
These matrix elements can be used to determine moments of the PDF through the OPE
and from those moments determine the PDF. Attempts to reconstruct the PDF with the
limited number of moments accessible from local matrix elements had already met with
some success [11]. In the OPE-without-OPE approach, far more moments are accessible
than through the calculation of local matrix elements and the PDF extraction can be
systematically improved as more moments are obtains. Finally, the approach, which is
adopted in this study, was proposed originally in [12], and now is usually called Short
Distance Factorization (SDF), is to calculate a matrix element of operators with a spacelike
separation, which are now typically named pseudo-distributions or lattice cross sections
(LCS) when using this approach. The Operator Product Expansion (OPE) is used to relate
these matrix elements to light cone matrix elements through a factorization theorem at
small spacelike separation. Originally, SDF was proposed to determine meson distribution
amplitudes [12], but the method was later independently reinvented by [13, 14], who were
motivated by LaMET, for calculations of the PDFs. Since this approach would use the
same type of matrix elements as in LaMET, LaMET and SDF are intimately related in
their factorization theorems, but provide two distinct limits for approaching the light-cone
distributions with their different power corrections. The power corrections for SDF are
ordered by matrix elements of operators with distinct twist t and are proportional to (z2)t−2.
The power corrections of LaMET come from matrix elements with mixed twist and are
proportional to (p−2

3 )n.
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All these frameworks that target the ab-initio study of parton physics via lattice cal-
culations in Euclidean space incited a feverish activity of the lattice community [2–113].

In [114–116] one can find reviews of all the aforementioned lattice approaches to the
extraction of light cone PDFs.

The lattice regulator itself induces artifacts which contaminate any quantity that one
wishes to compute. Ultimately, a continuum limit must be properly taken in order to remove
this regulator dependence and to achieve the final result. The most widely used lattice
actions and some observables are O(a) improved but this is not the case for the fermion
bilocal matrix element that is the starting point of the quasi and pseudo-distributions.
Also for the time being no Symanzik program has been developed for this quantity and
consequently the cut-off effects are of O(a). This issue could in principle translate itself in
sizeable cut-off effects and render the approach to the continuum limit quite tricky [107, 108].
In this paper, we study the continuum limit of the nucleon unpolarized parton distributions
employing the SDF method of Ioffe time distributions and employing three lattice ensembles
with lattice spacings ranging from 0.0749 fm to 0.0483 fm. The finest lattice is finer than
those used in the continuum limit of previous LaMET studies [107, 108]. These ensembles
allow us to get a firm understanding of the size of lattice artifacts that one encounters in
such studies and also allow us to study the extrapolation to the continuum limit. In general,
there are different ways that one can take the continuum limit which is complicated due
to the two physical scales in a lattice PDF calculation, the spacelike separation and the
momentum of the hadron. In previous continuum limit studies [107, 108], the ensembles
are chosen such that one of the scales, the momentum, is all the same across the ensembles.
In this manuscript, we advocate for a method which has not been studied beforehand in
the literature. It allows for any ensemble to be used even if the separation and momenta
scales cannot be exactly matched. Moreover it will allow usage of data from all available
momenta and separations, within the limitations of the assumptions made for the LaMET
or SDF factorization.

The manuscript is organized as follows, in Sec. 2, we review the SDF approach as
applied to the matrix elements which define quark-PDFs and pseudo-PDFs. In Sec. 3, we
define the models which are used to describe the leading twist PDF and the nuisance terms
which control the systematic errors. In Sec. 4, we describe the lattice QCD methodologies
used for extraction of matrix elements. In Sec. 5, we discuss how Bayes’ theorem is used to
determine the most probable model parameters and how the fits to the PDF and nuisance
terms are employed. In Sec. 6, we present the results of fitting PDFs to a range of models
and discuss how the modification of the nuisance terms as well as the Bayesian priors affect
the final results. Finally in Sec. 7 we conclude our findings and discuss future studies.

2 Ioffe time pseudo-distributions

As described in [117], parton distributions can be described in terms of a boost invariant
matrix element called the Ioffe time distribution (ITD), whose Fourier transform gives the
standard PDFs. The ITD, up to a factor of 2Pα, is a special case of the generic Lorentz
covariant matrix element in Eq. (2.1), which was first studied at length in [15] prior to
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proposals to factorize it [6, 13],

Mα(p, z) = 〈p|ψ̄(z)
λ3

2
γαW (z; 0)ψ(0)|p〉 , (2.1)

where W (z; 0) denotes a straight Wilson line of length z and λ3 is a flavor Pauli matrix to
project onto the flavor non-singlet distribution, which is easier to handle in lattice QCD.
This matrix element has the Lorentz decomposition

Mα(p, z) = 2pαM(ν, z2) + 2zαN (ν, z2) , (2.2)

where ν = p · z is here called the Ioffe time [117]. For timelike separations, it is equal to
the product of mass of the hadron and the time t (mt) in the hadron’s rest frame. This
time t is what is typically referred to as the Ioffe time in analyses of DIS [118]. The ITD
is given by the special case of lightlike separation z = (0, z−, 0T ) and α = +, where in
light cone coordinates, the + and − directions are defined by the direction of the hadron’s
momentum. The Fourier transform of the ITD with respect to ν gives the PDF where x
is the Fourier-conjugate variable to ν. Due to this lightlike separation, the ITD cannot be
directly calculated from lattice QCD, where the calculation takes place in Euclidean space
which only allows spacelike separations.

Following the framework of Short Distance Factorization (SDF) [12], the Lorentz invari-
ant functionM, which will be called the Ioffe time pseudo-distribution (pseudo-ITD) [13],
can be related to the ITD through a factorization relationship. This term can be isolated
from the purely higher twist distribution N by a choice of z = (0, 0, z3, 0), p = (0, 0, p3, E),
and α = 4 using the Euclidean Cartesian notation. The OPE of the pseudo-ITD is given
by

M(ν, z2) =

∞∑
n=0

cn(µ2z2)an(µ2)
(iν)n

n!
+O(z2) , (2.3)

where an are the Mellin moments of the PDF, cn are perturbatively calculable Wilson
coefficients, and O(z2) represents higher twist and target mass corrections. Here it is
important to note that we use an unconventional definition of the moments

an(µ2) =

∫ 1

−1
dxxnf(x, µ2) . (2.4)

This sum can be rearranged into a more standard convolutional form

M(ν, z2) =

∫ 1

0
duC(u, µ2z2)Q(uν, µ2) +O(z2) , (2.5)

where the kernel C is the inverse Mellin transform of the Wilson coefficients cn. The
dependence of this kernel, C, on µ2z2 is precisely the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) scale evolution. There is also a contribution independent of the scales
which depends on the choice of MS to renormalize the ITD and whatever renormalization
prescription is chosen for the pseudo-ITD. The kernel in this convolution has been calculated
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to O(αs) for multiple renormalization schemes [45–47]. Recently, an O(α2
s) calculation has

appeared in the literature [95]. For this study only the O(αs) kernel is used, since the
precision of the data is less than the expected size of the O(α2

s) terms. In future work, the
O(α2

s) kernel will be used to improve the theoretical accuracy of the factorization procedure.
Instead of utilizing a typical lattice renormalization scheme, such as a regulator indepen-

dent momentum subtraction (RI-MOM) scheme, it is useful to consider the renormalization
group invariant (RGI) quantity

M(ν, z2) =
M0(p, z)M0(0, 0)

M0(0, z)M0(p, 0)
, (2.6)

which is called the reduced pseudo-ITD [13]. The matrix elements involving the local vector
current, M0(0, 0) and M0(p, 0), and the pseudo-ITD, M0(p, z) and M0(0, z), are all mul-
tiplicatively renormalizable [38]. The latter depends only on the separation z through the
divergences related to the Wilson line [38, 119, 120]. Within this double ratio the renormal-
ization constants all cancel explicitly and nonperturbatively, in a way independent of the
renormalization scheme, making the reduced pseudo-ITD a RGI quantity [9]. The match-
ing of this object to the MS ITD lacks the scheme dependent systematic errors which have
been observed in calculations of the related quasi-PDF quantities [37, 68], which so far have
always used different variants of RI-MOM schemes. Additionally, this object has dramati-
cally reduced higher twist errors compared to the RI-MOM renormalized matrix elements
as originally suggested in [13] and directly observed by [100]. Besides the aforementioned
unnecessary complications, the ratio is free of the pathologies of fixed gauge renormalization
as well as of the undesirable systematic effects that plague any RI-MOM type of calcula-
tion. The higher twist, as well as lattice spacing, finite volume, and unphysical pion mass,
systematic errors are all being reduced, and this fact has been observed in [74, 75, 86, 100].
Finally this particular choice of ratio cancels correlated fluctuations between the terms in
the numerator and denominator for small momenta and for small separation data, leading
to a measurable improvement of the signal-to-noise ratio of the pertinent matrix element.
This may prove crucial in studying statistically noisier cases such as the pion quark PDF,
gluon PDF, and quark disconnected matrix elements that we wish to address in the future.
A related ratio has been described in [100], which utilizes matrix elements with non-zero
momenta only. This ratio leads to a more complicated matching relationship connecting
the RGI ratio and the PDF.

