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Abstract

We present the details of a new factorized approach to semi-inclusive deep-inelastic scattering
which treats QED and QCD radiation on equal footing, and provides a systematically improvable
approximation to the extraction of transverse momentum dependent parton distributions. We
demonstrate how the QED contributions can be well approximated by collinear factorization, and
illustrate the application of the factorized approach to QED radiation in inclusive scattering. For
semi-inclusive processes, we show how radiation effects prevent a well-defined “photon-nucleon”
frame, forcing one to use a two-step process to account for the radiation. We illustrate the utility

of the new method by explicit application to the spin-dependent Sivers and Collins asymmetries.



I. INTRODUCTION

From the pioneering elastic scattering experiments in the 1950s that revealed the fi-
nite size of the proton [1], to the classic deep-inelastic measurements that observed the
first glimpses of the proton’s pointlike substructure [2, 3] in the 1960s and 1970s, electron
scattering has been an indispensable tool for hadron structure studies. These experiments
established critical milestones that ultimately paved the way to the fundamental theory of
the strong interactions, Quantum Chromodynamics (QCD). The theoretical formalism of
collinear factorization, developed in the 1980s in the context of perturbative QCD [4-6],
provided a rigorous and systematic path between high-energy scattering observables, such
as deep-inelastic scattering (DIS) cross sections, and the quark and gluon (or parton) lon-
gitudinal momentum distributions that characterize the proton’s internal structure. Over
the course of the last few decades, a wealth of experimental data has been accumulated
on proton and nuclear targets which has revealed intriguing features of the flavor and spin

dependence of the parton distribution functions (PDFs) in nucleons and nuclei [7-9].

More recently, it has been recognized that one can access also the transverse momentum
distributions of quarks and gluons, which, when combined with the longitudinal information,
holds the promise of systematically mapping out the full three-dimensional partonic struc-
ture of the nucleon in momentum space [10-15]. Charting the distributions in the transverse
plane is naturally more involved, however, requiring the development of transverse momen-
tum dependent (TMD) factorization in appropriate regions of kinematics [16]. Tremendous
interest has been generated in recent years [17-23] by the prospects of extracting TMD in-
formation from experiments at existing facilities such as COMPASS at CERN and Jefferson
Lab, which use lepton probes (muons and electrons, respectively), and RHIC at BNL, which

utilizes proton beams.

One of the key processes that has been embraced as a potentially rich source of infor-
mation about TMD PDFs is semi-inclusive DIS (SIDIS), where in addition to the scattered
lepton, a high-momentum hadron (typically a pion) is detected in coincidence in the final
state [24]. With the incident ¢ and scattered ¢ lepton four-momenta defining the leptonic
plane, and the target nucleon and produced hadron four-momenta P and P, defining the
hadronic plane, specific angular modulations between these planes in SIDIS can allow the

extraction of various types of TMDs that are not accessible from traditional inclusive ob-



servables. (Note that for simplicity we will refer in this paper to scattering of leptons from
nucleons, however, the results apply equally to scattering from any other hadron or nucleus.)
Here, as for inclusive scattering, the large four-momentum transfer ¢ = ¢ — ¢’ between the
leptons provides the hard scale, Q> = —¢*> > A2, for the factorization of the SIDIS
process.

A clear advantage of electrons (and other pointlike leptons, such as positrons and muons)
is that they are much cleaner probes of nucleon structure than are hadron beams, whose
internal partonic structure is typically intertwined with that of the probe and hence more
difficult to disentangle. At the same time, it has long been understood that electron scat-
tering at large momentum transfer can be a source of considerable photon radiation, which
can significantly distort the inferred nucleon structure if it is not properly accounted for.
In particular, the radiation can not only affect the momentum transfer ¢ from the lepton
to the nucleon, it can also alter the angular modulation between the leptonic and hadronic
planes, making it problematic to define the transverse momentum of the produced hadron,
Pyr, in the true photon-nucleon frame. This in turn can induce angular modulations which
can mimic those arising from the true nucleon structure effects encoded by the TMDs.

In the literature, modifications to inclusive DIS [25-27] and eTe™ annihilation [28-31]
cross sections induced by electromagnetic radiation have been treated in the form of correc-
tions to the tree-level cross sections, in some cases improved by resummation of logarithmic-
enhanced radiative effects [32-34], what are then subtracted to reveal the true Born cross
sections without radiation. Unfortunately, without accounting for all radiated photons ex-
perimentally, some of the radiative corrections (RCs) rely on knowing the invariant mass of
the hadronic final state and subsequent Monte Carlo simulation [35-38], which inherently
introduces a degree of model dependence in the procedure. For processes beyond inclusive
DIS the prescription of matching to the Born cross section by removing the radiation effects
becomes increasingly difficult [39, 40]. For exclusive or semi-inclusive cross sections, which
are parametrized by 18 structure functions, the procedure becomes effectively impractical
without introducing severe approximations.

Despite the complications, several pioneering efforts have been made to address RCs in
SIDIS reactions, most notably within the covariant approach of Bardin and Shumeiko [41],
in which infrared divergences from real and virtual photon emission are shown to cancel.

Compared with the Mo and Tsai approach [26], an advantage of the covariant method is
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that the expressions for the RCs do not depend on parameters introduced to separate the
photon emission on the hard and soft parts of the amplitudes. Using this approach, the
corrections to the triply-differential (transverse momentum integrated) SIDIS cross section
d?c/dxy dy dz;, were considered by Soroko and Shumeiko for unpolarized [42] as well as
polarized [43] scattering, where z; = —¢?/2P-q is the Bjorken scaling variable, y = P-q/P-¢
is the energy loss of the incident electron, and z, = P-P,/P-q is the longitudinal momentum

fraction carried by the final state hadron.

This was extended by Akushevich et al. [44, 45] to the case of the angular dependent
cross section for unpolarized SIDIS, d°c/dx; dy dzj, dPZ: dey, where ¢, is the azimuthal
angle between the lepton and hadron production planes, including contributions from the
exclusive radiative tail. Ilyichev and Osipenko [46] considered a higher-order background to
this five-fold unpolarized SIDIS cross section arising from exclusive lepton-pair production,
which in the region ¢, = 180° can be comparable to the SIDIS signal. Contributions from
two-photon emission, which enter at the same order, were also considered in this work.
Most recently, Akushevich and Ilyichev [47] derived within the same approach analytical
expressions for RCs to sixfold differential SIDIS cross sections for scattering longitudinally
polarized leptons from nucleons with arbitrary polarization, d®c/dx, dy dz;, dPZ, dey, d,
where 1 is the azimuthal angle between the lepton scattering plane and the spin direction
of the incident nucleon. The calculations included the “model-independent contributions,”
proportional to log(Q?/m?), where m, is the lepton mass, associated with the emission of
real photons from leptons, along with leptonic vertex correction, and vacuum polarization.
Not considered in the analysis were corrections from real and virtual photon emissions by

hadrons, QED hadronic vertex corrections, or two-photon exchange contributions.

In a recent paper [48], we proposed a new factorized framework for SIDIS reactions,
which simultaneously treats QED and QCD radiative effects on the same footing and in a
systematically improvable manner. In the present work, we provide the details that justify
this factorization approach, and demonstrate why the collinear factorization is good ap-
proximation for organizing all-order QED contributions to lepton-nucleon DIS and SIDIS.
We illustrate this with explicit examples of applications of the factorization approach to
QED radiation in inclusive DIS, and compare with existing RC calculations. For SIDIS, we
quantitatively demonstrate that the amount of transverse momentum broadening from the

collision-induced QED radiation is much smaller than the typical transverse momentum of
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a colliding parton (which could be further enhanced by QCD radiation from its intrinsic
value) for all foreseeable energies of lepton-nucleon scattering experiments. The momentum
imbalance between the observed lepton and hadron in the final state is therefore dominated
by the transverse momentum dependence of the nucleon TMDs, which makes SIDIS a par-
ticularly useful process to TMD extraction. This finding justifies our collinear factorization
approach to handling high-order QED contribution to SIDIS, while the TMD factorization
approach is needed for high-order QCD contributions to SIDIS when the momentum imbal-
ance is much smaller than the observed lepton and hadron transverse momenta in the lab
frame, where the incident lepton and nucleon are along the z-axis.

The challenge for the traditional method of treating QED radiation as an RC factor
applied to the QED Born cross section is the difficulty in controlling the “true” momentum
transfer to the incident nucleon. Even when the momentum transfer Q? is sufficiently large
for a perturbative hard scale, QED radiation can render the “true” momentum transfer @2
to the colliding nucleon, which has a minimum

(1-y)

A2 2
min Q 3
(1 — Tp y)

(1)

such that @2 < @Q? when xz; is small or y is large and there is a large phase space for
radiation. When the “true” momentum transfer to the colliding nucleon @2 is not in the
DIS regime because of QED radiation, high-twists and quasielastic or elastic tails could
contribute to the lepton-nucleon cross section even when (? is large. This could naturally
lead to model dependence of the RCs in order to remove or correct these non-DIS events,
even for the inclusive DIS measurements.

Our proposed factorization approach for both QCD and QED contributions to DIS and
SIDIS naturally maintains the “true” momentum transfer sufficiently large, @ilin > A2,
to ensure factorization and avoid regimes where higher-twist and non-DIS events could be
relevant. To achieve this, we systematically separate the infrared-sensitive QED parts as
me — 0 from the infrared-safe QED terms. We include all-order QED contributions to
DIS and SIDIS cross sections by resumming infrared-sensitive terms into universal lepton
distribution functions (LDFs) for the incident leptons, and lepton fragmentation functions
(LFFs) of the observed leptons. The infrared-safe contributions are calculated perturbatively
in powers of «, up to power corrections in powers of m,/ @ < 1.

The key impact of QED radiation on the SIDIS cross section is from the change of the



momentum transfer to the colliding nucleon, in both its direction and invariant mass, caused
mainly by the logarithmic-enhanced collinear QED radiation. In this paper, we extend the
analysis [48] of the unpolarized SIDIS structure function to the spin-dependent case, for the
specific examples of the Sivers and Collins asymmetries. In particular, we demonstrate a
“no-go theorem” for RCs in SIDIS, which arises from the dependence of the longitudinal and
transverse polarization vectors Sy, and St on the leptonic momentum fractions, and forces
us to consider a two-step process to account for the radiation. We note that the same issue
will affect the case of inclusive polarized DIS, in addition to SIDIS, and the extraction of
the spin-dependent g; and gs structure functions.

We begin by reviewing in Sec. II the factorized formalism for inclusive DIS in the presence
of QED radiation, presenting the basic formulas for DIS cross sections in terms of universal
LDFs and LFFs. We assess the importance of the QED radiation numerically at various
kinematics relevant to Jefferson Lab and EIC energies, and compare the results of our fac-
torized approach with the traditional formulation of RCs in the literature. In Sec. III we
generalize the factorized formalism to the case of SIDIS processes, and discuss the specific
collinear and TMD factorization for the leptonic tensor and structure functions relevant in
different kinematics. The numerical impact of QED effects on SIDIS observables is described
in Sec. IV. To demonstrate the practicality of our approach, we illustrate the formalism ap-
plied to unpolarized SIDIS structure functions, as well as to the azimuthal modulations for
transversely polarized nucleons associated with the Sivers and Collins asymmetries. In par-
ticular, we quantify the effect of the mismatch between the total four-momentum transferred
from the incident lepton and the QED Born approximation on the problem of defining a
unique photon-nucleon frame, and the resulting mixing induced between the different angu-
lar modulations. Finally, in Sec. V we summarize our main conclusions and discuss possible
future extensions of this work. Several appendices give additional details of the calculation
of the NLO perturbative coefficients for the leptonic tensor (Appendix A), together with
a few useful formulas (Appendix B), and a set of QED dependent kinematic expressions

relevant for SIDIS calculations (Appendix C).
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FIG. 1. (a) Inelastic scattering amplitude for a lepton (¢, \;) from a nucleon (P, S) to a scattered
lepton (¢') with inclusive final states X, and (b) the same amplitude via an exchange of one virtual

photon (q).

