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The pole position of the a1(1260) resonance in a three-body unitary framework
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Masses, widths, and branching ratios of hadronic resonances are quantified by their pole positions
and residues with respect to transition amplitudes on the Riemann sheets of the complex energy-
plane. In this study we discuss the analytic structure in the physical energy region of three-body
scattering amplitudes on such manifolds. As an application, we determine the pole position of the
a1(1260) meson from the ALEPH experiment by allowing for πρ coupled channels in S and D wave.
We find it to be

√
s0 = (1232+15+9

−0.2−11 − i266+0.3+15
−22−27 ) MeV

I. INTRODUCTION

Hadronic resonances often decay strongly into three
particles. Especially in the meson sector, three-body de-
cays can be the dominant modes, e.g., for axial mesons
like the a1(1260) [1]. Excited mesons are searched for in
recent experimental efforts like GlueX [2], COMPASS [3],
and at the BESIII accelerator [4] often in connection
with exotic states that cannot consist of two constituent
quarks only. For example, an exotic π1(1600) was found
by COMPASS [3] in three-pion decays. These exper-
iments entail new partial-wave analysis (PWA) efforts,
e.g., by COMPASS [5, 6], BESIII [7, 8], CLEO [9], or in
coupled channels using the PAWIAN framework for pp̄
induced meson production [10].

On the theory side, the final state interaction of
three strongly interacting particles has been studied
with Khuri-Treiman equations and similar frameworks by
the Bonn group, JPAC, and others for light meson de-
cays [11–33]. Faddeev-type arrangements of chiral two-
body amplitudes were used to predict resonance states
and study known ones [34–38]. See also Ref. [39] for
a pedagogical introduction into dispersive methods and
Ref. [40] for connections between Khuri-Treiman equa-
tions and three-body unitary methods.

One such method applies the principle of three-body
unitarity to construct three-to-three amplitudes [41] ex-
tending earlier work [42, 43] to the above-threshold
regime. The subthreshold behavior of this amplitude
has been studied in Refs. [29, 44] and new insights into
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covariant vs. time-ordered formulations for the interac-
tion kernel were obtained recently [45]. The amplitude
of Ref. [41] has been extended to formulate three-body
resonance decays including a fit to the a1(1260) → 3π
lineshape and prediction of Dalitz plots [46]. This study
is the basis of the current work.

Experimentally, the a1(1260) resonance can be pro-
duced in τ -decays [9, 47] via τ → (3π)ντ . Therefore,
its three-pion dynamics can be separated off the weak
primordial interaction to be measured cleanly for the
IG(JPC) = 1−(1++) quantum numbers. This distin-
guishes this semileptonic τ decay from some of the afore-
mentioned experiments in which multiple partial waves
contribute to the final three-pion state. Of course, the
a1 resonance still couples to various configurations of the
2+1 pions, dominated by ρπ in S-wave and σπ in P-
wave (σ standing for the f0(500) resonance), but also
several smaller waves, see CLEO [9], COMPASS [5], and
BESIII results [7]. Recent calculations based on chiral
unitary methods predict that the a1(1260) → πσ decay
ratio is very small, in the few percent range [48]. This is
in contrast to an older phenomenological study [9] find-
ing a more substantial πσ branching ratio. This shows
that, despite the clean experimental way to produce the
a1(1260), its properties such as branching fractions are
under continued debate. The resonance is very wide
(with very large uncertainties quoted by the PDG [1]), in-
dicating strong and non-trivial three-body effects which
makes it a prime candidate to study few-body dynamics.
This is reflected in an increased interest in the properties
and structure of the a1(1260) [46, 49–62], as well as the
related τ -decay [63–68].

The study of the a1(1260) with the ab-initio techniques
of lattice QCD has also made significant progress. For a
pioneering calculation see Ref. [69] where the ρ-meson
was treated as a stable particle, motivated by the small
box size. Recently, this approximation was lifted by us-
ing up to three pion operators in combination with the
finite-volume unitarity (FVU) three-body quantization
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condition [70, 71] that allowed for the first pole extrac-
tion of a three-body resonance from lattice QCD [72].
The infinite-volume version of that formalism is very sim-
ilar to the one of Ref. [46] featuring coupled channels and
explicit sub-channel (ρ) dynamics. See Refs. [73–75] for
reviews on recent progress of three-body physics in lattice
QCD.

In this work, we use the formalism of Ref. [72] to deter-
mine the a1(1260) pole position from experiment includ-
ing statistical and some systematic uncertainties. This
work is related to older determinations of the a1 pole
position [49] but also to Ref. [60] (JPAC), in which the
S-wave ρπ channel was used to fit the a1 lineshape [47]
with an approximately unitary formalism. In contrast,
our formalism is manifestly unitary, which considerably
complicates the analytic structure through the pertinent
pion exchange mechanism and requires a thorough dis-
cussion in Sec. III based on the formalism summarized in
Sec. II. As such, it provides the only pole determination
in three-body unitary amplitudes except for Ref. [56] and
Ref. [72]. However, in Ref. [56] the PDG pole position
of the a1 was fitted, while in this study we directly fit
the lineshape from experiment. We therefore expect to
extract the most reliable pole position of the a1(1260)
resonance to date, with our results discussed in Sec. IV.

II. FORMALISM

The a1(1260) couples to three-pion states in the
IG(JPC) = 1−(1++) channel that can be decomposed as
πρ in S/D-wave, πσ and π(ππ)I=2 in P-waves and other
channels. Phenomenologically (πρ)S is dominant [76]
with the branching ratios into other channels quite un-
certain [1], see also Ref. [48]. Therefore, we limit here
the channel space to πρ in S and D waves. Finally, we
note that the isobar formulation of the two-body sub-
channel dynamics used in this study is not an approx-
imation but a re-parametrization of the full two-body
amplitude [77, 78].

Our formalism from Ref. [46] is summarized in the fol-
lowing. The a1 lineshape with π−π−π+ final states,

L(
√
s) = N(m2

τ − s)2

∫
d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3

(2π)4

8Eq1Eq2Eq3

× δ4(P3 − q1 − q2 − q3)

×

(∣∣∑
λ

Γ̂−1λ

∣∣2 +
m2
τ

s

∣∣∑
λ

Γ̂0λ

∣∣2 +
∣∣∑
λ

Γ̂+1λ

∣∣2) (1)

depends on the three-body energy
√
s and scales with an

irrelevant normalization N . Here, q1, and q2 are outgoing
π− momenta that must be symmetrized later, q3 is the
outgoing π+ momentum, and Ex =

√
x2 +m2

π here and
in the following. The term (m2

τ − s)2 accounts for the
τ → W−ντ decay vertex and the two-body phase space
of the a1 and the ντ of this process after integration over
the neutrino angles [60]. See Fig. 1 for a graphical repre-

W −/a1(1260)

ντ

π+(q3)

π−(q1/2)
π−(q1/2)

τ

FIG. 1. Factorization of the (weak) production mecha-
nism and (hadronic) final state three-body interaction. Full-
directed, dashed, and double-full lines denote leptons, mesons
and auxiliary ρ fields, respectively. The initial production
mechanism is shown by a shaded circle and diamond corre-
sponding to Eq. (9). The three-body unitary dynamics of
the final pion states is depicted by the shaded rectangle, see
Eq. (4)

sentation of the complete τ decay process. Furthermore,
we chose P3 = (

√
s,0).