Since three of the four matrix elements in Eq. (2.6) defining the reduced pseudo-ITD,
after renormalization in a RGI scheme, are equal to unity up to lattice spacing and higher
twist errors, they do not modify the matching relationship in Eq. (2.5). We separate
the scale dependent DGLAP contribution and the scale independent scheme dependent
contribution to the kernel C up to O(αs) as

C(u, µ2z2) = δ(1− u) +
αsCF

2π

[
log

(
µ2z2 e

2γE+1

4

)
B(u) + L(u)

]
, (2.7)

where

B(u) =

[
1 + u2

1− u

]
+

, L(u) =

[
4

log(1− u)

1− u − 2(1− u)

]
+

(2.8)
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and CF is the fundamental Casimir of SU(3) and γE is the Euler-Mascheroni constant [45–
47].

As can be seen in Eq. (2.3), the (reduced) pseudo-ITD can be directly related to the
moments of the PDF without going through the ITD itself. A Taylor expansion of the ITD
with respect to the Ioffe time can be written as

M(ν, z2) =
∑
n

mn(z2)
(iν)n

n!
+O(z2) , (2.9)

where mn(z2), called the pseudo-moments, are the Mellin moments of the pseudo-PDF,
which is the Fourier transform with respect to ν of the (reduced) pseudo-ITD. The pseudo-
moments have a multiplicative matching relationship to the MS PDF moments given by

mn(z2) = cn(µ2z2)an(µ2) +O(z2) (2.10)

where cn are the Mellin moments of the matching kernel C. These matching coefficients
have been calculated to O(αs) for the reduced pseudo-PDF

cn(µ2z2) = 1 +
αsCF

2π

[
log

(
µ2z2 e

2γE+1

4

)
γn + ln

]
(2.11)

where

γn =

∫ 1

0
B(u)un =

1

(n+ 1)(n+ 2)
− 1

2
− 2

n+1∑
k=2

1

k
(2.12)

are the well known anomalous dimensions of the moments of the PDF and the scheme
dependent term is given by

ln =

∫ 1

0
L(u)un = 2

( n∑
k=1

1

k

)2

+
n∑
k=1

1

k2
+

1

2
− 1

(n+ 1)(n+ 2)

 . (2.13)

One could easily fit the Ioffe-time dependence of the reduced pseudo-ITD for each
separation z2 independently to obtain the pseudo-moments. Studying the z2 dependence
of the pseudo-moments, as well as the resulting MS PDF moments, one can try to estimate
the size of systematic errors. Deviations of MS PDF moments originating from the low z2

data could signal large lattice spacing errors and deviations from large z2 data could signal
large higher twist errors. A wide region of z2 where the resulting MS PDF moments are
independent of z2 would indicate a window of opportunity where the data are free of these
systematic effects. It is only within such a window that an ITD derived from the reduced
pseudo-ITD can be trustworthy without other methods of removing systematic errors.

Instead of simultaneously handling the real and imaginary components of the complex
M, it is helpful to separate the CP even and odd contributions which are related to q−(x) =

f(x) + f(−x) = q(x)− q̄(x) and q+(x) = f(x)− f(−x) = q(x) + q̄(x) respectively, where f
is defined in the window [-1,1] while q, q̄, q−, and q+ are defined in the window [0,1]. These
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PDFs can be individually extracted from the real and imaginary components separately.
The components are factorized as

ReM(ν, z2) =

∫ 1

0
dxKR(xν, µ2z2)q−(x, µ2) +O(z2)

ImM(ν, z2) =

∫ 1

0
dxKI(xν, µ2z2)q+(x, µ2) +O(z2) , (2.14)

where

KR(xν, µ2z2) =

∫ 1

0
duC(u, µ2z2) cos(uνx)

KI(xν, µ2z2) =

∫ 1

0
duC(u, µ2z2) sin(uνx) . (2.15)

Use of these matching kernels which factorize directly to the PDF removes the need for the
intermediate determination of the MS ITD. Unfortunately, they prove to be complicated
functions whose direct numerical evaluation is inefficient when incorporated into the analysis
of the matrix elements computed from lattice QCD. In Sec. 3.2, we adopt a power series
approximation to the convolution integrals that the above kernel functions participate in
which allows for efficient computations within the available range of the Ioffe time. With
sufficient number of terms, this power series approximates the convolution integrals to
numerical precision.

3 Determination of the continuum limit PDF and nuisance parameters

The continuum limit is a critical step in any precision lattice calculation. In this study, we
take advantage of the symmetries of the reduced pseudo-ITD to parameterize the lattice
spacing correction to the continuum limit, as well as the higher twist effects. The continuum
PDF is also parameterized and a simultaneous analysis of all three ensembles obtains the
continuum limit PDF with higher twist contamination removed. This method of adding
“nuisance parameters” to parameterize the systematic errors of experimental cross sections is
also used in the phenomenological extractions of PDFs. Such a combined analysis approach
can also be used with results obtained with different pion masses, lattice spacings, matrix
elements, and even lattice actions given appropriate parameterizations of those effects.
Ultimately, one can imagine taking all published lattice matrix elements and analyzing them
within this approach, given sufficiently novel nuisance parameterizations, just as a global
phenomenological fit is performed using experimental data with vastly different systematic
errors. In order to minimize the dependence of the effect of nuisance parameters, in this
study only higher twist and lattice spacing errors are considered for data with the same
physical quark mass and lattice action. Future work will study the extension of this method
to include other effects.

It is important to note that the coefficients of the lattice spacing errors can be functions
of the Ioffe time. Previous parameterizations of lattice spacing errors for parton observ-
ables have neglected this potentially significant feature [80, 100]. In fact, the constant
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contribution, coming from ν = 0, which they do include is not present in this calculation.
It is cancelled in the ratio defining the reduced pseudo-ITD, just like the leading higher
twist effects. In [75], correction terms were modeled at fixed lattice spacing and given only
the simplest reasonable Ioffe-time dependence. In this study, the Ioffe-time dependence is
studied further.

In the recent work [92, 107], the Ioffe-time dependence is taken into account by fitting
the lattice spacing dependence at fixed LaMET scale p3, or at least requiring p3’s to be
sufficiently close in physical units and extrapolating their data, or an interpolation of it, in
z. In pseudo-PDF studies, as in this work, matrix elements originating from many different
SDF scales z2 are simultaneously utilized. Studying a wide range of scales allows us to
access systematic errors arising from lattice spacing effects or higher twist contributions.
In particular, at short distances where higher twist effects are suppressed, lattice spacing
errors arise, while at large distances higher twist effects may dominate. Therefore, a window
in z2, where both systematic errors are suppressed can be identified in order to extract the
universal leading twist matrix element. In order to perform the simple extrapolations
of [92, 107], the gauge ensembles must have specifically tuned lattice spacings and volumes
to allow for the same scales, p3 or z2, to occur in each ensemble. In most sets of ensembles,
only few momenta or values of z2 coincide in physical units since tuning lattice spacings to
be integer multiples of each other is difficult. An analysis of 8 values of z2 per ensemble, as
is done in this study, would not be feasible without an overwhelming computational cost in
gauge ensemble generation.