II. FACTORIZED FORMALISM FOR INCLUSIVE DIS WITH QED

We begin our discussion by reviewing the more familiar case of inclusive DIS, where we
demonstrate the factorized formulation for the QED radiative effects in terms of universal
LDFs and LFFs and infrared-safe higher-order QED corrections. Most generally, the cross
section for inelastic scattering of a lepton of four-momentum ¢ and helicity A, from a nucleon
of four-momentum P and spin S to a scattered lepton of four-momentum ¢ with inclusive
final states X, e(¢, \¢)+ N(P,S) — ¢ (¢')+ X, can be formally written in terms of the square

of its scattering amplitude My, p(s)—ex, as sketched in Fig. 1(a),

1

2
doyn)p(s)—ex = % | Mor) p(s)—ex | dPS, (2)

where s = (£ + P)* ~ 2( - P is the total collision energy, and dPS indicates the differential
phase space of the given final state, which will be specified below. Using the fact that the
QED fine structure constant o = €?/(4r) is small in the energy regime of interest, the DIS
amplitude is often approximated by the amplitude with one-photon exchange, as shown in
Fig. 1(b). The inclusive DIS cross section in this case can be written as

a3 . 202
UZ(/\E)P(S)_)Z X =~ @ L(O) (E, 6,, )\Z) W“V(q’ P7 S>7 (3)

127 REVZ T st

where the zeroth-order leptonic tensor given by

1
LS00 = Te |75 (1+ Aeys) 7 €97 - ¢
= 2(0, 0, + 0, 0, — €0 gy + iNg €ap €07 | (4)
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and €,,,, is the totally antisymmetric tensor with e = 1. The hadronic tensor is defined

as
d’p;
v i 4 (4)( _ )
W (q, P,S) = Z/H Y 2m)6W(q+ P iezxpz
X (P, S|JH0)| X)(X|J"(0)|P, S), (5)
where J#(0) is the electromagnetic current coupling to quarks. In general, the hadronic ten-
sor can be expanded in terms of spin-averaged Fi»(z5, @*) and spin-dependent gy o(x5, Q?)

structure functions,

1 ~ ~
W (q, P, S) = —g"(q) Fi (2, Q°) + P_-(]PMPV Fy(as, Q%)
iM S -
+ P_@d“”ﬁ qo {Sﬂ 91(zs, QQ) + (Sﬂ - P_-C(11P5> ga (w5, Qz)} ) (6)
where the current conserving tensor g and vector PH are defined as
o , 4 5 P-q
gM(Q)Eg’u_?a Pt =Pt — q2 qﬂ’ (7)

such that g, " (q) = quﬁ“ = 0. The target nucleon spin four-vector can be written in
terms of the polarization vector S, S* = (5%, S), with P -S = 0 and normalized such that
S? = —1.

In the one-photon exchange approximation, and in the absence of photon radiation from
leptons (i.e., the QED Born approximation), the inclusive DIS cross section in Eq. (2) can be
expressed in terms of the spin-averaged and spin-dependent structure functions by using the
leptonic and hadronic tensors in Eqgs. (4) and (5), respectively. For example, the unpolarized

lepton-nucleon DIS cross section is given by
Popoex _ 4a?
REV ~ sty Q2

where v = 2M 1 /Q, and we neglect hadron masses relative to the center of mass energy +/s,

1
Ey [xByQFl(:IrB, Q%) + (1 —y- ny?) Fy(s, QQ)}, (8)
but keep finite mass terms with respect to QQ = 1/Q?. The one-photon exchange expression
for the cross section (8) indicates that the nucleon structure functions F; and Fy can be
extracted directly from inclusive DIS data, and traditionally have often been considered as
“direct” physical observables. With a large four-momentum transfer, Q* > A2, these
structure functions can be further factorized in terms of quark and gluon PDFs [6]; for

example, for the Fy structure function,

(5.0 z/dxc2a(””,Q2 )ttt + 0 (T2, o)




FIG. 2. Diagrams for the first real (top row) and virtual (bottom row) QED radiative contribution

to scattering of a lepton (momentum k) from a quark (p) to a lepton (k') and recoiling quark.

where the sum runs over all parton flavors a (= ¢, q, g), Cs, are coefficient functions calcu-
lable in QCD perturbation theory order-by-order in powers of the strong coupling «y, and
fa(z, u?) are universal PDFs of flavor a probed with active parton momentum fraction x
and factorization scale p.

In principle, any cross section with an identified hadron (in the initial or final state),
such as the inclusive DIS cross section, cannot be fully calculated within QCD perturbation
theory due to its dependence on the hadronic scale of the identified hadron. The factorization
formalism, as in Eq. (9), is an approximation with the correction suppressed by inverse
powers of the large momentum transfer () of the collision. Similarly, other structure functions
in Eq. (6) can also be factorized in terms of universal PDFs [16]. If the factorized coefficients
are calculated at leading order (LO) in as, the two spin-averaged structure functions are
related via the Callan-Gross relation [49], Fy(5, Q?) = 2x5Fi (25, Q%) = Y, €2 @ folxs, Q).
With the perturbatively calculated coefficient functions at next-to-leading order (NLO) and
next-to-next-to leading order (NNLO) in ay, precise data from inclusive DIS have provided

important constraints on QCD global analysis of PDFs [50].

A. Inclusive DIS with QED radiative contributions

With the large momentum transfer, Q* > AéCD, lepton-nucleon scattering naturally
triggers radiation of photons (photon showers), such as those from the incident and scattered
charged leptons and quarks illustrated in Fig. 2 at NLO in «. Without being able to

account for all radiated photons experimentally, this collision-induced QED radiation not



FIG. 3. Sketch of scattering amplitudes for (a) the factorized DIS process in Eq. (10), and (b) low-

est order lepton-quark scattering.

only changes the momentum transfer ¢ between the incident lepton and nucleon, but also
requires diagrams beyond the one-photon exchange approximation to maintain the gauge
invariance of QED (or in general electroweak) contributions to the inclusive lepton-nucleon
DIS cross section. Beyond the one-photon exchange approximation, the structure functions,
along with the PDFs from Eq. (9), cannot be uniquely determined from inclusive DIS data

without accounting for all QED radiative contributions to the measured cross section.

The traditional method to include all QED radiative contributions to the lepton-nucleon
DIS cross sections is to introduce an RC factor to the Born cross section, so that one can still
extract the structure functions from inclusive DIS data. However, this approach necessarily
introduces uncertainties in handling the contributions of QED diagrams beyond one-photon
exchange, such as the virtual diagrams with two-photon exchange contributions in the second
row in Fig. 2 at NLO, and similar diagrams at higher orders. Consistent treatment of such
QED (or electroweak) contributions to the lepton-nucleon DIS cross sections is important for
precision extraction of PDF's, and especially for searches of new physics beyond the standard

model in processes such as parity-violating DIS.

Instead of treating QED radiation as a correction to the Born process, here we unify the
QED and QCD contributions to the lepton-nucleon scattering cross section in a consistent
factorization formalism. We consider the lepton-nucleon inclusive DIS in Eq. (2) as an
inclusive production of a scattered lepton of four-momentum ¢}, with a transverse component
0, > Agep in the lepton-nucleon frame, where the colliding lepton and nucleon are head-
on, as sketched in Fig. 3(a). Applying the factorization formalism previously developed for

single-hadron production at large transverse momentum in hadronic collisions [51] to lepton-
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nucleon scattering, the factorized unpolarized inclusive DIS cross section can be written as

doep_e
I Uilj-;glzx o Z/ e/](C v )fz/e(é ,u)

mln mln

1
d
X/ ?xfa/N(x ,u) ia—)jX(S&xPagl/Cnuz) + Ty (10)

min

where i, j, a include all QED and QCD particles, and the ellipsis represents corrections
suppressed by inverse powers of ¢/.. The lower limits of the integrations in Eq. (10) depend
on external kinematics as specified in Eq. (25) below, and f,/n (2, x?) is the PDF of the
colliding nucleon N with momentum fraction x = p~/P~ carried by the active parton of
flavor a (either a quark, antiquark or gluon in QCD, or a lepton or photon in QED) [4],
where we use the light-cone vector notation v* = (v° 4 v®)/+/2 for any four-vector v* with
the plus direction defined along the lepton momentum ¢. (Note that we take the nucleon to
be moving along the —z direction, with the incident lepton along the +z direction.)

In Eq. (10), the LDF f;.(&, p*) gives the probability to find a lepton (or parton) of
flavor ¢ with momentum £ ~ &/ in the incident lepton e, defined analogously to the PDF of
a hadron [4], but with the hadron state replaced by an asymptotic lepton state |e). Explicitly,

for a lepton (or quark) distribution in a lepton e with momentum ¢, the LDF is defined as

el = [ e lO1B07 By el (1)

where £ = kT /¢ is the light-cone momentum fraction carried by the active lepton (or quark)
of momentum £ and flavor i, as sketched in Fig. 4, p is a scale to renormalize the nonlocal
fermion operator, and @ .-} = exp[—ie fozidn_/ﬁ(n_)] is the gauge link with a photon (or
gluon) field A#. Similarly, the photon (or gluon) distribution function of a lepton can be
defined in the same way as the gluon distribution of a hadron, except replacing the hadron
state by a lepton state, and the gluon field by corresponding photon field for the photon
distribution function [4].

In analogy with the LDF, the LFF D./;(¢, ) in Eq. (10) describes the emergence of
the final lepton e with momentum ¢ from a lepton (or parton) of flavor j with momen-
tum k' ~ ¢'/¢. Formally, the LFF for a fermion (lepton or quark) of flavor j to decay into

the observed lepton e is defined as

Deyi (¢, %) ¢ Z/ et (12)
< T [ (01, (0) @0 [e(0), X)e(E), Xy (7)1 g [0)].
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FIG. 4. Sketch of the lepton distribution function for finding a fermion (quark or lepton) inside a
colliding lepton of momentum ¢, where the active fermion of momentum £ in the amplitude and

its complex conjugate is contracted by the cut-vertex, v* /(207)6(¢ — kT /¢7).

where the plus direction is taken along the observed lepton momentum ¢* = (£7,07,07)
[note that the plus direction for the LDF in Eq. (11) was defined along ¢|. The LFF from a
photon (or gluon) is defined analogously to the gluon fragmentation function to a hadron,
with the hadron state replaced by the observed lepton state and gluon field replaced by the
corresponding photon field for the photon fragmentation function [4]. Both the LDF (11)
and LFF (12) are defined in analogy with the quark PDF in the nucleon, f,/n(z,#?), and
quark to hadron fragmentation function [4], with the quark and gluon fields replaced by
lepton and photon fields, and the hadron state by a lepton state.

In Eq. (10), the function ]TIZ-a_U- x is the lepton-parton (or parton-parton) scattering cross
section, with all logarithmic collinear sensitivities along the direction of observed momenta,
¢,/ and P, removed, and is therefore infrared safe and insensitive to taking the m, — 0
or my — 0 limits. The infrared-safe PA[Z-CH]- x can be perturbatively calculated by expanding
the factorized formula (10) order-by-order in powers of a and aj, with f]i(ﬁ? denoting the
contribution at O(a™al).

The factorized inclusive DIS cross section in Eq. (10) resums all logarithmic enhanced
contributions from collision-induced radiation collinearly sensitive to the incident lepton into
LDFs f;/e, radiation that is collinearly sensitive to the scattered lepton into LFFs D, /;, and
radiation collinear to the colliding nucleon into the nucleon PDFs f,/n. We stress that our
factorization approach to inclusive DIS does not require the approximation of one-photon
exchange. The factorization formula (10) does provide a perturbatively stable basis for the
reliable extraction of the nucleon PDF's, f, v, from inclusive DIS cross sections, along with
the universal LDFs and LFF's, without the need for introducing the concept of hadron struc-

ture functions. In this approach the structure functions are not direct physical observables,
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FIG. 5. Sketch of the kinematical variables describing inclusive DIS from a nucleon (with mo-

mentum P and spin S), with the incident (¢) and scattered (¢') leptons defining the lepton plane.

but are in practice tied to the one-photon exchange approximation. In addition, the factor-
ized formalism in Eq. (10) naturally accounts for all leading power QED contributions in
the m./Q expansion of the inclusive DIS cross section, order-by-order in powers of «, such
as those in Fig. 2, as well as the resummation of logarithmically enhanced collinear radiative
contributions into LDF's and LFF's.

As an additional approximation, if one can justify that the inclusive DIS cross section for
a lepton of momentum ¢ and helicity A, colliding with a nucleon of momentum P and spin
S, as sketched in Fig. 5, is dominated by the subprocesses consistent with a valence lepton
approximation, then the factorization formula in Eq. (10) can be further simplified to

dPoyr,) P(s)—ex bod¢ o 1 2
Ey REY ~ Z : FDe/e<C7,U/ ) ¢ d§ fe(Ak)/e(Ae)(fnu )
)‘k min

min

dgﬁk(xk)P(sHk/X}
A3k’ k=gl k' =0 /C

where )\ is the helicity of the lepton of momentum & that collides with the nucleon. The

« [E | (13)

cross section Oj(z,)p(s)—kx 1S infrared-safe as m. — 0, with all collinear sensitive QED
radiative contributions along the lepton momenta ¢ and ¢ resummed into fc/. and D/,
respectively. At lowest order in powers of «, effectively with one-photon exchange, the cross

section can be written as

PopopE)—rx 202 VA
B~ s K WG PS), (14

with L,(f,),) (k, k', \g) and W# (g, P, S) defined in Egs. (4) and (6), respectively. We can express
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the phase space of the scattered lepton ¢ in terms of more commonly used variables,

3/ 2
4 (i (§

) day dQ? dip = (2—) das dy dy, (15)

225 Tp

where 1) is an angle between the leptonic plane and the nucleon spin plane defined by vectors
P and S, as shown in Fig. 5, with integration over di giving a factor 27 for unpolarized or
longitudinally polarized DIS. Substituting the tensors in Egs. (4) and (6) into Eq. (14), and
then substituting (14) into Eq. (13), we can express the spin-averaged lepton-nucleon DIS

cross section in terms of structure functions evaluated at the shifted variables z; — Z5 and

Q* — Q2

Popex /1 ¢ [* 2 2 {QQ %}
— Y = Ty d De e bl e/e ) =
dfﬂde Cmin Cz gmin 5 / (C ILL )f/ (5 ILL ) xB Q2
A [ . oA N P . A
X —= [«'EB?JQ Fy (25, Q2) + (1 - Y- Z?ﬁ’ﬁ) Fy(@p, Q2)} (16)
T Q

Here the factor [(Q%/z) (iB/@Q)] is the Jacobian from Eq. (15), and the variables with

carets “~ " are defined with respect to a virtual photon with momentum ¢* = {0+ — /¢,
N2 A ~
~N2 ~2 é- 2 ~ Q N P . q N 2M.TB

with @2 =298 and § = (k + P)? ~ £s. The factorization formalism with the one-photon
exchange in Eq. (16) resums all logarithmic enhanced QED radiative contributions to the
inclusive DIS cross section into the universal LDFs and LFFs.

