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We present the results that form the basis for calculations of the unpolarized gluon parton dis-
tributions (PDFs) using the pseudo-PDF approach. We give the results for the most complicated
box diagram both for gluon bilocal operators with arbitrary indices, and for combinations of indices
corresponding to three matrix elements that are most convenient to extract the twist-2 invariant
amplitude. We also present detailed results for the gluon-quark transition diagram. The additional
results for the box diagram and the gluon-quark contribution may be used for extractions of the
gluon PDF from different matrix elements, with a possible cross-check of the results obtained in this
way.

I. INTRODUCTION

Extraction of the parton distribution functions (PDFs)
from lattice calculations attracts now a considerable in-
terest (see Refs. [1, 2] for recent reviews and references
to extensive literature). Modern efforts aim at getting
PDFs f(x) themselves rather than their xN moments.
The recent progress in this endeavor has been stimulated
by the paper [3] of X. Ji. Its basic proposal is to con-
sider equal-time versions of nonlocal operators that de-
fine parton functions, such as PDFs, distribution ampli-
tudes, generalized parton distributions, and transverse
momentum dependent distributions. In the case of ordi-
nary PDFs, the major object of Ji’s approach is a “par-
ton quasi-distribution” (quasi-PDF) Q(y, p3) [3, 4]. They
produce PDFs obtained in the large-momentum p3 →∞
limit of quasi-PDFs.

Alternatively, one may use coordinate-space oriented
methods, namely, the “good lattice cross sections” ap-
proach [5, 6], the Ioffe-time analysis of equal-time cor-
relators [7–9] and the pseudo-PDF approach [10–12]. In
these cases, parton distributions are extracted through
taking the short-distance z3 → 0 limit.

In converting the Euclidean lattice data into the light-
cone PDFs one should take into account that both the
p3 →∞ and z3 → 0 limits are singular, and one needs to
incorporate matching relations to perform the conversion.

The matching conditions in the quasi-PDF approach,
were studied for quark [3, 13–15] and gluon PDFs [16–
18], for the pion distribution amplitude (DA) [19] and
generalized parton distributions (GPDs) [19–21].

The matching relations in pseudo-PDF approach were
also derived in several cases, in particular, for non-singlet
PDFs [15, 22–25]. The procedure of lattice extraction of
non-singlet GPDs and the pion DA within the pseudo-
PDF framework was outlined in Ref. [26], where the
relevant matching conditions have been also derived.

In our earlier paper [27] (see also Ref. [28]) we have
outlined the basic points of pseudo-PDF approach to ex-
traction of unpolarized gluon PDFs, and have presented
the one-loop matching conditions for a particular combi-
nation of gluon matrix elements, that has the “cleanest”
projection on the twist-2 gluon PDF. These results have

been used already in in lattice extractions of the unpo-
larized gluon PDFs in Refs. [29, 30] and [31].

However, because of the letter nature of Ref. [27], we
have skipped there some intermediate expressions and
also results for two other matrix elements that may be
used for the gluon PDF extraction.

In the present paper, we present a full result for the
most lengthy contribution of the “box” diagram, and also
its projections onto all 3 matrix elements containing the
“twist-2” invariant amplitude. We also give more details
about our calculations of the gluon-quark mixing cor-
rections both for these matrix elements and for matrix
elements with arbitrary indices. The additional results
given in the present paper may be used for extractions
of the gluon PDF from two other matrix elements, which
may give a possibility to cross-check the results obtained
from different matrix elements.

The paper is organized as follows. In Section II, we
study the structure of the matrix elements of the glu-
onic bilocal operators. In particular, we identify those
that contain information about the twist-2 gluon PDF.
In Section III, we discuss one-loop corrections, and spe-
cific properties of their ultraviolet and short-distance be-
havior. In subsection IIIf and Appendix A, we present
our results for the most complicated “box” diagram. The
subject of Section IV is the structure of perturbative evo-
lution of the gluon operators, gluon-quark mixing and
matching conditions. The result for the gluon-quark con-
tribution generated by the gluon bilocal operator with
arbitrary indices is given in Appendix B. Section V con-
tains summary of the paper.

II. MATRIX ELEMENTS

We are going to consider the nucleon spin-averaged
matrix elements for operators composed of two-gluon-
fields in the most general case when all four indices are
not contracted

Mµα;λβ(z, p) ≡ 〈p|Gµα(z) [z, 0]Gλβ(0)|p〉 , (2.1)
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where [z, 0] stands for usual straight-line gauge link in
the gluon (adjoint) representation

[x, y] ≡ Pexp
{
ig

∫ 1

0

dt (x− y)µÃµ(tx+ (1− t)y)
}
.