Besides the continuum limit, there is a significant complication due to the integral
relation between the matrix element and the PDF. The inversion of this integral relation
is a numerically ill-defined problem when there is a limited range of Ioffe times as there
is in a lattice QCD calculation. An infinite number of solutions that fit the matrix ele-
ments exist, so procedures must be chosen to select the best class of solutions. There exist
many classes of these procedures which have been proposed for lattice QCD calculations of
PDFs [34, 39, 66, 67, 102]. The most popular amongst phenomenological global analyses of
PDFs are parametric solutions. In this procedure a functional form for the PDF is written
down based on a set of parameters whose values are tuned to represent the data. This style
of solution is used in this study. Many methods also exist which do not rely on parameter-
izing the unknown functions. Though they lack functional forms, non-parametric solutions
also have their own uncontrolled systematic errors and are not fundamentally better than
parametric solutions. To arrive at a proper systematic error analysis of the resulting PDF,
the systematic errors of any of these procedures must be tested, typically by comparing re-
sults from several approaches. In this study, the parameterizations of the data are varied in
order to study the parametrization dependence and access the associated systematic errors.
In future work, more diverse parameterizations can be used to obtain a better estimate of
the variance due to model choices.
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3.1 Separating continuum PDFs from systematic errors

The CP symmetry implies that the reduced pseudo-ITD has the property

M(p, z, a) = M∗(−p, z, a) = M∗(p,−z, a) = M(−p,−z, a) , (3.1)

which we used when constructing the summed three-point correlation functions to in-
crease the statistical precision by averaging, after appropriate complex conjugations, the
correlation functions with positive and negative momenta and separations. The relation
M(p, z, a) = M(−p,−z, a) restricts lattice spacing errors with odd powers of a to be func-
tions of a|p| and a/|z|. A Taylor expansion in lattice spacing gives the continuum reduced
pseudo-ITD Mcont and lattice spacing corrections

M(p, z, a) = Mcont(ν, z
2) +

∑
n=1

(
a

|z|

)n
Pn(ν) + (aΛQCD)nRn(ν) . (3.2)

With an O(a) improved lattice action, the lattice spacing errors related to the momentum
p, must come in from the momentum transfer. This feature is known in the improvement of
the local vector current [121], the case of z = 0, where the local vector current mixes with
the divergence of the tensor current. The operators discussed in [51] also demonstrate these
features when considering the hadronic matrix elements in question. These momentum
transfer effects are necessary for the studies of Generalized Parton Distributions, but not for
the PDF. There is also potential z2 dependence on the lattice spacing coefficient functions,
Pn and Rn. Those effects which can come from logarithmic perturbative corrections, higher
twist contributions, or target mass corrections are additionally suppressed either by αs,
Λ2

QCDz
2, or m2z2 respectively on top of the suppression by a/|z| and aΛQCD. These z2

dependencies are neglected here.
The relationship between the reduced pseudo-ITD and the ITD is through a convolution

with Wilson coefficient function. Ultimately, the ITD is not the goal of this study, but
instead its Fourier transform, the PDF. We adopt an approach analogous to [73, 90, 100]
where the intermediate ITD is not required, but a parameterization of the PDF is directly
related to the reduced pseudo-ITD. Unlike [73, 90, 100], the PDF is related to the leading
twist reduced pseudo-ITD through its moments. The higher twist power corrections are
added as nuisance terms similar to the lattice spacing terms. The functional form is given
by

Mcont(ν, z
2) = Mlt(ν, z

2) +
∑
n=1

(z2Λ2
QCD)nBn(ν) . (3.3)

in terms of the leading twist continuum limit reduced pseudo-ITD, Mlt, and the higher
twist distributions Bn. In principle, the higher twist distributions could have non-trivial z2

dependence. Similarly to the lattice spacing terms, these effects which come from pertur-
bative corrections and target mass effects are additionally suppressed by powers of αs or
m2z2 respectively and are neglected in the remainder of this study.

In principle, there exist higher twist power corrections and lattice spacing errors of
all orders. With these errors sufficiently under control, only the leading contributions are
significant. We therefore make the approximation that Pn = Rn = Bn = 0 for n > 1.
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3.2 Parameterization of unknown functions

Extracting PDFs from matrix elements using a functional form to parametrize them may
induce unwanted model dependence. Therefore, a careful study of such parametrization-
dependent systematic error is required. For that purpose, the functional forms used should
be varied in order to understand how certain choices affect the final result. In previous
lattice PDF studies [34, 65, 74, 75, 80, 86, 87, 109], the chosen functional forms are similar
to those used in phenomenological analyses of PDFs [122, 123]. Progress has also been made
on the application of neural networks to parameterize the PDF [67, 99, 124]. In this work,
all of the unknown functions, q−(x), q+(x), P1(ν), R1(ν), and B1(ν), are parameterized
using Jacobi polynomials.

The Jacobi polynomials, j(α,β)
n (z), are defined in the interval [−1, 1] and they satisfy

the orthogonality relation∫ 1

−1
dz(1− z)α(1 + z)βj(α,β)

n (z)j(α,β)
m (z) = Ñ (α,β)

n δn,m , (3.4)

for α, β > −1. For the purposes of this study, it is useful to change variables to x = 1−z
2

or z = 1 − 2x. This transformation maps the interval [−1, 1] to the interval [0, 1] and the
orthogonality weight becomes (1− z)α(1 + z)β = 2α+βxα(1− x)β . We therefore introduce
the transformed Jacobi polynomials J (α,β)

n (x), which are referred to as Jacobi polynomials
from now on, as

J (α,β)
n (x) =

n∑
j=0

ω
(α,β)
n,j xj , (3.5)

with

ω
(α,β)
n,j =

(
n

j

)
(−1)j

n!

Γ(α+ n+ 1)Γ(α+ β + n+ j + 1)

Γ(α+ β + n+ 1)Γ(α+ j + 1)
. (3.6)

The orthogonality relation becomes∫ 1

0
dxxα(1− x)βJ (α,β)

n (x)J (α,β)
m (x) = N (α,β)

n δn,m , (3.7)

where

N (α,β)
n =

1

2n+ α+ β + 1

Γ(α+ n+ 1)Γ(β + n+ 1)

n! Γ(α+ β + n+ 1)
. (3.8)

One thing to note is that there exists a formula that relates Jacobi polynomials for different
values of the weight parameters, α and β. This formula reads as following

J (α,β)
n (x) =

n∑
m=0

ĉnm(α, α′;β, β′)J (α′,β′)
m (x) , (3.9)

where the coefficients ĉnm(α, α′;β, β′) are analytically known. Finally, it can be shown that
the coefficients of the Jacobi polynomials satisfy the orthogonality relationship

∞∑
i,j=0

ω
(α,β)
n,i B(α+ i+ j + 1, β + 1)ω

(α,β)
m,j = N (α,β)

n δn,m , (3.10)
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where B(a, b) is the beta function. Since the Jacobi polynomials form a complete basis of
functions in the interval of [0,1], the PDFs can be written as

q±(x) = xα(1− x)β
∞∑
n=0

±d
(α,β)
n J (α,β)

n (x) (3.11)

for any α and β. The choice of those parameters does affect the convergence of the coef-
ficients ±d

(α,β)
n . In practice, one needs to truncate the series introducing in this way some

model dependence which can be easily controlled. The control of the truncation can be
improved if one fits for the optimal values of α and β for that given order of truncation. In
other words, the rate of convergence of the series can be optimized by tuning the values of α
and β. One way to understand why tuning of α and β can result in improved convergence of
the series is to realize that phenomenological considerations tell us that the Jacobi weight is
a good approximation to the shape of the PDF, therefore if α, β are tuned to roughly match
the shape of the PDF, the Jacobi polynomials need only to approximate a smooth, slowly
varying function with small coefficients. Using Eq. 3.9, we can easily convert an expansion
of the PDF in terms of (α, β) Jacobi polynomials to one with (α′, β′) Jacobi polynomials.
The transformation of the expansion coefficients is linear and if a truncation of the series
up to order N is used the linear transformation involves only coefficients up to that order.
Finally, there also exists a linear transformation which connects these coefficients and the
Mellin moments of the PDF given by

±d
(α,β)
n =

1

N
(α,β)
n

n∑
j=0

ω
(α,β)
n,j a±j (3.12)

where a±n =
∫ 1

0 dxx
nq±(x), so this parameterization can be thought as another way to

parameterize the PDF by a set of its moments.
To determine the relationship between the reduced pseudo-ITD and the parameters of

the PDF, the matching kernels KR,I are expanded in terms of Jacobi polynomials. It can
be shown that the kernels can be written as

KR(xν, µ2z2) =
∞∑
n=0

σ
(α,β)
n (ν, µ2z2)

N
(α,β)
n

J (α,β)
n (x)

KI(xν, µ2z2) =
∞∑
n=0

η
(α,β)
n (ν, µ2z2)

N
(α,β)
n

J (α,β)
n (x) , (3.13)

with

σ(α,β)
n (ν, z2µ2) =

n∑
j=0

∞∑
k=0

(−1)k

(2k)!
c2k(z

2µ2)ω
(α,β)
n,j B(α+ 2k + j + 1, β + 1) ν2k

η(α,β)
n (ν, z2µ2) =

n∑
j=0

∞∑
k=0

(−1)k

(2k + 1)!
c2k+1(z2µ2)ω

(α,β)
n,j B(α+ 2k + j + 2, β + 1)ν2k+1 .(3.14)

Numerically, the sum over k can be performed to a sufficiently high order (k ∼ 30) to
achieve convergence to double precision accuracy in the relevant range of Ioffe time. Given
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this expansion, the leading twist reduced-pseudo ITD can be written as the truncated sums

ReMlt(ν, z
2) = 1 +

N−∑
n=1

σ(α,β)
n (ν, z2µ2)−d

(α,β)
n

ImMlt(ν, z
2) =

N+−1∑
n=0

η(α,β)
n (ν, z2µ2)+d

(α,β)
n . (3.15)

Similarly, the nuisance parameters can be introduced in x space and the unknown functions
B1, P1, Q1, and R1 are constructed from similar sums.