We stress that the result in Eq. (16) is derived from (13) with the approximation of
Eq. (14), and should be valid so long as QED power corrections, proportional to powers
of me/ @, are small, without assuming any QCD factorization of the nonperturbative F}
and Fy structure functions. The QCD factorization of F; and F5, into expressions involving
PDFs may indeed not be valid if the “true” hard scale @2 is not in the DIS regime, or if
Iy is too close to 1 when the power corrections are large. On the other hand, Eq. (16) does
express a valid QED factorization formalism that preserves the concept of the F; and Fj
DIS structure functions in the one-photon exchange scenario. With knowledge of the LDFs
and LFFs, Eq. (16) allows the extraction of F} and F» as functions of #; and @2 via global
analysis of all DIS cross section data at measured x; and Q? values, without necessarily
addressing whether they can be factorized into PDFs.

It is important also to note, as we discuss in more detail in Sec. IID below, that the

integration over the leptonic momentum fractions £ and ¢ in Eq. (16), resulting from the
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induced QED radiation, allows the “true” Bjorken variable experienced by the colliding nu-
cleon, 7, to take any value between x5 and 1 for any measured x;. Namely, if one insisted
on deriving an RC factor to mimic the impact of all (or the dominant) induced QED radi-
ation, one would require knowledge of the structure functions for all possible values of the
Bjorken variable between x; and 1, which is the quantity that we are trying to measure in
the first place. Such an RC factor, therefore, is necessarily model dependent. Furthermore,
the structure functions are nonperturbative quantities and the validity of their factorization
into PDFs requires power corrections o< 1/(1 — #,)Q2 to be small and controllable. How-
ever, modeling the structure functions with known PDFs in order to derive the RC factor
could lead to uncontrollable systematic uncertainties, since such power correction could be
enhanced by not only &, — 1 but also the fact that Q2 as given in Eq. (1) is < Q2.
Under the collinear factorization approach to inclusive DIS in Eq. (10), the active leptons
of momentum k and k' are in the same plane as the incoming and scattered leptons of

momentum ¢ and ¢'. In the one-photon exchange approximation, therefore, the factorization

formalism in Eq. (13) also applies to the polarized inclusive DIS cross section,

doya)ps)—ex  dogn)p—s)—ex /1 d¢ Q2 a5
_ ~ — d¢e D A
day dy v drpdyde Sy, @ Sy, WPl Ao € |30 5
4)\4 042 @ 1 ~D A 2 1 A2~ 2
X @2 {cos@[(1—5—17y> ( Q)_§73J (%;Q) (18)

. . N POPN e
—sin 6 cos Y ’y\/l—y— Z’y Y B 91($B,Q2)+g2(:&3,@2)}}7

where Afejen) = [fem=1)/er) = feu=—1)/e000)]/2 = [feru=1)/e00) = feru=1)/e(=r0)]/2 de-
notes the lepton helicity distribution, and 6 is the angle between the colliding lepton of
3-momentum £ and the direction of the nucleon spin S [cos = M (¢-S)/(¢- P)], as shown
in Fig. 5.

If one wishes to include higher order QED radiative contributions that are not resummed
into the LDFs and LFFs, one should use the more general factorization formalism in Eq. (10)
lor in Eq. (13) under the lepton valence approximation| for the inclusive DIS cross section.
In this case all QED radiative contributions are systematically included into the infrared-safe

hard part ﬁm—m' x, order-by-order in powers of «;, and the universal LDFs and LFFs.
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FIG. 6. Sketch of sample scattering amplitudes for inclusive DIS with (a) one-photon exchange,

and (b) one-gluon exchange.

B. Universal LDFs and LFFs

The universal LDFs and LFF's share the same operator definitions with the hadron PDFs
and FFs, as discussed above. Like the hadron PDFs and FFs, in principle the LDFs and
LFF's are nonperturbative due to the fact that they can have hadronic components from high-
order processes. For example, the colliding electron could radiate a photon, the photon could
split into quark-antiquark pair, and the quark could initiate a hard scattering to produce the
observed lepton of momentum ¢, leading to a factorized nonperturbative term proportional
to the LDF f,/(&, p?). In this case one has contributions to the factorized inclusive DIS
cross section in Eq. (10) in terms of nonperturbative quark or gluon PDFs of a colliding
electron, as well as quark or gluon FFs to the observed lepton, as illustrated in Fig. 6.
In addition, even the LDF f, (¢, ©?) may have nonperturbative hadronic component from
high-order processes, although the impact of its hadronic components may be very small in

the energy regime of interest.

If we could restrict the events where there is effectively no hadronic activity along the
direction of the observed lepton, we could neglect the nonperturbative hadronic contribution
to fese. Without the hadronic contribution, the LDF f./(, 4?) can be calculated perturba-
tively in QED with a properly defined renormalization for the nonlocal operators. Denoting
by fe(;z) (¢, *) the LDF evaluated perturbatively to order O(a™), we have, for example, the
LO LDF given by fe(?i(f) =6(£—1). At NLO, the leading logarithmically enhanced real and

virtual contribution in the light-cone gauge are given by the diagrams in Fig. 7(a) and (b),
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FIG. 7. Examples of (a) real and (b) virtual QED diagrams contributing to the NLO lepton

distribution fe Je-

respectively, leading to the result in the MS scheme,

Q 1+§21 2
2 [1-¢  (1-&Pme

el +

FONE u?) = , (19)

where the standard “+” prescription is used. As expected, the perturbatively calculated

LDF, fue(&12) ~ fONE 1) + f12(€ u?), preserves lepton number, [} d€ fese(€, 1) = 1.
As for the contributions to hadron PDFs, high-order logarithmically enhanced contribu-

tions to LDF's can be systematically resummed by solving the evolution equations for QED

particles [52-57]. For the “valence” distribution, for example, one has

& 3
where the evolution kernel P,.. is calculable perturbatively order-by-order in powers of a.

At O(), from Eq. (19) one has P (z,a) = (o/27) [(1 + 22) /(1 — 2)],.

d/
e e PG ) e, 20)

Similarly, the LFFs can also be calculated perturbatively in QED, if we neglect their
hadronic components. At LO, the LFF is given by the trivial expression Dé/)e(() =0(¢—1),

while at O(«) we have analogous expression to that in Eq. (19),

1 +C2 C2M2
DY (¢ p) = In .
/ 2r [1—¢  (1—¢)?m2],

As for the LDFs, the logarithmically enhanced high-order contributions to the LFFs can be

(21)

resummd by solving the corresponding evolution equations.

In analogy to PDF's or FF's of hadrons, we can derive the LDFs and LFFs by solving their
corresponding evolution equations with the distributions at an input scale py. Unlike PDFs
or FFs, however, which are completely nonperturbative, we could use the perturbatively
calculated LDFs and LFFs in QED as input distributions as a reasonable approximation,

which could be further improved by comparing with experimental data. We also note that
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the choice of pg is not unique, which impacts the size of uncalculated higher order contribu-
tions to LDFs and LFFs in QED, as well as the size of neglected nonperturbative hadronic
contributions to LDFs and LFFs. Our choice of 1y will be specified in Sec. IV, and further

discussion about this choice will be explored in future work.

C. Short-distance partonic hard parts

As with all QCD factorization approaches, the partonic hard parts ﬁia_)j x in Eq. (10) are
infrared safe and insensitive to taking the limits m. — 0 or m, — 0. They can be calculated
perturbatively by applying the factorized formula (10) to lepton-parton scattering order-by-
order in powers of a and «, and depend on the choice for the renormalization scheme of
the LDFs and LFFs, in addition to the scheme that defines the PDF's.

To compute the leading order infrared-safe hard part in Eq. (10), we can replace the
target nucleon by a point-like quark target, ¢. The lepton-quark cross section can then be
expanded to a given order in « and «, with the O(a™a¥) contribution to the cross section
denoted by ol = 28E/d0£?_:2X /d3¢’. [Note that the subscripts on the partonic cross

section here refer to particle type, in contrast to the hadronic cross sections discussed above,

as in Eq. (13) and subsequently, which are labeled by the leptons’ and hadrons’ momenta.]

Expanding the partonic cross section to the lowest order, i.e. O(a?a?), we have
0 2,0 2,0
Uégp) = Di/)e ® fe/e ® fq /q (q—>)eX = Héq—BeX ) (22>

where ® indicates the convolution of momentum fractions, and the O(a?) quark distribution
fq(% () = 0(x—1) is also used. Evaluating the lowest order lepton-quark scattering diagram,

one finds for the hard part function

4ol [ (Ceas)? + (wu)?
c [ Gk } §(Cxs + zu + &), (23)

with Mandelstam variables s = (( + P)?, u = (' = P)> = (y — 1)s, and t = ({ — ')> = —Q*.
Substituting the calculated H(q—>eX into Eq. (16), we then have

@0

eq—eX =

dogpse 2
Ey USP?);X ~ o’ Z/cmm - e/e(C) fese(€)
' d 2¢[(¢Es)? + 2
<[5 x(ft[)(Q(Csf)s o), 1



where the lower limits of the integrations are given by

/

Guin = =2 = 1= (1 =)y, (250)
U 11—y

min — — - 5 25b

: Gt T —any (25b)

Lmin — — St == ngy . (25C>

(Es+u E+y—1

Choosing the leading order contributions fc/.(§) ~ fe(?i({’) and D,/ (¢) =~ DSZ(C) in
Eq. (24), and noting that to O(a?) the structure functions in Eq. (16) are given by
Fy(zp) = 2a5F(25) = ) . eg T fq/n(25), one can reproduce the lepton-nucleon cross section
(16) from Eq. (24). The key difference between Eqgs. (16) and (24), apart from infrared-safe
high order QED contribution, is the resummation of logarithmic-enhanced photon radiation
for the colliding and scattered leptons into the LDFs and LFFs, respectively.

With the factorization formalism in Eq. (10), one can systematically improve the “RCs”
by calculating the infrared-safe hard parts H (q _}e)X perturbatively for m > 2, and determining
the lepton mass-sensitive, but universal, LDFs and LFFs. For example, at m = 3 one can
write

HG Sy = oly” = DL @ HGSx — f1) © Hy Sy = fg © HigSlx (26)

where JS;’O) is given by the diagrams in Fig. 2, and the three subtraction terms involve

convolutions over different momentum fractions to remove the collinear-sensitive photon
radiation from the scattered lepton, incident lepton, and incident quark, respectively. With
infrared safety, the perturbatively calculated RCs are completely perturbative-stable and
insensitive to the lepton mass m. — 0, with all m, sensitive RCs resummed into universal
LDFs and LFFs.

The effects of the QED radiation on the inclusive cross section are illustrated numerically
in Fig. 8, for typical Jefferson Lab (/s = 4.7 GeV) and EIC (y/s = 140 GeV) center of mass
energies. The ratios of the full cross sections to the Born results show that the effects of the
QED radiation can be quite large in some regions of kinematics, especially at larger values
of y. For the ratios with fixed Q? values, since x; ys = Q? the large-y region corresponds
to small values of x5, and lower y values correspond to larger x;. The minimum value of y
accessible is restricted by the cut W > W, = 2 GeV, which excludes the nucleon resonance

region, and corresponds to a maximum value of zz < a2 = Q*/(W2, — M? + Q?). A
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FIG. 8. Ratio of inclusive ep cross sections with QED radiation effects (orc) to those without
radiation (o, re) versus y at fixed values of Q? (top row) and fixed z; (bottom row) for
Jefferson Lab energy /s = 4.7 GeV (left), and EIC energy /s = 140 GeV (right), for the RES
(solid lines) and NLO (dashed lines) schemes.

Jefferson Lab energies this places a strong restriction on the range of y values allowed, while
at EIC energies the effect of the cut is less dramatic. Note that for Q* = 1 GeV?, for
example, the resonance region cut corresponds to z** a 0.24, while for Q* = 10 GeV?,

TP x5 (.76, and for Q% = 100 GeV?, 2 ~ 0.97.

For the ratios at fixed values of z; in Fig. 8, the effects also increase at larger y, which
corresponds to larger ) values. The minimum value of y is restricted by the Q% > 1 GeV?
cut, which is imposed to exclude regions where the factorized framework would not be
applicable. This constraint becomes more evident at smaller x; values, which again is

less dramatic at the higher EIC energies, where the limit on the y range is visible for
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FIG. 9. Available phase-space for lepton-nucleon DIS with collision-induced QED radiative contri-
butions at Jefferson Lab (y/s = 4.7 GeV) (left) and EIC (y/s = 140 GeV) (right) kinematics. The

2

colored lines denote regions of fixed @min and the diagonal yellow bands represent typical ranges

of y at those facilities.