The amplitude Γ̂Λλ ≡ Γ̂Λλ(q1, q2, q3) describes the de-
cay of the axial a1(1260) resonance at rest with helicity
Λ measured along the z-axis into a π− and a ρ0

λ → π+π−

with helicity λ,

Γ̂Λλ(q1, q2, q3) =
1√
2

[
ΓΛλ(q1, q2, q3)− (q1 ↔ q2)

]
,

(2)

where

ΓΛλ(q1, q2, q3) =

√
3

4π
D1∗

Λλ(φ1, θ1, 0)× (3)

v±λ (q2, q3)UλLΓ̆L(q1) ,

and

Γ̆L(q1) = τ(σ(q1))

[
DL(q1)+ (4)

Λ∫
0

dp p2

(2π)3

1

2Ep
T JLL′(q1, p)τ(σ(p))DL′(p)

]
.

For readability (confusion with four-vector notation is ex-
cluded by context), we have abbreviated D(x) := D(|x|),
Γ̆(x) = Γ̆(|x|), T (q1, p) := T (|q1|, |p|), and σ(x) := σ(|x|)
where the two-body invariant mass squared is denoted by

σ(x) = s+m2
π − 2

√
sEx . (5)

The angular structure of the final πρ state is conveyed
by the usual capital Wigner-D function, DJ

Λλ(φ1, θ1, 0)
with angles θ1 and φ1 giving the polar and azimuthal
angles of q1. Note that the third argument is set to zero
in the current convention which is consistent with the
ρ polarization vectors of Appendix A obtained through
a boost and two rotations (no initial rotation about the
z-axis).
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Equation (3) contains the transformation from the
JLS basis, with L denoting the orbital angular momen-
tum between π and ρ and J = S = 1 for total and ρ spin,
respectively, to the helicity basis; this transformation in-
volves the matrix

ULλ =

√
2L+ 1

2J + 1
(L01λ|Jλ)(1λ00|1λ)

=

( 1√
3

1√
3

1√
3

1√
6
−
√

2
3

1√
6

)
, (6)

expressed by Clebsch-Gordan coefficients [79], and
UλL = UTLλ, while we sum over identical indices L and
L′ in Eqs. (3) and (4), respectively.

The final decay vertex v± for ρ0 → π+π− in Eq. (3)
reads

v±λ (q2, q3) = I ′vλ(q2, q3) , (7)

vλ(q2, q3) = −ig1ε
µ
λ(q1) (q2 − q3)µ , (8)

where q2, q3 denote four-momenta, g1 is the ρππ cou-
pling, vλ is the isospin-1 projected decay vertex, and I ′

describes the transition from isospin to particle basis as
needed only in the final ρ decay. Note that the latter fac-
tor is irrelevant as long as there is only one isobar (ρ0).
Then, this factor can be reabsorbed into the overall nor-
malization of the a1 decay.

Continuing with the description of Eq. (4), the ρ prop-
agator τ is discussed in more detail in Sec. II A. Fur-
thermore, the a1 → ρπ vertex, D, in Eq. (4) is directly
parametrized in the JLS basis as

DL′(p) =

DfL′ +
m2
π

√
c
(−1)
L′L′Df̃

s−m2
a1

( p

mπ

)L′

, (9)

where DfL′ for L′ = 0, 2 and Df̃ are free parameters
that are fit to the lineshape accounting, as well, for its
unknown overall normalization. The quantity ma1 is the

expansion point of the three-body force and c
(−1)
L′L′ > 0 is

an expansion parameter (see below). Its square root may
be understood as a bare a1πρ coupling.

The quantity T JLL′ in Eq. (4) is the isobar-spectator
amplitude in the JLS basis given by

T JLL′(q1, p) =
(
BJLL′(q1, p) + CLL′(q1, p)

)
+ (10)

Λ∫
0

dl l2

(2π)32El

(
BJLL′′(q1, l) + CLL′′(q1, l)

)
τ(σ(l))T JL′′L′(l, p) ,

where summation over L′′ is implied. Note that the in-
dices correspond to matrix notation, i.e., the first indices
L and q1 label outgoing (angular) momentum while the
second indices p and L′ label incoming (angular) momen-
tum (similarly, in Eqs. (3) and (4)). The integrations in
Eq. (4) and (10) have been regularized by the same cut-
off Λ in contrast to Ref. [46] where covariant form factors

were used. We prefer here a hard cutoff because it sim-
plifies the analytic continuation as discussed in Sec. III
which also contains the in-depth description of the con-
tours for the integrations in Eqs. (4) and (10).

In Eq. (10) the πρ interaction term B is complex-
valued as demanded by three-body unitarity [41] and ob-
tained from the plane-wave expression in isospin I = 1,

Bλλ′(p,p′) =
v∗λ(P − p− p′, p)vλ′(P − p− p′, p′)

2Ep′+p(
√
s− Ep − Ep′ − Ep′+p + iε)

,

(11)

by projecting it to angular momenta L(′) ∈ {S,D} via

BJλλ′(q1, p) = 2π

+1∫
−1

dx dJλλ′(x)Bλλ′(q1,p) , (12)

where dJλλ′(x = cos θ) denotes the small Wigner-d func-
tion and θ is the πρ scattering angle. Subsequently, the
JLS expression is obtained by a linear transformation,

BJLL′(q1, p) = ULλB
J
λλ′(q1, p)Uλ′L′ , (13)

with ULλ from Eq. (6) and, as before, λ′, L′, p (λ, L, q1)
label the incoming (outgoing) state.

Three-body unitarity allows for additional terms of the
πρ interaction that need to be real in the physical re-
gion [41]. We refer to such terms as contact terms or
three-body forces that are generically parametrized by a
Laurent series in the JLS basis (L(′) ∈ {S,D}),

CLL′(p, p′) =

∞∑
i=−1

c
(i)
LL′

(
s−m2

a1

m2
π

)i
pL p′L

′

mL+L′
π

, (14)

including first-order poles to account for explicit reso-
nances.

We fit the parameters ma1 , c
(−1)
00 , and c

(0)
00 with all

other parameters set to zero, meaning that the C-term
couples directly to the S→S-wave transition but only
indirectly to D-wave through the B-term (13). The anal-
ysis shows that this restriction is sufficient to fit the line-
shape data as discussed in Sec. IV. Of course, in future
fits to actual Dalitz plots the data become more sensitive
to the partial-wave content and we expect that more fit
parameters and channels are needed.

To fit the a1 lineshape one needs to continue Γ̆ to real
spectator momenta and perform the phase space integra-
tion over the final three-pion state. This is described in
detail in Ref. [46] but not repeated here because it is of no
relevance for the analytic continuation to the resonance
pole discussed below.
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FIG. 2. The phaseshift from Eq. (20) with free parameters
a0 and a1 fitted to data from Refs. [80] (black circles) and
[81] (gray circles). We show here only the phase shifts corre-
sponding to the three best fits quoted in Table I.