ReB1(ν) =

NR,b∑
n=1

σ
(α,β)
0,n (ν)b

(α,β)
R,n , ImB1(ν) =

NI,b∑
n=1

η
(α,β)
0,n (ν)b

(α,β)
I,n

ReP1(ν) =

NR,p∑
n=1

σ
(α,β)
0,n (ν)p

(α,β)
R,n , ImP1(ν) =

NI,p∑
n=1

η
(α,β)
0,n (ν)p

(α,β)
I,n

ReR1(ν) =

NR,r∑
n=1

σ
(α,β)
0,n (ν)r

(α,β)
R,n , ImR1(ν) =

NI,r∑
n=1

η
(α,β)
0,n (ν)r

(α,β)
I,n , (3.16)

where

σ
(α,β)
0,n (ν) =

∫ 1

0
dx cos(νx)xα(1− x)βJ (α,β)

n (x)

η
(α,β)
0,n (ν) =

∫ 1

0
dx sin(νx)xα(1− x)βJ (α,β)

n (x) , (3.17)

which are the leading O(α0
s) order of σn and ηn.

Unlike parameterizing with a polynomial form in Ioffe time, these functional forms are
better behaved in the large Ioffe time regime. Unlike a polynomial in ν, one does not expect
these nuisance terms to grow indefinitely with Ioffe time, but instead eventually falling to
zero as the ITD does. In [63], a calculation using renormalon methods showed the ratio of
the ITD and the leading power correction plateaus as ν grows indicating that the higher
twist contribution eventually decays to zero at large Ioffe time. Similarly, the size of the
lattice spacing error is not expected to grow infinitely with ν. For a fixed z2, it is expected
to ultimately go to zero as ν increases.

Not only do the σ and η functions have better large Ioffe time behavior, but they also
appear to dominate only in a given region of Ioffe time ordered by n. Figs 1 and 2 show the
functions over a range of n. As can be seen, these functions have a peak region and fall to
zero as Ioffe time increases, albeit slowly, and the peaks are ordered by n. Since our data
exist within a limited range of Ioffe time, the terms whose peaks are beyond this region do
not contribute significantly. More so, since the (pseudo-)ITD is believed to decay towards
zero without any large values at larger Ioffe times, the values of the parameters with larger
n will be small as well. This expected convergence of the series and the known shape of
the the σ and η functions in the available range of Ioffe time can be used as natural guides
for when to truncate the series without significant chance of losing vital information on the
PDF’s structure.
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Figure 1. The functions σ(α,β)
0,n (ν) (Left) and σ(NLO)

n (ν, z2µ2) = σ
(α,β)
n (ν, z2µ2)−σ(α,β)

0,n (ν) (Right)
for α = −0.5 and β = 3 over a range of n. For the NLO contribution, the value of z2 = 4 ∗ 0.065

fm, µ = 2 GeV, and αs = 0.3 were chosen as a typical example which will be used in this study.
The peaked structures of σ(α,β)

0,n and σ
(NLO)
n mean that only certain n significantly contribute in

the limited range of Ioffe time. The size of σ(NLO)
n , relative to σ(α,β)

0,n , leads to a small perturbative
contribution as desired.
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Figure 2. The functions η(α,β)0,n (ν) (Left) and η(NLO)
n (ν, z2µ2) = η

(α,β)
n (ν, z2µ2)− η(α,β)0,n (ν) (Right)

for α = −0.5 and β = 3 over a range of n. For the NLO contribution, the value of z2 = 4 ∗ 0.065

fm, µ = 2 GeV, and αs = 0.3 were chosen as a typical example which will be used in this study.
The peaked structures of η(α,β)0,n and η

(NLO)
n mean that only certain n significantly contribute in

the limited range of Ioffe time. The size of η(NLO)
n , relative to η(α,β)0,n , leads to a small perturbative

contribution as desired.

This final functional form is capable of removing lattice spacing and higher twist depen-
dencies which spoil the leading twist reduced pseudo-ITD. By testing with various functional
forms, the model dependent systematic error can be studied. Using the Akaike information
criterion (AIC), a weighted average of these models produces a final continuum limit PDF
with the model dependence smoothed out in a statistically meaningful way, especially when
sufficiently many distinct models are used. In future studies more adventurous parameteri-
zations of the PDF and the nuisance parameters, such as a neural network, can be included
alongside these fits into the weighted average.
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ID a(fm) Mπ(MeV) β cSW κ L3 × T Ncfg

Ã5 0.0749(8) 446(1) 5.2 2.01715 0.13585 323 × 64 1904
E5 0.0652(6) 440(5) 5.3 1.90952 0.13625 323 × 64 999
N5 0.0483(4) 443(4) 5.5 1.75150 0.13660 483 × 96 477

Table 1. Parameters for the lattices generated by the CLS collaboration using two flavors of O(a) improved
Wilson fermions. More details about these ensembles can be found in [125].

4 Lattice QCD calculation

This study utilizes three ensembles of configurations with decreasing lattice spacing. These
ensembles have two flavors of dynamical Wilson clover fermions and pion mass around
440 MeV. The specific parameters of these ensembles are given in Table 1. The lattice
spacings of the configurations are 0.0749, 0.0652, and 0.0483 fm. The finer two ensembles
were generated by the CLS effort [125] while the coarsest was generated by the authors for
this study. These ensembles allow for a controlled continuum limit extrapolation which is a
necessary step for precision calculations of PDFs. Apart from that, the finest lattice spacing
employed in this study is half compared to our previous studies allowing us to reach much
higher momenta and smaller separations.

The nucleon interpolating fields are constructed with Gaussian smearing [126] and
momentum smearing [127]. The source field is always be smeared, and an unsmeared
and a smeared sink field is used. These scenarios are referred to as “SP” (standing for
smeared-point) and “SS” (standing for smeared-smeared) respectively. For both of these
scenarios, three values of the momentum smearing parameter ζ are used. To implement the
momentum smearing, prior to the Gaussian smearing step, the gauge links are modified by

Uµ(x)→ ei
2π
L
ζx3Uµ(x) , (4.1)

in order to smear only the direction parallel to the momentum. The smearing parameters
are chosen to increase the overlap to the ground state, and thereby the signal-to-noise ratio,
for correlation functions over a range of momenta.

The matrix elements are calculated using the summation Generalized Eigenvalue Prob-
lem (sGEVP) technique [128] to have optimal control over the excited state contamination,
as described in Sec. 4.1. Summation techniques have proven to be extremely powerful in
controlling excited state errors [129] and have been used in a number of lattice calculations
of PDFs [34, 60, 68, 73–75, 130]. These methods have dramatically reduced excited state
contamination O(e−∆T ) compared to typical ratio methods O(e−∆T/2). These methods
are necessary for efficient calculations especially for future work with physical pion masses
where ∆ is smaller making excited states persistent for larger T/a which consequently in-
creases the computational cost needed to achieve equivalent statistical precision. To obtain
comparable statistical precision of a summation method calculation with N measurements,
a ratio method calculation can be estimated to require N2 measurements.
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4.1 sGEVP matrix element extraction

Excited state contamination is a problem which can interfere with the lattice calculation
of any matrix element. Large Euclidean times are required for isolating the ground state
from this exponentially decaying contamination. This necessity is plagued by an exponen-
tially decaying signal-to-noise ratio of the correlators as the Euclidean time is increased.
Particularly for physical pion mass calculations with high momentum hadrons, a very large
number of samples is necessary for precision calculations with large Euclidean times when
using the typical ratio method for calculating matrix elements. The sGEVP method is a
combination of two techniques which dramatically improves the scenario. Summation meth-
ods drastically increase the rate of decay of the excited state contributions. The GEVP
method can be used to create an optimal operator which overlaps with the ground state
and is orthogonal to the lowest lying excited states. The combination of these two methods
allow for significant control over excited state contamination in a computationally efficient
manner.