75 < 1074 In addition, with the collision-induced QED radiation, the hard scale of the
collision (momentum transfer experienced by the colliding nucleon) changes from Q? to
@2 = (£/¢) Q?, which has a minimum value of @\Iznin < Q? given by Eq. (1). The induced QED
radiation could push the scattering between the virtual photon and the colliding nucleon
out of the DIS regime when the “true” probing scale @2 is less than 1 GeV?, even though
Q? itself would be above the cut. Instead of restricting @? > 1 GeV?, a requirement of

2

min

> 1 GeV? could impose a stronger constraint on the range of x,; for a given value of ,

as shown in Fig. 9.

Overall, the radiative effects are positive over most kinematics, with the orc/omo re ratio
dropping below unity only at the lowest y values, especially for larger x;. The effect of
the resummation is generally a decrease in the magnitude of the radiative effects relative
to the NLO calculation, except at the highest y values where it enhances the corrections.
Clearly, the effects of the QED radiation are nontrivial and will have a significant impact
on the extraction of PDF information from inclusive DIS experiments. This is especially
pertinent at large values of y and small z;, where more phase space is available for both
QED and QCD radiation, and will be of particular interest at these kinematics in future

EIC measurements.
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D. QED radiative contributions vs. radiative corrections

Before moving to the more involved case of semi-inclusive lepton-nucleon scattering, we
conclude the discussion of QED radiative effects in inclusive DIS by comparing our proposed
factorization approach with existing approaches that isolate such contributions in the form
of QED “radiative corrections.” With a large momentum transfer, the collision-induced
QED radiation is an integral part of the experimentally measured cross section for deep-
inelastic lepton-nucleon scattering. Historically, tremendous efforts have been devoted to
isolate and remove collision-induced QED contributions from measured cross sections that
would enable one to focus purely on QCD effects in lepton-nucleon scattering. The RCs can

be represented schematically in the form

Uobs<xB7 Qz) % RQED(xBy Q27 xB,truep erue) X OBorn ($B,true7 erue) + Ox (*rB; Q2)7 (27)

where o, is the physically measured cross section, oy is the ideal lepton-nucleon cross
section without the collision-induced QED radiation contamination, and Rogp and oy are
correction factors that are computed theoretically. The variables z; 4e and Qfme represent
the “true” or effective momentum scales that are experienced by the colliding nucleon, and
differ from the corresponding experimental x; and Q? due to the induced QED radiation.
For the expression in Eq. (27) to be a valid basis on which to quantitatively account for
QED radiation, there must exist some controllable approximation scheme applicable for the
full kinematic regime where the cross sections are measured. More importantly, the following

two conditions should be met in order to isolate QED contribution in terms of RCs:

(1) the correction factors Ryep and ox should not depend on the hadron structure that we

wish to extract, and they can be systematically calculated in QED to high precision;

(2) the effective scale Q2. for the Born cross section oo, should be large enough to keep

the “true” scattering within the DIS regime.

In particular, with the one-photon approximation, the exchanged virtual photon (or vector
boson, in general), with its fully determined four-momentum under the QED Born kine-
matics, would be able to serve as a localized and well-controlled hard probe to explore the
partonic structure of the colliding nucleon.

In practice, however, the collision-induced QED radiation will change the momentum of

the exchanged photon from ¢ to ¢, as shown in Fig. 6(a) under the one-photon approximation
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FIG. 10. The range of the hard scale @2 experienced by the nucleon as a function of the measured

scale 2, for fixed values of x5, at Jefferson Lab (y/s = 4.7 GeV) (left) and EIC (/s = 140 GeV)

(right) kinematics. The straight black lines correspond to @2 = Q.

for the hard collision. Since ¢ is not fixed by the observed external momenta, it must be
integrated over if we cannot account for all radiated photons. The integration necessarily
includes contributions from radiation that can distort ¢ so much as to move the collision
with the nucleon out of the desired DIS regime, when @2 = —¢* <1 GeV?, and introduce
contamination from elastic scattering events. As indicated in Fig. 1 of Ref. [3] from over 50
years ago, and verified by numerous experiments since, the event rate for inclusive lepton-
nucleon DIS is expected to be much larger than the typical rate from elastic scattering when
the probing scale is larger than ~ 1 GeV?2. The collision-induced QED radiation could make
the “true” probing scale Q2 . = @2 smaller, however, effectively enhancing the rate of non-
DIS events and the size of non-factorized power corrections, even when Q* = O(1 GeV?)
or larger. Furthermore, QED radiation from final-state nucleons in elastic events requires a
larger Q% to mimic DIS events. Since these non-DIS events involve nonperturbative strong
interaction physics that cannot be calculated reliably, QED RC factors that aim to “correct”
for this QED contamination are necessarily model dependent. Some of these contaminations
are sensitive to the very hadronic physics that we aim to explore in the DIS and SIDIS

reactions.

A further complication stems from the fact that photons are massless and the lepton mass
is much smaller than the typical hard scale for QCD dynamics. Consequently, RC factors

based on fixed-order QED calculations are often infrared sensitive as m. — 0, involving
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infrared cutoff parameters, such as the total energy of soft photons in the treatment by Mo
and Tsai [26] or the minimum photon energy in the approach of Bardin and Shumeniko [41].
These parameters need to be tuned to the data.

As will be discussed in detail in the next section, the collision-induced QED radiation also
leads to uncertainty in determining the photon-nucleon frame in which the produced hadron
momentum, the hadronic plane, angular modulations and, most importantly, the TMD
factorization of SIDIS, are defined. Consequently, hadronic model dependence is inevitably
introduced into attempts to derive RCs for SIDIS [42, 43, 47]. In contrast, rather than
searching for more reliable RC factors with which to extract the ideal ope in Eq. (27) from
the experimental cross section, o, our proposed approach is a systematically improvable
and reliable way to calculate the induced QED radiative contributions to all orders in powers
of a. In analogy with the calculation of the induced QCD radiative contributions to the
measured cross sections, our factorization approach organizes all-order contributions with
respect to both QCD and QED, such as in Eq. (10) for the inclusive DIS cross section.
Instead of the RC approach of Eq. (27), our factorization approach can be schematically

represented as

. : R oA A2 m?
Tobs (25, Q%) = oo (p*;m2) @ o (173 Aep) @ OtResate (T, Q% 1) + O (%7 Q—S) ;
(28)

where all infrared-sensitive contributions to the cross sections are either factorized into the

univ

and opmy,

univ

universal leptonic and hadronic distribution or fragmentation functions, oy

which are renormalization group improved with the factorization scale i2, or neglected as
power-suppressed corrections, and ® represents the convolution over the respective leptonic
and partonic momentum fractions.

The IR-safe and perturbatively calculable short-distance coefficient functions or_gafe de-
pend on the “true” probing scales zz and @2 for the colliding nucleon under the one-photon
approximation, and can be systematically improved by higher-order contributions in powers
of both o and . As illustrated in Fig. 10, for a given value of Q? the true probing scale
(? can be in the range Q2. < Q? < Q2. where

min max’

(1-y)
(1 _xBy)

1

and 02 -2
Q(l—y+%y)

2 2
min — Q max

(29)

are the minimum and maximum values. To obtain a single Q% value from the range of )

that defines the QED RC factor Ryep in Eq. (27), one must model the colliding nucleon’s
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response at different values of @2, and such modeling could impact the quantity itself that we
wish to extract from the measured cross sections. In addition, the Bjorken scaling variable
in Eq. (17), 2z = 25 y/(£C + y — 1), ranges between its minimum value, 2" = x,, and
its maximum value, 27 = 1. With the collision-induced QED radiation, for given values
of z; and Q? from the measured lepton and nucleon momenta ¢, ¢, and P, we actually
probe the colliding nucleon over a much wider kinematic region of i € [Z™® #M%%] and
Q% e [A?nim A?nax]'

As discussed in Section IT A, the novelty of our approach is the fact that we do not
need to assume any prior knowledge about the hadronic structures, provided that the power
corrections are suppressed. The exact demarcation of the phase space where our proposed
factorization approach is applicable cannot be determined a priori, but can be found through
global analysis involving multiple high-energy reactions with overlapping partonic kinemat-
ics, which can ultimately confirm and validate the universality of the inferred structures.

In our proposed new approach to the QED radiation (28), all collision-induced QED con-
tributions to the measured cross sections are organized such that all leading power infrared-
sensitive contributions are included into the universal LDFs and LFFs. All leading power
infrared-safe contributions are included in the calculable hard parts, and the rest can be
neglected or further improved as power corrections. Although QED radiation changes the
momentum of the exchanged hard photon and introduces uncertainty in controlling the
“true” hard probe, our factorization formalism as in Eq. (10) provides the minimum value

2

of the probing scale, Q7. . As shown in Fig. 9, the collision-induced QED radiation does
remove some phase space from the DIS regime, particularly when x is small or y is large,
which corresponds to more phase space for radiation.

Most importantly, in our factorization approach to the collision-induced QED radiative
contributions, neither the universal infrared-sensitive LDFs and LFFs, nor the calculable
QED hard parts depend on the nonperturbative hadron structure, such as PDFs, fragmen-
tation functions, or TMDs that we aim to extract. That is, our factorization approach does
not require any modeling of hadronic physics and is not sensitive to infrared cutoffs, which
are the two main uncertainties of existing approaches to treating induced QED radiation
via RC factors.

As with all factorization approaches, on the other hand, we do not know exactly the size

of the power corrections or the precise functional forms of the universal infrared-sensitive

25



FIG. 11. Sketch of (a) the SIDIS process e({) + N(P) — e(¢') + h(P,) + X, and (b) SIDIS in the

one-photon exchange approximation.

LDFs and LFFs in Eq. (10). Although we could have a better control on LDFs and LFFs in
QED than for corresponding partonic functions in QCD, the global analysis of all possible
data is still needed to identify regions where the process-dependent power corrections are

small, and one can demonstrate the universality of the infrared-sensitive functions.

III. FACTORIZED FORMALISM FOR SEMI-INCLUSIVE DIS WITH QED

In this section, we expand our combined QED and QCD factorization approach to con-
tributions to the cross section for the SIDIS process, e(¢, \;) + N(P,S) — e(l') + h(Py) + X,
for the semi-inclusive production of a hadron A with four-momentum P, in coincidence with
the scattered lepton ¢'. As for the case of inclusive DIS in Eq. (2) of Sec. II, the SIDIS
cross section can be formally written in terms of the square of its scattering amplitude,
Mep—sep, x,

1
dUéPHE/PhX =5 MZP%E’PhX|2dP87 (30)

2s
where for convenience the dependence on the electron and nucleon polarization (A, and S,
respectively) is suppressed. In analogy with the inclusive DIS case, we consider SIDIS as an
inclusive production of a large-¢/. lepton plus a large-P,7 hadron (or jet) in lepton-nucleon
collisions, as illustrated in Fig. 11(a). In the plane transverse to the lepton-nucleon collision
axis, the regime where the transverse momenta £/, and P, are almost back-to-back, namely,
Pr = |, — Pyr|/2 > €} + Pyr| = Dy, is suited for TMD factorization, while the region

where Py ~ Py is suited for collinear factorization.

26



A. Collinear factorization for semi-inclusive DIS with QED contributions

With an exchange of a single hard scale, Py ~ Py > Aqep, the invariant mass of any pair
of initial-state colliding particle and final-state observed particle momenta is a hard scale,
whose absolute value is much larger than Aqcp. Applying the arguments in Ref. [58], we can

factorize the SIDIS cross section in the regime where P ~ Py > Aqep as

dovpep, x
B Ep, T Z / Dys(Cob®) Fielé )
dz
/ / —Dh/bzu)fa/N(xu)
X Hia—)jbX(ga $7€T/C7 PhT/Za MQ) + (31>

where the indices i, j, a, b include all QED and QCD particles, and the ellipsis represents
power corrections suppressed by inverse powers of £ and P,p, or Py ~ Py, defined in the
lepton-nucleon frame. The lower limits of the integrations depend on the collision energy
/s and the observed lepton and hadron momenta, ¢' and P, respectively, and are given in
Egs. (25) in the previous section.

The functions f;/e(&, p?), Desi(¢,p*) and foyn(x, p*) in Eq. (31) are LDFs, LFFs and
PDFs, respectively, and are the same universal functions as those in Eq. (10) for inclusive
DIS. The function Dy (2, p*) in Eq. (31) is the collinear fragmentation function (FF) to
the observed hadron A of momentum P, from a parton b of momentum p’, which is defined
in Ref. [4] for b = q,q, g as a function of momentum fraction z = P;" /p'*. The definition is
straightforwardly extended to the case where b is a lepton or a photon, with the quark and
gluon fields replaced by the corresponding lepton and photon fields.

The short-distance hard parts ﬁmﬂ-bx in Eq. (31) are infrared safe and perturbatively
calculable in QCD and QED. These are equal to the partonic cross section for the sub-process
i(k)+a(p) = j(K')+0b(p)+ X(k+p— Kk —p'), where all perturbative collinear divergences
along the momentum directions of the active particles, k, p, k', and p/, respectively, removed
and resummed into the corresponding LDF's, LFFs, PDFs and FFs, respectively. The factor-
ization formalism in Eq. (31) also provides a prescription for evaluating the short-distance
hard parts f[iaﬁjbx by applying the factorization formalism to lepton or parton states order-
by-order in perturbation theory. With the requirement that Pr ~ Py > Agep, the leading

order contribution to ﬁia—m‘bX is given by the 2 — 3 scattering processes. For example, by
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applying the factorization formalism in (31) to SIDIS with the nucleon N and hadron h each
replaced by a quark, e(k) 4+ ¢(p) = e(k') +q(p') + g(k+p — k' —p) at the lowest order, one

521
can derive Héq;)qu at order O(a? ay).

