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The quark chromo-electric dipole (qCEDM) operator is a CP-violating operator describing, at
hadronic energies, beyond the standard model contributions to the electric dipole moment of parti-
cles with non-zero spin. In this paper we define renormalized dipole operators in a regularization-
independent scheme using the gradient flow and we perform the matching at one loop in pertur-
bation theory to renormalized operators of the same and lower dimension in the more familiar MS
scheme. We also determine the matching coefficients for the quark chromo-magnetic dipole oper-
ator (qCMDM), which contributes for example to matrix elements relevant to CP-violating and
CP-conserving kaon decays. The calculation provides a basis for future lattice-QCD computations
of hadronic matrix elements of the qCEDM and qCMDM operators.

I. INTRODUCTION

The baryon asymmetry of the universe cannot be explained by known sources of charge (C) and parity (P) violation
in the standard model of particle physics [1–4]. CP violation in the standard model occurs through the Cabibbo–
Kobayashi–Maskawa (CKM) quark-mixing matrix, the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) neutrino mixing
matrix, and, potentially, could be generated by the quantum chromodyamics (QCD) θ term. Electric dipole moments
(EDMs) capture the distribution of positive and negative charge within different systems, and the existence of a
permanent EDM in neutral particles, such as the neutron, can only occur in the presence of CP-violating interactions.
Experimental constraints on the neutron EDM, dn = (0.0 ± 1.1stat ± 0.2sys) × 10−26 e cm at the 90% confidence
level [5], leave open the possibility of unknown sources of CP violation several orders of magnitude larger than those
generated by the standard model [6–9]. For a full review of EDM searches in a wide range of systems, see Ref. [10].

Under the assumption that these unknown sources of CP violation are due to heavy physics beyond the standard
model (BSM), their indirect low-energy effects can be described in terms of effective field theories. Above the elec-
troweak scale, this is the SMEFT (provided that electroweak symmetry is linearly realized) [11, 12], while below the
weak scale one should use the LEFT, which is invariant under the SU(3)c ×U(1)em gauge group. The complete run-
ning and matching in these effective theories up to dimension six has been worked out to one-loop accuracy [13–18].
At hadronic scales, the CP-violating BSM effects are described by higher-dimensional operators within the LEFT.
The impact of these operators on the neutron EDM must be disentangled from the standard model contributions
generated by the CKM matrix and the QCD θ term. One therefore needs to determine individual contributions to the
nucleon EDM and to CP-odd pion-nucleon and nucleon-nucleon couplings, which determine nuclear EDM and Schiff
moments, at hadronic energy scales. Experimental bounds on the neutron EDM are expected to improve by an order
of magnitude with the next generation of experiments [19]. Current determinations of the relevant hadronic matrix
elements are primarily based on model estimates from QCD sum rules [20–25] or from chiral perturbation theory [26–
30], which have large, O(50% − 100%), uncertainties and preclude rigorous reduction of systematic uncertainties in
theoretical predictions. First principles’ calculations of the hadronic matrix elements, with controlled uncertainties,
are required to exploit fully the improved bounds from upcoming experiments. Lattice QCD, in which QCD is formu-
lated on a Euclidean hypercubic spacetime lattice and correlation functions are determined stochastically, provides
the best approach for first principles’ calculations of QCD at hadronic energies.
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Lattice calculations of the matrix elements relevant to the nucleon EDM are challenging, for two reasons. First,
in Euclidean space the QCD θ term is complex, which prevents the efficient use of Monte Carlo methods. This
difficulty can be circumvented by expanding the Euclidean action in θ, justified by the current experimental bound
on the neutron EDM, which implies θ ∼ 10−10. This approach is theoretically well-defined, but faces a challenging
signal-to-noise problem associated with the insertion of the θ term in correlation functions on the lattice. This
problem can be mitigated through signal-to-noise improved ratios [31]. Second, renormalization of higher-dimensional
composite operators on the lattice is difficult. For example, the quark chromo-EDM (qCEDM) operator mixes under
renormalization with the lower-dimensional pseudoscalar density. On the lattice, this mixing is proportional to an
inverse power of the lattice spacing and diverges in the continuum limit. This power-divergent mixing must be removed
nonperturbatively to extract meaningful results. For a recent review on lattice-QCD results for the nucleon EDM,
see Ref. [32].

We proposed applying the gradient flow [33, 34] to renormalize both the QCD θ term and the BSM CP-violating
operators, such as the qCEDM [35]. At finite flow time the qCEDM is multiplicatively renormalizable, but to relate
this operator to physical matrix elements, one must perform an operator-product expansion at short flow times [36].
We studied the leading-order short flow-time expansion of the qCEDM and the CP-odd three-gluon operator at one-
loop in perturbation theory in Ref. [37] and nonperturbatively in Ref. [38], and our nonperturbative implementation
of the hadronic matrix elements required for this program is ongoing [31, 35, 39–42]. Alternative nonperturbative
methods for higher-dimensional operators are regularization-independent momentum-subtraction schemes, which have
been defined for the qCEDM [43] and the three-gluon operator [44], as well as coordinate-space methods [45]. The
mixing of these operators under renormalization was studied first in [46–48], then calculated at two loops for the
qCEDM in [49], and at two and three loops for the three-gluon operator in [50].