A. Two-body input

The ρ propagator τ of Eq. (4) reads, in a twice sub-
tracted representation,

τ−1(σ) = K−1(σ)− Σ(σ) ,

Σ(σ) =

∞∫
0

dk k2

(2π)3

1

2Ek

σ2

σ′ 2
ṽ(k)∗ṽ(k)

σ − 4E2
k + iε

,

σ′ = (2Ek)2 , ṽ(k) =

√
16π

3
g1k (15)

with a convergent selfenergy Σ and a regular K-matrix
like quantity. In that, the former is expressed in terms
of the vertex ṽ projected to the the I = 1 P-wave (spin
S = 1) quantum numbers. This vertex can be ob-
tained by considering the first-order Born series for
the π(k1)π(k2) → π(k′1)π(k′2) scattering amplitude in

the two-body rest frame, i.e., k
(′)
1 + k

(′)
2 = (

√
σ,0),

k
(′)µ
1 − k(′)µ

2 = (0, 2k(′)). Using the ρππ vertex from
Eq. (8) this reads

Tρ(σ, z) = nIρ

∑
λ vλ(k1, k2)v∗λ(k′1, k

′
2)

σ −m2
ρ

=
g2

1

σ −m2
ρ

4kk′z ,

(16)

where z = (k,k′)/kk′, Iρ = 2 is a factor for isospin-1,
and n = 1/2 is a symmetry factor. The second equal sign
in Eq. (16) is due to the general properties of the helicity
state vectors, c.f. Eq. (A3). Projecting this amplitude to

the P-wave amounts then to

T 1
ρ (σ) = 2π

1∫
−1

dz P1(z)Tρ(σ, z) (17)

=

(√
16π

3
g1k

)
1

σ −m2
ρ

(√
16π

3
g1k
′

)

=:
ṽ(k)ṽ(k′)

σ −m2
ρ

,

defining the projected vertex ṽ.
The two-body dynamics is encoded in ṽ but also in

K of Eq. (15) that is very similar to a K-matrix up to
the selfenergy Σ that contains also a real part. With K
being a regular function in invariant-mass squared of the
two-body system in the physical region, we found that
two subtractions are sufficient to capture the relevant
dynamics, i.e.,

K−1(σ) = a0m
2
π + a1σ . (18)

Here, the parameters ai are fitted to the ππ phaseshift
data by introducing the two-to-two on-shell T -matrix for
I = S = 1,

T22(σ) = ṽ(kcm)τ(σ)ṽ∗(kcm) , (19)

where ṽ = ṽ∗ and kcm =
√
σ/4−m2

π. The connection to
the vector, isovector phaseshift δ11 is given by

δ11(σ) = tan−1

(
ImT22(σ)

ReT22(σ)

)
, (20)

which depends on g1 from Eq. (8) and a0, a1 from
Eq. (18) 1. The parameters a0 and a1 are then fitted
to experimental phaseshifts from Refs. [80, 81]. These
parameters and the corresponding pole position of the ρ
are given in the left column of Table I and the fit is shown
in Fig. 2. As can be seen in the figure, the two sets of
data are not in perfect agreement. In order to account
for this source of systematic uncertainty we perform two
additional fits. The first is only to data from Ref. [80],
the second one is only to the data of Ref. [81]. These
two fits are shown in the middle and right column of
Tab. I. The systematic uncertainties that they introduce
for the ρ pole position are far larger than statistical un-
certainties calculated from a resampling of the combined
data. From them, we calculate the ρ pole position with
uncertainty to be

√
σρ = (754(3) − i 72(1)) MeV. The

real part of this value is well below the PDG average of
(775.26 ± 0.25) MeV, but is more in line with other fits
to the same data, for instance in Refs. [82, 83]. Note that
in Table I we only show the central values for parameters

1 However, g1 is fully correlated with a0 and a1 so that we fix it
at g1 = 6.
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fitted data [80] and [81] [80] [81]

a0 −0.4604 −0.4712 −0.4639
a1 · 10 0.1556 0.1571 0.1567

Re
√
σρ [MeV] 754 758 753

Im
√
σρ [MeV] −72 −71 −71

TABLE I. Fitted parameters of the two-body subsystem ac-
cording to Eq. (18), and ρ(770) meson pole positions

√
σρ.

Only central values are shown but uncertainties and correla-
tions are fully propagated to the three-body calculation for
the combined-data fit.

and pole position, but for the fit to the combined phase-
shift data, uncertainties will be properly propagated to
the three-body sector through resampling as described in
Sec. IV B.

Note that it is possible to introduce more than two
subtractions. Naturally, this leads to a better fit quality
and can even be used to regularize the three-body equa-
tion: Indeed, more subtractions lead to higher powers of
σ in the numerator of Σ of Eq. (15) which translate to
higher powers of spectator momentum l in the denom-
inator of τ due to Eq. (5), that is: liml→∞ σ(l) ∼ l.
Every additional subtraction contributes with 1/l to the
convergence of Eq. (10), and with n subtractions one ob-
tains liml→∞ τ(σ(l)) ∼ l1−n. The crucial disadvantage
of this method is the occurrence of of higher-order sub-
traction polynomials in the denominator of τ which can
lead to unphysical poles on the first Riemann sheet; such
artifacts must be avoided, especially if one aims at ex-
tracting pole positions in the complex plane. Therefore,
we continue with two subtractions as described before.

In summary, we have employed the same, polariza-
tion vector-based spin-1 formalism for the two-body in-
put as for the isobar-spectator interaction B in Eq. (11).
This ensures three-body unitarity through the covariant
parametrization of the ρ decay [41]. Additionally, the
subtraction formalism for the loop term allows one to
naturally regularize it and introduce the necessary free-
dom to parametrize the two-body input; after all, the for-
malism provides an efficient parametrization of the on-
shell two-body input which is all that is needed in the
three-body calculation (possibly below the ππ threshold,
depending on the spectator momentum cutoff Λ).

III. ANALYTIC CONTINUATION

The key ingredient of the discussed a1-production
mechanism is the integral equation (10) solved for the
πρ scattering amplitude. This equation is solved by re-
placing the integrations over the real-valued magnitude
of the meson momenta by complex values along certain
contours described in the following. Additionally, and in
view of the final goal of this study – determination of
the a1(1260) resonance pole – one needs to analytically
continue the scattering amplitude (10) in the three-body

FIG. 3. Contours in two-body scattering. Upper row: Mo-
mentum integration (left) and physical amplitude (right) at√
σ+iε on the first (“I”) Riemann sheet. Lower row: Momen-

tum integration and amplitude on unphysical sheet II with
Im
√
σ < 0. See text for additional explanations.

energy
√
s to complex values.

Specifically, two types of integrations occur: (1) in
l := |l| within the integral equation (10); and (2) in
k := |k| within the selfenergy term of the two-body sub-
system (15). The corresponding complex contours can be
chosen individually and are referred to in the following
as ’spectator momentum contour’ (SMC) and ’selfenergy
contour’ (SEC), respectively. Both contours start at the
respective origins, l = k = 0, and end at l = Λ and
k = ∞, respectively. In between these limits, different
choices for the contours define different Riemann sheet
in
√
s as discussed in the following.

