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We present a determination of the non-singlet transversity parton distribution function (PDF) of
the nucleon, normalized with respect to the tensor charge at µ2 = 2 GeV2 from lattice quantum
chromodynamics. We apply the pseudo-distribution approach, using a gauge ensemble with a lat-
tice spacing of 0.094 fm and the light quark mass tuned to a pion mass of 358 MeV. We extract
the transversity PDF from the analysis of the short-distance behavior of the Ioffe-time pseudo-
distribution using the leading-twist next-to-leading order (NLO) matching coefficients calculated
for transversity. We reconstruct the x-dependence of the transversity PDF through an expansion in
a basis of Jacobi polynomials in order to reduce the PDF ansatz dependence. Within the limitations
imposed by a heavier-than-physical pion mass and a fixed lattice spacing, we present a comparison
of our estimate for the valence transversity PDF with the recent global fit results based on single
transverse spin asymmetry. We find the intrinsic nucleon sea to be isospin symmetric with respect
to transversity.

I. INTRODUCTION

The determination of the collinear quark and gluon structures of polarized hadrons has been a vigorously pursued
research program, spurred by the abundant cross-section data from previous and ongoing experiments, such as at
HERA, Tevatron, JLab, RHIC and the LHC. More exciting discoveries pertaining to hadron structure are to come
with the planned electron-ion collider (EIC) [1] and the JLab 12 GeV [2, 3] upgrade. The global-fit analyses (for
example, see [4–7]) of the available fully-inclusive experimental data have led to a high-precision extraction [8] of
the leading-twist, unpolarized and polarized nucleon parton distribution functions (PDFs) over a wide range of
momentum fraction x, especially for the non-singlet case, which has smaller experimental systematic uncertainties at
small x. A complete understanding of the leading-twist collinear structure of the proton, however, includes not only the
unpolarized PDF and polarized PDF of a longitudinally polarized nucleon, but also the transversity quark distribution
that characterizes the correlation of the transverse spin of a collinear parton with the transverse polarization direction
of the nucleon.

The transversity distribution, denoted by h(x) or δq(x) in the literature, measures the difference in the probabil-
ities for a hard virtual photon to scatter from a quark with spin aligned parallel and antiparallel to the tranverse
polarization direction of the nucleon. The transversity distribution is the only chiral-odd leading-twist collinear PDF.
This decouples the transversity PDF from the inclusive deep-inelastic scattering (DIS) experiments, and hence, one
has to rely on other processes that can accommodate the required helicity-flip of the scattered parton, such as those
initially suggested in [9–13]. The first determination of the nucleon transversity PDF resulted from an analysis [14]
incorporating the experimental data for the single spin asymmetry in semi-inclusive DIS (SIDIS) process in HER-
MES [15] and COMPASS [16] experiments and chiral-odd TMD fragmentation functions from the Belle data [17].
The transversity distributions for the valence u and d quarks were also extracted using the data for dihadron pro-
duction in SIDIS [18–20]. Recently, the first global analysis of the single spin asymmetry in SIDIS and various other
processes was presented by the JAM collaboration in Ref. [21], which demonstrated a universal description of single
spin asymmetry with a comparatively well determined transversity PDF. The scarcity of available data for extracting
the transversity PDF through a global analysis and the non-conservation of the tensor charge make it less constrained,
and is therefore well-suited for an extraction from first-principles lattice QCD.

Complementary to the global-fit determinations of the leading-twist PDFs, in silico lattice QCD computations of
x-dependent hadron structure are fast developing as a reliable framework. The perturbative matching frameworks
that use equal-time matrix elements have proved particularly promising — the large momentum effective theory
(LaMET) [22, 23] and the perturbative QCD short-distance factorization based approaches, the pseudo-distribution
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approach [24, 25], and the factorizable lattice cross-section approach [26, 27] as applied to the current-current corre-
lators [28–30]. We should, however, note that there are other methods to probe the x-dependent hadron structure,
such as through the direct computation of the Mellin moments using leading-twist local operators [31], the analytic
continuation of the hadronic tensor [32], operator product expansion (OPE) of the Compton amplitude [33], and the
OPE of heavy-light current correlators (HOPE method) [34, 35]. We refer the readers to the recent reviews [36–40]
on these topics for technical discussions.

In this work, we apply the pseudo-distribution approach, for which one uses a universal perturbative matching kernel
C(u, z2) to relate, in a short-distance regime at non-zero hadron momentum, the invariant amplitudes associated with
the renormalized matrix elements of equal-time spacelike separated parton bilinears to the ν-Fourier transform of the
MS collinear PDF, or Ioffe-time distribution I (ν, µ). Using the pseudo-distribution and related approaches, lattice
QCD computations of the unpolarized and polarized quark distributions [25, 41–49], and the valence distribution of
the pion [29, 30, 50–52] have been performed. These studies demonstrate the ability of the perturbative matching
approaches to capture the expected behaviors of the unpolarized and polarized PDFs from the global fits to a reason-
able degree, which one can consider in the experimentalists’ parlance as the controls for the methodology. With this
initial success, the lattice QCD investigations of some of the experimentally less-constrained leading-twist quantities
have begun to appear; for example, the computations of the generalized parton distribution functions [53–55], gluon
PDFs [56–59], and the topic of this paper, the transversity PDF.

Previous lattice QCD studies [60–66] based on the local operator approaches have computed the tensor charge,
gT (µ), which is the first moment of the transversity PDF, and the second moments [64, 67–71] of the transversity PDF.
A study in Ref. [72] found a considerable impact of using the tensor charge gT from the lattice QCD determinations
as a constraint in the fits to the SIDIS data for the transversity PDF. Closely related to the present work, the x-
dependence of the transversity PDF has been computed before based on the perturbative NLO x-space matching of
the LaMET approach by two independent groups in Refs. [73–75]. More recently, the first lattice QCD computation
of the x-dependent transversity generalized parton distributution function (GPD) based on the LaMET approach
was presented in Ref. [76]. The aim of this paper is to complement those previous studies with an independent,
first computation of the leading-twist transversity PDF of the nucleon using the short-distance factorization based
pseudo-distribution approach. Independent computations of the transversity PDF using different lattice quantities
and factorization approaches are crucial, because the different approaches suffer from different systematic effects, such
as those generated by power corrections, renormalization prescriptions or perturbative truncation effects. The usage
of the pseudo-distribution approach using renormalization group invariant rations separate the computation of the
transversity PDF into two stages — first, a computation of the x-dependence of the PDF at a fixed normalization,
and then using standard lattice QCD methods to perform a computation of the tensor charge gT to change the
normalization from 1 to gT . Therefore, in this paper, we focus on the ratio h(x, µ)/gT (µ) that captures the x-
dependence and its corresponding perturbative matching for the pseudo-distribution approach.

The structure of the paper is as follows. In Section II, we present the definitions of the non-singlet valence and
antiquark transversity distributions, and then present the analytical results for the NLO perturbative matching in
real-space to match the pseudo-distribution to the leading-twist MS transversity PDF. We discuss the details of the
gauge ensemble and lattice measurements in Section III. In Section IV, we present our determination of the bare
nucleon matrix elements that form the basis of our analysis in the following sections. As a prelude to the extraction of
the transversity PDF, in Section V we present an analysis of the efficacy of NLO leading-twist framework in explaining
our lattice data, and thereby deduce the necessary corrections we need to add to the leading-twist framework. Finally,
in Section VI, we present our strategy for the reconstruction of the x-dependence of transversity PDF using a Jacobi
polynomial basis, and present a comparison of our estimation with the available data on the tranvsersity PDF from
the global fits.

II. THEORETICAL FRAMEWORK: DEFINITIONS AND NLO MATCHING

In this work, we make use of the factorization of the pseudo-ITD matrix element at the perturbatively small quark-
antiquark separations, z, into a hard perturbative matching kernel C(u, µ2z2) and the parton distribution function;
in our case, the transversity PDFs corresponding to the isotriplet flavor combinations at scale µ. We first explicitly
define the relevant isovector combinations of the transversity PDF and then discuss the NLO matching kernel that
relates the ratio of hadronic matrix elements, calculable on the lattice, to the light-cone transversity PDF in the MS
scheme.



3

A. Definition of non-singlet transversity distributions

The transversity PDF of the nucleon with spin Sν⊥ polarized in a transverse direction ρ⊥ and an on-shell momentum
P can be defined within QCD in terms of the quark-fields ψ and ψ̄ that are displaced along the light-cone as,

h(x, µ) =

∫ ∞

−∞

dν

2π
e−ixνI(ν, µ) with ,

2P+Sρ⊥I(P+z−, µ) =
〈
P, Sρ⊥ |ψ̄(z−)γ+γρ⊥γ5W+(z−, 0)ψ(0)|P, Sρ⊥

〉
,

(1)
with the straight Wilson-line W+(z−, 0) making the definition gauge-invariant. The non-singlet transversity PDF
that we compute can be succinctly written as

hu−d(x) = hu(x)− hd(x), x ∈ [−1, 1]. (2)

It is more useful to write the above quantity in terms of quark (q) and antiquark (q̄) distributions that have support
from [0, 1] by identifying hq(−|x|) = −hq̄(|x|). Following the conventions laid down in the community white paper [77],
the non-singlet transversity distributions in this paper are

h−(x) ≡ hu−−d−(x) = hu(x)− hū(x)− hd(x) + hd̄(x),
h+(x) ≡ hu+−d+(x) = hu(x) + hū(x)− hd(x)− hd̄(x),

(3)
for x ∈ [0, 1], and their Mellin moments given as

〈xn〉± ≡ 〈xn〉u±−d± =

∫ 1

0

dxxnh±(x). (4)

The factorization scale µ is implicit in the above equations, and the evolution of h(x, µ) and their moments with the
scale is given in [78]. By defining h−(x) as the valence quark distribution, hv(x), and hū−d̄(x) = hū − hd̄ as the
isotriplet antiquark distribution that characterizes the intrinsic sea, we see that,

hv(x) ≡ h−(x),
hv(x) + 2hū−d̄(x) ≡ h+(x).