(2.2)

A. Invariant amplitudes

We want to decompose Mµα;λβ(z, p) in several tensor
structures accompanied by corresponding invariant am-
plitudes. The latter may be built from two available 4-
vectors, namely pα, zα, and the metric tensor gαβ . Build-
ing the tensors, we incorporate the antisymmetry of Gρσ
with respect to its indices. This gives [27]

Mµα;λβ(z, p) =

(gµλpαpβ − gµβpαpλ − gαλpµpβ + gαβpµpλ)Mpp

+ (gµλzαzβ − gµβzαzλ − gαλzµzβ + gαβzµzλ)Mzz

+ (gµλzαpβ − gµβzαpλ − gαλzµpβ + gαβzµpλ)Mzp

+ (gµλpαzβ − gµβpαzλ − gαλpµzβ + gαβpµzλ)Mpz

+ (pµzα − pαzµ) (pλzβ − pβzλ)Mppzz

+ (gµλgαβ − gµβgαλ)Mgg . (2.3)

The amplitudesM are functions of the Lorentz invariants
of the problem, i.e. the invariant interval z2 and the Ioffe
time [32] (pz) ≡ −ν (for further convenience we define ν
with the minus sign).

Since the matrix element should be symmetric with
respect to interchange of the fields, the functions Mpp,
Mzz, Mgg, Mppzz and Mpz −Mzp are even functions
of ν, while Mpz +Mzp is odd in ν.

B. “Twist-2” projection

The standard light-cone gluon distribution fg(x) is de-
fined through the convolution gαβM+α;β+(z, p), with the
separation z taken in the light-cone “minus” direction,
z = z−:

gαβM+α;β+(z−, p) = p2+

∫ 1

−1

dx eixp+z−xfg(x) . (2.4)

Extracting the projection gαβM+α;β+ from the decom-
position (2.3), we get

gαβM+α;β+(z−, p) = −2p2+Mpp(ν, 0) . (2.5)

This means that the gluon PDF is determined by the
Mpp invariant amplitude

−Mpp(ν, 0) =
1

2

∫ 1

−1

dx e−ixνxfg(x) . (2.6)

In view of Eq. (2.6), our strategy is to choose matrix

elements Mµα;λβ that contain Mpp in its parametriza-
tion, and ideally nothing else.

Having in mind lattice calculations, it is convenient to
split the “+” components onto sum of space- and time-
components. Also, due to antisymmetry of Gρσ with
respect to its indices, the combination gαβM+α;β+(z, p)
includes summation over the transverse indices i, j = 1, 2
only, and reduces to

gijM+i;j+ = −M+1;1+ −M+2;2+

= M0i;0i +M3i;3i + (M0i;3i +M3i;0i) . (2.7)

with summation over i = 1, 2 implied.

C. Picking out Mpp amplitude

As found in Ref. [27], there is an extension of the
M0i;i0 matrix element that contains the Mpp amplitude
only,

M0i;i0 +Mji;ij =2p20Mpp , (2.8)

where the summation both over i and j is implied.
One can apply a similar procedure on M3i;i3. Using

the expression

M30;03 ≡ 〈p|G30(z)G03(0) |p〉
= m2Mpp − z23Mzz − z3p3 (Mzp +Mpz)

− p20z23Mppzz +Mgg (2.9)

we construct the combination:

M3i;i3 + 2M30;03 =2p20Mpp − 2p20z
2
3Mppzz , (2.10)

which still has an additional term proportional to the
Mppzz invariant amplitude. Another minimally contam-
inated combination is given by

M0i;i3+M3i;i0 = 4p0p3Mpp + 2p0z3 (Mpz +Mzp) .
(2.11)

D. Multiplicatively renormalizable combinations

Off the light cone, the Mµα;λβ matrix elements have
extra ultraviolet divergences related to presence of the
gauge link. For any set of its indices {µα;λβ}, each ma-
trix element is multiplicatively renormalizable with re-
spect to these divergences [33], but in general, with dif-
ferent anomalous dimensions.

In Ref. [34], it was established that the combina-
tions represented in Eq. (2.7), namely, M0i;i0, M3i;i3,
M0i;i3 +M3i;i0 (and also M0i;i3 −M3i;i0), with summa-
tion over transverse indices i, are each multiplicatively
renormalizable at the one-loop level. Furthermore, as
noted in Ref. [27], the combination GijGij (with sum-
mation over transverse i, j) has the same one-loop UV
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FIG. 1. Self-energy-type correction for the gauge link.

anomalous dimension as M0i;i0, while the matrix element
G30G03 has the same one-loop UV anomalous dimension
as M3i;i3. Hence, the combinations of Eqs. (2.8) and
(2.10) are multiplicatively renormalizable at the one-loop
level.