A similar discussion of the analytic structure in the
context of dynamical coupled-channel approaches can be
found in Ref. [84] for the Jülich/Bonn/Washington ap-
proach [85–87] and in Ref. [88] for the EBAC/ANL-Osaka
approach [89, 90]. There is also a discussion in Ref. [60]
on analytic continuation, but the structure of the scatter-
ing equation is substantially different because it does not
contain three-body cuts from pion exchange as demanded
by three-body unitarity [41]. In Ref. [84], a continuation
obtained by certain approximations for three-body cuts
was discussed, but the method proposed here is rigorous.
For the sake of better readability and understanding, the
following discussion is quite explicit and includes the sim-
ple two-body case, as well.

Regarding the cutoff used in this work, regularization
is often achieved with form factors, and the SMC is given
by a straight line from l = 0 into the lower complex-
momentum half-plane; see, e.g., Refs. [46, 85, 91, 92].
We refrain from the use of form factors because they
make the analytic structure of the amplitude unneces-
sarily complicated.
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FIG. 4. Example for SMC and SEC contours in the complex
plane of the two-body energy-squared, σ. Typical Gauss node
distributions on the contours are indicated with turquoise and
orange dots, respectively. The shading and coloring indicate
magnitude and phase φ of τ = |τ |eiφ, respectively. The ρ
pole at σ = σρ is highlighted with the white star. See text for
further explanations.

A. Two-body scattering

To discuss the analytic structure, we recall that the
placement of cuts is a choice. Cuts are the curves along
which different Riemann sheets are analytically “glued”
together. For example, a common choice in two-body
scattering is to run the physical, right-hand cut along
the real axis from threshold to∞ in the two-body energy-
squared σ. This simplifies the formulation of the disper-
sion relations and provides a convenient definition of the
first and second Riemann sheet. With that definition,
resonance poles can only to be found on the second, “un-
physical” Riemann sheet as demanded by causality (see,
e.g., Ref. [93] for a proof).

In contrast to cuts, the position of a branch point is
fixed in s and σ for three- and two-particle scattering,
respectively. Branch points define thresholds and arise
whenever the pertinent momentum integrations begin in
singularities or branch points themselves [84]. This is
illustrated in Fig. 3 for the two-body case above thresh-
old. The placement of the SEC producing the physical
amplitude is constrained by the +iε term in Eq. (15).
In the figure, two possible integration contours are de-
picted, passing the singularity at k = kcm + iε either on
the right (ΓR) or left (ΓL). The former does not change
the sign of (Im Σ) and, thus, yields the physical ampli-
tude (19) describing experimental measurements at real
energies. In contrast, choosing ΓL leads to a sign change
in (Im Σ) and an unphysical T22 on sheet II (still, at the
same σ = σphys + iε).

The physical and unphysical scattering amplitudes
T22 are connected to each other, smoothly building the
2N Riemann sheets (N being the number of two-body

thresholds). By convention, the physical amplitude on
sheet I in the upper half-plane of σ ∈ C is connected
along the real axis, σ ∈ [4m2

π,∞), to the unphysical sheet
II in the lower half-plane. For energies with Im σ < 0
(see Fig. 3, lower right), the amplitude on sheet II can
be obtained by deforming the SEC as shown to the
lower left. In particular, the two-body singularity at
kcm =

√
σ/4−m2

π also acquires a negative imaginary
part, but a smooth deformation of ΓR ensures that the
SEC still passes the two-body singularity to the right,
thus guaranteeing that the amplitude has been analyt-
ically continued from physical scattering energies σ to
the second sheet in the lower half-plane, where resonance
poles can be found.

In summary, passing the two-body singularity to the
left or to the right (ΓL vs. ΓR) defines the Riemann
sheet, except for one point at σ = 4m2

π. There, the
two-body singularity coincides with the lower limit of the
integration, k = kcm = 0. Consequently, at this point
there is no distinction between sheets, i.e., one is at the
branch point that defines the two-pion threshold. We
stress the (otherwise trivial) fact that a singularity in
an integration limit induces a branch point, because it
helps identifying branch points for the more complicated
three-body case discussed in Sec. III C; see also Ref. [84].

In regard of the present application to the a1(1260)
channel, we chose the SEC for the ππ subsystem in the
ρ channel as

ΓSEC =

{
k|k = t+

ic1
2

arctan(c2t), t ∈ [0,∞)

}
, (21)

with shape parameters c1 and c2 chosen such that this
contour lies in the lower right quadrant of the k plane and
always avoids the two-body singularity except at thresh-
old,

ΓSEC ∩ {kcm}\{0} = Ø . (22)

To display the SEC and the ρ(770) resonance pole in
the same plot, ΓSEC is mapped to the σ plane according
to σ = 4(m2

π + k2). The result is labeled “SEC” with
the orange circles in Fig. 4 indicating the Gauss nodes
chosen for numerical integration. As the figure shows,
the chosen Γ′R is sufficiently deformed to not only al-
low for the calculation of the physical amplitude but also
for the calculation of τ in a large portion of unphysi-
cal sheet II, bound by the mapped SEC. This portion
includes the ρ pole (white star). In other words, the
so-defined two-body amplitude has its actual cut along
the mapped SEC. Furthermore, instead of a discontinu-
ity in σ along that cut, the amplitude exhibits a series
of poles which is a consequence of the discretization in
a finite number of Gauss nodes. This is made visible in
the figure through the shading (repeated transitions from
transparent to dark gray indicating increasing values of
|τ |), in addition to the color coding that indicates the
phase φ of τ = |τ |eiφ. Notably, the ρ pole exhibits one
full cycle −π → φ→ +π (blue → red → green), indicat-
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ing that the ρ pole is indeed a first-order singularity as
required for a resonance.

The idea of suitably constructing contours to access
the Riemann sheet(s) of interest, where resonance poles
are situated, can be generalized to three-body scatter-
ing as discussed in the following. In particular, contour
deformation replaces other methods of analytic continu-
ation in which explicit discontinuities have to be added
to the amplitude.

B. Three-body cuts

Before turning to the construction of a suitable spec-
tator momentum contour (SMC) to access the a1(1260)
pole, one needs to discuss three-body cuts because they
must be avoided by the SMC. This is known since a long
time and has been discussed in the context of the a1 res-
onance in Ref. [94] (we adapt and extend the discussion
here). These cuts arise from the pion-exchange term of
Eq. (11) that is a direct consequence of three-body uni-
tarity [41]. We note that this term corresponds to the
forward going part of pion exchange only. If one adds
the backward-going part, one recovers the covariant de-
nominator u−m2

π + iε [41] but we refrain from using this
term because it can induce unphysical unitarity-violating
imaginary parts above threshold if the regularization is
not chosen correctly. Note also related but different dis-
cussions on sub-threshold behavior of this denominator
vs. triangle graph in Ref. [29] and the comparison of
the Feynman denominator and time-ordered perturba-
tion theory in Ref. [45] where it was shown that the
breaking of covariance in the latter is rather small.