In a summation technique, one extracts the matrix element from the large Euclidean
time behavior of a ratio

R(T ) =
∑
t

C3(T, t)

C2(T )
, (4.2)

where C3 and C2 are typical two and three point correlators, with source and sink interpo-
lating field separation T , and operator time t. At large Euclidean times, the difference of
this ratio at two times is proportional to the matrix element M

Meff(T ) =
1

τ
(R(T )−R(T + τ)) = M +Ae−∆T +BTe−∆T + . . . , (4.3)

where the ellipses indicate terms originating from higher excited states. Summation tech-
niques reduce the contributions from excited states of a correlator at time T fromO(e−∆T/2),
where ∆ is the excited state energy gap, to O(e−∆T ). Since the signal-to-noise ratio of cor-
relators decays as O(e−ET ), where E is the energy of the state, this feature is critical for
efficient high momenta calculations. When considering the exponentially growing signal to
noise ratio of the correlators, this improvement in excited state contamination means that
if the summation method requires N measurements to obtain a desired precision, more tra-
ditional methods would require N2 measurements for a point with equivalent excited state
contamination. This advantage may also be critical for efficient calculations of pion quark
PDFs, gluon PDFs, and quark disconnected contributions, which are notoriously more noisy
than the connected quark operators used here.

Attempts to increase the overlap of the interpolating field with the ground state, and
ideally also lower the overlap with low excited states, has generated a number of smearing
procedures including the Gaussian and momentum smearing techniques used in this study.
An approach, orthogonal and complimentary to these methods, is the GEVP technique.
One considers a matrix of correlators, C(T ), with a basis of interpolating fields which
overlap with the desired state. Then one solves the GEVP equation

C(T )vn(T, t0) = λn(T, t0)C(t0)vn(T, t0) , (4.4)
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where λn and vn are the nth generalized eigenvalues and eigenvectors.
With a sufficiently well chosen basis, the generalized eigenvectors of this matrix will

overlap with the individual states and be largely orthogonal to the others. This allows one
to choose the linear combination of interpolating fields which overlaps with the desired state
be it ground state or excited state. These optimized operators can then be used to form the
three point correlation function. This improved overlap allows for a decreased minimum
Euclidean time for the matrix element fit improving the efficiency of the calculation. This
approach has been used very successfully in identifying multiple energy levels for hadron
spectroscopy [131–135] and in the determination of matrix elements [136, 137].

The combination of the summation and GEVP methods [128] is a powerful technique
for improving the excited state contamination in a matrix element calculation. The effective
matrix element is given by the difference of the ratio

R(T, t0) =
v†n(T, t0)

[
K(t)λ(T, t0)−1 −K(t0)

]
vn(T, t0)

v†n(T, t0)C(t0)vn(T, t0)
,

M eff(T, t0) =
1

τ
(R(T, t0)−R(T + τ, t0)) (4.5)

where K(T ) is the sum over operator insertion time of the three point correlation matrix.
This method has the combined advantages of the increased exponential decay and the
reduced overlap of excited state contamination.

In Fig 3, the summation technique with a single operator is compared to the sGEVP.
The correlations with smeared source and sink interpolating fields already had relatively
small excited state contamination in the summation technique. The sGEVP results do not
significantly change those data. On the other hand, the correlators with smeared source
and point sink interpolating fields had a large reduction in excited state contamination.
The plateau region is reached significantly earlier when using the sGEVP technique.

6 8 10 12 14 16

0.14

0.16

0.18

0.2

0.22  = 0.0 SS

 = 0.0 SP

 = 2.0 SS

 = 2.0 SP

 = 4.0 SS

 = 4.0 SP

4 6 8 10 12 14 16

0.14

0.16

0.18

0.2

0.22  = 0.0 SS

 = 0.0 SP

 = 2.0 SS

 = 2.0 SP

 = 4.0 SS

 = 4.0 SP

Figure 3. The correlators using the summation technique (right) and the sGEVP technique
(left). The correlators with smeared source and sink fields (SS) show little difference between the
two techniques. On the other hand, the correlators with smeared sources and point sinks (SP) show
a dramatic improvement in excited states.

This example demonstrates how even a minimal application of the sGEVP using only
three local nucleon operators can create some control over the excited state contamination.
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Other applications of the GEVP method [134, 136, 137] have used many more operators
which are specifically selected to overlap with more excited states than these local operators.
Our future applications to PDFs will utilize a larger basis of operators to have an even more
substantial effect. The sGEVP method will be crucial for calculations at physical pion mass
at high momenta where the correlation function may only be precise in a limited range of
Euclidean time.

Fig. 4 displays the results of the nucleon energy as function of the nucleon momentum.
These energies are extracted by fitting the time dependence of the principle correlator
λ0(T, t0). As it is evident that these energy levels are consistent with the continuum dis-
persion relationship within the range of available momenta. Since the momentum smearing
parameter was not tuned specifically for each momentum state, the errors do not monoton-
ically increase as they would if the same smearing was used or if the momentum smearing
parameter was optimized for each momentum state.
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Figure 4. The results of fitting the effective mass of the principle correlator λ0(T, t0) from the
moving states. The ensemble Ã5, E5, and N5, are in the upper right, upper left, and bottom
respectively. The data points represent the fits to the effective mass and the curve is the continuum
dispersion relationship from the rest frame. The energy levels are in agreement with the continuum
relationship until the largest momenta where slight deviations occur.
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4.2 Fitting matrix elements

The sGEVP is applied to each scenario of smearing parameters individually. It is likely that
modifying the operators by only changing smearing parameters will not drastically change
its overlap with the ground and excited states. This means combining them within the
sGEVP will have little effect. This feature can be seen in Fig. 3, where the effective matrix
elements with different ζ are largely consistent within errors. With the same overlap they
cannot significantly improve the cancellation of higher state effects. Instead, combinations
of these six smearing scenarios are simultaneously fit to obtain a common matrix element
and an excited state mass. When the signal-to-noise ratio for some of smearing scenarios
is poor, they are excluded from the fit, for example large ζ at small p or vice versa.

There exists a systematic error from the particular choices of the maximum and min-
imum values of T used within the fits for the matrix elements. The maximum value was
chosen based upon the statistical noise of the correlation functions at those times. When
the noise was sufficiently large that the fit result was not significantly affected, the maxi-
mum value was set. The minimum value was chosen to minimize the χ2/d.o.f. of the fit.
The change of the central values when fitting with a minimum time decreased by a single
time slice is used, in order to estimate the systematic error from the choice of minimum
time. The square of this systematic error is added to the diagonal of the covariance matrix
for the remainder of the analysis. The majority of the data points do not see a dramatic
increase in error, but some do highlighting the importance of this analysis.

5 Fits with Bayesian Priors

In order to determine the PDF from our lattice matrix elements, we create a model to
describe our data in terms of the PDF and various systematic errors as described in Sec. 3.
Let ML(ν, z2) be the lattice matrix elements while M(ν, z2, θ) be the matrix element from
our model which depends on a set of parameters θ. These parameters are the exponents α,
β, and the linear coefficients of the Jacobi series for the PDF and the nuisance terms.

We attempt to determine the most likely values of the unknown parameters θ given
our lattice matrix elements, ML and some prior information, I by using Bayes’ theorem,
which states

P
[
θ|ML, I

]
=
P
[
ML|θ

]
P [θ|I]

P [ML|I]
. (5.1)

Here P
[
θ|ML, I

]
is the posterior distribution, which describes the probability distribu-

tion that a given set of parameters are the true parameters given a set of data and prior
information. P

[
ML|θ

]
is the probability distribution of the data given a set of model pa-

rameters. P [θ|I] is the prior distribution which describes the probability distribution of a
set of parameters given some previously held information about it. Finally, P

[
ML|I

]
is the

marginal likelihood or evidence which describes the probability that the data are correct
given the previously held information. Ultimately, since the evidence does not depend on
the model parameters it will be an unnecessary normalization for finding the most likely
parameters.