E. Reduced Ioffe-time distribution

Within the pseudo-PDF approach [10], the link-related
UV divergences are eliminated through introducing the
reduced Ioffe-time distribution. Namely, for each mul-
tiplicatively renormalizable amplitude M we build the
ratio

M(ν, z23) ≡ M(ν, z23)

M(0, z23)
, (2.12)

in which the link-related UV divergent Z(z23µ
2
UV ) factors

generated by the vertex and link self-energy diagrams
cancel. As a result, the small-z23 dependence of the re-
duced pseudo-ITD M(ν, z23) comes from the logarithmic
DGLAP evolution effects only.

III. ONE LOOP CORRECTIONS

Below, we briefly summarize the results on “non-box”
one-loop corrections presented in Ref. [27], and then dis-
cuss a rather lengthy contribution of the box diagram
that was presented there in part only.

A. Link self-energy contribution

The self-energy correction for the gauge link is given by
the simplest diagram (see Fig. 1). In lattice perturbation
theory, it was calculated at one loop in Ref. [35]. An
important property of this contribution is the presence
of a ∼ z3/aL linear term, where aL is the lattice spacing
that provides here the ultraviolet cut-off.

Such corrections clearly factorize into a ν-independent
factor, and cancel in the ratio (2.12), so that their explicit
form is not essential in the pseudo-PDF approach. Still,

0 0z z tztz

a) b)

FIG. 2. Vertex diagrams with gluons coming out of the gauge
link.

in dimensional regularization, one has

− g2Nc

4π2[(−z2µ2
UV + iε)]

d
2−2

Γ
(
d/2− 1

)
(3− d)(4− d)

×Gµα(z)Gλβ(0) , (3.1)

where the pole for d = 3 (d = 4) corresponds to the linear
(logarithmic) UV divergences present in this diagram.

B. Vertex contribution

There are also vertex diagrams involving gluons that
connect the gauge link with the gluon lines, see Fig. 2.

We use the method of calculation described in Ref.
[36]. It is based on the background-field technique,
with the gluon propagator taken in the “background-
Feynman” (bF) gauge [36]. The full, “uncontracted” ver-
tex contribution is given by

Overtex
µα;νβ =

g2NcΓ(d/2− 1)

4π2(−z2)d/2−1

×
∫ 1

0

du

{(
u3−d − u
d− 2

)
Gµα(ūz) (zβGzν(0)− zνGzβ(0))

+

(
u3−d − u
d− 2

)
(zαGzµ(ūz)− zµGzα(ūz))Gνβ(0)

}
+
g2NcΓ(d/2− 2)

8π2(−z2)d/2−2

×
∫ 1

0

du 2

[
u3−d − 1

d− 3

]
+

Gµα(ūz)Gνβ(0) (3.2)

In this expression, just one of the fields in the
Gµα(z)Gλβ(0) operator is corrected, while another re-
mains intact. In particular, the diagram 2a changes
Gµα(z) into the sum of two terms. One of them con-
tains UV divergences, while the other one is UV finite.
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The UV-divergent term is given by

Ncg
2

4π2

Γ(d/2− 1)

(d− 2)(−z2)d/2−1

∫ 1

0

du
(
u3−d − u

)
× (zαGzµ(ūz)− zµGzα(ūz)) , (3.3)

where Gzσ ≡ zρGρσ and ū ≡ 1 − u. The overall
d-dependent factor here is finite for d = 4, but the
u-integral diverges at the lower limit. The divergence
disappears if one uses the UV regularization by taking
d = 4− 2εUV, which converts it into a pole at εUV = 0.

Since the UV divergence comes from the u→ 0 inte-
gration, we can isolate it by taking ū = 1 in the gluonic
field, which gives

Ncg
2

8π2

Γ(d/2− 1)

(−z2)d/2−1

1

4− d
(zαGzµ(z)− zµGzα(z)) . (3.4)

The remainder is given by

Ncg
2

4π2

Γ(d/2− 1)

(d− 2)(−z2)d/2−1

∫ 1

0

du
[
u3−d − u

]
+(0)

× (zαGzµ(ūz)− zµGzα(ūz)) , (3.5)

where the plus-prescription at u = 0 is defined as∫ 1

0

du [f(u)]+(0) g(u) =

∫ 1

0

duf(u)[g(u)− g(0)] . (3.6)

The second, UV finite term from the diagram 2a is
given by

Ncg
2

8π2

Γ(d/2− 2)

(d− 3)(−z2)d/2−2

∫ 1

0

du
[
u3−d − 1

]
+(0)

×Gµα(ūz)Gλβ(0) . (3.7)

Note that the gluonic operator in Eq. (3.7) has the same
tensor structure as the original operator Gµα(z)Gβν(0)
differing from it just by rescaling z → ūz. There is no
mixing with operators of a different type. The u-integral
in this case does not diverge for d = 4, but the overall
Γ(d/2− 2) factor has a pole 1/(d− 4).