(5)
In contrast to the unpolarized quark distribution, which corresponds to the distribution of the conserved charge
amongst the partons, the underlying tensor charge,

gT (µ) = 〈x0〉−, (6)

is not conserved, and hence, it depends on the renormalization scheme and it runs with the renormalization scale µ.
We express the tensor charge and the transversity distribution in the MS scheme. A global fit to the lattice QCD
results for the tensor charge gives gT (µ) = 1.00(5) at µ2 = 2 GeV2 [72]. In this work, we focus on the shape of the
x-dependent transversity distribution, and defer a dedicated computation of gT (µ) to the future. Therefore, the aim
of this work is to compute hv(x, µ)/gT (µ) and hū−d̄(x, µ)/gT (µ) as a function of x from the appropriately defined
pseudo-PDF matrix element.

B. NLO matching from the pseudo-ITD to MS transversity PDF

Let us consider an on-shell proton with a momentum four-vector P = (E(P),P) and spin vector S⊥ satisfying(
S⊥
)2

= −1, S⊥ · P = 0, and such that it points in a spatial direction that is transverse to spatial momentum P;

the relativistically normalized quantum state is denoted as |P, S⊥〉. Within both the short-distance factorization
and the LaMET approaches, the expectation value of an appropriately chosen bilocal quark operator is evaluated
in the boosted hadron state. Such a flavor non-singlet Wilson-line connected bilocal quark bilinear operator that is
appropriate for obtaining the transversity PDF is

Oγ5γλγρ(z) ≡ ψ̄γ5γλγρW (0, z)τ3ψ, (7)

where ψ = (u, d), and W (0, z) is the straight Wilson-line connecting the quark and antiquark separated by z. The
Lorentz decomposition [79] of its forward nucleon matrix element is
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FIG. 1. The z3 dependence of the Wilson coefficients, Cn(µ2z2
3), in the leading-twist OPE for transversity for n = 1, 2, 3 and

4. The value of µ =
√

2 GeV.

〈P, S⊥|Oγ5γλγρ(z)|P, S⊥〉 =

2(PλS
⊥
ρ − PρS⊥λ )M(z · P, z2) + 2im2

N (zλS
⊥
ρ − zρS⊥λ )N (z · P, z2) + 2m2

N (zλPρ − zρPλ)(z · S⊥)R(z · P, z2).
(8)

As is conventional, in this work, we choose z = (0, 0, 0, z3) and P = (E(P3), 0, 0, P3), thereby making ν = −z ·P = z3P3

and −z2 = z2
3 . The quantity ν = −z ·P is referred to as the Ioffe-time [80, 81]. Of the three independent form-factors

M,N and R, only M gives the leading-twist contribution. Hence, by a good choice of directions ρ and λ, we can
project onto M; such a choice is λ = 0 (that is, along the temporal direction) and ρ = 1, 2 (that is, either of the
two spatial directions transverse to the nucleon momentum). Coincidentally, it is precisely this choice that is purely
multiplicatively renormalizable without any mixing [82]. For these choices of directions λ = 0 and ρ = 1, 2, the spin
vectors are S⊥ = (0, 1, 0, 0) and (0, 0, 1, 0) respectively. Using these choices in Eq. (8), and by using the rotational
invariance, we find

M(z3, P3) =
1

4E(P3)

2∑

ρ=1

〈P, S⊥|Oγ5γ0γρ(z)|P, S⊥〉. (9)

For convenience in what follows, we have written the arguments of M as (z3, P3) without making use of the Lorentz
structure. The above matrix element is not renormalized due to the self-energy divergence of the Wilson-line, the
logarithmic end-point divergences, and standard field renormalizations for ψ [83–85]. Due to the multiplicative
renormalizability for the choices of directions as made above, we can define the reduced pseudo-ITD (rpITD) [24, 25]
for the transversity PDF as

M(ν, z2
3) ≡ M(z3, P3)

M(z3, 0)

M(0, 0)

M(0, P3)
. (10)

The first factor on the right-hand side above removes the self-energy divergence of the Wilson-line, and the second
factor above ensures that in the local operator limit, z3 → 0, the rpITD becomes M → 1 independent of renormal-
ization scale. Thus, it is clear that by using the above definition of rpITD, we have forsaken the information on the
tensor charge, gT (µ), that would have been otherwise obtained in the limit z3 → 0 at fixed P3. Hence, we expect that
M matches onto the transversity PDF that is normalized to unity, that is h(x, µ)/gT (µ); this expectation indeed gets
borne out of an actual perturbative calculation to compute the rpITD-to-MS PDF matching kernel using on-shell
quark external states. The renormalization choice of setting the z3 = 0 matrix element to 1 has further advantange
of reducing the statistical errors for the matrix elements at other smaller z3 due to correlations in the data. From
our experience with the rpITD for the unpolarized PDF, we expect it might help in the cancellation of higher-twist
effects and finite volume effects (through the complete removal of all corrections at O(ν0)) for the transversity rpITD
as well— however, this expectation needs to be checked through further studies.

The matching relation involving the perturbative kernel C has the general form of the lightcone OPE [86]

Mtwist−2(ν, z2
3) =

∫ 1

0

du C
(
u, µ2z2

3

)
I(uν, µ), (11)
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where the normalized MS light-cone transversity ITD I(uν, µ) is related to the transversity PDF by

I(ν, µ) =

∫ 1

−1

dx eixν
hu−d(x, µ)

gT (µ)
. (12)

The expression for the matching kernel at NLO was found to be given by1

C(u, µ2z2
3) = δ(1− u)− αsCF

2π

{[
2u

1− u

]

+

ln

(
z2

3µ
2e2γE+1

4

)
+ 4

[
ln(1− u)

1− u

]

+

}
. (13)

Here we use the standard definition of the plus-prescription at u = 1. The matching formula may also be rewritten [28,
88] in the form of the leading-twist local OPE

Mtwist−2(ν, z2
3) =

2Nmax∑

n=0

an+1(µ)Cn
(
µ2z2

3

) (iν)
n

n!
, (14)

which is nothing but the Taylor expansion in ν of the lightcone OPE to an order Nmax. The accuracy of the leading-
twist local OPE improves as Nmax →∞, but a large-enough value of Nmax is sufficient given the statistical precision
of the lattice data, as well as the finite range of ν and z3 that the lattice data spans. The Mellin moments normalized
by gT (µ) are given by

an+1(µ) =

{
〈xn〉−/gT , even n,

〈xn〉+/gT , odd n,
(15)

with a1(µ) = 1. The leading-twist NLO Wilson coefficients, Cn(µ2z2
3) =

∫ 1

0
du C(u, µ2z2

3)un, for transversity are given
by

Cn
(
µ2z2

3

)
= 1 +

αsCF
π

{
ln

(
z2

3µ
2e2γE+1

4

) n+1∑

k=2

1

k
−
(

n∑

k=1

1

k

)2

−
n∑

k=1

1

k2

}
. (16)

By fitting the lattice data for ReM using the above expression for ReMtwist−2, we can obtain h−(x, µ). Similarly,
we can obtain h+(x, µ) from ImM. We use the value of αs from the PDG [89] at the same scale µ used to determine
the PDF.

In Fig. 1, we show the variation of the Wilson coefficients Cn with z2
3 at a scale of µ =

√
2 GeV. As the Mellin

moments typically decrease rapidly with the order n, and also due to the n! suppression of higher-orders in Eq. (14),
only the few lowest n mainly contribute in Eq. (14) given a finite range in ν. Therefore, Fig. 1 shows the effect of
O(αs) corrections to Cn for the lowest four n. The 1-loop effect on C1 and C2 at intermediate z3 ≈ 0.4 fm is about
10% and 20% respectively, whereas the effect is about 35% on C3 and C4. For even smaller z3 where the effect of
ln
(
µ2z2

3

)
increases, typically only the n = 1 and 2 dominate Eq. (14), for which the 1-loop effect is about 20% and

40% respectively at z3 = 0.2 fm which is about two lattice units in the ensemble we use for this work. Practically,
such O(αs) corrections could have an even smaller effect when convoluted with realistic PDFs. Thus, at the level of

matching, we are working in a region of z3 where the 1-loop corrections at a fixed αs(
√

2 GeV) are small.

III. LATTICE SETUP

The computation presented in this paper was performed using a lattice ensemble generated by the JLab/W&M/LANL
collaboration [90] with a lattice spacing a = 0.094 fm and the pion mass tuned to Mπ = 358 MeV with a physical
strange quark mass. The computation is unitary using 2+1 flavor isotropic Wilson-clover fermion action in both the
sea and the valence quark sectors. We used a fixed lattice size of L3 ×Lt = 323 × 64. Further details of the ensemble
are presented in Refs. [91, 92].