– 18 –



0 2 4 6 8 10 12

0

0.5

1

ν

R
e
M

(ν
,z

2
)

z=1
z=2
z=3
z=4
z=5
z=6
z=7
z=8

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

ν

Im
M

(ν
,z

2
)

z=1
z=2
z=3
z=4
z=5
z=6
z=7
z=8

0 2 4 6 8 10

0

0.5

1

ν

R
e
M

(ν
,z

2
)

z=1
z=2
z=3
z=4
z=5
z=6
z=7
z=8

0 2 4 6 8 10

0.2

0.4

0.6

0.8

ν

Im
M

(ν
,z

2
)

z=1
z=2
z=3
z=4
z=5
z=6
z=7
z=8

0 2 4 6 8 10

0

0.5

1

ν

R
e
M

(ν
,z

2
)

z=1
z=2
z=3
z=4
z=5
z=6
z=7
z=8

0 2 4 6 8 10

0.2

0.4

0.6

0.8

ν

Im
M

(ν
,z

2
)

z=1
z=2
z=3
z=4
z=5
z=6
z=7
z=8

Figure 5. The real (LHS) and the imaginary (RHS) part of the reduced ITDs. The first row
contains the results of the coarsest ensemble Ã5, the second row the results of the ensemble E5 with
the intermediate lattice spacing and the third row depicts the results for the ensemble N5 with the
finest lattice spacing. The statistical and systematic errors are added in quadrature.

The probability distribution of the lattice matrix elements, due to the central limit
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Figure 6. The real (LHS) and the imaginary (RHS) part of the reduced ITDs of the three lattice
ensembles used in this study. We see that for the range of Ioffe times that is covered by our data
the three ensembles have a pretty good overlap. The statistical and systematic errors are added in
quadrature.

theorem, may be written as the quadratic distance functional P [ML|θ] ∝ exp[−χ2

2 ],

χ2 =
∑
k,l

(ML
k −Mk)C

−1
kl (ML

l −Ml), (5.2)

where the indices k, l run over all our matrix elements and

Ckl =
1

N(N − 1)

∑
i

(
ML,i

k −ML
k

)(
ML,i

l −ML
l

)
, (5.3)

is the covariance matrix of the N samples (denoted as ML,i
k ) of the matrix elements ML

k .
In the absence of any prior information, finding the most probable set of model parameters
is done by minimizing χ2.

The prior distributions are chosen to encode some expectations or requirements on the
fit parameters. A simple example of how this could be done is by setting bounds on a fit. If
one desires a model parameter θi to be limited to the range [a, b], then the prior distribution
is given by P [θi|I] = (b − a)−1θ(x − a)θ(b − x) where θ(x) is the Heaviside step function.
The PDF is known to be dominated by the leading behavior xα(1−x)β and the other terms
should be small corrections to this. Therefore we give the PDF model parameters ±d

(α,β)
n

priors which are normal distributions, with a mean and width of d0 and σd respectively.
In Sec. 6, we use normal distributions centered about 0, but change the widths in order to
study its effects. Similarly for the nuisance terms, we expect their parameters to be small
corrections to the dominant PDF and use a normal distribution for them, whose widths are
smaller than those of the PDF parameters. The mean and width of these are given by c0

and σc.
The prior distributions for α and β could also be normal distributions, but they have

other restrictions. First, α and β must be greater than -1. This is an explicit restriction
from the definition of the Jacobi polynomials, but also has a physical interpretation. If α
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or β were equal or less than -1, then the integral of the PDF, which is related to the total
number of quarks in the proton, would diverge. Furthermore, we do not expect β < 0, since
we expect that the parton distribution function vanishes at x = 1. In order to enforce the
restrictions of α > −1 and β > 0, their prior distributions are log-normal distributions,

P (x, µ, σ, x0) =
1

(x− x0)σ
√

2π
e−

[log(x−x0)−µ]
2

2σ2 (5.4)

where µ is the mean and σ2 the variance of the distribution of log(x − x0), and x0 is the
lower bound of the log-normal distributions. The mean µx and variance σ2

x of the variable
x are related to the log-normal distribution parameters by the following formulae,

µ = log
( µx − x0√

(µx − x0)2 + σ2
x

)
(5.5)

σ = log
(

1 +
σ2
x

(µx − x0)2

)
. (5.6)

The most likely parameters of the model are found by maximizing the posterior dis-
tribution. This is performed by minimizing the negative log of the posterior distribution
L2 = −2 log(P

[
θ|ML, I

]
) + C, where C is the normalization of the posterior which is in-

dependent of the model parameters. This is a relatively simple task because apart from α

and β all other parameters of the model enter linearly and therefore the minimization with
respect to any of these parameters can be done analytically at fixed α and β. Subsequently,
a non-linear minimization of L2, which is now a function only of α and β, can be done with
a non-linear minimizer. As a consequence, in principle one can easily minimize L2 with
a large number of Jacobi polynomial terms as the non-linear minimization is always two
dimensional. This is a well known technique called Variable Projection (VarPro) [138].

6 PDF results

As discussed before the PDF is related to the lattice matrix elements through a convolution
integral relation. Extracting the PDF from the lattice matrix elements involves the solution
of an inverse problem and therefore the resulting PDF depends on the method used to solve
it introducing a new systematic error that requires careful study. The statistical error of a
single choice of solution, such as the discrete Fourier transform, the Backus-Gilbert method,
or a fit to a particular model PDF, may significantly underestimate the true uncertainty
on the PDF. This feature can clearly be seen in the few studies which have compared
alternative methods or varied models [80, 87, 107]. In this theme, we want to study many,
though rather interrelated, models which vary both the number of parameters as well as the
prior distributions. However, the prior distributions have to be chosen carefully to reflect
accurately our prior knowledge.

In the following analysis, the PDF scale is taken to be µ = 2 GeV, which results in the
two flavor MS αs(µ = 2 GeV) = 0.245, with ΛQCD = 268 MeV.
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6.1 Inclusion of nuisance terms

There are no ab initio estimates of the sizes of the lattice spacing nuisance terms P1 and
R1. In principle, one could calculate matrix elements of the operators discussed in [51]
and develop a Symanzik improvement style program. In [63], an estimate of the size of the
higher twist effects was made using a method based upon the fact that renormalon effects
must cancel with the higher twist term. They demonstrated that the reduced pseudo-ITD
had strikingly smaller higher twist effects than the pseudo-ITD, as expected. In the range
of Ioffe time for this calculation, the improvement is at least a factor of 5. For the middle
of this Ioffe time range it is closer to a factor of 10. We anticipate that the lattice spacing
nuisance terms for the reduced pseudo-ITD will also be smaller than the pseudo-ITD due
to the same cancellation within the ratio.

As discussed above, in this work, we use a parameterization of these unknown functions
and study their effect on the fits of the PDF. First, it is important to understand which
nuisance terms are more necessary than others. A common way approaching this is to
iteratively add the terms and see the effect on the L2/d.o.f. In order to study this effect,
every combination of the leading twist PDF and the nuisance terms is fit to the data.

For simplicity, in this test the continuum leading twist term has two Jacobi polynomials
for the PDF and one Jacobi polynomial for the possible nuisance terms. As shown in Figs. 1
and 2, the contributions of very high order Jacobi polynomials are small all the way up to
Ioffe times at the upper end of the available range. The effect of varying the numbers of
terms are studied in Sec. 6.3. The widths and means of the prior distributions are the same
as the model “default” in Tab. 3. Tab. 2 shows the L2/d.o.f. and χ2/d.o.f. of the models
with all possible combinations of nuisance terms. There is a clear decrease in L2/d.o.f.
when P1 is included into the fit for both the real and the imaginary component. This
effect is anticipated, since the small z data, which are most sensitive to P1 because they
are affected more by lattice spacing errors, are generally more precise than the large z data
for any given momentum. The precision in combination with the expected lattice spacing
errors give a larger impact on the χ2 and therefore L2. This feature of statistics, along with
the ability to use small momentum data which are exponentially more precise than large
momentum data, shows an advantage of the SDF approach over LaMET. The limitations
of SDF require that the more precise low z data are used, where the limitations of LaMET
require the noisier larger p data to be used. To reach the same precision for those points
orders of magnitude of greater computational resources are required.