Formally, there is also a pole 1/(d− 3), corresponding
to a linear UV divergence. However, the singularity for
d = 3 is eliminated by the

[
u3−d − 1

]
combination in

the integrand. One may say that the linear divergences
present in “u3−d” and “−1” parts cancel each other.

The remaining 1/(d−4) pole corresponds to a collinear
divergence developed because all the propagators corre-
spond to massless particles.

C. Gluon self-energy diagrams

Another simple type of one-loop corrections is repre-
sented by the gluon self-energy diagrams, one of which
is shown in Fig. 3a. These diagrams have both the UV
and collinear divergences. The combined contribution of

z 0

a)

z 0

b)

FIG. 3. Gluon self-energy-type insertions into the right leg.

the Fig. 3 diagrams and their left-leg analogs is given by

g2Nc
8π2

1

2− d/2

[
2− β0

2Nc

]
Gµα(z)Gλβ(0) , (3.8)

where β0 = 11Nc/3 in gluodynamics, so that the terms
in the square bracket combine into 1/6.

D. Box diagram

z 0

FIG. 4. Box diagram.

The most complicated technically is the calculation of
the “box” diagram which contains a gluon exchange be-
tween two gluon lines (see Fig. 4). This diagram does
not have UV divergences, but it has DGLAP log z23 con-
tributions. In contrast to the vertex diagrams, the orig-
inal Gµα(z)Gνβ(0) operator generates now a mixture of
bilocal operators corresponding to various projections of
Gµα(uz)Gνβ(0) onto the structures built from vectors p,
z and the metric tensor g.

Our result for arbitrary indices µανβ is given in the
Appendix. It is presented in the operator form, however,
it contains only those operators that survive in the for-
ward case, i.e., the operators that have the form of a full
derivative are abandoned. Still, the expression is rather
lengthy. Furthermore, we mostly need it for particular
combination of indices corresponding to matrix elements
M0i;i0 +Mji;ij , M3i;i3 + 2M30;03 and M0i;i3 +M3i;i0 that
contain the Mpp invariant amplitude and are listed in
Eqs. (2.8), (2.10) and (2.11). To shorten the formulas,
let us introduce the following notations for the bilocal
operators corresponding to these matrix elements.

O00(z1, z2) =G0i(z1)Gi0(z2) +Gij(z1)Gji(z2) (3.9)

O33(z1, z2) =G3i(z1)Gi3(z2) + 2G30(z1)G03(z2) (3.10)

O+
03(z1, z2) =G0i(z1)Gi3(z2) +G3i(z1)Gi0(z2) (3.11)
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In the case of O00(z, 0) and O33(z, 0) operators, the box diagram produces the following corrections

O00(z, 0)
box−→ − g2NcΓ(d/2− 1)

4π2 (−z2)
d/2−2

∫ 1

0

du

(
uū+

ū3

3

)
O33(uz, 0)

+
NcΓ(d/2− 2)

8π2 (−z2)
d/2−2

∫ 1

0

du

{ (
ū
(
u2 + 1

)
− 2u

)
O00(uz, 0) + ū

(
u2 + 1

)
O33(uz, 0)

}
(3.12)

O33(z, 0)
box−→ − g2NcΓ(d/2− 1)

4π2 (−z2)
d/2−2

∫ 1

0

du

{(
ū+ uū+

ū3

3

)
O33(uz, 0)− ūO00(uz, 0)

}
+

NcΓ(d/2− 2)

8π2 (−z2)
d/2−2

∫ 1

0

du

{ (
ū
(
u2 + 1

)
− 2u

)
O33(uz, 0) + ū

(
u2 + 1

)
O00(uz, 0)

}
(3.13)

One can see that the box diagram contribution for each of them involves matrix elements of both the operators
O00(uz, 0) and O33(uz, 0). Thus, these two operators mix here with each other. Furthermore, matrix elements of
both of them contain the Mpp invariant amplitude. Thus, it is interesting to rewrite Eqs. (3.12) , (3.13) in terms of
the invariant functions:

Mpp(ν, z
2)

box−→ − g2NcΓ(d/2− 1)

4π2 (−z2)
d/2−2

∫ 1

0

du

(
uū+

ū3

3

)[
Mpp(uν, z

2)− z23Mppzz(uν, z
2)
]

+
g2NcΓ(d/2− 2)

8π2 (−z2)
d/2−2

∫ 1

0

du

{
2
(
ū
(
u2 + 1

)
− u
)
Mpp(uν, z

2)− ū
(
u2 + 1

)
z23Mppzz(uν, z

2)

}
(3.14)

Mpp(ν, z
2)− z23Mppzz(ν, z

2)
box−→ − g2NcΓ(d/2− 1)