In order to project onto the nucleon ground-state |P, S⊥〉 with spatial momentum P = (0, 0, P3) and with the spin
polarization S⊥ that is in a spatial direction ν, perpendicular to P, we insert the nucleon interpolating operator

1 During the preparation of this paper we have learned that the equivalent result has been obtained by Braun et.al. [87].
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N (t′, P3, S
⊥) in time-slices t′ = t and t′ = 0. The key features of this computation are the usages of distillation [93]

and its modification using phases [94] that make determination of high-momentum matrix elements possible. The
details related to the implementation of distillation, that is pertinent to the ensemble used here, is given in our

previous publication [41]. The spin projection is achieved via the projectors P⊥ = 1
2 (1 + γ5/S

⊥
) = 1

2 (1 + γ5γν). In
the Pauli-Dirac representation we use in our computations, the spin projector for the positive parity state reduces to
a more familiar 2× 2 matrix, P⊥ = 1

2 (1 + σν). We computed the set of spatial momenta,

P3 = n3∆; ∆ =
2π

La
= 0.41 GeV, (17)

for n3 = 0, 1, 2, 3, 4, 5, 6. In physical units, these momenta correspond to P3 = 0, 0.41, 0.82, 1.23, 1.64, 2.06 and 2.47
GeV respectively. For the sake of lattice corrections, the pertinent scale is a−1, in units of which these momenta
correspond to 0.196nz; that is, the lowest four momenta are well below a−1, where as the highest two momenta are
comparable to a−1.

We extracted the bare matrix element M(z3, P3) by computing the two-point function,

C2pt(ts;P3) =
〈
N (ts,−P3, S

⊥)N (0, P3, S
⊥)
〉
, (18)

and the three-point function,

C3pt(ts, τ ; z3, P3) =
1

2

2∑

ρ=1

〈
N (ts,−P3, S

⊥)Oγ5γ0γρ(z3; τ)N (0, P3, S
⊥)
〉
, (19)

where the operator Oγ5γ0γρ(z3; τ) is inserted at a time-slice τ , for 0 < τ < ts. We used ts = 4a, 6a, 8a, 10a, 12a, 14a
in our computation. In physical units, the source-sink separation ranges from 0.388 fm to 1.358 fm. As we will see,
at the three highest momenta, reasonable signal was obtained up to ts = 10a corresponding to 0.97 fm. Our values
of quark-antiquark separations z3 ranged from 0 to 16a for momenta n3 < 4, and ranged from 0 to 8a for the higher
three momenta. Since, we performed fits in shorter z3 < 1 fm, only the values of z3 ≤ 10a were actually usable in the
analysis. In Eq. (19), we have averaged over the two spatial directions that are transverse to P3, but we checked to
ensure that the two individual three point functions are consistent with each other well within 1-σ errors.

IV. EXTRACTION OF BARE MATRIX ELEMENT

We follow the standard ways to obtain the bare matrix element from the three-point and two-point functions in
Eq. (18) and Eq. (19); namely, two-state fits to the ratio of three-point to two-point functions and via summation
method [95, 96]. In the end, we will primarily use the summation method to cross-check the consistency of the
extrapolations from the two-state fits of the ratio, and input the extrapolated matrix elements from the three-point
to two-point ratio in the analysis of transversity PDF in the rest of the paper.

For the fits, we use the spectral decomposition of the two-point and three-point functions in terms of the excited-
state energies En and their amplitudes Zn, namely,

C2pt(ts;P3) =

N−1∑

n=0

|Zn|2e−Ents ; Zn =
1√
2En
〈0|N |n〉, (20)

and

C3pt(ts, τ ; z3, P3) =

N−1∑

n,m=0

Z∗nZm

2
√
EnEm

〈n|O(z3)|m〉e−En(ts−τ)−Emτ . (21)

It is clear that the leading ground-state contribution in C3pt is the desired M(z3, P3). Given the statistical error in
the data, we truncated the above spectral decomposition at N = 2 in both Eq. (20) and Eq. (21); we refer to fits
performed with this N = 2 truncation as the two-state fits. Our methodology is to use the two-state fits using Eq.
(20) to obtain the energies and amplitudes of the nucleon and the first excited state from the two-point function
data. Using the jackknife samples of fitted values as the input, we then performed two-state fits to the ts- and
τ -dependencies of the three-point function data using the matrix elements, 〈n|O(z3)|m〉, as the fit parameters. The
resultant jackknife samples of the fitted values of the ground-state matrix element, M(z3, P3), were then used in
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the analysis of transversity PDF that we will discuss in the following sections. It is convenient to implement this
excited-state analysis scheme by defining the ratio,

R(ts, τ ; z3, P3) ≡ C3pt(ts, τ ; z3, P3)

C2pt(ts;P3)
, (22)

so that the leading term in its corresponding spectral decomposition that follows from Eq. (20) and Eq. (21) is simply
the bare matrix element M(z3, P3). A related technique is the summation method, which uses the quantity,

Rsum(ts; z3, P3) =

ts−τ0∑

τ=τ0

R(ts, τ ; z3, P3), (23)

where one can skip τ0 data points closer to the source and the sink. From the spectral decomposition, it is clear that
the leading ts dependence is a straight-line,

Rsum(ts; z3, P3) = tsM(z3, P3) +R0 +O
(
e−(E1−E0)ts

)
. (24)

In the ts →∞ limit, one would expect t−1
s Rsum(ts) to approach M.

We used (N = 1) one-state and (N = 2) two-state fits to the nucleon two-point function to extract the ground-state
energy E0(P3). We varied the fit range ts ∈ [tmin, tmax] to check for the robustness of the fit parameters. For the
one-state fits, we found using a fit range [10a, 18a] to be optimal and be consistent with the larger tmin. For P3 = 0,
we found the nucleon mass in the ensemble to be 1.115(5) GeV. As a cross-check, the estimate for nucleon mass
here using a single interpolating operator is consistent with an earlier estimate [97] on the same ensemble using an
extensive GEVP basis. Since, we use values of ts and τ which are smaller than 10a, a single-state fit is not a feasible
approach to obtain the matrix elements, and therefore, we performed two-state fits to the nucleon correlator with
smaller values of tmin = 2a, 3a and 4a, and tmax = 18a. At all the momenta, we found that such two-state fits resulted
in E0 that were consistent with those obtained using one-state fits with tmin ≥ 10a. It was also encouraging that the
central values of E0 and E1 obtained from the two-state fits, showed only small variations (< 1% for E0 and < 10%
for E1) when tmin was changed and such variations were within the statistical errors. Therefore, we used the results
of two-state fits over a range [3a, 18a] in the extrapolation of three-state fits to be discussed next. In Fig. 2, we show
the effective mass, Eeff(ts), as a function of source-sink separation, ts. In the figure, we have differentiated the data at
different P3 using different colored symbols as specified in the legend. We have compared the expectation for Eeff(ts)
from the two-state fits, shown as the bands of different colors for different P3, with the actual data for Eeff . The
goodness of the two-state fits is evident in the agreement with the data for ts ≥ 3a.

In Fig. 3, we show the dispersion relation for the ground state and the excited state. For the ground state, we
have shown the consistency between the results for E0(P3) from the two-state fits with those from the one-state fits.

The black curve is the expected continuum single particle dispersion E0 =
√
M2
N + P 2

3 with MN = 1.115 GeV. The
fitted data for E0(P3) agrees with the continuum dispersion over the entire range of P3, with only a slight tendency
for the central values of E0(P3) to be smaller than the continuum values at the largest three momenta, which could
be an effect of a small lattice correction, specifically an O

(
a2P 2

z

)
error. We have also shown the dispersion of the

first excited state as the blue triangles. At P3 = 0, the gap E1 − E0 = 1.3(2) GeV is larger than the expectation
that the leading excitation are Nππ multi-particle state, for which the gap is about 0.7 GeV. This suggests that the
first excited state from our two-state fits only effectively captures the tower of excited states above the ground-state
nucleon.

Using the spectral content data from the two-state analysis of the nucleon two-point function, we performed the
extrapolation of the real and imaginary parts of R(ts, τ) using two-state fits to obtainM(z3, P3). For the two-states,
there are four independent parameters (i.e., the matrix elements) as the fit parameters for each of the real and
imaginary parts of R. For the fits, we skipped the shortest ts = 4a and used only ts ∈ [6a, 14a], and for each ts, we
used only the operator insertion time values 2a ≤ τ ≤ ts − 2a to reduce any end-point effects. Thus, the number of
data points being fit is 35 for the choice of fit range using 4 parameters, albeit with correlated data points and with
larger ts > 10a being noisy for the largest two momenta effectively reduces the number of data points being fit. In
our fits, we included the correlations between the data points at a given ts and also the cross-correlations at different
ts. We found the correlated χ2/dof to vary in the acceptable range around 1 for all the cases studied here. In Fig.
4, we show some sample two-state fits to Re R(ts, τ ; z3, P3) at P3 = 0, 0.82 and 2.05 GeV, and for z3 = 0, 4a and 8a.
In addition to the data for R and the bands resulting from the two-state fits, we also show the extrapolated value
for M(z3, P3) as the grey band in the different panels. From the figure, it is clear that at the lower momenta where
the data at all ts are well-determined, the two-state extrapolation describes the ratio data well. For the intermediate
momenta around 0.82 GeV, the data for ts > 10a become noisy and do not contribute to the fits. For the largest
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FIG. 4. The plot shows a sample of the excited-state extrapolations of the ratio R(ts, τ) of the three-point function to
two-point function ratio to obtain the bare ground-state nucleon matrix element, M(z3, P3). As the real and imaginary parts
of R displayed similar behaviors, only the real part of R is shown. In each panel, Re R(ts, τ) is shown as a function of ts− τ/2,
where ts is the source-sink separation and τ is the operator insertion time. The points are the lattice measurements and the
bands are the expectations based on the two-state fits to Re R(ts, τ) over a range of ts ∈ [6a, 14a]. The ratios at different fixed
ts, as specified in the plot legends, are distinguished by the colored symbols and bands used. The horizontal gray band is the
extrapolated value. The matrix of panels are such that the three rows from the top to bottom show the results at momenta
P3 = 0, 0.82 and 2.05 GeV, and the three columns from the left to right are for quark-antiquark separations z3 = 0, 4a and 8a
respectively.

two momenta, as seen in the example P3 = 2.05 GeV data shown in the figure, the fits are constrained mainly by the
ts = 6a and 8a source-sink separations.