It should also be noted that there will be a much more
complicated analytic structure in unphysical regions of
the amplitude which s-channel unitarity alone cannot fix
(in analogy to two-body amplitudes). However, these
structures are far away from the region in which we search
for the a1-pole and one can safely neglect them, i.e., the
expansion of the C-term in the Laurent series of Eq. (14)
is precise enough.

The denominator of Eq. (11) vanishes for any x =
cos θ ∈ [−1, 1] according to the partial-wave decompo-
sition of Eq. (12). For a fixed three-body energy

√
s

and incoming spectator momentum p the singularities
are given by

p′± =
px(p2 − α2)± α

√
(β + p2 (x2 − 1))

2 − 4m2
πβ

2β
,

α(p) =
√
s− Ep , β(p, x) = α2(p)− p2x2 . (23)

The domain of real solutions is indicated in Fig 5 and
bound by p′±(p, x = ±1).

Not all solutions p′ are real as Fig. 6 shows. Notably,
there are kinematic regions (e.g., p = 3.4mπ) in which
the singularities fully enclose the origin which renders a
naive integration from 0 to ∞, or to any physically re-
quired cutoff Λ, impossible. As a side remark, the small-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FIG. 5. Domain of real solutions p′±(p, x) according to
Eq. (23) for

√
s = 7.6mπ. Gray and red dots represent indi-

vidual solutions for some x ∈ [−1,+1] which are enclosed by
the p′±(p, x = ±1) boundary.

FIG. 6. Position of three-body singularities in p′(p, x) for fixed
p,
√
s = 7.6mπ, and x ∈ [−1, 1] for solutions p′± according to

Eq. (23).

est physically required cutoff pmin is given by the con-
dition σ(p) > 4m2

π for the pions in the ρ selfenergy in
Eq. (15) to be on-shell. Using Eq. (5), this leads to

p2
min =

9m4
π − 10m2

πs+ s2

4s
. (24)

Simultaneously, pmin must be large enough to cover all
physically allowed momenta in the pion-exchange, given
by the extension of the domain shown in Fig. 5 that can
be determined through the vanishing argument of the
square root of Eq. (23) at x = 1,

β2(pmin, 1)− 4m2
πβ(pmin, 1) = 0 . (25)

The solution of this equation is also given by Eq. (24) as
expected.

The crucial point is that the positions of the three-
body singularities in p′ depend on the value of p itself.
For a suitably chosen contour SMC with p ∈ ΓSMC and
p′ ∈ ΓSMC, the three-body cuts “open up” and allow for
the integration of the scattering equation (10) as known
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since a long time [95]. See also Ref. [96] for a similar
numerical scheme in the context of Muskhelishvili-Omnés
equations.

0 1 2 3 4 5

-4

-3

-2

-1

0

1

FIG. 7. Three-body singularities at fixed, complex 3-body
energy

√
s. The color-coded dots show both solutions p′ of

Eq. (23) for different p ∈ Γ1 (blue), p ∈ Γ2 (green), p ∈ Γ3

(red), and x ∈ [−1, 1]. Solutions p′(p, x) for Ep+p′ = 0 from
Eq. (11), p ∈ ΓSMC, and x ∈ [−1, 1] are indicated in light
brown.

The precise form of the SMC is not fixed. We choose
the smooth contour depicted in Fig. 7 that is split into
different color-coded segments, ΓSMC =

⋃3
i=1 Γi, to show

which parts of the SMC correspond to which positions of
three-body singularities, indicated with the dot clouds for
both p+ and p−. Additionally, the singularities p′(p, x)
of the 1/Ep′+p term in Eq. (11) are indicated by brown
dots irrespective of the value of p ∈ ΓSMC. The SMC is
parametrized as

ΓSMC = {p|p =t+ iV0(1− e−t/w)

× (1− e(t−Λ)/w), t ∈ [0,Λ]} . (26)

This expression contains a parameter for the initial and
final slope, w, and another one for the extension of the
SMC into the lower half-plane, V0. In general, a larger V0

allows one to go further into the complex
√
s plane to look

for poles; piecewise-straight contours are also possible, in
general, but require more integration nodes than smooth
paths for a given precision. An example of integration
nodes is shown in Fig. 7 with the gray circles on top of
ΓSMC.

To avoid singularities of the B-term one simply ensures
that ΓSMC never overlaps with the solutions of Eq. (23),

ΓSMC ∩ {p′(p ∈ ΓSMC, x ∈ [−1, 1])} = Ø ; (27)

similarly, for the Ep′+p term,

ΓSMC ∩ {p′|Ep′+p = 0, p ∈ ΓSMC, x ∈ [−1, 1]} = Ø .
(28)

There is a region of
√
s in the lower complex half-plane

for which this is the case, and the extent of that region
depends on ΓSMC. We have made sure that with the
SMC of Eq. (26) the corresponding

√
s-region covers the

pole region of the a1(1260) well.

C. Real and complex threshold openings

In Sec. III A we have already discussed the analytic
structure of the two-body amplitude, its (threshold)
branch point at σ = 4m2

π, where the two Riemann sheets
coincide, and the ρ pole on the second Riemann sheet.
We now discuss this amplitude in the presence of the
SMC, i.e., the two-body system being a subsystem of the
three-body amplitude with the spectator momentum be-
ing on the SMC.

Figure 4 shows the SEC mapped to the σ plane by
σ = 4E2

k. It also shows the SMC mapped to this plane
via Eq. (5). This representation has the advantage that a
crossing of SEC and SMC in the figure directly indicates
a zero of the selfenergy denominator (σ−4E2

k) of Eq. (15)
that has to be avoided,

σ(p2) 6= 4E2
k ∀ p ∈ ΓSMC ∧ k ∈ ΓSEC . (29)

The last condition is that neither contour can cross the
ρ pole at σρ, except for p = 0,

σ(p2) 6= σρ ∀p ∈ ΓSMC\{0} ∧ 4E2
k 6= σρ ∀k ∈ ΓSEC .

(30)

The conditions (22, 27-30) constitute the complete set of
rules to access all Riemann sheets in the problem.

The exclusion of p = 0 in Eq. (30) can be under-
stood in the context of branch points. According to
Eq. (5), the condition p = 0 and σ = σρ corresponds
to
√
s = ±√σρ + mπ. In other words, at these complex

three-body energies, the spectator momentum integra-
tion starts at the ρ pole. According to Sec. III A, if an
integration limit coincides with a singularity, a branch
point is generated. Therefore, taking only the square root
of interest (positive Re

√
σρ) and invoking the Schwarz

reflection principle, we conclude that the three-body am-
plitude has branch points at

√
s =

√
sρ :=

√
σρ + mπ

and
√
s =
√
sρ
∗ =
√
σρ
∗ + mπ. We refer to them as πρ

branch points in the following.
There is a third branch point: the two-body threshold

induces the real-valued 3-body threshold at s = (3mπ)2

because at that energy and p = 0, we have σ = 4m2
π

according to Eq. (5). In other words, the spectator mo-
mentum integration starts at the two-body branch point,
which induces another branch point in the three-body
amplitude. In Ref. [97] additional properties of these
branch points were discussed.