4π2 (−z2)
d/2−2

∫ 1

0

du

{(
uū+

ū3

3

)
Mpp(uν, z

2)

−
(
uū+

ū3

3
+ ū

)
z23Mppzz(uν, z

2)

}
+
g2NcΓ(d/2− 2)

8π2 (−z2)
d/2−2

∫ 1

0

du

{
2
(
ū
(
u2 + 1

)
− u
)
Mpp(uν, z

2)

− [ū
(
u2 + 1

)
− 2u] z23Mppzz(uν, z

2)

}
. (3.15)

These relations have a very similar structure and, in fact, coincide if one discards the Mppzz terms. Taking the
difference of these expressions gives a very simple result for the box correction to Mppzz

Mppzz(ν, z
2)

box−→ − g2NcΓ(d/2− 1)

4π2 (−z2)
d/2−2

∫ 1

0

du ūMppzz(uν, z
2)− g2NcΓ(d/2− 2)

4π2 (−z2)
d/2−2

∫ 1

0

duuMppzz(uν, z
2) . (3.16)

The situation is simpler for the O+
03(z, 0) operator, for which the box diagram contribution is expressed through

the O+
03(uz, 0) operator only,

O+
03(z, 0)

box−→ g2NcΓ(d/2− 1)

4π2 (−z2)
d/2−2

∫ 1

0

du

(
uū+

2

3
ū3
)
O+

03(uz, 0)

+
NcΓ(d/2− 2)

4π2 (−z2)
d/2−2

∫ 1

0

du
(
ū
(
u2 + 1

)
− u
)
O+

03(uz, 0) . (3.17)

In all the cases, Eqs. (3.14), (3.15), and (3.17), the Γ(d/2−2) terms are singular for d = 4, which results in log
(
−z2

)
terms generating the DGLAP evolution. The Γ(d/2− 1) terms are singular for d = 2, which corresponds to the fact
that the gluon propagator in two dimensions has a logarithmic log

(
−z2

)
behavior in the coordinate space. For d = 4,

these terms are finite. Note that, unlike the vertex part, the box contribution does not have the plus-prescription
form.
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IV. DGLAP EVOLUTION STRUCTURE

Adding the results for all the diagrams discussed above, we get the following expressions for their combined contri-
bution for the 3 operator combinations listed in Eq. (3.11)

M0i;i3 +M3i;i0 = 4p0p3Mpp

(
z23 , ν

)
+ 2p0z3

(
Mpz

(
z23 , ν

)
+Mzp

(
z23 , ν

))
→ g2Nc

8π2

∫ 1

0

du

{[(
3

2
− 1

6

)
log

(
z23µ

2
UV

e2γE

4

)
+ 2

]
δ(ū) +

[
u− 3

u

ū
− 4

log(ū)

ū

]
+

+ 2

(
ūu+

2

3
ū3
)

−2 log

(
z23µ

2
IR

e2γE

4

)[
(1− uū)2

ū

]
+

} (
4p0p3Mpp

(
z23 , uν

)
+ 2up0z3

(
Mpz

(
z23 , uν

)
+Mzp

(
z23 , uν

)))
(4.1)

M0i;i0 +Mij;ji

2p20
=Mpp

(
z23 , ν

)
→ g2Nc

8π2

∫ 1

0

du

{((
1− 1

6

)
log

(
z23µ

2
UV

e2γE

4

)
+ 2

)
δ (ū)−

(
1

2
δ (ū) +

[
2

3

(
1− u3

)
+

4u+ 4 log(ū)

ū

]
+

)

− log

(
z23µ

2
IR

e2γE

4

)[
2 (1− uū)

2

ū

]
+

}
Mpp

(
z23 , uν

)
+
g2Nc
8π2

∫ 1

0

du

{
2

3

(
1− u3

)
+ log

(
z23µ

2
IR

e2γE

4

)
ū
(
u2 + 1

)}
u2z23Mppzz

(
z23 , uν

)
(4.2)

M3i;i3 +M30;03

2p20
=Mpp

(
z23 , ν

)
− z23Mppzz

(
z23 , ν

)
→ g2Nc

8π2

∫ 1

0

du

{((
2− 1

6

)
log

(
z23µ

2
UV

e2γE

4

)
+ 2

)
δ (ū)−

(
1

2
δ (ū) +

[
2

3

(
1− u3

)
+

2u2 + 4 log(ū)

ū

]
+

)

− log

(
z23µ

2
IR

e2γE

4

)[
2 (1− uū)

2

ū

]
+

}(
Mpp

(
z23 , uν

)
− u2z23Mppzz

(
z23 , uν

))
− g2Nc

8π2

∫ 1

0

du

{
4ū+ log

(
z23µ

2
IR

e2γE

4

)
ū
(
u2 + 1

)}
u2z23Mppzz

(
z23 , uν

)
. (4.3)