B. TMD factorization for semi-inclusive DIS with QED contributions

When P > Py, the transverse momentum imbalance between the observed lepton of mo-
mentum ¢ and hadron of momentum P, becomes sensitive to the infrared-sensitive collinear
radiation from both QCD and QED. In this case, the collinear factorization for the SIDIS
cross section in this kinematic regime is no longer reliable. A TMD factorization is instead
needed to take into account the transverse momentum dependence of the active particles
(partons or leptons) probed by the hard collisions. The transverse momentum of a colliding
particle (a parton or a lepton) is generated by the induced radiation of the hard collision
plus the particle’s intrinsic transverse momentum in the bound hadron state, if the particle
is a parton. Therefore, a TMD factorization for the SIDIS process should take into account
the active particles’ transverse momentum generated by both collision-induced QCD and

QED showers (or radiation).

With a sufficiently large momentum transfer between the leptons and hadrons, the one-
photon approximation, as shown in Fig. 11(b), is often adopted for evaluating the SIDIS cross
sections. To ensure this large momentum transfer, we require the transverse momentum of
the scattered lepton ¢ and the observed hadron (or jet) P, in the lepton-nucleon frame to
be the hard scales, with ¢}, > Aycp and Prp > Agep. However, as an inclusive production
of the lepton ¢ and hadron P, this large momentum transfer could also be achieved by
exchanging a virtual parton, such as a gluon, as in Fig. 12(b). Here, the colliding lepton
radiates a photon that turns into a quark-antiquark pair, and the quark then undergoes the
hard scattering with the colliding hadron via the exchange of a virtual gluon. By requiring
the observed lepton ¢ to not have strong hadronic activity around it, the type of subprocess
in Fig. 12(b) is likely to be further suppressed. In the rest of this paper, we take the one-
photon approximation to include only the scattering amplitude in Fig. 12(a) for the SIDIS

cross section, leaving the study of SIDIS beyond one-photon exchange for future work.

With the approximation of one-photon exchange, we can write the SIDIS cross section in
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(a) L

lepton

FIG. 12. Sketch for sample scattering amplitudes of SIDIS with (a) one-photon exchange,

and (b) one-gluon exchange.

Eq. (30) in terms of leptonic, z’“’, and semi-inclusive hadronic, Wuu, tensors,

d60€P—>Z’PhX ~ o? 4 1 ? T uv /AN TIS (A
Eg/EphW 25 d ? L (6,67@ W,LLV<Q7P7 Ph7S)7 (32)

where ¢ is the momentum carried by the exchanged virtual photon. The leptonic tensor

L (0,0, §), sketched in Fig. 13(a), is defined as

(e, e, g) Z/H27r32E Ve-r—q- 3 k)

e
x (€] (O) |0 X L) (' X1[5(0)[€), (33)
where the electromagnetic current j#(0) couples to leptons, and the sum over all final states
X1, includes radiation associated with the incoming and scattered leptons.

The corresponding semi-inclusive hadronic tensor Wuy(cj, P, P, S), representing the col-
liding nucleon of momentum P and observed hadron of momentum PF,, is sketched in
Fig. 14(a). It is defined similarly to the hadronic tensor for inclusive DIS in the one-photon
approximation in Eq. (5),

Woul@. P. Pi. 5) Z/H 27(352215 (‘”P Ph_Zp")

i€Xp

<P75|Jp( NP Xn) (PuXn|J,(0)| P,S), (34)

FIG. 13. Illustration of (a) the general leptonic tensor, L* (£, ¢, q), and (b) the lowest-order

contribution to L* (¢, ', §).
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FIG. 14. Tlustration of (a) the semi-inclusive hadronic tensor, Ww(d, P, Py, S), and (b) the

lowest-order contribution to Ww(cj, P, P, S).

where the electromagnetic current J,(0) couples to quarks (or charged leptons), and the
sum is taken over all final states Xj,.

The lowest order contribution to the leptonic tensor for an unpolarized lepton of momen-

tum ¢ in Eq. (33), as sketched in Fig. 13(b), is given by
O, q) = 2(00" + 0" — 00 g") D (L — 0 — ). (35)

By substituting L) (¢, ¢, §) into Eq. (32), and using the 6 (¢ — ¢ — §) function to remove
the integration over d*g, we obtain the familiar expression for the SIDIS cross section in the
Born QED approximation and a fully determined virtual photon momentum ¢* = ¢*. On
the other hand, with QED radiation, the exchanged virtual photon momentum ¢* cannot
be fully determined without measuring all radiated final states X;. In other words, there

is no well-defined “photon-hadron frame” without having full control of the leptonic tensor

L (0,0, §).

C. Leptonic tensor and lepton structure functions

The leptonic tensor z“”(& ¢',q) is perturbatively calculable if we neglect its hadronic
component, which is in general nonperturbative. In this subsection, we quantify and demon-
strate the impact of the collision-induced QED radiation on the momentum change of the
exchanged virtual photon from ¢* to ¢#, and, in particular, the transverse momentum broad-
ening of the ¢* in the lepton back-to-back frame where ¢ is along the +z direction while ¢
is along the —z direction. The size of such transverse momentum broadening would directly
impact the transverse momentum distribution of the observed final-state hadron in all SIDIS

measurements.
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1. Lepton structure functions

In analogy to the decomposition of the hadronic tensor in Eq. (6), we can express the

leptonic tensor LM in terms of lepton structure functions,

N T T

L (0.0, 4) = —g"(§) L L L
(7 7Q) g (q) 1+€_£l 9 + A 3+ Y 4, (36>
where g"”(q) is given by Eq. (7) with ¢ replaced by ¢, and we define

F=g@), =)0, (37)

such that @#Z" = (juZ’“ = 0. In Eq. (36), the lepton structure functions L; (i = 1,2,3,4)

depend on the four independent Lorentz scalars 2, Q2, and the ratios

q-v 1 q-v
= — = - . 38
= s L0 (38)
In the lepton back-to-back frame, in which
" = (0*,0,07), " =(0,0,07), (39)
with ¢+ = ¢~ = Q/v/2, the exchanged virtual photon momentum can be written as
GH AT 4T G + Lo,
q = (q 4 >qT) = <§B£ 7__6 >qT>7 (40)
CB
where the transverse component is
o A €
@ = Q" - 2Q" (41)

(B

We can also use ¢4 to replace @2 or Q% as one of the four independent scalar variables for
all lepton structure functions. In this frame, the variable {g is effectively the momentum
fraction of the incoming lepton carried by the active lepton at the hard collision, and (g is
the momentum fraction of the scattered lepton carried by the observed lepton in the final
state. The transverse momentum of the exchanged virtual photon ¢r is generated by the
collision induced radiation (mainly QED radiation, if we neglect the hadronic contribution
to the leptonic tensor). The amount of transverse momentum broadening gr from QED ra-
diation will directly impact the direction of the exchanged virtual photon and the transverse

momentum distribution of the extracted TMDs.
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For the study of the ¢r dependence of the leptonic tensor E’“’(E, ¢',q) and the size of gr
generated by QED radiation, it is convenient to express the tensor in Eq. (36) in a helicity

basis of the exchanged virtual photon,

Lo (£,0,4) = (4) L (0,0, 9) €(q), (42)

where the polarization vectors €/(q) and €3(q), with polarization indices p,o = 0,4+, —,
depend on the reference frame and the coordinate system. We construct the coordinate
system by introducing the basis four-vectors 7', X, Y, and Z, which satisfy the orthogonal

and normalization relations,
T-X=T-Y=T-Z=X-Y=X-Z=Y -Z=0, (43a)
T =1, X2=Y?*=27%=—-1. (43b)

Since ¢* is a space-like vector, we choose the basis vector Z* to be parallel to ¢*,

1
Z’u — 7(_}“, (44)

Q
with @ = \/@2 = /—@¢* > 0. If we choose the leptonic plane, defined by ¢ and ¢, as the

X—Z plane, the other three basis vectors can be constructed from the conserved momenta,

{ and @, as

1 -~
s 4
Q Vel (45a)

QVEsCs Q
Q qr Q 4rvEpCn
Y = e 7, T X, (45¢)

iz (45D)

where g7 is the magnitude of the photon transverse momentum, ¢r = /¢%. With the basis
vectors defined, the three independent polarization vectors can then be written as
€ (q) =1", (46a)
1 7
i (q) = F—=X" — —=Y*H, 46b

This ensures that the vectors €/(g) are orthogonal to ¢, €£(q) ¢, = €;*(¢) ¢, = 0, and orthog-

onal and normalized among themselves,

€0(Q) - €x(q) = €.(q) - ex(q) = 0, (47a)
(@) -eo(q) =1, €(q) - ex(q) = —1. (47b)
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With the polarization vectors defined in the lepton back-to-back frame, we introduce the

helicity-based lepton structure functions according to

L = egl'el Loo + (€' + e ) Ly + (€' + €M) Ly
— g (€ =€) Loy — (e} — ) eg Lo (48a)
— THT” Loo + (X" X" + Y"Y") Ly

4 (TFXY +TYX") La + (YMYY — X' X") Laa, (48D)

where Lyp = Ly, La = (Loy + L4)/V/2, and Laa = L,_. From these one can derive the

relations between the original L; (36) and helicity-based lepton structure functions,

§8CB

Loo = L, TFT" = —L L L L 49
00 " 1+2§BCB 2+ 5 3—1—2 4, (49a)
1~ qT 19:1§:] qT 1qT
Ly = —L (X'XY + YHYY) = L Ly — = Lu, 49b
T =9 v + ) 1+4§B§BQ2 2t 02 0 42" (49b)
1~ 1 q¢r ECB qr
L :——LVT”XV T"XH*) = — =L —TL, 49
A 5 ( + ) %55 O 2+ 2> 0 3 (49¢c)
1~ 1 ¢ G 1 g7
Laa = 5L (YY" = X1X") = - r,_Stotsdr, o Ldr, (49d)

Aplp 2 0 4 (2 402
As for the original lepton structure functions L; (i = 1,...,4), the helicity-based lepton
structure functions are also functions of g, (5, Q?, and ¢ (or equivalently, @2)

Without the collision-induced QED radiation, the transverse momentum, gz, of the ex-
changed virtual photon in the lepton back-to-back frame should vanish. Any nonzero trans-
verse momentum of the exchanged virtual photon in the lepton back-to-back frame is gen-
erated by the collision-induced radiations from both QED and QCD. If we can neglect the
QCD contributions arising at higher orders in «, the lepton structure functions could be

perturbatively calculable in QED and expanded as a power series in «,

pa(gBagB;Qz Ag) Z (:) po (§B>CBaQ2 A2) (50)

N=0

where an overall factor e2

(or 4ma) is factored out for our definition of the perturbative
lepton structure functions. From the lowest order leptonic tensor in Eq. (35), we derive the
corresponding helicity-based lepton structure functions,

L) = 28(¢a - 15[ -

1) 0@ (ar), (51a)

LW =0, V=0 LY =o0. (51b)
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As expected from helicity conservation, apart from Lpp, all the other helicity-based lepton
structure functions vanish at lowest order, and are suppressed by powers of ¢/ @ at higher
orders. In the next subsection, we quantify the amount of photon transverse momentum
gr that can be generated by the collision induced QED radiation in the relevant collision

energies of SIDIS.

2. TMD factorization for lepton structure functions

The collision induced QED radiation in SIDIS can generate nonvanishing gr for the
leptonic tensor L. As defined in Eq. (33), the leptonic tensor has effectively the same
operator definition as the corresponding hadronic tensor Wﬂy((j, P, P,,S) in Eq. (34), with
the electromagnetic quark currents replaced by lepton currents, and hadronic states replaced
by lepton states. From studies of the factorization in SIDIS [16], it is known that the
hadronic tensor can be factorized in the hadron back-to-back frame in terms of QCD collinear
factorization when gr ~ @, and in terms of the TMD factorization when ¢r < @ Similarly,
we can study the radiation induced gr dependence of the leptonic tensor L" in the lepton
back-to-back frame by applying the same factorization in QED, with TMD factorization
describing the low-gr region and collinear factorization for the high-qr region, along with a
proper matching procedure for the phase space in between.