The overall analytic structure of the three-body am-
plitude of Eq. (10) is visualized in Fig. 8. It shows the
real branch point at

√
s = 3mπ with its associated cut

chosen along the real
√
s axis defining sheets I and II.
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FIG. 8. Analytic structure of the 3-body amplitude in the
√
s

plane. The real and complex branch points (thick black dots)
are shown together with their respective cuts (red dashed
lines). The πρ branch points lie on sheet II and induce ad-
ditional sheets III and IV (not shown). The insets show the
SMC mapped to the σ plane (blue lines), in a qualitative way.
Its position changes according to the approximate value of

√
s

where the insets are placed. In the σ plane, the SEC (orange
lines) starting at the ππ threshold (small black dots) does not
change if

√
s changes, but the SMC does.

Also, the figure shows one of the complex branch points
at
√
s =
√
sρ which is situated on sheet II. The cut as-

sociated with the complex branch point is conveniently
run into the negative imaginary

√
s-direction so that the

shown Riemann sheet is the region closest to the physi-
cal axis. If regions behind that cut ought to be explored
(defined as sheet III), more complicated contours must
be chosen [84].

In addition, the insets in Fig. 8 show the σ plane with
the SMC and SEC similar as in Fig. 4. The position of
the insets in the

√
s plane qualitatively corresponds to

the
√
s used to map the SMC to the σ plane, according

to Eq. (5). Note how the position of the SMC changes
relative to the ρ pole at σρ. For example, for

√
s to the

left (right) of the πρ branch cut, the SMC passes the ρ
pole to the left (right).

In Fig. 9 we show a typical picture of |T00| of Eq. (10)
with the integration contours defined in Eqs. (21) and
(26). The shape parameters that allow access to a suffi-
ciently large region in the broad vicinity of the a1(1260)
pole, and which make the cut of the πρ branch point
run approximately in the negative-imaginary

√
s direc-

tion, are given in Table II. The a1 pole is always to the
lower right of the πρ branch point in the

√
s plane as

Fig. 9 shows. Therefore, the qualitative positions of SEC
and SMC in the σ plane, corresponding to

√
s taking the

value of the a1 pole, are given by the lower right inset of
Fig. 8 which is also the situation shown in Fig. 4. Simi-
lar to Fig. 4, the cut induced by

√
sρ is approximated by

a series of poles due to the numerical discretizations, as

FIG. 9. Typical amplitude |T00| of Eq. (10), color coded from
small values (dark blue) to large values (red; maxed-out values
at white). The a1(1260) pole, πρ branch point at

√
s =
√
sρ

and its associated cut are also indicated. See text for further
explanations.

c1 [mπ] c2 [m−1
π ] w [mπ] V0 [mπ]

-7.16 0.418 1.433 -3.58

TABLE II. Shape parameters for the SEC in Eq. (21) and
SMC in Eq. (26).

Fig. 9 shows. While in the former case this was due to
the self-energy integration, in the latter case it is due to
the integration over the spectator momentum.

While Fig. 9 and all results in this paper have been
obtained using the shape parameters of Table II, the fig-
ure also shows that this choice is not universally valid for
all three-body energies. In the lower right-hand corner
(highest energies, farthest into the complex plane), we
observe numerical fluctuations. These are poles induced
by a three-body singularities coinciding with the SMC
as illustrated in Fig. 7; they correspond to violations of
Eqs. (27) or (28). If the analytic continuation in such
regions of

√
s is desired, one needs to choose a different

SMC.

IV. RESULTS

A. Fit

The free parameters of the model are fixed by a fit to
the lineshape for the decay τ− → π−π−π+ντ . Data for
this process measured in the ALEPH experiment were
originally published in Ref. [47]. In Ref. [98] the unfold-
ing method was improved and an error was fixed (see the
webite [99] for numerical values) . The data include cor-
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relations that correspond to both systematic and statis-
tical uncertainty. However, the systematic uncertainties
are small relative to the statistical uncertainties, thus we
neglect them. The χ2 can then be calculated with the
formula

χ2 = ( ~D − ~L)TΣ−1( ~D − ~L) , (31)

where Σ is the data covariance matrix, ~D is a vector
containing the central values of the ALEPH line shape

data and ~L is a vector containing our prediction of the
lineshape calculated with Eq. (1) as a function of

√
s

at each of the central values of energy for the ALEPH
data. We fit the 65 data points in the range 0.55 GeV
<
√
s < 1.50 GeV but do not include all correlations in Σ;

instead we set all correlations to 0 except those between
nearest neighbors. This choice is justified in Appendix B.

We fit the parameters c−1
00 and c000 from the expansion

of the three-body term in Eq. (14). We do not include
c100 or any higher c00 terms and we do include any c10,
c01, or c11 terms because including these terms in the fit
when Λ = 0.73 GeV increases the χ2

dof. Fits for other
values of Λ just serve to assess systematic effects and we
do not try to change their parametrization. Thus, our
fit of the lineshape has a total of 6 free parameters: c−1

00 ,
c000, and ma1 from Eq. (14), and Df0, Df2, and Df̃ from

Eq. (9).
The line shape depends on Λ in Eqs. (4) and (10).

A cutoff of Λ = 0.73 GeV is the lowest possible value
allowed by Eq. (24) if an upper limit of

√
s = 1.5 GeV is

chosen for the fit. We consider the case Λ = 0.73 GeV
to be our primary fit because it leads to the best χ2 as
shown in Table III. However, to study systematic effects,
we also vary Λ, leaving the two-body input encoded in
the parameters a0 and a1 unchanged, and perform several
fits. We list the pole position and free parameters of
these fits in Tab. III. As we increase Λ, ma1 and c−1

00

decrease, whereas c000 ma1 increases. The pole position,
however, remains relatively unchanged, which reassures
us, because the physical pole position should not depend
on the cutoff.

B. Discussion

The a1(1260) lineshape data and best fits for differ-
ent cutoffs are shown in Fig. 10 with the solid lines. Fit
uncertainties are indicated with the blue band for our
main result (Λ = 0.73 GeV). For better visibility, the
band width is multiplied by a factor of 10. The plot of
reduced residuals for the Λ = 0.73 GeV case (bottom
of Fig. 10) shows that there are no obvious systematic
deviations of the fit from data, except maybe for a struc-
ture at

√
s ≈ 0.8 GeV. Also, around that energy the fits

for different Λ differ from each other more than in other
energy regions, and a substantial fraction of the χ2 for
larger cutoffs Λ (see Table III) arises in this energy re-
gion. In general, however, the pertinent fits are all very

FIG. 10. The fit to the line shape data from the ALEPH
experiment [98] (top) and the normalized residuals for the
Λ = 0.73 GeV case (bottom), where D−L is a given residual
and ∆ the pertinent data uncertainty. In the upper figure,
the blue band indicates the spread of the resampled fit with
cutoff Λ = 0.73 GeV, multiplied by a factor of 10 for better
visibility. The pertinent best fit is indicated with the blue
solid line. Other best fits are also shown, for Λ = 0.9 GeV
(orange), Λ = 1.05 GeV (green), and Λ = 1.2 GeV (red). In
many of theses cases, the curves almost coincide. The red
dashed line shows the calculation of the line shape with the
same parameters as the Λ = 0.73 case with all D-wave terms
set to 0. The difference between this curve and the blue one
shows the contribution of the D-wave.

close together which is also reflected in the very small
variation in pole positions indicated in Table III.