All these combinations contain the log
(
z23µ

2
IR
e2γE
4

)
evolution term accompanied by the gg-component of the Altarelli-

Parisi (AP) kernel

Bgg(u) = 2

[
(1− uū)2

ū

]
+

. (4.4)

However, they have different z3-independent parts, as a result of mixing with “higher-twist” functionsMzp +Mpz in
Eq. (4.1), and Mppzz in Eqs. (4.2) and (4.3). The kernel (4.4) has the plus-prescription structure reflecting the fact
that, in the local limit, Mpp(z, p) is proportional to the matrix element of the gluon energy-momentum tensor that
is conserved in the absence of the gluon-quark interactions. From now on, “+” means the plus-prescription at 1.

The log
(
z23µ

2
UV

e2γE
4

)
term in each result comes from the UV-singular contributions. They contain the δ(ū) factor

which reflects the local nature of the UV divergences and converts M(uz, p) into M(z, p). Each result shares the
same UV-singular contribution from the link renormalization and self energy contributions, but differ in their vertex
contribution, as mentioned in section III B.

The expressions given above include gluon-gluon transitions only. Thus, we need to include also the one-loop
diagrams describing the gluon-quark transition.
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A. Gluon-quark mixing

0z

FIG. 5. Gluon-quark mixing diagram.

The correction to the gluon operator with arbitrary indices generated by the gluon-quark diagram shown in Fig. 5
is presented in Appendix B. To illustrate its structure, let us take the projection corresponding to the O+

03 operator.
In the MS scheme, it reads

g2CF
4π2z3

∫ 1

0

du
[
2ūO0

q (uz3) + 2ūuz3∂0O3
q (uz)

∣∣
z0=0

]
− g2CF

4π2
ln

(
z23µ

2
IR

e2γE

4

)∫ 1

0

du
[
(2ūu+ ū2)∂3O0

q (uz3)− (ū2 + u2) ∂0O3
q (uz)

∣∣
z0=0

]
(4.5)

The singlet combination of quark fields Oµq (z3) is defined as

Oµq (z) =
i

2

∑
f

(
ψ̄f (z)γµψf (0)− ψ̄f (0)γµψf (z)

)
, (4.6)

with f numerating quark flavors. Since the matrix element of Oµq (z) is odd in z, it can be parametrized by

〈p|Oµq (z3)|p〉 =2pµ
∫ 1

0

dy sin (ypz) fS(y) = −2pµν

∫ 1

0

dα IS(αν) (4.7)

where ν = −(pz), as usual, and

IS(ν) =

∫ 1

0

dy cos(yν) y fS(y) (4.8)

is the singlet quark Ioffe-time distribution.

Applying this parametrization, the gq correction to M+
03 may be written as

〈p|G3i(z)Gi0(0) +G0i(z)Gi3(0) |p〉 → −2p0p3
g2CF
4π2

∫ 1

0

du

[
ln

(
z23µ

2
IR

e2γE

4

)
Bgq(u) + ū(1 + u)

]
IS (uν) (4.9)

with the gq component of the evolution kernel given by Bgq(u) ≡ 1 + (1− u)2. For two other matrix elements listed
in Eq. (3.11), the analogs of Eq. (4.5) are given by

〈p|G0i (z)Gi0 (0) |p〉+ 〈p|Gij (z)Gji (0) |p〉 → −p20
g2CF
4π2

ln

(
z23µ

2
IR

e2γE

4

)∫ 1

0

duBgq(u)IS (uν) (4.10)

and

〈p|G3i (z)Gi3 (0) |p〉+ 2 〈p|G30 (x)G03 (0) |p〉 → −p20
g2CF
4π2

∫ 1

0

du

[
ln

(
z23µ

2
IR

e2γE

4

)
Bgq(u) + 4ū

]
IS (uν) (4.11)
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B. Matching relations

As discussed already, the combination M0i;i0 + Mij;ji = 2p20Mpp, at the tree level, is proportional to the twist-2
amplitude Mpp without contaminations. The amplitude Mpp(ν, z

2
3) obtained in this way may be used to form the

reduced pseudo-ITD M(ν, z23), as in Eq. (2.12).
Using the results (4.2), (4.10) of our calculations for the one-loop corrections to M0i;i0 + Mij;ji, and keeping just

the Mpp term in the correction (neglecting the “higher twist” term Mppzz) we obtain the matching relation

M(ν, z23) Ig(0, µ2) = Ig(ν, µ2)−αsNc
2π

∫ 1

0

du Ig(uν, µ2)

{
log

(
z23µ

2 e
2γE

4

)
Bgg(u) + 4

[
u+ log(ū)