The collision induced radiation dominates the low-gr region due to the logarithmic en-
hancement of the radiation in this regime. Since the lepton structure functions Lgg, La, and
Laa are power suppressed in G/ @, we focus on the leading-power lepton structure function
L7 in the following to study the size of qr generated by the induced photon shower. In
analogy with the QCD factorization of the SIDIS hadronic tensor [16], we write Lpr as

LTT(éBv CB7 Q27 (j%) = WTT<£B7 <B7 Q27 d%) + YTT(£B> CB7 Q27 qA%)7 (52)

where the first term is given by a Fourier transform of an impact parameter distribution
WTT(é B,Cp, Q% br), with by = |by| the magnitude of the impact parameter by conjugated
to qr,

Wrr(€s, (s, Q% 47) = / (d;Tb)j; VT Wi (Ep, Cp, Q7 br). (53)
This term is mainly responsible for the region where ¢y < @, including the resummation of

large In(Q?/g2)-type logarithms associated with the radiations. The second term in (52),
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Yrr, provides a smooth matching to the region of collinear factorization where ¢r ~ Q.
The formulation in Eq. (52) is usually referred to as the “W+Y” formalism [5]. As for the

hadronic case, the function WTT for the leptonic structure function can be factorized as

N 1 1
WTT(€B>CBaQ27bT) :2/< % ¢ %[CD<C?B>O¢>D<C7UI%):| |:Cf<%7a>f(§nu§):|

com{- [0 (a0 4 meun)] ). o

where we have made use of the “valence” lepton approximation with f = f, /. and D = D, /..
Unlike the hadronic case, if we can neglect the hadronic contribution to the lepton structure
function WTT, all the coefficient functions A, B, Uy, and Cp, as well as the LDF and LFF,

are perturbatively calculable in QED. We can generally expand them in power series in «

I O SOV e

O = i (%)NO}N), Cp = i (%)NC}JN). (55b)

To estimate the size of ¢r broadening from induced radiation, we choose the convention
to define the factorization scales in Eq. (54) as p, = 2772 /by and pug = +/€5/Cs Q [5].
In principle, we could introduce two proportional constants of O(1) to test the uncertainty
associated with the scale choice.

With the leading order Lg)% given in Eq. (51a), together with f(©(¢) = 6(1 — &) and
DO(&) = §(1 — (), we have for the hard coefficients

CON =sA-1), 9@ = 5(% - 1), (56)

with A = £g/€ and n = (5/¢. As presented in Appendix A, at O(a) in the MS scheme we

find the following coefficient functions,

1 114 )2 (B
MWy - Log L MS _ 98(1 —
CPPN) = 5(1=X) ~ 3 [1_)\Lrln v 26(1— \), (57a)
1 1 [1+72 e 21
C<”n:—n—1——[ ] In =8 _ Z5(= — 1), 57b
b’ (1) 2n( ) o | T ), ™ 77(77 ) (57b)
AW =1, (57¢)
BY = —g, (57d)
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FIG. 15. Shape of the lepton structure function WTT(f B,(B, Q% br) (in arbitrary units) in impact
parameter space (left) and the corresponding Fourier transform in transverse momentum space

Wrr(€g, (B, Q% G%) (right), evaluated at fixed Q = 10 GeV and &g = (5 = 0.95.

as well as for the “Y” term,

- 1 2002 + 0?) + 4t +a+0) 1+ N2 /1 G>
vy _ _ 21— 1__ 91
T 27rué [ v + AN }5<)\( AN =n) ué)
11 14\ 1 1+n? q%]
——— | —0(1 — ——0(1 =) —=20(1 = AN)o(1 —n)ln=-|, (58
Wq%{(l—AM ( ) n(1—n) ( ) ( oL =) 1y (58)

with the variables defined as t = (k—k')? = —(£/0)Q?, @ = (k—q)* = [(€ —£5)/(5]Q* — G2,
and 0 = (K" +§)* = [£8(¢ — ¢)/(¢(B)]Q* — G7. The expression in Eq. (58) is presented
as a difference between the NLO perturbative contribution to the leptonic tensor and the

asymptotic piece of this contribution when g% — 0.

In Fig. 15 we plot the impact parameter distribution of the lepton structure function,
WTT(SB, (B, Q% br), along with its Fourier transform Wrr (€5, (g, Q% ¢%) in conjugate Gr
space, at fixed values of Q = 10 GeV and &g = (g = 0.95. The Wypr function, which
is generated by resumming the leading logarithmic enhanced QED radiation, has a very
steep and narrow peak at g% = 0. Although the logarithms due to the hard collisions
could be large, the QED fine structure constant o ~ 1/137 is much smaller than «; in
the same kinematic regime, which effectively makes the gr-broadening from QED radiation
negligible compared with the broadening from QCD radiation. One can therefore safely use
the QED collinear factorization approach to account for the QED radiative contributions to

the lepton-nucleon SIDIS cross section as a controllable approximation.
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D. SIDIS cross section with collinearly factorized QED contributions

As demonstrated quantitatively in the previous subsection, the transverse momentum
imbalance generated by the induced QED shower for the relevant collision energies is much
smaller than the typical intrinsic parton transverse momentum. This fact ensures that con-
tributions to the momentum imbalance P, between the observed lepton of momentum ¢ and
hadron of momentum P, are completely dominated by the collision-induced QCD shower
plus the parton’s intrinsic transverse momentum. The collision-induced QED radiative con-
tributions to the SIDIS cross section can therefore be systematically accounted for in terms
of the collinear factorization approach. In this case, the SIDIS cross section for a colliding
lepton of momentum ¢ and helicity A\, and a nucleon of momentum P and spin S can be

factorized as

dS Oe(N\)P(S)=t'PrX
Ly Ep, 3¢ d3P, Z/

1
D./;(¢ / d€ fitne)/ero) (€)

])‘k mm gmin

d° Uk()\k)P(S)—Hc’PhX:|

where the integration limits (pin and &miy are given in Eq. (25), and 6, pis)—kp,x 18

X |:Ek’EPh , (59)

infrared-safe as m, — 0, with all infrared sensitive collinear QED radiative contributions to
the cross section resummed into the LDFs and LFFs. (For ease of notation the dependence
on the factorization scale in (59) is suppressed.) With the “valence” electron approximation,
one can set i = j = e in Eq. (59).

In the Born approximation in QED (which is the LO contribution in «), the QED infrared-

safe cross section o4\, )p(s)—kp,x i Eq. (59) further simplifies to

46 ](€O) 2/ 1\2. N
OW)P(S)skP X v(n
Ek'EPh d;k/d3;h - 2_§(?> L,El(:/)(k?k,>)\k) w (Q>P7 Phas)> (60)

where the 0®-order leptonic tensor hard part is
LO (kK M) = 2(kukl, + kokl, — - K g + iMk€upe kK, (61)

and the hadronic tensor W“”(Q, P, P, S) is defined in Eq. (34). Our factorization formula
for SIDIS in Egs. (59) and (60) indicates that the impact of QED radiative contribution to
the SIDIS cross section is not only from the change of the exchanged virtual photon mo-
mentum ¢* — ¢*, weighted by the convolution over the LDFs and LFFs, but also from non-

logarithmic and infrared-safe higher-order QED corrections to oyx,)p(s)—kp,x- Without
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FIG. 16. Sketch for the “photon-hadron frame” for SIDIS according to the Trento convention [20].

QED radiation, the probing scale for the hard collision — the momentum of the exchanged
virtual photon ¢* = ¢" — is uniquely determined from the experimental measurement of
the colliding and scattered lepton momenta, £# and ¢*. On the other hand, with QED radi-
ation the momentum of the exchanged virtual photon ¢* is no longer determined by direct
experimental measurement, but instead is a function of the lepton momentum fractions &
and (.

To proceed with the application of QED and QCD factorization to SIDIS hadron pro-
duction experiments, we convert the differential cross section in Eq. (60) to more standard
kinematic variables consistent with the Trento convention [20]. In particular, we use the

change of variables

6 ~(0) 6 ~(0)

d°o, , 45 = dc ,
(M) P(S)—k' P X Tp \/AQ N 2) k(A\,)P(S)—k' P, X
EwE = =24/22 — (3Pur/Q L e 62
I d3k' d3 P, (Q2 v~ OPa/Q) dzzdy de dz, dgpd P2 (62)

where 2, = P - ﬁh /P - q and ngSh is the angle from the leptonic plane to the hadronic plane
defined in the virtual “photon-nucleon frame”, as shown in Fig. 16. The angle 1[} is the
azimuthal angle of k' around k with respect to the transverse spin of the nucleon. In DIS
kinematics, one has dz/AJ ~ dq@s [60], with ngﬁg the angle from the leptonic plane to the spin
plane, as shown in Fig. 16. Parametrizing the one-photon exchange cross section in terms of
the usual 18 SIDIS structure functions, F*(i,, Q2, 24, P%) (n = 1,...,18) [10], weighted by

factors w,, that are functions of the kinematic variables, we can write the differential SIDIS
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cross section in the presence of QED effects as

d%oun)P(s)—0 Py x _ /1 d¢ ! dg
dxpdy diy dz, dgbth,fT . Conin ¢? o &

Ak

fine) /e (€) Deys(€)

) anFyiL<£B7@272h7 ﬁ}%T) 3
(63)

. 52
T Q@
x —2 l N <1 + L
where the kinematic variables with carets in the factorized expression can be written in
terms of momentum fractions &, ¢ and the measured variables without carets.
Our strategy to evaluate the lepton-nucleon SIDIS cross section with QED contributions,

as in Eq. (59), is as follows:

(1) Evaluate the SIDIS cross section without QED radiation in the “photon-nucleon
frame” (defined by the exchanged virtual photon of momentum ¢ and colliding nu-
cleon of momentum P for a given set of momentum fractions (£, ¢)) in terms of TMD
factorization and the corresponding momentum variables {g, P, ﬁh} if By < @, and
in terms of collinear factorization if ]3hT ~ @, along with a matching prescription

between these two regimes.

(2) Apply a (&, ¢)-dependent Lorentz transformation to change all variables of the calcu-
lated SIDIS cross section, composed of {¢q, P, ]3h} and the spin vectors in Fig. 16 for
polarized lepton-nucleon SIDIS, to the corresponding variables in a frame suitable for
comparison with experiment, such as the lepton-hadron frame, or the experimentally

defined photon-nucleon Breit frame.

This (&, ¢)-dependent Lorentz transformation changes ﬁhT and qgh, the angle between the
leptonic plane and the hadronic plane, in a virtual “photon-nucleon frame”, as shown in
Fig. 16, to be functions of £, ¢, and experimentally measured kinematic variables x, @2,
zn, Ppr and ¢p, in a frame where the calculated SIDIS cross section is compared with
experimental data. This leads to a strong impact on the extraction of TMDs from SIDIS

cross section data, as we discuss in more detail in the next section.
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IV. NUMERICAL IMPACT OF QED IN SEMI-INCLUSIVE DIS

Having derived the SIDIS cross section formulas in our combined QED + QCD factor-
ized approach, in this section we discuss the numerical impact of the QED radiation on
the extraction of SIDIS structure functions and asymmetries. As illustrative examples, we
consider the unpolarized SIDIS structure function, as well as the angular modulations for
scattering unpolarized leptons from transversely polarized nucleons, such as those associated
with the Collins and Sivers asymmetries.

For the numerical implementation of the radiative effects on the SIDIS calculation, we use
LDF's and LFFs evolved in Mellin space and computed in momentum space via a numerical
inverse Mellin transform. One problem encountered in implementing Eq. (63) numerically is
the accuracy of the calculation in the vicinity of the end-point regions when &, ( — 1. These
regions contribute maximally to the cross sections, reflecting the presence of peaks in the
LDFs and LFFs. However, the end-point region contributions are numerically inaccurate if
one naively evaluates them via the inverse Mellin transform directly. Instead, one can make

use of a subtraction trick, whereby the differential cross section is first written in the form

d®or,) P(S) 5P X _2/1 dg/l
dtpdy v do, dond Py~ 2= ;

min min

© d¢ fz‘/e(f) De/j(C) Hz’j(fa C)v (64)

where H;;(&, () contains all other factors in the integrand of Eq. (63) that are not contained
in the LDF and LFF. The right-hand-side of (64) can then be written as

d%oyn) P($)— P X ! Con DN
= d D, » —g;:(1 (1 min [ 4N -N_"T5
dedydwdzhd¢th}%T %: |:/ C /](C) [gJ(C) g]( )] +g]< )27TZ / gmmN_1:|

(65)

where the function g;; is defined as

. ! gmin(C) — F;M
9i;(¢) = /{min(odf[?'[ij(fa () —Hij(1,0)] + Hii(1,¢) i /demij\f(C)M 1 (66)

and ' and D} are the Mellin moments of the LDFs and LFFs, respectively,
R = [ ae o), (67a)
Dy = [ ¢ Dy(c). (670)

The subtraction trick allows us to remove the numerically problematic region and evaluate
the end-point contributions accurately through convolution of the LDF and LFF moments

with simple factors 1/(M — 1) and 1/(N — 1), respectively.
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With the numerical strategy in place, we proceed to quantify the radiative effects for the
SIDIS process for various channels. In our earlier work [48], we demonstrated the impact
of QED effects on the unpolarized SIDIS cross section differential in the outgoing hadron’s
transverse momentum, Pj,7, in the Breit frame. The associated unpolarized SIDIS structure
function Fy};;; was modeled by a factorized Gaussian ansatz in the TMD framework [23],

eXP(_PgT/UDf%T»
7T<P}%T> ’

FI}JLU,T(xB7 Q27 Zhs PhT) = Z 63 fQ/N(IB7 QQ) Dh/Q(Zhv QQ) (68>

where we adopt the notation of Ref. [10] in which the first two subscripts of the structure
functions denote the polarization states of the lepton and nucleon, respectively, while the
third indicates the polarization of the virtual photon.