We performed further consistency check on our two-state extrapolations by using summation method to determine
M(z3, P3). For this, we fitted the straight-line in Eq. (24) to the ts dependence of the lattice data for Rsum(ts; z3, P3).
We used τ0 = 2a to skip the end-points to find Rsum, but changing its value was not crucial. We did the straight-line
fits over the range of ts ∈ [6a, 14a]; the deterioration of signal for Rsum(ts) at larger ts with increasing P3 followed
the same trend as we explained above for the ratio R. In Fig. 5, we have shown a sample straight-line fit to Rsum(ts)
at P3 = 1.23 GeV and z3 = 4a. The y-axis in Fig. 5 is t−1

s Rsum(ts) and the x-axis is t−1
s , such that when t−1

s = 0, the
y-intercept will give the value of ground-state matrix element. The blue-band is the result from the straight-line fit
over ts ∈ [6a, 14a], which passes through all the data points satisfactorily, and not surprisingly, misses the data point
at the smallest ts = 4a which did not enter the fit. For comparison, we also show the expectation for t−1

s Rsum(ts)
from the two-state fits to the ratio R(ts, τ) over ts ∈ [6a, 14a], that we discussed previously, as the green band. The
two estimates for M are consistent within error-bars as seen from the y-intercepts of the two bands, validating the
extrapolations at least for the specific (z3, P3) shown in the figure. However, the surprising feature in Fig. 5 (and
also for other (z3, P3) as well), is that the expected curve for Rsum(ts) from the two-state fit always passes through
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FIG. 5. Extraction of the ground state matrix element by using the summation method via fits to Rsum(ts). The plot shows
t−1
s Rsum(ts) as a function of t−1

s , defined conveniently such that the y-intercept at ts →∞ is the ground-state matrix element,
M. The data points for Rsum(ts) at a fixed P3 = 1.23 GeV and z3 = 4a are shown as the red circles. The resulting curve from
the straight-line fit to Rsum(ts) =Mts +B over a range ts ∈ [6a, 16a] is shown as the blue band. The expectation for Rsum(ts)
from the two-state fits to the ratio R(ts, τ) over a range ts ∈ [6a, 16a] is shown as the green band.

the ts = 4a data point as well, unlike the summation fit curve. This seems to suggest that the two-state fit has a
slight advantage from the sensitivity to the tower of higher excited states captured through the effective first excited
state E1. We attempted to test the robustness of summation fits by supplementing the straight-line fit form with
a term proportional to e−(E1−E0)ts , but it however resulted in unstable fits with large errors in the fit parameters.
In the different panels of Fig. 6, we show the results of M(z3, P3) as a function of z3 that were obtained from the
two-state fit extrapolations (shown using circles) and the summation fit extrapolations (shown using squares), at
different P3. In each panel, ReM and ImM are shown using red and blue symbols respectively. The comparison
nicely demonstrates the consistency between the two different ways of extrapolations to get M, thereby indirectly,
justifying a good estimation of the ground state matrix element. Therefore, we will use the bare matrix element
obtained from the two-state fit in the rest of the paper, due to its usage of more data points in its fits, especially
at the larger P3 where the summation fit essentially uses only two data points, as well as due to its good ability to
describe even the smaller ts that did not even enter the fits.

V. A NUMERICAL ANALYSIS OF CORRECTIONS TO CONTINUUM LEADING-TWIST
FORMALISM

The simplest analysis of the lattice pseudo-ITD data, without incorporating any ansatz for the PDF is to use the
Mellin moments as the fit parameters, as first introduced in Ref. [98]. The premise of the calculation is to find the
best fit values of the Mellin moments by fitting the Ioffe-time, ν, dependence of the real and imaginary parts of
M(ν, z2

3) using the leading-twist OPE given in Eq. (14) at various fixed values of z3. In this way, we can obtain
the Mellin moments 〈xn〉± as a function of z3. If the leading-twist OPE at a given perturbative order by itself is
sufficient to describe the lattice data in a given range of z3 and ν, then we should find no z3-dependence in the fitted
values of 〈xn〉±. By turning the argument around, by assuming that the NLO leading-twist OPE is sufficient except
that it needs to be supplemented by small additional ν and z3 dependent lattice corrections as well as higher-twist
corrections, then the moments analysis at fixed z3 is a nice way to query the nature of these small corrections. The
idea is the following — if the lattice pseudo-ITD data is an admixture of the leading-twist part Mtwist−2 and some
leading corrections in 1/|z3| and |z3|, such as,

M(ν, z2
3) = Mtwist−2(ν, z2

3) +
∑

k,n

(
Lk,n

(
a

|z3|

)k
+Hk,n

(
Λ2

QCDz
2
3

)k
)

(iν)n

n!
, (25)

for some numerical coefficients Lk,n and Hp,n, then we can absorb the corrections into the leading-twist OPE, which
effectively results in a z3-dependent n-th moment given by,
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FIG. 6. The plot demonstrates the consistency in the extracted bare matrix elements M(z3, P3) by means of comparison
between the extrapolated values from two-states fits to R(ts, τ) (circles) and straight-line fits to Rsum(ts) (squares). The red and
blue symbols are for Re M and Im M respectively. The different panels show this comparison at various momenta P3 = 0.41n3

GeV for n3 = 0, 1, 2, 3, 4, 5.

aeff
n+1(z3) = 〈xn〉+

1

Cn(µ2z2
3)

∑

k

(
Lk,n

(
a

|z3|

)k
+Hk,n

(
Λ2

QCDz
2
3

)k
)
.

(26)

In practice, since the Wilson coefficients depend on z3 logarithmically, one will see some power-law corrections in 1/|z3|
and |z3| to the moments extracted from OPE-without-OPE analysis, thereby allowing us to deduce what the leading
corrections are from the lattice data itself. Also, only corrections with n > 0 can appear as a1 = 1 by construction.
Such an approach was also considered previously in [51] to deduce the nature of lattice corrections for z3 ∼ O(a).
Here, we take a similar stance and ask whether there are corrections to the leading-twist OPE as seen in the Mellin
moments, and if so, what is the simplest correction that we need to add to the leading-twist OPE in order to extract
the PDF?

At any given z3, we only have six data points from the different P3. Therefore, we needed to truncate the leading-
twist OPE in Eq. (14) at modest values of Nmax for this analysis of moments; we used Nmax = 2, 3, 4 and checked
for the convergence of the results. In the top panels of Fig. 7, we show the results from the moments analysis
using Nmax = 4 truncation. We used µ =

√
2 GeV to do the matching and used αs(

√
2GeV) = 0.36 in the Wilson

coefficients. The data points in the top-left and top-right panels are our data for ImM and ReM respectively. We
have differentiated the data at fixed values of z3 ranging from 2a to 7a using different colored symbols. Along with
the data points, we show the resulting bands from the fits at each values of z3. The fits indeed describe the Ioffe-time
dependence as well as the z3 dependencies of the lattice data well, albeit at the expense of allowing for z3 dependence
of the moments as seen in the two bottom panels.

The bottom-left and right panels of Fig. 7 show the z3 dependencies of the dominant fit parameters in the OPE of
ReM and ImM, namely, the normalized Mellin moments 〈x〉+/gT and 〈x2〉−/gT . Let us first focus on the bottom-left
panel in Fig. 7 — the results from the analyses of ImM using Nmax = 2, 3, 4 are the different colored symbols in the
plot. We can infer that by Nmax = 4, the fits have more or less converged. The z3 dependence of 〈x〉+/gT is striking,
without any region in the perturbative range of z3 that can be identified as a plateau. Thus, it is important to take
care of the corrections to the leading twist framework. Since we have analyzed only one ensemble, we have to rely on
previous works to deduce the origin of the corrections seen here. We observe that the corrections are larger at shorter
z3, and hence, suggests that the dominant source of the correction could be due to the lattice corrections when z3 is
comparable to the lattice cut-off itself. Indeed, a similar observation has been made in previous works [42, 51] that
used more than one lattice spacing. Therefore, in this work, we will proceed under the hypothesis that the leading
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FIG. 7. The analysis of ν dependence at different fixed z3. The top-left and top-right panels show ImM and ReM as a
function of the Ioffe-time, ν. The data points for M(ν, z2

3) at different fixed z3 are differentiated by the colored symbols. The
corresponding fits to the leading-twist OPE with Nmax Mellin moments as the fit parameters, at various fixed values of z2

3 are
the colored bands. In the fits shown in the top panels, Nmax = 4 Mellin moments were used. The bottom-left panel shows the
corresponding z3-dependence of 〈x〉+(µ)/gT (µ) as obtained from fits to ImM(ν, z2) at the different fixed z2