ū

]
+

+
2

3

[
1− u3

]
+

}

− αsCF
2π

log

(
z23µ

2 e
2γE

4

)∫ 1

0

dw
[
IS(wν, µ2)− IS(ν, µ2)

]
Bgq(w) (4.12)

between the “lattice function” M(ν, z23) and the light-cone ITDs Ig(ν, µ2) and IS(ν, µ2). The first of them is related
to the gluon PDF fg(x, µ

2) by

Ig(ν, µ2) =
1

2

∫ 1

−1

dx eixν xfg(x, µ
2) . (4.13)

In fact, xfg(x, µ
2) is an even function of x. Hence, the real part of Ig(ν, µ2) is given by the cosine transform of

xfg(x, µ
2), while its imaginary part vanishes. The overall factor Ig(0, µ2) corresponds to the fraction of the hadron

momentum carried by the gluons, Ig(0, µ2) = 〈x〉µ2 . This means that Eq. (4.12) allows to extract just the shape
of the gluon distribution. Its normalization, i.e., the magnitude of 〈x〉µ2 must be taken from an independent lattice
calculation, similar to that performed in Ref. [37]. The singlet quark function IS(wν, µ2) that appears in the O(αs)
correction should be also calculated (or estimated) independently.

The matching condition (4.12) have been already used in lattice extractions of the unpolarized gluon PDFs by the
MSU group [29, 30] and the HadStruc collaboration [31].

V. SUMMARY.

In this paper, we have presented the results that form the basis for the ongoing efforts to calculate gluon PDF using
the pseudo-PDF approach.

In particular, we have displayed our results for the most complicated box diagram. We have presented the expression
for the situation when all four indices are arbitrary, and also for combinations of indices corresponding to three matrix
elements that are most convenient to extract the twist-2 invariant amplitude Mpp. We also displayed the evolution
structure for these matrix elements.

The results of our earlier publication [27, 28] have been already used in the lattice extractions [29–31] of the gluon
PDF from the studies of the M0i;i0 + Mji;ij matrix element. The additional results for the box diagram and the
gluon-quark contribution given in the present paper may be used for extractions of the gluon PDF from two other
matrix elements, with a possible cross-check of the results obtained from different matrix elements.

Acknowledgements. We thank K. Orginos, J.-W. Qiu, D. Richards, R. Sufian, T. Khan and S. Zhao for interest
in our work and discussions. This work is supported by Jefferson Science Associates, LLC under U.S. DOE Contract
#DE-AC05-06OR23177 and by U.S. DOE Grant #DE-FG02-97ER41028.
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Appendix A: Box diagram with arbitrary indices

The full result for a forward matrix element is

Obox
µα;νβ →

g2NcΓ(d/2)

8π2 (−z2)
d/2

∫ 1

0

du (zµzνgαβ − zαzνgµβ − zµzβgαν + zαzβgµν)
2ū3

3
Gzξ(uz)G

ξ
z (0)

+
g2NcΓ(d/2− 1)

8π2 (−z2)
d/2−1

∫ 1

0

du

{
(gαβgµν − gµβgνα)

2ū3

3
Gzξ(uz)G

ξ
z (0)

+
ū3

3
(gαβGzν(uz)Gzµ(0)− gµβGzν(uz)Gzα(0)− gανGzβ(uz)Gzµ(0) + gµνGzβ(uz)Gzα(0))

+(2uū+
ū3

3
) (gαβGzµ(uz)Gzν(0)− gµβGzα(uz)Gzν(0)− gανGzµ(uz)Gzβ(0) + gµνGzα(uz)Gzβ(0))

+ ū2
(
zνGαβ(uz)Gzµ(0)− zνGµβ(uz)Gzα(0)− zβGαν(uz)Gzµ(0) + zβGµν(uz)Gzα(0)

− zµGzν(uz)Gαβ(0) + zαGzν(uz)Gµβ(0) + zµGzβ(uz)Gαν(0)− zαGzβ(uz)Gµν(0)

)
+ ū(1 + u)

(
zνGzµ(uz)Gαβ(0)− zνGzα(uz)Gµβ(0)− zβGzµ(uz)Gαν(0) + zβGzα(uz)Gµν(0)

− zµGαβ(uz)Gzν(0) + zαGµβ(uz)Gzν(0) + zµGαν(uz)Gzβ(0)− zαGµν(uz)Gzβ(0)

)
+ (

ū2

2
− ū3

3
)

(
zνgαβGµξ(uz)G

ξ
z (0)− zνgµβGαξ(uz)G ξ

z (0)− zβgανGµξ(uz)G ξ
z (0) + zβgµνGαξ(uz)G

ξ
z (0)