Using the fitted parameters from Ref. [23], the P, spectrum was found [48] to be signif-
icantly modified in the presence of QED effects. Since the fitted Gaussian ansatz for F, ]UlU,T
is only valid for small transverse momenta, it is instructive to see how the QED effects
depend on its shape in the large transverse momentum region, where the Gaussian behavior
is expected to transform into a power law-like dependence. To explore this transition, we

augment the original function F, ngT by modifying its large- P, behavior,

Flyr = F§RY = Flyr R+ (1— R)Fa, (69)
where
qr\3 Cail
Rzexp{—N(—) } Frg = i 70
Q ' ¢z (70)

with g7 = Pyr/2, and the parameters set to N = 20 and C,; = 0.01 GeV?. The modification
mimics the enhancement of the structure function at large P, stemming from hard QCD
radiation, which overwhelms the effects from intrinsic transverse momentum in this region.

In Fig. 17 we illustrate our modification to F{}U’T, showing the dependence on ¢r/Q for
fixed values of Q% = 25 GeV?, y = 0.3, and 2z, = 0.5, using for the unmodified F}y;; ;. struc-
ture function the result extracted from the recent JAM3D20 global analysis in the TMD
framework [59]. The specific parameters used for the modification are simply illustrative,
but chosen to approximate a typical scenario for the large- P, region within collinear factor-
ization. Note that when implementing the QED effects described in the previous sections,
Egs. (68)-(70) are utilized by replacing the arguments of Ffj;, with the corresponding

variables 2, Q?, 25 and Pyr.
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FIG. 17. Unpolarized SIDIS structure function F{}U’T as a function ¢p/Q, where qr = Pyr/z,

1074

at fixed values of Q? = 25 GeV?, y = 0.4, and z; = 0.5. The unmodified function (dotted blue
line) is taken from the JAM3D20 global QCD analysis [59], while the additional power-law tail
contribution (dashed green line) distorts the region ¢r/Q > 0.5 by enhancing the modified Fg[%?d)

(solid red line) to mimic QCD radiation effects in collinear factorization.

In Fig. 18 we show the impact of the QED radiative effects on the ratios of unpolarized
SIDIS cross sections, calculated at the Born level and with RCs, as a function of ¢r/Q at
fixed values of /s = 140 GeV, y = 0.4 and z, = 0.5, for Q = 3 and 10 GeV, typical of
those expected at the EIC. The QED radiative effects are observed to be stronger in the
absence of hard QCD radiation enhancements in [y}, at large Pyp, and relatively mild
otherwise. To isolate the rotational effects induced by the QED radiation in relating the
true Breit frame transverse momentum and the one computed with external kinematics, we
set ﬁhT — Py, but keep the other (£, ¢)-dependent variables unmodified. This effectively
removes the rotational effect, and reveals its suppressed role for the power-law enhanced
F g((f;)d) structure function compared with the unmodified function. The striking dependence
of the QED radiative effects on the specific behavior of Fjj;, indicates the difficulty in
establishing a universal QED correction that can be applied to extract the pure QED, “free”
SIDIS structure function from the data. Since the corrections depends on the behavior of

FngT itself, one is confronted with an inverse problem that can only be solved within a

QCD analysis framework that incorporates QED effects simultaneously.

Turning now to the QED radiative effects on the leading-twist spin modulations in SIDIS,

we note that for scattering of unpolarized leptons (U) from nucleons with transverse (7')
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FIG. 18. Ratios of unpolarized SIDIS cross sections without radiation (“no RC”) to those including
QED effects, as a function of ¢r/Q, for the FgU,T structure function from Ref. [59] using the
Gaussian ansatz in the TMD framework (left) and with the modified Fggg?d) as in Eq. (69) (right),
for /s = 140 GeV, y = 0.4 and 2, = 0.5, at Q@ = 3 GeV (blue lines) and 10 GeV (red lines). The
full calculation with QED radiation (“RC+rot”, solid lines) is compared with that removing the

QED rotational effects induced to the transverse momentum in Breit frame (“RC”, dashed lines).

polarization St there are three contributions that enter in the sum Y 1w, F" in Eq. (63).
These UT modulations depend on the relative angles (ﬁh and (135 in the combinations given

by [10]

> o, F (i, Q2 2, P,fT)‘UT = |Sy| [sm(q%h — Gs) Frr ) 4 sin(gy, + os) Fp S

+ sin(3¢y, — QASS)F;EP(MF%) : (71)

where the first and second terms correspond to the Sivers and Collins asymmetries, respec-

tively, and the third term contains the pretzelosity TMD function in the small- P, region.

Typically, the measured differential cross sections are integrated over the physical angles
on and ¢g. In the absence of QED radiative effects, the Sivers asymmetry, for instance,

would be isolated via the external sin(¢;, — ¢g) projecting phase,

sin(¢np—¢s)
dGUZP(ST)—M’PhX

dapdy d dz, AP,

d°0up(sr) 0 p, x
= [ d¢y, dog si - 2 0o, 2
/ th ¢S S]I](gbh ng) d{L’de dd) th dgbth}%T’ (7 )

UT,T
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which at the structure function level is equivalent to the identity

Fypignos) moge /d¢h ds sin(pn — ¢s) | sin(on — ¢s)Fop o)
+ sin(¢y + ¢g) Fam@t98) 4 sin(3¢y, — pg) FamBon=os)| - (73)

In contrast, with QED radiation Eq. (73) no longer holds, as the projecting phases are not

orthogonal with the “internal” phases,

/d¢h dos sin(¢y, — ¢s) sin(gn + ¢s) # 0 (74)

for £, ¢ # 1. The external projecting phases will then not uniquely isolate the desired
structure function, but instead receive “leakage” from other modulations.

In Fig. 19 we illustrate this phenomenon by integrating the UT cross section (with
|S7| = 1) over the three different modulations in Eq. (71), calculated at some typical EIC
kinematics versus gr/Q. The structure functions Fg?(ﬁh %) and Fin®*s) are taken from
the JAM3D20 analysis [59] and F[S]i;(3¢h_¢5) is set to zero. As expected, the lowest order
QED calculations isolate only the structure function associated with the relevant phase. In
the presence of radiation, however, the modulations are no longer orthogonal, and identifi-
cation of the desired signal requires more care. The largest effect is seen for the sin(¢, — ¢g)
modulation, where the cross section decreases uniformly across all ¢r/Q, with no visible
leakage from other modulations. For the sin(¢, + ¢s) modulation, a similar depletion is
found, but is partly compensated by leakage from the Sivers contribution. Finally, the
sin(3¢, — ¢s) modulation, which in the “true” Breit frame (at LO) is set to zero, acquires
a sizable contribution due to leakage from the Sivers sin(¢y, — ¢g) effect, with a small effect
from the Collins sin(¢y, + ¢g) modulation.

As for the upolarized SIDIS cross section, the QED radiative effects for the spin mod-
ulations generally depend on the shape of the transverse momentum distribution of the
structure functions. The presence of the inverse problem makes it impossible in practice to
establish a universal set of QED corrections for SIDIS. For the spin-dependent cross sections
the problem is further aggravated since the radiative effects are not even universal within
a specific type of modulation due to leakage effects. The direct and simultaneous inclusion
of QED radiation, along with QCD frameworks such as collinear or TMD factorization, is

therefore indispensable for a meaningful QCD global analysis involving SIDIS data.
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FIG. 19. QED radiation effects for sin(¢;, — ¢g) (top), sin(¢pp, + ¢g) (middle) and sin(3¢;, — ¢g)
(bottom) SIDIS UT spin modulations versus ¢r/Q at /s = 140 GeV, 2z = 0.01, 2, = 0.5, and
Q? = 25 GeV? (left) and 100 GeV? (right), with |S7| = 1. The cross sections with no QED
effects (“LO”, dotted lines) are compared with the QED resummed cross sections (“RES”, dashed

lines) for the Sivers (green lines) and Collins (blue lines) asymmetries. The total spin modulations

(solid red lines) include the full QED contribution along with leakage effects.
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V. CONCLUSION AND OUTLOOK

In this paper we have proposed a QCD-like factorization approach to take into account
the collision-induced QED radiative contributions to the experimentally measured cross sec-
tions of both inclusive and semi-inclusive lepton-nucleon deep-inelastic scattering. In this
new factorized approach, based on the perturbative sensitivity in the limit when the lep-
ton mass m./Q — 0, all-order collision-induced QED contributions to the lepton-nucleon
cross sections are organized into three groups: infrared sensitive, infrared safe, and power
suppressed. In the limit when m,/@Q — 0, the infrared sensitive contributions diverge loga-
rithmically in powers of In(Q?/m?), while the infrared safe contributions are independent of
m. and can be calculated order-by-order in powers of a. The power suppressed contributions

(in powers of m./Q) are typically very small and can be safely neglected.

Taking advantage of the fact that the logarithmically enhanced and infrared sensitive
contributions from the induced radiation are process independent, we collect them into uni-
versal LDFs and LFF's, and resum the logarithms to all orders in « by solving corresponding
renormalization group equations. Since QED contributions are in principle perturbatively
calculable in the energy regime of relevant experiments, our factorization approach to the
collision-induced radiation provides a consistent and perturbatively stable method to in-
clude all order QED contributions to both inclusive and semi-inclusive DIS cross sections,
up to the power corrections in m,./Q). This provides excellent predictive power from the
universality of LDFs and LFFs, given our ability to calculate the infrared-safe contributions

perturbatively to all orders in powers of «, and the fact that m./Q is a small number.

We have demonstrated that the traditional approach to handling the contributions from
collision-induced QED radiation by imposing a “radiative correction” factor to the “Born”
cross section with no QED radiation will not work for semi-inclusive lepton-nucleon pro-
cesses when a final-state hadron or jet of momentum P, is measured in addition to the
scattered lepton of momentum ¢'. Furthermore, without being able to account for all ra-
diation, the photon-nucleon frame, where the TMD factorization was proven for SIDIS,
is not well-defined. Consequently, there is no unique connection between the produced
hadron’s transverse momentum P defined in the TMD factorization formalism and the
measured hadron’s P,r, either in the laboratory frame, where the lepton and nucleon collide

head-on, or in the “Breit”-frame defined experimentally without taking into account the
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collision-induced radiation. In addition, without knowing the “true” photon-nucleon frame,
we cannot uniquely determine the hadronic plane, and will lose all advantages of extracting
different TMDs from the different modulations of angle distribution between the leptonic
plane and the hadronic plane. Numerically, we found significant “leakage” between different
angular modulations, which could impact the precision with which TMDs can be extracted
in practice.

Our factorization approach to the inclusive and semi-inclusive lepton-nucleon DIS nat-
urally goes beyond the “one-photon approximation”. We define the inclusive DIS as an
inclusive production of a scattered lepton of momentum ¢ with ¢}, > Aycp, and the semi-
inclusive DIS as an inclusive production of a scattered lepton of momentum ¢ plus an ob-
served hadron of momentum P, with both ¢, and P,r > Agcp in the lepton-nucleon frame.
We demonstrated quantitatively that the collision-induced QED radiative contributions to
SIDIS can be consistently treated in terms of collinear factorization, which allows a uniform
treatment of the infrared-sensitive part of induced QED radiative contributions for both DIS
and SIDIS, by resumming them into universal collinear LDFs and LFFs. This factorization
framework therefore provides excellent predictive power for QED radiative contributions.

With the collinear factorization approach to the induced QED radiation, and the “one-
photon approximation”, we can define a “virtual photon-nucleon” frame for a given combina-
tion of lepton momentum fractions (&, ), and take advantage of all factorization formalisms,
including collinear and TMD factorization, to evaluate the semi-inclusive virtual-photon

4

cross sections with the observed hadronic variables defined in the “virtual photon-nucleon”
frame. A (§,()-dependent Lorentz transformation can then be applied to transfer these
variables from the “virtual photon-nucleon” frame to a frame (either laboratory or exper-
imentally defined Breit frame), where the hadronic variables are measured. Finally, the
integration over (&, (), weighted by LDFs and LFFs, sums up the total impact of the in-
duced QED radiation on the SIDIS cross sections.

We stress that even though « is very small, the logarithmic enhanced QED radiation could
significantly alter the momentum transfer to the colliding nucleon, including the invariant
mass (which defines the hard scale), as well as the direction that impacts on the angular
distributions between the leptonic and hadronic planes, and the precision of extracting the

TMDs from lepton-nucleon scattering. Our new and renormalization improved factorization

approach allows the systematic resummation of the logarithmically enhanced radiative effects
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into factorized LDFs and LFFs that are universal for all final states, applicable for DIS,
SIDIS, as well as for ete™ annihilation and Drell-Yan lepton-pair production processes,
leaving the fixed-order QED corrections completely infrared-safe and stable in the limit
as m, — 0. Our factorization approach goes beyond the “one photon-approximation”,
and provides a new paradigm for a uniform treatment of QED radiation in the extraction of
PDFs, TMDs and other partonic correlation functions. This will have important implications
for the future analyses of hard scattering process at the EIC, in the quest to map the nucleon’s

three-dimensional structure in momentum space from lepton-nucleon collision data.
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Appendix A: Perturbative coefficients of the leptonic tensor at NLO

In this Appendix, we derive the NLO perturbative coefficients A, BM, C’J(cl), and C’g)
of the W-term Wyr and the first nontrivial Y-term Y in Eq. (52) of Sec. IIIC2. Among
the four helicity basis lepton structure functions Loy, Lrr, La, and Laa in Egs. (49), only
Ly has a nonzero contribution at LO. With Lg?% given in Eq. (51a) and the LO LDF and

LFF given by

FE0E) = b 8(1 - €), (Ala)
D) = 6.5 8(1 ), (A1b)
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one can obtain the hard part,

L) = 26(1 - \) 5(% ~1) 8% (ar). (A2)
and the C' functions,
PN O () = 8(1 = 2) 6(1 = 7). (A3)
As a natural choice, we set
() = 61— \), (Ada)
C(n) = 6(1 ). (A4b)

The NLO coefficients can be extracted from the NLO lepton structure function Lgplr_)p, which

can be derived by calculating the real and virtual diagrams in Figs. 20 and 21, respectively.