The effects of B1 and R1 are less clear. The improvement of L2/d.o.f. is only modest.
The higher twist contribution is most sensitive to the largest z data, which are statistically
noisier and therefore affect the χ2 less. Deviations caused by neglecting B1 may not be
expected to generate larger contributions to the χ2. Unfortunately, no such argument can
be made for R1 terms which are agnostic to z. As we show in Sec. 6.2, the data are not
sensitive to this term at all. A final thing to note is that the close values of both L2 and
χ2 imply that the data provide a significant part of the contribution to L2, not the prior
distributions. As seen in 6.2, when the priors are restrictive, the difference between χ2 and
L2 is noticeably larger. Fig. 7 shows the PDFs which result from these fits. The shape of
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model Real L2/d.o.f. Real χ2/d.o.f. Imag L2/d.o.f. Imag χ2/d.o.f.

Q only 3.173 3.094 3.146 3.095
Q and B1 2.721 2.479 3.054 2.969
Q and R1 3.028 2.748 3.068 2.871
Q and P1 0.876 0.809 1.186 1.088
Q, B1, and R1 2.610 2.057 2.917 2.619
Q, B1, and P1 0.852 0.723 1.020 0.888
Q, R1, and P1 0.881 0.763 1.289 1.063
All terms 0.857 0.727 1.026 0.893

Table 2. The L2/d.o.f. and χ2/d.o.f. of models using 2 Jacobi polynomials for the PDF and 1 Jacobi
polynomial for the various nuisance terms from fits to the real and imaginary components of the reduced
pseudo-ITD. The change in the L2/d.o.f. is a metric to judge the necessity of various nuisance terms. The
most dramatic decreases occur when O(a

z
) nuisance terms are included.

q± changes substantially when the P1 term is added in the large x region, consistent with
the fact that the P1 term affects mostly the small ν range which in turn controls the large
x region of the PDF.
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Figure 7. The results of fitting with various nuisance terms included.

6.2 Effects of prior distributions

In this section, we consider a set of prior distributions which can be studied in detail while
fixing the number of parameters. The effects of the prior distributions in this model are
modified in order to study the stability of the final results. The correlations between the
resulting parameters, as well as comparison of their fluctuations to the prior distribution,
can be used to identify which terms are being controlled by the data and which by the
priors. These terms can then be modified or removed in order to test their relevance. The
models being used in this study are described by Tab. 3.
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name N± NR/I,b NR/I,r NR/I,p α0 σα β0 σβ d0 σd c0 σc

default 2 1 1 1 0 0.4 3 1 0 0.5 0 0.1
wide 2 1 1 1 0 0.8 3 2 0 1 0 0.5
thin 2 1 1 1 0 0.2 3 0.5 0 0.25 0 0.05
limited 2 0 0 1 0 0.4 3 1 0 0.5 0 0.1

Table 3. The configurations of the models used to determine the continuum PDF. The model is modified
to test the stability of the method.

name Real L2/d.o.f. Real χ2/d.o.f. Imag L2/d.o.f. Imag χ2/d.o.f.

default 0.857 0.750 1.027 0.944
wide 0.726 0.708 0.899 0.893
thin 1.281 0.966 1.415 1.168
limited 0.876 0.809 1.187 1.148

Table 4. The L2 and χ2 of the models used to determine the continuum PDF given in Tab. 3.

The model designated as “default” serves as a baseline for this study. This model is the
same as the one considered in the previous section where all nuisance terms were included.
The models dubbed “wide” and “thin” are to study the effect of the widths of the prior
distributions. The model named “limited” is to study the case where only the nuisance
term P1, which decreased the L2/d.o.f. most significantly in Sec. 6.1, is included. As can
be seen in Fig. 8, the model “default” qualitatively reproduces many of the known features
of the PDF. The L2 and χ2 of this fit are given in Tab. 4. Due to the limited extent in
Ioffe time, the low x behavior is not well resolved, allowing for solutions which converge
and diverge as x → 0 for the q+ and q− distributions respectively. In a previous study of
mock data [66], we found that significantly larger values for the maximum Ioffe time than
what is currently achievable in lattice QCD are required to resolve the region of x < 0.2

accurately. The size of the nuisance parameter terms are also smaller than the dominant
leading twist component until ν has become large. The contribution from R1 is completely
consistent with 0. On the other hand, B1 and P1 are not consistent with zero for a range
of Ioffe times.

The values of the model parameters are given in Tabs. 5 and 6. Fig. 9 shows a normal-
ized correlation matrix between the various model parameters, whose labels correspond to
the numbers given in the tables. As can be seen the coefficient for R1 is largely uncorrelated
with the rest of the model parameters. Its central value and error are also very similar to
those of the prior distribution. These features imply that it is not being constrained by
the data, but by the prior distribution only. The higher twist and O(az ) lattice spacing
parameters, b(α,β)

R/I,1 and p(α,β)
R/I,1 on the other hand do seem to be controlled by the data to

a greater extent, especially p(α,β)
R/I,1 which we found to be the most important for lowering

L2/d.o.f.
In Figs. 10 and 11, the results of all the models described in Tab. 3 are compared. The

L2 and χ2 of these fits are given in Tab. 4. The models all give largely consistent results to
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Figure 8. The results of fitting to the model “default”. The upper and lower plots come from the
fits to the real and imaginary components respectively. The PDFs are given on the left and on the
right, the nuisance terms are compared to the ITD, reduced pseudo-ITD, and the leading twist part
of the reduced pseudo-ITD. For the reduced pseudo-ITD, the value z = 4 ∗ 0.0652 fm was used as
a typical example.

parameter ID value

α 0 -0.45(14)
β 1 0.93(20)

−d
(α,β)
1 2 -0.29(31)

−d
(α,β)
2 3 -0.77(6)

b
(α,β)
R,1 4 0.13(6)
r

(α,β)
R,1 5 0.01(10)
p

(α,β)
R,1 6 -0.27(5)

Table 5. The values of the parameters from fitting the real component to the model “default”. The ID
numbers correspond to the labels in Fig. 9.
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used on the labels are given in Tabs. 5 and 6.

parameter ID value

α 0 -0.69(7)
β 1 2.11(13)

+d
(α,β)
0 2 0.29(15)

+d
(α,β)
1 3 -1.29(12)

b
(α,β)
I,1 4 0.26(5)
r

(α,β)
I,1 5 -0.02(10)
p

(α,β)
I,1 6 0.16(2)

Table 6. The values of the parameters from fitting the imaginary component to the model “default”. The
ID numbers correspond to the labels in Fig. 9.

each other. As expected “thin” and “wide” gave results with smaller and wider statistical
errors than “default” respectively. For the higher twist terms, the “wide” and “thin” results
actually seem to deviate slightly from the “default” model, compared to the other terms,
but with little effect on the resulting PDF.

6.3 Varying the number of parameters

In order to study the model dependence, the number of parameters for the PDF and for
each of the nuisance terms are all be varied. The prior distributions are set to those of the
model “default” in Sec. 6.2. Changing the number of parameters varies the flexibility of the
model. Based upon the size of the σn(ν) and ηn(ν) functions, the terms with the lowest n
will dominate the result. It appears that terms with n > 5 will have an entirely negligible
effect in the given range of Ioffe time. For this study, the maximum n is 3 for any given
term. The number of polynomials in each of the nuisance terms is allowed to vary from 0
to the number of polynomials in the ITD term. The models are labeled with 4 numbers
corresponding to (N±, NR/I,b, NR/I,r, NR/I,p).

The results of the PDFs are shown in Figs. 12-17. When the P1 nuisance terms are
included, the PDFs are largely consistent. Some of the q+ distributions begin to have
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Figure 10. The results of fitting to the models of Tab 3. The PDF is given by the upper left,
B1(ν) is given by the upper right, R1(ν) is given by the lower left, and P1(ν) is given by the lower
right.

significant differences for the region of x ≤ 0.4. These discrepancies are to be expected from
a fit with a limited range in Ioffe time, as the study in [66] showed. When P1 is included,
the q− distribution consistently diverges at x = 0, but q+ may converge or diverge. Without
that P1 term, the PDFs differ not only with the PDFs from fits with P1 but also amongst
themselves.

The nuisance terms are shown in Figs. 18-27. The O(a/z) term P1 also appears to
grow to a peak around ν ∼ 4 and either plateaus or goes to zero. The location of this peak
is expected from σ

(α,β)
1 and η

(α,β)
1 when NR/I,p = 1 but is robust even for NR/I,p = 2, 3.

This peak or plateau is negative for the real component and positive for the imaginary
component. The R1 term is only ever non-zero when there is no P1 term. This implies that
in those models it is attempting to compensate for the absence of P1.