We show with a red dashed line in Fig. 10 the line shape
with Λ = 0.73 GeV calculated with the D-wave contri-
butions set to 0. The difference in this case from the blue
line shows the contributions of the D-wave term. This
difference is small, which is qualitatively in line with the
PDG [1]. Note that this is a prediction at this point; the
D-wave can only be determined more quantitatively once
Dalitz plots are analyzed, as measured, e.g., by CLEO [9].

We test the impact of the rescattering term by per-
forming a fit in which we exclude BJLL′(q1, p) from
Eq. (10). This pion-exchange term is required by three-
body unitarity [41] and omitted in Ref. [60]. As Table III
(last row) and Fig. 11 (open red circle) show, the a1(1260)
pole position is significantly shifted in the refit without
the B-term. Still, Fig. 11 also shows that, even with-
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Λ [GeV] +0.73 +0.90 +1.05 +1.2 +0.73(no B) +0.73 ([80] data) +0.73 ([81] data)

Re
√
s0 [GeV] +1.232 +1.223 +1.231 +1.240 +1.174 +1.233 +1.230

Im
√
s0 [GeV] −0.266 −0.269 −0.244 −0.251 −0.252 −0.278 −0.261

χ2/(65− 6) 0.99 1.32 1.60 1.90 2.56 0.99 0.98

c−1
00 +16.48 +14.59 +12.67 +11.53 +20.16 +16.74 +16.49
c000 +1.729 +1.750 +1.843 +2.073 +0.0191 +1.712 +1.720

ma1 [GeV] +1.293 +1.287 +1.281 +1.278 +1.391 +1.296 +1.294
Df0 × 107 [a.u.] −1.841 −2.371 −2.126 −2.250 −0.9249 −1.887 −1.829
Df2 × 108 [a.u.] +6.462 +3.094 +1.567 +0.837 −6.824 +6.718 +6.512
Df̃ × 106 [a.u.] −1.319 −1.358 −1.338 +1.372 −1.235 −1.329 −1.318

TABLE III. Best-fit pole positions
√
s0 of the a1(1260), χ2, and central values for fit parameters (uncertainties for pole positions

are only quoted in the main text, for readability). There are 65 data points and six parameters. The column labeled “no B”
shows our fits when we set the pion exchange term B = 0. The last two columns show variation from different two-body input
as referenced in the label. The c-terms are unitless while the abbreviation “a.u.” for the D-terms stands for “arbitrary units”
because they contain the factor that connects to the un-normalized line shape data.

●●

○○

Resampled pole positions

● Pole prediction

○ Pole prediction (no B)

PDG average

JPAC2019

Statistical confidence region

Systematic confidence region

1.20 1.25 1.30 1.35 1.40

-0.30

-0.25

-0.20

-0.15

-0.10

FIG. 11. Compilation of pole positions determined in this
work including statistical and systematic uncertainties. For
convenience, the PDG [1] average and a result by JPAC [60]
are quoted as well. See text for further explanations.

out the B-term, our model is not identical to the one of
JPAC [60] which might be due to other reasons like a
slightly different treatment of the two-body input, differ-
ent cutoffs, or the fact that in Ref. [60] the lineshape data
of Ref. [47] is fitted, while we fit the data of Ref. [98].

We show our pole predictions in Fig. 11. Statistical
uncertainties are calculated through a re-sampling pro-
cedure (blue dots). We calculate statistical uncertainty
of the pole position using a resampling procedure. This
is done in two steps. Firstly, the two-body data from
Refs. [80] and [81] are resampled 20 times with a normal
distribution using the given data uncertainties. Parame-
ters a0 and a1 (given in Eq. (18)) are fit to each resampled
set. Secondly, 20 sets of resampled ALEPH data [98, 99]
are generated. A fit is performed for each resampled set

using the different values of a0 and a1 calculated in the
first step. From each of these fits, a pole position is cal-
culated, shown with blue dots in Fig. 11. We also show
the error ellipse keeping in mind that this is a non-linear
fit problem.

The green rectangle in Fig. 11 shows the region of pole
positions from different cutoffs Λ according to Table III.
To that we add a second source of systematic uncertain-
ties from the different two-body input according to the
last two columns of Table III. Such variations in Λ help
assess the influence of inherent model uncertainties so we
add then as systematic error to our result for the a1(1260)
pole position quoted in the next section. Our entire con-
fidence region, including both statistical and systematic
uncertainties, lies entirely within the PDG estimate of
the a1(1260) denoted with the gray rectangle, and it is
not in strong tension with the JPAC result [60] (orange
rectangle).

We extract the residues of the pole position using the
coupled-channel partial-wave amplitude of Eq. (10). It
can be expanded in

√
s around the pole position

√
s0 of

the a1(1260),

T JLL′(p, p′) =
g̃L(p) g̃L′(p′)√

s−√s0
+O(1) , (32)

with g̃L playing the role of (Breit-Wigner) branching ra-
tios, but defined at the pole [1]. In addition, for the cur-
rent case of πρ scattering in S andD-waves, the g̃ are nec-
essarily functions of spectator momentum, g̃L ≡ g̃L(p).
Analogously one might think of resonance transition form
factors that are closely related to pole residues depend-
ing on photon virtuality [87, 100]. For a numerically
stable method to calculate residues see Appendix C of
Ref. [101]. We show the g̃L(p) for real spectator momenta
p in Fig. 12, which requires another analytic extrapola-
tion from the complex p on the spectator momentum
contour (SMC) at which the solution is calculated.

As Fig. 12 shows, the a1 resonance does couple to the
πρ D-wave channel even if the corresponding coupling
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FIG. 12. Pole couplings according to Eq. (32) as a function of
real spectator momentum p. These quantities play the role of
spectator-momentum dependent branching ratios. Results for
S-wave are shown at the top and for D-wave at the bottom,
for different cutoffs Λ as indicated. The solid (dashed) lines
show the real (imaginary) parts.

term appearing in Eq. (9) is not fitted, c−1
22 = 0, and,

similarly, c−1
20 = c−1

02 = 0 in Eq. (14). This is due to the
B-term which always allows for non-diagonal transitions
between S and D-wave channels. Yet, the D-wave decay
is clearly smaller than the S-wave decay, and the contri-
bution to the lineshape from D-wave (at real energies) is
very small, see Fig. 10. While our complex pole couplings
are a prediction at this point, in future work they can be
tested and even extracted from data by analyzing Dalitz
plots of the a1 decay such as measured at CLEO [9].

V. CONCLUSIONS

In this work we have detailed how the pole position of
the a1(1260) meson can be determined using a manifestly
unitary three-body formalism. The three-body dynam-
ics of the decay is fully taken into account, including the
line shape corrections due to the pion exchange (some-
times referred to as “rearrangement“ graph). This pro-
cess is a direct consequence of unitarity. It ensures that,
apart from the usual isobar-spectator propagation in the
s-channel, this is the only possible onshell arrangement
of three pions. Also, the amplitude necessarily exhibits
two independent integrations that cannot be simply re-
cast and factorized into the phase space calculation, but
that explicitly need to be performed.