To extract the helicity basis lepton structure function L(Tl:)p, we contract these diagrams with

(X*XY +YH"Y")/2, and perform our calculation in D = 4 — 2¢ dimension to regulate all

perturbative divergences. Computing the amplitude squared of the real diagrams (Fig. 20),

we obtain the real contribution to L(Tl,},
2, 2\€ ~2

) = o (- - )

L [o20- )2 (42 +0%) +4(1 — e)t(t + 0+ ) L1+ N2 — (1 — \n)?
o A1)

462} , (A5)

where the phase space factor (27)%/[(27)3Q?] 5([53/)(3} (1=X)(1—n)— QT/Q2> has been
included, and the corresponding virtual contribution (Fig. 21),

Vi = —(1—€)20(1 = X) 6(1 — 1) 63729 (gr)

1 2 1 47 1 47 2 3 Ay 2
X [—2+—+—<ln o —7E>—I——<ln a —7E> +—<ln a —VE)——+4]-
e € € t 2 t

Note that in defining ﬁ(Tl% and VT(IT) we follow the same convention as for the leptonic tensor
in Eq. (50), and the variables, £, % and 9 are the same as those defined below Eq. (58). In
terms of the “W+Y” formalism in Eq. (52), one can write the NLO lepton structure function

as the sum
~(1 =01 S(1
Ly = Wil + Vi, (A7)
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FIG. 21. Virtual correction diagram for the calculation of the leptonic tensor at NLO. The corre-

sponding Hermitian conjugate diagram (omitted here) is also included in the calculation.

where the Y-term is a regular part of L(TT as gr — 0. Since the virtual contribution is

proportional to 6?29 (¢r), and is singular as gy — 0, we only need the real diagrams to

obtain the Y-term as YJ%) = R(Tl% - RE,}% G0’ where the subtraction term is known as the

~

asymptotic term. Taking e — 0 for the real-term in (A5), we obtain the Y-term as

- 1 2002 + 0?) +4t(E +a+0) 1+ N2 /1 G2
PO _ _ L RNV i
T 27 i { v * AN 5()\( A =n) ;ﬂQ)
L[ 14N 1 1+7° qT]
- S(1—n)+ ———T 51—\ —25(1 —\)d(1 —n)In2L|, (A8
ﬂq%[(l—AM (1= n(1=mn)s ( ) ( )otL=m) 1y (A8)

where the asymptotic second term has been derived using the identity in Eq. (B2) of Ap-
pendix B.

To extract the NLO coefficients A, B, C}(cl), and Cj(jl), we expand the resummed
expression for the W-term in (54) to O(a) and remove the term proportional to f() and

DW to isolate the perturbative part of the W-term in Eq. (A7),

=)
W = OO SO + V0 s 4 Pl s, (A9)
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where S© and S™ are the first two terms in the expansion of

2 p” 2
all )2 1o (1) 1 2
=1——|;AYIn" = + BV In— | + O0(a”). (A10)
T |2 Hy Hy

To derive WTT, we perform a Fourier transform of Z(Tl% to by space using the relevant integral
formulas in Appendix B. The 1/¢? terms from the soft radiation exactly cancel between the
real and virtual diagrams of Figs. 20 and 21. The 1/e terms from collinear radiation can be

absorbed into the LDF and LFF. The NLO perturbative part of the W-term can then be

written
ﬁ(;;zzm—ma—n){ ;1 2’;Q+21 %}
B[ (E2) s+ 1(522) s
42 {%(1 — N1 —n) + %(1 — (1 — ) — 46(1 — A)S(1 — n)] | (A11)

By comparing Egs. (A9) and (A1l), we determine the NLO perturbative coefficients,

Oy Lg ooy (EEAY | A g A12

o' =500 = (T ) mlE -2, (A120)
1 1/1+n? Uis

o0 - __(_) In P55 _ 9501 ), A12b

W= g0 -m - L (F50) mIE 2 (A120)

AW = 1, (A12¢)

B _ _; (A12d)

Appendix B: Some useful formulas

In this appendix we collect some integral formulas which are relevant to the calculation

of the NLO leptonic tensor in Appendix A. First, we consider the integral

_ e & &
=% 455 © D@ FO (2N - - &)

/ d)\/ (Ci) (%77)5((%—1)(1—77)—%), (B1)
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where x? = (¢gg2)/(£€3Q%) and F()\,n) is a smooth function of X\ and 7. Taking the limit

qr — 0, which corresponds to x — 0, we have

8] A

/1 an/ dX 1 §B> D(%) F()\,n)%fs(l — )+ O0(x*)

vl
B dA 9z Podp 1 CB
- /5 e )+€Bf( )PP+ [ e pen) D() Fw
- giBf@B) D(Cp) F(1, 1) In 2 + O(3)
_[hde [hd¢ ACs
_ /5 e | @roporam g
< [;5(1 )t 51— A\ = 6(1 = A)6(1 — ) In CBQ%} +O(3). (B2)
(1—=X)+ (1—n); EpQ? '

When computing the Fourier transform, one needs to calculate integrals of the type

e+a— A 6 1
I(a, k) = (u®) ™" / d* *qre @QT‘bmlnkq—T. (B3)
T

2
=
o

For k = 0, the integral can be evaluated directly,

(2PN T (1 —e—a)
I(a,0)=m (T) T T (B4)

For positive integer values of k, one can evaluate the integral by calculating the derivative

of I(a,0),

I(a,k) = <%)k I(a—5,0) (B5)

Applying these results, we arrive at the following expressions for the I(a, k) integrals utilized

6=0

in Appendix A,

2b2
1 L. o pb” 2p? uih? 3
1(1,0) = WI_Em + O(e), (B6e)
. 2 M2b2
I(1) = —x' E[Z’yE—t—anﬁl—l—lnT—l—O(e)]. (B6d)
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Appendix C: QED dependent SIDIS kinematic variables

In computing SIDIS cross sections including QED effects, it is convenient to express the
Breit frame kinematical variables, such as the angular phases and transverse momenta, in
terms of lab frame variables that are directly accessible experimentally. For notations and
definitions, we follow the Trento convention as set out in Ref. [10].

We define symmetric and antisymmetric tensors for projections perpendicular to the
direction of the virtual photon of momentum ¢ in the Breit frame scattering from an initial

nucleon of momentum P,

g = g Prg" + P'g"  y* (PP g'q” (1)
! 1+ P-q 1472\ M2 Q)
1
R (C2)

VI+72P-q
Here by “virtual photon” we refer to the external momentum ¢ = ¢ — ¢, which does not
necessary coincide with the true photon momentum that enters in the hard scattering. With
these transverse projectors we can write covariant expressions for the Breit frame transverse

momenta,
= g't,, Pl = g5 Py, (C3)

Similarly, the angular dependence for the outgoing hadron (¢;) and the initial state spin

vector (¢g) are given by

1 1
oSy = ———— 0, Py g SinGp = — e £, Py €, (C4)
V2P V&P
1 1
0,8, . (C5)

cos pg = ————1,S, g+, sin pg = ———
P =~ J@ss Mo %=z

where the spin vector S of the initial nucleon is decomposed into longitudinal and transverse

components,
Pl gt M2/ P .
St =Sy CMPq | g (C6a)
My/1+ ~?
M S
Si T sp=gvs, (C6b)

B V1+~2P-q
Note that while the expressions in Eqs. (C3)—(C6) are written in a covariant way, their

interpretation in terms of longitudinal and transverse momentum directions is true only in

the Breit frame.
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The expressions above, along with the variables x,, 2z, and Q?, provide the full set of
variables that characterize SIDIS for any configuration of initial state particles. With these
it is then possible to build the corresponding internal invariant variables that depend on the
momentum fractions ¢ and (. To that end, it is important to note that only the external
momenta ¢ and ¢ are directly connected with the QED momentum fractions via k = &/ and
k' = '/, while the other external hadronic vectors, P, P, and S, do not depend on & or (.
It is only when the latter are decomposed in the Breit frame using the covariant projectors
that the QED momentum fractions play a role. For instance, in Eq. (C3) the vector Py,
becomes sensitive to the QED momentum fractions because the projector g4’ depends on /,
(" or ¢, rather than because the original P}’ vector is sensitive to these.

The strategy then is to simply express all the relevant invariants in terms of the scalar
products £ -V and ¢ -V, with V = P, S or P, and include QED radiative effects via the
substitutions ¢ -V — & -V and ¢/ -V — ¢ - V/(. For this purpose we form the scalar
products from the external kinematics through the invariants xz, 2z, Q% y and Py, the
angles ¢, and ¢g, and the spin projections S;, and |St|. We utilize both the sine and cosine
of the phases to keep track of the signs of the modulations. Defining Q? = Q2 + 4M?x2, it
is then straightforward to verify that

Q*(Q*(1 —y) — M?x2y?)

0 = 202 , (C7a)
g P = 4M2 ) (@ — Q2 (Q12} — MR (3 + Pa)). (CTh)
(- P, = —@<Q Pyr [br]y cos ¢ — (Q° + 2M>22 y) [q- Po] + Q 24 (1 + %y)), (CTc)
U-Py=1[l-P)—[q- Ppl (C7d)

For convenience, in the expressions for /- P, and ¢ - P, we have kept explicit the dependence
on ¢r and q - P, highlighted by the brackets “[...].” The QED effects on the various scalar
products can be implemented in a covariant way through the substitutions ¢- P, — k- P, =
E¢-Py)and ¢ - P, = k' - P, = [I'- Py]/C. Proceeding next to scalar products involving the

spin vector S, we have

QQ
q~S:—2MxB\/1—S%, (C8a)

‘. S——@(Q 11| [ex] y cos s — (@ +2M%2 y) [q- 5] ). (C8D)

¢.S=[-S]—[q-8] (C8c)
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As for the case of P, we can implement the scalar products involving the spin vector S in a
covariant way by making the replacements (- S — k-S = ¢ [(-S]and ¢'-S — K'-S = [¢'-S]/(.
For the sinusoidal phases involving contractions of the Levi-Civita tensor with ¢ and ¢,

we have the relations

€ypo PP P = _hr @l %xg [tr] sin ¢y, (C9a)
Gm,papuguglpsg _ _W sin¢5. (CQb)

These also allow us to implement the £ and ¢ dependence of the sinusoidal modulations via

the substitutions

Curpo PO P = €00 PPR KPP = % [eywpo PP P FY], (C10a)
€urps PPLPST =5 € PPR K ST = % [eypo PP S7). (C10b)

We next consider the SIDIS invariants with £ and { dependence, which for the simplest

variables are

. w8y o &C+y—1 yzm(
Ry S e 7o v | e
A2 f 2 ) (QM'QACB)2

Defining again the shorthand notation 02 = Q2 + 4M242 = Q*(1 + 42), from Eq. (C7a) we
can write the transverse momentum of the incoming lepton that enters the hard scattering

in the true Breit frame as

_P@0-y -

2
kT p 5 (C12)
For the corresponding scalar products involving the internal ¢ vector, we can write
G- Py =1[k-PJ]—[K-PB)], G-S=1[k-S]—[K- 9] (C13)

Here we use the shorthand notation “[...]” for the (&, ()-dependent scalar products to dis-
tinguish them from the (¢, ()-independent quantities above, with the understanding that
the former are functions of (£, () and of the latter scalar products, which we can represent
schematically as “[...] = [...](&,{,[.-.])”. The transverse momentum of the produced hadron

can be computed using Eq. (C3) in terms of the (£, {)-dependent variables as

. 1 PUNPUR . o
Fr--5a (m3 Q2 Q% - Q%2 +2(Q"2 + 2M%32) [d- Pl ). (C14)
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Similarly, the decomposition of the spin vector S in the true Breit frame is given by

S, = % [d- 5], (C15a)
~ &2 ~
1Sr>=1— > [¢-S]*=1-S;. (C15b)

Finally, the angular phases can be expressed in terms of the scalar products as

QY (2- ) B+ 2(Q7 + 2M2i2 ) [¢- P — 202§ [k - Pi]

Ccos ¢y, = = : (Cl16a)
2029 [Pur][kr]
" 2 W1V 1./p Do
sin ¢y, = _ s [G‘L””"f Wk Ph]], (C16b)
Q Q[ Pur]lkr]
and
- (@2 2M%i29) [G-S] - Q%4 k- S
cos g = (Q i fB g{) [[Z -2l ]], (C17a)
Q24 [|S7|][*kr]
N 2AB v oP'u vE'PST
sin g = — 22 Leuvpo PPR"EPS7] (C17h)

Q QIS (lkr]

With these expressions, we have now completed the translation of the SIDIS invariants

expressed in terms of external degrees of freedom into their corresponding internal ones that

depend on £ and (.
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