3 . The results using
the truncation order Nmax = 2, 3, 4 are shown. The black curve is the expectation for the observed residual z3 dependence
based on a short-distance lattice artifact of the type L1,1(a/|z3|)ν (refer text). The results from fits using tree-level Wilson
coefficients (i.e., Cn = 1) and Nmax = 4 are also shown to see the effect of 1-loop matching. A similar z3-dependence of
〈x2〉−/gT at µ =

√
2 GeV as obtained from the leading-twist OPE fits to ReM(ν, z2

3) is shown in the bottom-right panel.

correction is a lattice spacing correction of the type Lk,m (a/|z3|)k (iν)m that we discussed above. The solid black
curve in the bottom-left panel is a fit using the form aeff

2 (z3) = 〈x〉+/gT + L1,1 (a/|z3|), with 〈x〉+/gT = 0.226(2)

and L1,1 = 0.094(6). On the other hand, a fit to an alternate correction of the type L2,1 (a/|z3|)2
performs poorly as

seen from the dashed curve shown in the bottom-left panel of Fig. 7. Thus, we infer that the leading correction to
ImM is a correction of the form L1,1 (a/|z3|) ν. In addition to the lattice correction, we do not find any perceptible
higher twist corrections of the form (ΛQCD|z3|)2ν present in our data for ImM up to z3 = 0.8 fm, indicating that
most of the higher twist effects have presumably canceled between the bare matrix elementsM(z3, P3) andM(z3, 0)
in their ratio. A similar plot of the effective aeff

3 (z3) as extracted from ReM is shown on the bottom right panel.
Unlike the results on the bottom-left panel, the fitted values of aeff

3 (z3) are comparatively noisier, especially at the
shorter z3 < 0.4 fm. For z3 > 0.4 fm up to 0.8 fm, a plateau is seen. Thus, to the precision of the data, we found no
indications of small-distance lattice correction nor any higher-twist corrections in ReM. To see the effect of DGLAP
as enshrined in the ln

(
µ2z2

3

)
in the NLO Wilson coefficients, we also performed the above analysis using the tree-level



13

matching as obtained using αs = 0 and therefore lacks the logarithmic part as well as some finite αs corrections (the
resulting tree-level moments can also be inferred as the moments of the pseudo-ITD). From the bottom panels, we
see that the effect of 1-loop is quite important for the ImM compared to ReM. From the z3 behavior for 〈x〉+, we
see that the effect of DGLAP and the effect of the a/z3 lattice correction have opposing behaviors, and taking care
of the them together is important in lattice studies at finite lattice spacings.

Based on the above analysis, the explicit functional forms for the leading-twist OPE along with the simplest leading
lattice-spacing correction and higher-twist correction, that we will use in the extraction of the x-dependent PDF in
the remaining part of the paper is

Re
(
M
(
ν, z2

3

))
=

(
1 +

Nmax∑

n=1

C2n

(
z2

3µ
2
) (−1)nν2n

(2n)!

∫ 1

0

x2nh−(x, µ)

gT (µ)
dx

)
+ L1,2

a

|z3|
ν2

2
+H1,2 (ΛQCDz3)

2 ν
2

2
, (27)

and for the imaginary part is,

Im
(
M
(
ν, z2

3

))
=

(
Nmax∑

n=1

C2n−1

(
z2

3µ
2
) (−1)n−1ν2n−1

(2n− 1)!

∫ 1

0

x2n−1h+(x, µ)

gT (µ)
dx

)
+ L1,1

a

|z3|
ν +H1,1 (ΛQCDz3)

2
ν, (28)

with the terms within the larger parantheses in the above expression are simply the convolution term in Eq. (11)
expanded in ν for convenience in implementation. We will use a value ΛQCD = 0.286 GeV as a typical scale simply
to get dimensionless values above. We found actual evidence in the data only for a non-zero L1,1 in the imaginary
part, and whereas, we have added the other correction terms, namely L1,2, H1,1 and H1,2, in order to be conservative
in our fits and also because there is no a priori reason for the absence of such leading lattice correction terms or the
higher-twist correction terms. In the end, we found such terms to come out with values close to zero, which we will
take as an empirical fact. We should also note that the lattice correction term L1,2 in the real part is proportional to
the modulus |z3|−1. This is in contrast to Ref. [51] for the analysis of pion valence PDF, where an analytic correction
term (a/z3)2ν2 was used for ReM due to visible evidence for such a term in the data. In our case, there is no such
visible evidence for ReM data, and therefore, we add a term with lesser power of |z3|−1, which in principle could be
present. Such an approach was also taken for the case of the analysis for the nucleon unpolarized PDF [41, 42]. We
also cross-checked by adding (a/z3)2ν2 as a correction term instead of (a/|z3|)ν2 term to the real part in our studies,
but it did not make any statistically significant variation. Therefore, we will present the results with L1,2 term in the
real part.

We should note that one may parameterize the ν dependence of both the higher-twist as well as the lattice spacing
errors with a more general form. In computations of the nucleon unpolarized PDFs [41, 42, 56], Jacobi polynomials
were used to describe the general ν dependence of correction terms. However, for the transversity rpITD data
presented here, we found the results from an analysis using the Jacobi polynomial parametrization of corrections to
leading-twist OPE to be consistent with the results using a simpler parametrization using leading correction terms
given above, and hence, we resort to this simpler parametrization in the rest of the paper. Perhaps, an increased
precision in the future might necessitate more elaborate terms in the corrections.

VI. RECONSTRUCTION OF TRANSVERSITY PDF WITH REDUCED MODEL-DEPENDENCE

Having set up the required elements for the PDF analysis, we present the results on the extraction of the PDF from
the transversity pseudo-ITD in this section. Our approach is to reconstruct the x-dependent transversity PDFs, h±(x)
by assuming a functional form for them, say h±(x; {α, . . .}), and then perform a combined fit of the parameters {α, . . .}
to the ν and z3 dependencies of the pseudo-ITD lattice data over a range of P3 ∈ [Pmin

3 , Pmax
3 ] and z3 ∈ [zmin

3 , zmax
3 ]

using Eq. (27) and Eq. (28). As we will explain, through a step by step generalization of the functional form of the
PDF ansatz, we reduce the model-dependence. Our fitting method is by using the standard χ2 minimization,

χ2 =
∑

p,p′

∆pΣ
−1
p,p′∆p′ ; p = [z3, P3],

z3 ∈ [zmin
3 , zmax

3 ], P3 ∈ [Pmin
3 , Pmax

3 ],
(29)

where ∆p = Re/ImMdata(p) − Re/ImMfit(p; {α, . . .}), and Σp,p′ is the covariance between the different data points
p, p′. The covariance matrix uses its standard definition using only statistical fluctuations, without folding any of the
systematic errors into it. We will take care of the systematic variations in the fits in the end.

We used all the six available values of P3 ∈ [0, 2.46] GeV in our analysis. However, we were cautious about the
range of z3 to use; too small values of z3 will suffer from larger lattice spacing corrections as we discussed in the last
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FIG. 8. Reconstruction of transversity PDF based on the PDF ansatz in Eq. (30). The top-left and top-right panels show the
real and imaginary parts of M as a function of ν. The two panels show the best fit bands resulting from an analysis assuming
the PDF ansatz. The fits shown in the figure incorporated the data points at all momenta with z3 ∈ [2a, 8a]. The color of the
bands and the data points distinguish the fixed value of momenta P3 = 0.41n3 GeV used. The bottom-left and bottom-right
panels show the resultant transversity PDFs, h−(x) and h+(x) respectively.

section, whereas for z3 ∼ O(1) fm, we naively expect higher-twist effects and higher-order perturbative terms could
become important. For this, we skipped z3 = 0, a from our analysis and used only ranges with zmin

3 = 2a, 3a. To see
the variations due to the choice of zmax

3 , we used zmax
3 = 8a, 10a = 0.75, 0.94 fm. We used the fixed order expressions

for the Wilson coefficients in Eq. (16) at a factorization scale of µ =
√

2 GeV in our PDF analysis, that is comparable
to 1/z3 that enters our computation.

In the first step of the PDF reconstruction, we assumed a functional form that is known to work well in the global
fits to the PDFs from experimental cross-sections data, namely,

h±(x)

gT
= N±x

α±(1− x)β±
(
1 + γ±

√
x+ δ±x

)
, (30)

with (α±, β±, γ±, δ±) as independent fit parameters. The parameterN± is the normalizing constant. We will simply re-

fer this method as PDF ansatz fits. For the valence case,
∫ 1

0
dxh−(x)

gT
= 1, which thereby fixesN− = N−(α−, β−, γ−, δ−)

as a function of the other independent parameters. On the other hand, for N+ there is no such condition and therefore,
we keep it as an additional fit parameter in h+/gT . We used the above functional form in Eq. (27) and Eq. (28) to
fit our transversity pseudo-ITD data. We evaluated the convolution integral for the leading-twist matching using the
Taylor series in ν (see Eq. (27) and Eq. (28)) using an expansion upto order Nmax = 40. This truncation achieves a
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machine precision approximation of the convolution kernel within the range of ν we use.