+ zνgαβGzξ(uz)G
ξ
µ (0)− zνgµβGzξ(uz)G ξ

α (0)− zβgανGzξ(uz)G ξ
µ (0) + zβgµνGzξ(uz)G

ξ
α (0)

+ zµgαβGνξ(uz)G
ξ
z (0)− zαgµβGνξ(uz)G ξ

z (0)− zµgανGβξ(uz)G ξ
z (0) + zαgµνGβξ(uz)G

ξ
z (0)

+ zµgαβGzξ(uz)G
ξ
ν (0)− zαgµβGzξ(uz)G ξ

ν (0)− zµgανGzξ(uz)G ξ
β (0) + zαgµνGzξ(uz)G

ξ
β (0)

)
+ 2ū

(
zµzνGαξ(uz)G

ξ
β (0)− zαzνGµξ(uz)G ξ

β (0)− zµzβGαξ(uz)G ξ
ν (0) + zαzβGµξ(uz)G

ξ
ν (0)

)
− ū

3

6
(zµzνgαβ − zαzνgµβ − zµzβgαν + zαzβgµν)Gζξ(uz)G

ζξ(0)

}
+
g2NcΓ(d/2− 2)

8π2 (−z2)
d/2−2

∫ 1

0

du

{
− ū (Gαβ(uz)Gµν(0)−Gµβ(uz)Gαν(0)−Gαν(uz)Gµβ(0) +Gµν(uz)Gαβ(0))

− 2uGµα(uz)Gνβ(0) + ū(1− 2u)Gνβ(uz)Gµα(0) + ū(1 + 2u)Gµα(uz)Gνβ(0)

+
ūu2

2

(
gαβGµξ(uz)G

ξ
ν (0)− gµβGαξ(uz)G ξ

ν (0)− gανGµξ(uz)G ξ
β (0) + gµνGαξ(uz)G

ξ
β (0)

)
+
ūu2

2

(
gαβGνξ(uz)G

ξ
µ (0)− gµβGνξ(uz)G ξ

α (0)− gανGβξ(uz)G ξ
µ (0) + gµνGβξ(uz)G

ξ
α (0)

)
+ ū

(
gµνGαξ(uz)G

ξ
β (0)− gανGµξ(uz)G ξ

β (0)− gµβGαξ(uz)G ξ
ν (0) + gαβGµξ(uz)G

ξ
ν (0)

)
− (gµνgαβ − gναgµβ)

ū3

6
Gζξ(uz)G

ζξ(0)

}
. (1.1)
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Appendix B: Gluon-quark contribution with arbitrary indices

iGρα (x)Gσβ (0)→g2CFΓ(d/2)xρxσ

8π2 (−x2)
d/2

∫ 1

0

duūψ̄c(ux) [−gαβxηγη − iεαxβηγηγ5]ψc(0)

+
g2CFΓ(d/2− 1)

16π2 (−x2)
d/2−1

∫ 1

0

du

{
gρσūψ̄c(ux) [(xαgβη + xβgαη − gαβxη) γη − iεαxβηγηγ5]ψc(0)

+xσ

(
ūuψ̄c(ux)

←−
∂ ρ [(xαgβη − gαβxη) γη − iεαxβηγηγ5]ψc(0)

+ūψ̄c(ux) [(gρβgαη − gαβgρη) γη − iεαρβηγηγ5]ψc(0)

)
+xρ

(
ūuψ̄c(ux)

←−
∂ σ [(xβgαη − gαβxη) γη − iεαxβηγηγ5]ψc(0)

+ūψ̄c(ux) [(gασgβη − gαβgση) γη − iεασβηγηγ5]ψc(0)

)
−xρxσū2

[
ψ̄c(ux)

(←−
∂ αγβ + γα

←−
∂ β

)
ψc(0)

]}
+
g2CFΓ(d/2− 2)

32π2 (−x2)
d/2−2

∫ 1

0

du

{
− gρσū2ψ̄c(ux)

(←−
∂ αγβ + γα

←−
∂ β

)
ψc(0)

+ūu2ψ̄c(ux)
←−
∂ σ
←−
∂ ρ [(xαgβη + xβgαη − gαβxη) γη − iεαxβηγηγ5]ψc(0)

+ūuψ̄c(ux)
←−
∂ σ [(gρβgαη − gαβgρη) γη − iεαρβηγηγ5]ψc(0)

+ūuψ̄c(ux)
←−
∂ ρ [(gασgβη − gαβgση) γη − iεασβηγηγ5]ψc(0)

−uū2xσ∂ρ∂βψ̄c(ux)γαψc(0)− uū2xρ∂σ∂αψ̄c(ux)γβψc(0)

}
− h.c.− {ρ↔ α} − {σ ↔ β}+ {ρ↔ α, σ ↔ β} (2.1)
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