For the majority of the models, the higher twist term B1 appears to grow to a peak
around ν ∼ 4 and either plateaus or shrinks slightly. Similarly to P1 the location of this
peak is expected from the shape of σ(α,β)

1 and η(α,β)
1 when NR/I,p = 1. For a wide range

of models, the size of the B1 term is smaller than 0.15, sometimes even less than 0.1. The
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Figure 11. The results of fitting to the models of Tab 3. The PDF is given by the upper left,
B1(ν) is given by the upper right, R1(ν) is given by the lower left, and P1(ν) is given by the lower
right.

naive expectation of the higher twist contribution was that the coefficient of Λ2
QCDz

2 would
be order 1. This result implies that even larger z2 could be safely used. One may worry
about the convergence of the higher twist sum and the size of the neglected twist 6 and
higher terms. Since those are not included in the fit, the effects of those terms are being
accumulated, if imperfectly, into B1. For the size of z2 used here, and given the fact that
B1 is small the twist 6 contributions the reduced matrix element must be also small.

6.4 Model weighted averages

There exist a number of methods for combining results from different models in order to
create an average. In this study, we utilize the Akaike Information Criterion (AIC) [139]
for this goal. The AIC is given by ai = 2ki + 2L2

i , where ki is the number of parameters
in the ith model and L2

i is the negative log of the posterior probability distribution for
that model. It should be noted that L2

i differs from the L2 used previously by the proper
normalization of the likelihood probability and the prior distributions. If there were no
prior distributions and the same data were used in the fit, then this would only be an
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Figure 12. The PDF results from fitting the real component to the models. The numbers in the
legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).

irrelevant constant. Since our models use different numbers of parameters, each with their
own prior, the total normalization factor differs and must be taken into account. When
using a relatively few number of data points (n), it is common to use the corrected AIC,
called AICc [140], Ai = ai + 2k(k+1)

n−k−1 which approaches the AIC when n becomes large. We

– 29 –



0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4
q −

(x
)

(3, 0, 0, 0)
(3, 1, 0, 0)
(3, 2, 0, 0)
(3, 3, 0, 0)
(3, 0, 1, 0)
(3, 1, 1, 0)
(3, 2, 1, 0)
(3, 3, 1, 0)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

q −
(x

)

(3, 0, 0, 1)
(3, 1, 0, 1)
(3, 2, 0, 1)
(3, 3, 0, 1)
(3, 0, 1, 1)
(3, 1, 1, 1)
(3, 2, 1, 1)
(3, 3, 1, 1)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

q −
(x

)

(3, 0, 0, 2)
(3, 1, 0, 2)
(3, 2, 0, 2)
(3, 3, 0, 2)
(3, 0, 1, 2)
(3, 1, 1, 2)
(3, 2, 1, 2)
(3, 3, 1, 2)

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

q −
(x

)

(3, 0, 0, 3)
(3, 1, 0, 3)
(3, 2, 0, 3)
(3, 3, 0, 3)
(3, 0, 1, 3)
(3, 1, 1, 3)
(3, 2, 1, 3)
(3, 3, 1, 3)

Figure 13. The PDF results from fitting the real component to the models. The numbers in the
legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).

adopt the AICc for our analysis.
The AICc can be used to create weights for averaging results from different models.

The weights can be interpreted as the relative likelihood of that given model compared to
the rest. The average value from N models is given by

x =
N∑
i=1

wixi ; wi =
e−

Ai
2∑N

i=1 e
−Ai

2

, (6.1)

where xi is the part of the ith model which describes the observable x, e.g. the PDF or
various model parameters. This weighted average combines knowledge of the likelihood of
a given model alongside a factor to avoid overfitting. Ultimately, this procedure can be
improved by adding models which are less related to each other than simply varying the
number of terms. If sufficiently many distinct models are used, the possible biases from
choices of model can be averaged away through this AICc weighted average. For example,
including fits which use neural networks, which were performed for lattice PDFs in [67, 99],
which likely would have distinct model dependent biases from the Jacobi polynomials fits.
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Figure 14. The PDF results from fitting the real component to the models. The numbers in the
legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).

Unfortunately in this preliminary study which only uses Jacobi polynomial based models,
the systematic errors may not be sufficiently distinct.

Based upon our studies of the models, we should select which ones to include into the
model averaging. The models without a P1 term do differ from the rest of the models,
which may give a reason to exclude them. Since their L2 was so much higher than the rest,
they are exponentially suppressed in the AICc average. We include them in the average
anyway in order not to bias ourselves at all due to their discrepancy. The model average of
the PDFs is shown in Fig. 28. These PDFs share many of the features shown in Figs. 12- 17.

6.5 Comparison with global fits

A comparison with the phenomenological fits to global collider experiment results can be
made, though it is possibly premature given the heavy pion mass of these ensembles. Pre-
vious lattice calculations of local matrix elements, obtained moments of the PDF [141] at
these heavy quark masses, with values higher than those from global fits, so we may not
expect agreement at the larger x region which dominates those moments. Fig. 29 shows
the AICc averaged results for q and q̄ alongside these global fits [122–124] which were ob-
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Figure 15. The PDF results from fitting the imaginary component to the models. The numbers
in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).

tained using LHAPDF [142]. The AICc averaged result for q is indeed larger than the
phenomenological result for the majority of x.
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Figure 16. The PDF results from fitting the imaginary component to the models. The numbers
in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 17. The PDF results from fitting the imaginary component to the models. The numbers
in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 18. The higher twist term, B1, results from fitting the real component to the models. The
numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 19. The higher twist term, B1, results from fitting the real component to the models. The
numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 20. The higher twist term, B1, results from fitting the imaginary component to the models.
The numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 21. The higher twist term, B1, results from fitting the imaginary component to the models.
The numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 22. The higher twist term, B1, results from fitting the real component to the models. The
numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 23. The higher twist term, B1, results from fitting the real component to the models. The
numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 24. The higher twist term, B1, results from fitting the imaginary component to the models.
The numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 25. The higher twist term, B1, results from fitting the imaginary component to the models.
The numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 26. The higher twist term, B1, results from fitting the real component to the models. The
numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 27. The higher twist term, B1, results from fitting the imaginary component to the models.
The numbers in the legend correspond to (N±, NR/I,b, NR/I,r, NR/I,p).
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Figure 28. The results of the AICc weighted average of the models of Sec. 6.3.
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Figure 29. A comparison of the AICc averaged results to the global fit PDFs, CT18 [122], NNPDF
3.1 [124], and MSHT’20 [123]. The upper plots are
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7 Conclusions

In this work we have studied the continuum limit extrapolation of the nucleon PDF com-
puted on the lattice via the method of Short Distance Factorization and Ioffe time pseudo-
distributions. In this method, we have employed three lattice ensembles all of which have
a lattice spacing less than 0.08fm and this work constitutes a significant improvement with
respect to our first study [74] of discretization errors in lattice computations of Ioffe time
distributions. In the first work, we had worked with rather coarse lattices, 0.127fm and
0.091fm while the lattice spacings of the three ensembles employed in the current study,
are at the limit of what the current lattice methodologies can achieve without encountering
issues related to the freezing of topology and critical slowing down. Currently, taking the
continuum limit on the lattice at the physical pion mass with Wilson type quarks is not
possible since the generation of at least three ensembles at the physical point with Wilson
type fermions is numerically a formidable task for the time being. We therefore consider
ensembles at a heavier pion mass all of them at 440 MeV. A continuum extrapolation at the
physical pion mass will be performed in future studies once the computational resources
render such an endeavor feasible. Additionally, it is well known that the contamination
from excited states can plague severely the results of a lattice computation especially as
one is approaching the physical pion mass. In this work, we employ the sGEVP method in
order to have a better control of the excited states. We also stressed the necessity of dealing
explicitly with the various systematic errors that are unavoidable in any lattice calculation.
We adopted a Bayesian approach where we build explicit models of the PDF and of the
associated systematic errors in order to describe our data. These models contain unknown
parameters whose most likely values are determined given some prior information and using
Bayes’ theorem. Another novelty of this work is that in this article we are using the Jacobi
polynomials as a way of tackling the unavoidable inverse problem that one encounters when
trying to obtain the Bjorken-x PDF from Ioffe time lattice data. Up to now, we had mainly
been using parameterizations of polynomials of

√
x or neural networks. We advocate that

the Jacobi polynomials constitute a very versatile and flexible approach that eliminates the
introduction of model dependence.
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