In the top left and right panels of Fig. 8, we compare our PDF ansatz fit with the real and imaginary parts of our
lattice pseudo-ITD data in the left and right panels respectively. For the fits shown in the two panels, we used the
fitting ranges z3 ∈ [2a, 8a(0.75 fm)] and P3 ∈ [0, 2.46 GeV]. We have represented the data points and fitted bands at
a fixed P3 by the same set of colors. The data points at different P3 and z3 quite nicely fall on near universal curves
as a function of ν, which means that the scaling violations to the tree-level universality could be described by small
perturbative logarithmic terms. Indeed, it is clear from the two panels that the corresponding fitted bands describe
the data at different P3 well over the range of z3 we used. Taking this range of fitted data as a representative point
for the sake of discussion, we found the following set of parameters that enter the PDF ansatz:

α+ = 0.49(42); α− = 0.63(50)
β+ = 3.38(1.15); β− = 4.37(1.75)
γ+ = −0.28(1.92); γ− = −0.16(2.29)
δ+ = −0.30(1.33); δ− = −0.17(1.75)
N+ = 10.85(92);
L1,1 = 0.0648(38); L1,2 = −0.038(20)

H1,1 = −2.50(2.62)10−3; H1,2 = 1.86(1.34)10−3

χ2/dof = 45.9/35; χ2/dof = 41.5/36 .
(31)

In the bottom-left and right panels of Fig. 8, we show the corresponding best fit transversity PDFs, h− and h+,
respectively for the representative values of fit ranges; in the last half of this section, we will discuss more on the
variability of the fits as a systematic effect. The quality of the fits are acceptable as seen from the χ2/dof ≈ 1.2. For
both h±, a simpler two-parameter ansatz using only the exponents (α±, β±) was also sufficient to capture the shape
of the transversity PDF, as one can see by the nearly vanishing values of the small-x corrections γ± and δ±. The role
of the lattice correction L1,1 in ImM is not negligible as we discussed in the last section, and such a term is necessary
to obtain acceptable χ2. Its real counterpart L1,2 is comparatively smaller and consistent with zero at 2-σ level.
The additive higher-twist corrections H1,1 and H1,2 come out unimportant, and supports an explanation that there
are cancellations of higher-twist corrections due to the ratio of nucleon matrix elements in Eq. (10). The fact that
α± > 0 results in the transversity PDFs vanishing at x = 0 in the bottom panels. The region of x ∈ [0.1, 0.8] where
the transversity PDF is significantly non-zero could perhaps help their lattice determinations with lesser higher-twist
contamination, which is suggested [99] to affect the x ≈ 0 and x ≈ 1 parts of the extracted PDF.

At this point, we are concerned about the robustness of the reconstructed transversity PDFs; by assuming a PDF
ansatz, have we inadvertently restricted the set of allowed PDFs severely and ruled out a wider possibility of solutions?
The answer to this question can only be found by an actual inversion of the matching relation, and equivalently an
inversion of Eq. (27) and Eq. (28), to determine h±(x) using a discrete set of data points that span a finite range
of ν and z3. This is well known to be an ill-posed problem [100]. Given the assumption (that is, our prior) that
the transversity PDF can be described using the PDF ansatz in Eq. (30) to a good accuracy, and allowing for small
fluctuations around this prior, we ask whether we can reconstruct the transversity PDFs using a more flexible PDF
parametrization that covers all such possible small fluctations. We describe our method to answer this question in
our ensuing discussion on the reconstruction of the transversity PDF using Jacobi polynomials that form a compete
basis of functions of x for x ∈ [0, 1].

The effectiveness of a Jacobi polynomial basis as an easy-to-implement and complete set of functions for x ∈ [0, 1]
was first investigated in Ref. [42]. The reader can refer to Ref. [41] for a more detailed description of a related
procedure as applied to the unpolarized PDF. The essential properties of the Jacobi polynomials that we need for
this paper are as follows. Any pair of parameters (α, β) defines a family of Jacobi polynomials, which we represent as
Pα,βn (u) for u ∈ [−1, 1] which are orthogonal with respect to a weight function Wα,β(u) = (1− u)α(1 + u)β . We can
conveniently rewrite the polynomials as Pα,βn (1− 2x) which span the interval x ∈ [0, 1] that our PDFs are defined in,
and with the weight-function as Wα,β(x) = xα(1− x)β . That is

∫ 1

0

Pα,βn (1− 2x)Pα,βm (1− 2x)Wα,β(x)dx = Kn(α, β)δm,n, (32)

where Kn is a normalizing constant. Due to this orthogonality of the Jacobi polynomials, we can write the most
general functional form for our PDFs as,

h± (x; {N±, α±, β±, sn±}) = N±x
α±(1− x)β±

(
1 +

NJ∑

n=1

sn±P
α±,β±
n (1− 2x)

)
,
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FIG. 9. Convergence of the Jacobi polynomial expansion for PDFs that can be described by Eq. (30). The error ε(x;NJ) due
to truncation at order NJ (see text) is plotted as a function of x. In the example shown, (α, β, γ, δ) = (0.49, 3.38,−0.28,−0.3)
in Eq. (30) for h+(x). The truncation order of the Jacobi polynomial expansion is gradually increased from NJ = 1 to 6 as
seen from the different curves.

with sn ≡
1

Kn(α, β)

∫ 1

0

h±(x)Pα±,β±n (1− 2x)dx.

(33)
The above expansion is exact for NJ → ∞. While it is tempting to identify (α±, β±) with the small-x and large-x
exponents due to the similarity of the above equation with Eq. (30), such an identification in general is not correct —
for this, we note again that (α±, β±) can be any pair of real numbers, greater that -1, and due to the completeness
of the corresponding Jacobi polynomials Pα,βn , the above expansion of h±(x) is always exact in the NJ → ∞ limit.
However, not all choices of (α±, β±) are numerically optimal when finite NJ has to be used, as the above series in
n might only slowly converge with n, or worse, it might not be uniformly convergent as n is increased unlike, for
example, a series in the Chebyshev polynomials. In Refs. [41, 42], this convergence problem was approached by finding
the best fit values of (α±, β±) along with the coefficients sn± by using the VarPro algorithm [101].

In this work, we explore another possibility that makes full use of the completeness of Eq. (33) and the empirically
known effectiveness of the PDF ansatz in Eq. (30). For this, we specialize the above discussion from a generic (α, β)
that define Pα,βn to the case where we identify them with the small-x and large-x exponents. We generalize Eq. (30)
and assume that the PDF can be written as

h±(x) = xα±(1− x)β±G±(x), (34)

where α± and β± are the actual small-x and large-x exponents, in which case, it is justified to assume that G±(x) is

a slowly-varying function that can be expanded linearly in P
α±,β±
n as

G±(x;NJ) = 1 +

NJ∑

n=1

sn±P
α±,β±
n (1− 2x), (35)

with a good convergent behavior as the order of truncation NJ in increased. In order to see if this is true, let us
consider the central values of (α+, β+, γ+, δ+) = (0.49, 3.38,−0.28,−0.3) from the PDF ansatz in Eq. (30). In this
specific example, we would like to see if G+(x) = 1− 0.28

√
x− 0.3x exhibits a convergent behavior with respect to n,

when it is expanded in the basis P 0.49,3.38
n . Let us define the error committed by the truncation at NJ polynomials,

ε(x;NJ) ≡ xα+(1 − x)β+ (G+(x;∞)− G+(x;NJ)). In Fig. 9, we show ε(x;NJ) as a function of x, as NJ is increased
from 1 to 6 for the example G+(x) considered. For the example shown and for similar such four-parameter ansatz
parameterizations of the PDF, we found the convergence with NJ was uniform over a range x ∈ [xmin, 1] with
xmin monotonically becoming smaller with increasing NJ . Thus, to summarize our observational study of the Jacobi
polynomial expansion, at least for PDFs that closely resemble the typical xα(1−x)β functional forms, we can consider
the Jacobi polynomial expansion of the PDF, using the same values of α and β as the small-x and large-x exponents,
to be uniformly convergent with NJ , and it is sufficient to consider only the first few Pα,βn in the expansion.

Based on the above discussion, we improved upon our PDF ansatz reconstruction in the following way. Let us
denote the parameters and PDFs extracted from the PDF ansatz in Eq. (30) using “ans” in the superscript in the
discussion below.

1. For each fit range z3 ∈ [zmin
3 , zmax

3 ] and P3 ∈ [Pmin
3 , Pmax

3 ], we read off the small-x and large-x exponents,
(αans
± , βans

± ), from the four-parameter ansatz reconstruction analysis we presented previously. We decomposed
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FIG. 10. The small-x exponents, α±, and the large-x exponents, β±, as inferred from the PDF ansatz fits are shown as a
function of fit ranges (zmin

3 , zmax
3 ) in the left-half of the figure. The Jacobi polynomial expansion coefficients s2±, s4± obtained

from the decomposition of the PDF ansatz fits in a basis P
α±,β±
n are shown as a function of fit ranges in the right-half of the

figure. The central values and errors on the inferred expansion coefficients were then fed as prior and prior widths for the fits
using the Jacobi polynomial parametrization (see text).

the four-parameter PDF that depends on (αans
± , βans

± , γans
± , δans

± ) into a basis of Jacobi polynomials P
αans
± ,βans

±
n using

Eq. (33). The output of this decomposition were the expansion coefficients sans
n± for any order n. By iterating

this over jackknife samples of the four-parameter ansatz fits, we estimated the mean s̄ans
n± and its error σans

s± of
the expansion coefficients.