Three-body cuts and the two integrations imply prob-
lems for the analytic continuation of the amplitude to
the complex pole position of the a1(1260). We explain
in detail how the continuation is achieved by contour de-
formation and how different Riemann sheets are induced
by an appropriate choice of integration contours.

Upon implementation, we find that the pion exchange
term does have significant influence on the pole position
of the a1(1260); taking into account nearest-neighbor cor-
relations in the data from ALEPH [98], the pole position
is determined to be

√
s0 = (1232+15+9

−0.2−11 − i(266+0.3+15
−22−27 )) MeV , (33)

where the first errors are statistical (including nearest-
neighbor correlations) and the second ones are system-
atic, reflecting the cut-off dependence and two-body in-
put according to Table III.

The current calculation is restricted to ρπ channels in
S and D-wave. In future upgrades to more coupled chan-
nels, like sub-dominant σπ, it will be possible to simulta-
neously fit line shape and Dalitz plots to exploit unitarity
which relates these data.
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[92] D. Rönchen, M. Döring, and Ulf-G. Meißner, “The im-
pact of K+Λ photoproduction on the resonance spec-
trum,” Eur. Phys. J. A 54, 110 (2018), arXiv:1801.10458
[nucl-th].

[93] Vladimir Gribov, Strong Interactions of Hadrons at
High Energies : Gribov Lectures on Theoretical Physics
(Cambridge University Press, Leiden, 2008).

[94] G. Janssen, K. Holinde, and J. Speth, “A Meson ex-
change model for pi rho scattering,” Phys. Rev. C 49,
2763–2776 (1994).

[95] Michael I. Haftel and Frank Tabakin, “Nuclear Satu-
ration and smoothness of nucleon-nucleon potentials,”
Nucl. Phys. A 158, 1–42 (1970).

[96] Michael Döring, Ulf-G. Meißner, and Wei Wang, “Chi-
ral Dynamics and S-wave Contributions in Semileptonic
B decays,” JHEP 10, 011 (2013), arXiv:1307.0947 [hep-
ph].
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Appendix A: Technical details on spin-1 systems

For each helicity state λ ∈ {−1, 0,+1} of the spin-1
field, the four-vector ε depends on the direction of the
propagation [79] as

ε0(p) =
1

mρ


p

Eρp cosφp sin θp
Eρp sinφp sin θp
Eρp cos θp

 , (A1)

ε±1(p) =
1√
2

 0
∓ cos θp cosφp + i sinφp
∓ cos θp sinφp − i cosφp

± sin θp

 , (A2)

where Eρp :=
√
m2
ρ + p2 and we chose mρ = 6.44mπ.

On-shell, this fulfills required properties, such as the
transversality, i.e. pµε

µ = 0 exactly, see Ref. [79]. Away
from the on-shell point one can generalize the above def-

initions using mρ →
√
E2
p − p2. However, as the differ-

ence between both versions does not lead to new singular-
ities of the spin-1 propagator, perturbation theory is vi-
able, allowing one to reabsorb it into the local terms [102].

Equation (16) requires the calculation of the helicity
sum for the s-channel ρ propagation,∑

λ

ελ,µ(p)ε∗λ,ν(p) = −gµν +
pµpν
m2
ρ

. (A3)

Appendix B: Data consistency tests

Rather than considering all data correlations from
Ref. [98] in the covariance matrix for the calculation of χ2

using Eq. (31), we include only nearest neighbor corre-
lations. All other correlations are neglected because we
find that no reasonably smooth curve can describe the
data when they are included as shown in the following.

We fit the ALEPH data with a Legendre Polynomial
expansion, f(

√
s, xi) given by

f(
√
s, xi) =

n∑
i=0

xiPn

(√
s−√s0√
s0

)
, (B1)

where
√
s0 = 1 GeV is chosen such that the argument

is always in the interval [−1, 1] and the xi are fitted by
minimizing the χ2,

χ2 = (~f(xi)− ~L)TΣ−1(~f(xi)− ~L) , (B2)

where ~f is constructed from the data at
√
si, (~f)j =

f(
√
sj , xi). Similarly, the central values of the data are

collected in the vector ~L. When we fit in the range
0.6 GeV <

√
s < 1.5 GeV, with n = 10 including all

correlations we find that the minimum χ2 for the 63 data
points is 127 (χ2

dof = 2.43) as Table IV shows. Increasing

All Correlations

No Correlations

Neighbor Correlations
0.00

0.05

0.10

0.15

0.20

0.25

0.6 0.8 1.0 1.2 1.4

-2

0

2

FIG. 13. The fits (upper row) and normalized residuals (lower
row) using a Legendre Polynomial Expansion to the ALEPH
data (n = 10 in Eq. (B1)). The color coding indicates the
cases where the covariance matrix includes all correlations
(blue), no correlations (orange), and nearest-neighbor corre-
lations (green).

the number of polynomials in this expansion will decrease
the total χ2 but does not decrease the χ2

dof. For example,
when n = 15, χ2 = 122 and, therefore, χ2

dof = 2.58. We
show the n = 10 fit and the residuals in Fig. 13. These
results indicate that it is very difficult for any smooth
curve, regardless of whether or not it is theoretically jus-
tifed, to describe the data. In contrast, when we use the
same function to perform a fit where we include only the
uncorrelated uncertainties and set all correlations to 0,
we find the total χ2 for the 63 data points to be 62 indi-
cating that the uncorrelated data can be easily fit with
a smooth function. The orange line and data of Fig. 13
show the fit and residuals when none of the correlations
are included in the data. This fit is quite similar to the
one that includes all correlations even though the χ2 is
very different. We note that while this case demonstrates
that the uncorrelated data can be reasonably described
by a smooth function, the residuals still display some no-
ticeable correlation. In order to account for these correla-
tions we introduce another case, shown in blue in Fig. 13.
Here, we include only the nearest-neighbor correlations.
When we fit the data with n = 10 to this case, we obtain
χ2 = 64. As this case includes the maximum of corre-
lations that can be reconciled with a statistically sound
description of the data, we regard this case as the data
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χ2 64 62 127 16

No. data 63 63 63 75

TABLE IV. Total χ2 for fits to the ALEPH data while various
correlations were included. The first three entries refer to the
2013 data of Ref. [98] while the last column refers to the 2005
data of Ref. [47].

FIG. 14. Older ALEPH data [47], pertinent fit, and normal-
ized fit residuals. These data are not used in the analysis. See
Fig. 10 for notation.

set for the analysis described in the main text.
We also apply this phenomenological test to the data

as they were originally published in Ref. [47]. These data,
shown in Fig. 14, have since been updated in Ref. [98].
We find that the older data are considerably over-fit for
n = 10 with a total χ2 of 16 as shown in Table IV. We
therefore discard these data.

In summary, all three fits shown in Fig. 13 are quite
similar, even for the residuals. This implies that the best-
fit parameters for each case will be quite similar regard-
less of which correlations are included. Thus, our choice
of data (nearest-neighbor correlations only) affects the
value of our χ2, but it does not have much effect on the
best values for pole position or residues.
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