2. In the second step, with the same set of fit ranges as in the Step-1, we used the Jacobi polynomial expansion,
Eq. (33), truncated at a chosen truncation order NJ in Eq. (27) and Eq. (28) with the expansion coefficient sn±
and the other correction parameters Lm,n, Hm,n as the fit parameters. One should note that the fit is linear in
the expansion coefficients sn±. We imposed our prior that the allowed PDFs are small fluctuations about the
PDF ansatz fit, by using the log-likelihood function,

L = χ2 +

NJ∑

n=1

(
sn± − s̄ans

n±

σprior
sn±

)2

, (36)

with χ2 defined in Eq. (29) and the second term is the negative logarithm of the Bayesian prior. We took
the central value of the prior from step-1 above. The prior width, σsn± , gives the handle to impose how small

the fluctuation around our prior ansatz based PDF can be. We chose a conservative, σprior
sn± = 3σans

s± with σans
s±

taken from Step-1. The sensitivity to σprior
sn± was minimal as long as it was O(σans

s± ), with even wider widths
resulting in oscillatory, unphysical reconstructions of the PDF when NJ was made larger than 4. By minimizing
L, we obtained the maximum a posteriori estimates of sn± and their confidence intervals. This step immediately
resulted in the Jacobi polynomial based reconstruction of the transversity PDFs for a given specification of fit
ranges for the lattice data. We found the errors of sn± and the resulting PDF through a jackknife procedure.

3. In the last step, we took care of the systematic error due to choices we made in the analysis steps-1 and -2
above, namely, the set Rfit of the fit choices uniquely labeled by (NJ , zmin, zmax,LC,HT). We always made use
of all six available momenta in our analysis. The term LC is Boolean valued, denoting whether we included
the lattice correction term L1,2 for ReM and L1,1 for ImM. Similarly, the Boolean term HT denotes whether
we added the terms H1,1 and H1,2 in the fits. We changed zmin from 2a to 3a, and changed zmax = 8a to 10a
corresponding to 0.75 fm to 0.94 fm. We successively changed NJ from 4 to 10 in our fits. After collecting
together the analysis variations into the set Rfit per jackknife block, we used the Akaike information criterion
(AIC) model averaging to obtain a single estimator hAIC(x) per jackknife block, and a single estimator ∆AIC(x)
to capture the systematic spread in PDFs per jackknife block:

hAIC
± (x) =

∑

m∈Rfit

w(m)h
(m)
± (x),

∆AIC
± (x) =

√ ∑

m∈Rfit

w(m)
(
h

(m)
± (x)− hAIC

± (x)
)2

,
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FIG. 11. The left and the right panels show the unit-normalized transversity PDFs h−(x)/gT and h+(x)/gT respectively,
at µ =

√
2 MeV as obtained from ReM(ν, z2

3) and ImM(ν, z2
3) using the Jacobi polynomial reconstruction method (see text).

The legend specifies the maximum order of Jacobi polynomial used (NJ), the range of z3-values (zmin
3 , zmax

3 ) used, whether the
leading higher-twist (HT) correction term was used in the fit (1 or 0), and whether the leading short-distance lattice correction
(LC) was used in the fit (1 or 0). The different dashed curves are the central values of the PDFs reconstructed for some samples
specifications of (NJ , z

min
3 , zmax

3 ,HT,LC). The inner red band is the 1-σ statistical error band and the outer red band is the
combined statistical and systematic error (see text).

using weights w(m) ≡ e−
1
2 AIC(m)

∑
n∈Rfit

e−
1
2 AIC(n)

,

(37)

where AIC(n) is the (corrected) AIC value for the n-th fit, namely, AIC(n) = Ln+2pn+2pn(pn+1)/(dn−pn−1),
with dn being the number of lattice data points being fitted in n-th fit and pn being the number of fit parameters,
which is NJ for hu−−d− and NJ + 1 for hu+−d+ .

4. Finally, we summarize our fits as h̄± σ ±∆, where the central value h̄, statistical error σ, and systematic error
∆ are defined as

h̄±(x) = Jackknife mean of hAIC
± (x),

σ±(x) = Jackknife error of hAIC
± (x),

∆±(x) = Jackknife mean of ∆AIC
± (x).

(38)

The above choice which helps us separate the total error into statistical and systematic parts is slightly different from
another choice [42, 102] of adding σ and ∆ in quadratures to define a total error. Below, we discuss the results based
on the above analysis methodology.

In Fig. 10, we show the results for sans
2± and sans

4± from the Jacobi polynomial decomposition of the PDF ansatz based
fits. Along with the coefficients sn±, we have also shown the results for the small-x and large-x exponents α± and β±
as inferred from the fits. In each panel, we have shown the estimates for (α±, β±, s

ans
2± , s

ans
4± ) at different (zmin

3 , zmax
3 )

for the fit ranges. The variability of the fitted parameters with z3 range is rather small and within the errors. These

values of the exponents were then used to form the family of P
α±,β±
n corresponding to each of the fit ranges. The

central values and statistical errors of sans
n± for n up to 10 were used as priors and the prior widths in the fits using Eq.

(33) as discussed in the step-2 above. It is at once clear from the consistency of sn± with zero that the effect of the
addition of Jacobi polynomials with n > 0 on the primary xα±(1− x)β± behavior is rather minimal. This is expected
also from the observation that the effect of G = 1 + γ±

√
x+ δ±x, was also minimal, and the transversity PDF could

be described to a good accuracy using a simpler xα±(1− x)β± two-parameter ansatz. However, these conclusions are
made after the fact and it is important to proceed with the Jacobi basis fits in order to remove the slightest ansatz
dependence and estimate the systematic error in a more rigorous manner.

In Fig. 11, we show the results for h±(x) at µ =
√

2 GeV from the fits using the Jacobi polynomial basis obtained
by minimizing the likelihood function L in Eq. (36). In the figure, we have shown the central values of h±(x) from
some representative fitting choices, (NJ , zmin, zmax,LC,HT). For h−(x), there is less scatter from changes to the fit
ranges than for h+(x). For h−, there is a tendency for central values with or without the higher-twist term to lie
closer together, but such dependences were well within statistical error and taken as part of systematic error. The
AIC estimates of the central values and their errors based on Eq. (37) and Eq. (38) are shown as the red bands in
the two panels — the darker red inner band includes only the statistical error, whereas the lighter red outer band
includes both statistical and systematical errors. The AIC estimators nicely envelope the PDFs resulting from sample
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FIG. 12. The two panels show the transversity PDFs h±(x)/gT reconstructed using (NJ = 8, zmin
3 = 2a, zmax

3 =
8a,HT = 1,LC = 1) at a fixed value of the strong-coupling constant αs(µ =

√
2 GeV) = 0.36 (shown as the patterned band)

are compared with those using the same setup for the fits but αs(µ =
√

2 GeV) is randomly picked from the normal distribution
with the central value of 0.36 and with a width of 20% (shown as the red band).

individual fit choices. As expected, the systematical error is not negligible in the case of h−(x), whereas the systematic
error committed in h+(x) is small compared to the statistical one. The results in Fig. 11 can be seen to be more or less
the same as our ansatz based estimation of the transversity PDFs in Fig. 8. From the fits, we can also estimate the
Mellin moments. This is useful for making connection with the earlier estimates of 〈x〉+ obtained via the leading-twist
local operator approach, as well as with the possible estimates of 〈x2〉− in the future. Focusing on the first two Mellin

moments, we find that at µ =
√

2 GeV,

〈x〉+
gT

= 0.2285(22)(17);
〈x〉−
gT

= 0.2199(108)(101),

〈x2〉+
gT

= 0.0787(15)(08);
〈x2〉−
gT

= 0.0714(27)(12),

(39)
where the errors in the first and second parenthesis are the statistical and systematic errors using the proce-
dure described above. In Refs. [67, 91], the values of gT and 〈x〉+ were computed using the ensembles from the
JLab/W&M/LANL collaboration as used in this paper. Unfortunately, the computations in those papers did not
include the ensemble used here, and therefore, for the sake of comparison we take the results in [67, 91] that have
the same lattice spacing a = 0.094 fm as in this paper, but a slightly lighter pion mass of 270 MeV (which is the
ensemble a094m270 as specified in those papers). In these works, the value of tensor charge at 2 GeV scale was found
as gT = 0.973(36) and 〈x〉+ = 0.236(11), with a systematic variation of about 0.02 around this value 2. From this, we
find their estimate for 〈x〉+/gT = 0.242(14) at µ = 2 GeV (with a systematic variation of about 0.02). In comparison,
we find our estimate for 〈x〉+/gT to be 5% smaller, which is within a reasonable criteria for tolerance given both the
statistical and systematic errors, and the slight mismatch in MS renormalization scale µ in the two studies.

A remaining systematic error is the perturbative uncertainty originating from the transversity matching kernel and
the corresponding Wilson coefficients due to the finite perturbative order used. As such, we only know the NLO
matching kernel for transversity PDF at this point, and therefore, we do not have a direct way to estimate what the
corrections from higher-order terms in the perturbative series would be. This is unlike the unpolarized PDF case,
where there are recent results on the two-loop matching [103–105], as well as suggestions to estimate the higher-loop
uncertainties [106, 107]. Instead, here we tried to estimate the perturbative uncertainty in a simpler manner through
the sensitivity of the results to the value of αs used in the NLO coefficients in Eq. (13) and Eq. (16) — at NLO, the

scale µ at which we need to determine αs(µ) is not specified and we implicitly assumed µ =
√

2 GeV, same as the

factorization scale of the transversity PDF. Instead of fixing the value of αs = 0.36 at µ =
√

2 GeV as done in all the
analysis presented above, we tried using a “noisy” αs by randomly sampling αs ∼ N (0.36, 0.072) and use them in
the fits. We chose a Gaussian noise width of 20% of αs = 0.36 as it is approximately the variation resulting in αs by
changing the scale from µ/2 to 2µ for µ =

√
2 GeV, a variation that is traditionally used to evaluate the perturbative

uncertainties. The results for h±(x) using fixed αs and 20% noisy αs are compared in Fig. 12. We only show a sample
case for the fit choice using NJ = 8 Jacobi polynomial reconstruction and [zmin, zmax] = [2a, 8a] in the figure, but the
comparisons were similar at other choices as well. One can see that the PDF reconstruction is quite robust and only

2 In Ref. [67], the results for 〈x〉+ in the ensemble a094m270 shows variability with the excited state extrapolation methods and
renormalization procedures. Therefore, we consider a specific value from their determination as 〈x〉+ = 0.236(11), with a variability of
about 0.02 around this value.



20

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

h
v
(x
,µ

)/
g T

(µ
)

x

µ2 = 2 GeV2

JAM18 (SIDIS + lattice gT )
JAM20 (global fit)

This work

−2

−1.5

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

h
ū
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FIG. 13. Our lattice determination of the valence transversity distribution hv(x, µ)/gT (µ) using the pseudo-distribution
approach is shown on the top panel, and the non-singlet antiquark transversity distribution hū−d̄(x, µ)/gT (µ) is shown on

the bottom panel. The factorization scale used is µ =
√

2 GeV for both the cases. In the two panels, the inner red band
includes only the statistical error and the outer red band includes statistical and systematical errors in the PDF reconstruction.
For the valence distribution, comparison is made with the previous phenomenological determinations using SIDIS and lattice
gT (JAM18) [72], shown using a patterned band, and with the recently updated global fit analysis (JAM20) [21] of the
single transverse spin asymmetry data (but, without including lattice gT ), shown as a green band. The non-singlet antiquark
distribution is consistent with an isospin symmetric intrinsic sea at all x.

develops slight wiggles when αs is randomly varied, and such variations are masked at the level of precision we are
working at. This leads us to think that the perturbative uncertainty of our determination could be mild, and ignore
such uncertainties in our final estimate.

In Fig. 13, we present our final estimates of the MS transversity PDFs at µ =
√

2 GeV including the statistical and
systematic uncertainties. Our transversity PDF determination is normalized with respect to gT (µ) at µ =

√
2 GeV,

as in the rest of the paper. In the top panel, we show the valence transversity PDF, hv(x) = h−(x) normalized by
gT (µ). In the bottom panel, we show the non-singlet antiquark distribution given by, hū−d̄(x) = [h+(x)− h−(x)] /2
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normalized by gT (µ). The outer red bands in both the panels include both the statistical and systematic errors,
whereas the inner red bands include only the statistical error. In the top panel, we have compared our estimate for
the valence transversity PDF with the expectations from fits to the experimental data. For this we used two estimates
from the Jefferson Angular Momentum Collaboration (JAM) based on two different fitting strategies as well as the
processes that were considered. First, we take the result presented in Ref. [72] where the analysis was based on fits
to the single-transverse spin asymmetry in pion production from deutron and proton targets, and further constrained
by the lattice QCD input for the value of gT . We refer to this estimate as JAM18 in Fig. 13 and show it as a black
patterned band. Second, we take the recent updated result [21] from the JAM collaboration, which considered single-
transverse spin asymmetries in pion production via semi-inclusive e+e− annihilation and pp collisions in addition to
the SIDIS data, but excluding the lattice input for gT . We refer to this estimate as JAM20 in Fig. 13 and show
it as the green band. In both cases, we have normalized them to the values of gT in their calculations, namely
gT = 1.01(6) for JAM18 and gT = 0.86(12) for JAM20. While we see an overall agreement of our lattice estimate
for the valence transversity PDF with the two phenomenological estimates, the very close agreement of our result
with JAM18 result is apparent. The source of the difference [108] between the two phenomenological determinations,
JAM18 and JAM20, is likely to arise from the inclusion of single spin asymmetry data from pp collisions from the
RHIC experiment that results in a softer approach to zero as x→ 1, whereas the SIDIS data alone has a tendency for
a harder fall near x → 1. Since the experimental data are not currently very precise to make a distinction between
the two behaviors, we expect our lattice determination, that has an inclination towards JAM18 result, could have
an impact in the global fit determinations in the near future. However, we need to immediately point the reader to
the caveats that unlike the global fit determination of the physical nucleon, our determination is at a heavier-than-
physical pion mass and at a fixed lattice spacing. An effect of heavier pion mass could be through the trace terms
to the leading-twist OPE which we indirectly accounted for by introducing the nuisance fit terms proportional to
|z3|2 in our fits and found to be negligible. Another effect could be in changing the intrinsic transversity PDF of the
nucleon itself — if this effect is found to be small in the future computations at smaller pion masses, then the overall
agreement with the phenomenological determinations would be remarkable. We should also remark that while our
lattice estimate could suffer from effects of heavier pion mass, our work is entirely within the collinear framework,
whereas the global fits have to include chiral-odd TMD PDFs in order to extract the collinear transversity PDF.
In hindsight, the main non-vanishing contributions for hv(x) coming from the intermediate 0.1 < x < 1 is perhaps
helping the lattice determination due to a reduced small-x uncertainty, unlike for the case of the unpolarized valence
PDFs. In the bottom panel of Fig. 13, we find that the non-singlet antiquark transversity PDF, which measures
the difference between ū and d̄ in the intrinsic sea of the nucleon, vanishes at all x within the uncertainties — for
x < 0.15, there is a slight excess of d̄ compared to ū if we focus only on the central value, but these effects are
statistically insignificant. It should be noted that in the global fit analyses of transversity PDF, a symmetric intrinsic
sea is assumed from the start, whereas, our result suggests that the intrinsic sea is indeed symmetric without any
such prior assumptions.

VII. CONCLUSIONS

We presented the formalism for the pseudo-distribution approach to perturbatively match the renormalization
group independent ratios to the MS transversity PDF. As a consequence, we were able to separate the computation
of transversity PDF into two independent computations, namely, one for reconstructing the normalized quantity
h(x)/gT using the pseudo-distributuon approach, and another for finding gT to set the overall normalization that
can be achieved by well-known local operator methods. In this paper, we presented our computation of h(x)/gT and
deferred gT to its dedicated computation in the future. We performed our analyses using the nucleon matrix elements
for the transversity pseudo-ITD obtained by using the phased distillation approach [41, 94], which forms an important
novel strategy followed in this paper. We justified the robustness of the excited-state extrapolations required to obtain
the matrix elements using the consistency between fits associated with a spectral-decomposition and the summation
method. Through an application of the perturbative matching to capture the Ioffe-time dependence at different fixed
quark-antiquark separations, z3, we showed how to use the lattice data to directly infer the presence of lattice spacing
corrections, and to a lesser extent, the higher-twist effects that presumably cancel in the RGI ratio. The above steps
formed the back-bone for our reconstruction of the full x-dependent normalized transversity PDF h(x)/gT at µ =

√
2

GeV.
We used parametrized functional forms of h(x)/gT in order to overcome the inverse-problem associated with this

approach. First, we reconstructed the transversity distribution by employing a phenomenological functional form of
PDFs commonly used in global fits (see Eq. (30)) that is known to describe the cross-sections data over a wide range
of x and Q2. Using such a reconstructed transversity PDF as our Bayesian prior, we used an expansion of h(x)/gT
in terms of a complete basis spanned by Jacobi polynomials [42] in order to allow for more flexibility in the PDF
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reconstruction. This strategy helped us remove any residual model dependence as well as partially answered the
question of whether a more complex functional form could in principle change our conclusions. We presented our final
results in Fig. 13 for the valence transversity PDF, hv(x, µ)/gT , and for the isovector antiquark transversity PDF,
hū−d̄(x, µ)/gT . We found a good agreement between our estimate of the valence transversity PDF with the global fit
analysis [72] based on SIDIS and constraint from lattice gT , whereas we found only an overall agreement within larger
statistical errors present in the recent global fit analysis of single spin asymmetry data without any lattice input. For
the isovector antiquark PDF, which is the difference between the u and d antiquark distributions that are present
in the intrinsic sea (that is, not those radiated from the gluons), we found the resulting antiquark asymmetry to be
consistent with zero at all values of x.

The good agreement between our result for the valence transversity PDF using pseudo-distribution approach is quite
encouraging, given comparable statistical errors in our estimate with that obtained in the global fits. Therefore, the
lattice computations using perturbative matching approaches are ideal for constraining the transversity PDF in the
lack of abundance of DIS cross-section data sensitive to nucleon transversity. The path forward using this approach
is quite clear based on the results already presented in this work. The foremost, and also computationally the most
challenging, is to extend this computation to finer lattice spacings to reduce the a/|z3| type short-distance lattice
correction to DGLAP (seen in Fig. 7); such a correction will always be present at z3 of few lattice spacings however
small the lattice spacing becomes, but the idea would be to restrict our analysis for physical distance z3 > zmin

3 for
short-enough zmin

3 so as to ideally not add any corrections to our analysis and rely only on the continuum DGLAP
evolution. Second, the good comparison of our estimate in this work with the global-fit result comes with the caveat
that our computation was performed at a heavier-than-physical pion mass of 358 MeV. Therefore, it is important to
demonstrate that the observation holds as we reduce the pion mass towards the physical point. Based on observations
for the unpolarized PDF [43], one could guess that the effect of pion mass on the intrinsic quark structure of the
nucleon is not large. Third, we would like to fold in the estimates of the tensor charge gT directly from the lattice
to find h(x, µ) rather than the ratio h(x, µ)/gT as in this work. Finally, it would be interesting to use our estimated
valence PDF as part of the global fit for transversity PDF, such as those explored in Refs. [109–112].
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