Power-divergent mixing with lower-dimensional operators hampers the renormalization of the quark chromo-
magnetic dipole moment (qCMDM) as well [51]. The flavor-changing qCEDM and qCMDM operators describe
low-energy effects of heavy SM and BSM particles on flavor observables, such as the CP-conserving long-distance

contributions to K0 −K0
mixing [52], direct CP-violation in hyperon decays [53], ε′/ε and the ∆I = 1/2, K → ππ

transition [54], or the CP-violating part of the K → 3π decay [52]. Furthermore, matrix elements of the flavor-
conserving qCMDM can be used to extract CP-odd pion-nucleon couplings [55], which contribute to nuclear Schiff

moments. A first lattice determination of the matrix element relevant to K0 − K
0

mixing has been obtained by
ETMC using twisted mass fermions [56]. Here we propose to use the same strategy adopted for the qCEDM, to
renormalize the qCMDM operator with the gradient flow.

In [37] we determined the leading contribution to the short flow-time expansion of the qCEDM, which is generated
by the dimension-three pseudoscalar operator and the dimension-four topological charge density, at one loop in
perturbation theory. Here, we extend this calculation to determine the dimension-five contributions to the short flow-
time expansions of the qCEDM, and the related qCMDM operator. We include the complete set of operators up to
dimension five that mix with qCEDM and qCMDM operators and extract the corresponding short flow-time expansion
coefficients at one loop in perturbation theory. These coefficients are necessary to relate the hadronic matrix elements
of the qCEDM and qCMDM operators, determined nonperturbatively from lattice QCD, to their counterparts in the
MS scheme, which provide inputs into the phenomenological analysis of nucleon EDM measurements.

We organize the rest of this paper as follows. In Sec. II, we introduce the gradient flow and notation relevant for
our discussion of the short flow-time expansion in Sec. III. We then determine the matching coefficients to the MS
scheme in Sec. IV. We summarize our results and conclusions in Sec. VI.

II. GRADIENT FLOW

The gradient flow introduces an additional coordinate t of mass dimension [t] = −2, the so-called flow time (not
to be confused with the Minkowski time coordinate—in the following, t refers to the flow time) [33, 34]. Euclidean
QCD (see App. A and B for our conventions) can be regarded as the boundary theory of a D + 1-dimensional field
theory at t = 0 [57]. Integrating out suitable Lagrange-multiplier fields in the D + 1-dimensional action is equivalent
to imposing the following gradient-flow equations on gauge fields, Bµ, and quark fields, χ, χ, in D dimensions:

∂tBµ = DνGνµ + α0Dµ∂νBν ,

∂tχ = DµDµχ− α0(∂µBµ)χ ,

∂tχ̄ = χ̄
←−
Dµ
←−
Dµ + α0χ̄∂µBµ , (1)
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where1

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ] , (2)

together with the boundary conditions

Bµ(x; t = 0) = Gµ(x) ,

χ(x; t = 0) = ψ(x) ,

χ̄(x; t = 0) = ψ̄(x) . (3)

Here α0 is a free (gauge) parameter, required for perturbative calculations.
The (differential) flow equations of (1), together with boundary conditions, can be rewritten as integral equations [57]

Bµ(x; t) =

∫
dDy

[
Kµν(x− y; t)Gν(y) +

∫ t

0

dsKµν(x− y; t− s)Rν(y; s)

]
,

χ(x; t) =

∫
dDy

[
J(x− y; t)ψ(y) +

∫ t

0

dsJ(x− y; t− s)∆′χ(y; s)

]
,

χ̄(x; t) =

∫
dDy

[
ψ̄(y)J̄(x− y; t) +

∫ t

0

dsχ̄(y; s)
←−
∆ ′J̄(x− y; t− s)

]
, (4)

where the heat kernels are

Kµν(x; t) =

∫
dDp

(2π)D
eip·x

p2

[
(δµνp

2 − pµpν)e−tp
2

+ pµpνe
−α0tp

2
]
,

J(x; t) = J̄(x; t) =

∫
dDp

(2π)D
eip·xe−tp

2

=
e−

x2

4t

(4πt)D/2
, (5)

and the interaction terms are given by

Rµ = 2[Bν , ∂νBµ]− [Bν , ∂µBν ] + (α0 − 1)[Bµ, ∂νBν ] + [Bν , [Bν , Bµ]] ,

∆′ = (1− α0)(∂νBν) + 2Bν∂ν +BνBν ,
←−
∆ ′ = −(1− α0)(∂νBν)− 2

←−
∂ νBν +BνBν . (6)

The flow equations in integral form (4) can be solved iteratively, which corresponds to an expansion in powers of
g0 upon rescaling the gauge field Bµ 7→ g0Bµ. This allows one to express the flowed (bulk) fields in terms of the
fundamental fields at the boundary t = 0. From the expansion of the kernel, one obtains propagator-like structures
called flow lines. The interaction terms in (6) induce interaction vertices with three and four fields, the flow vertices.
Our conventions for the Feynman rules are given in App. B.

III. SHORT FLOW-TIME EXPANSION

In the following, we consider Green’s functions with operator insertions at finite flow time t. The goal is to extract
the relation between renormalized flowed operators and MS operators at zero flow time:

ORi (t) =
∑
j

cij(t, µ)OMS
j (µ) . (7)

This “short flow-time expansion” (SFTE) is an operator-product expansion (OPE) that is valid at small flow time t,
where the hard scale is proportional to t−1/2. We will take into account operators up to dimension five on both sides
of the matching equation (7).

To extract the flow-time dependent coefficients cij(t, µ), we consider insertions of the operators ORi (t) in off-shell
amputated one-particle irreducible (1PI) Green’s functions. We work in the massless limit and consider the matching
to one-loop accuracy.

1 We use the same symbol for the flowed field-strength tensor as for the field-strength tensor at zero flow time.
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The relation between amputated Green’s functions of the bare operators and renormalized Green’s functions is
schematically given by〈(

ψ(0)
)nψ (

ψ
(0)
)nψ (

G(0)
µ

)nG
O(0)
i [ψ(0), ψ

(0)
, G(0)]

〉amp

= Z
−(nψ+nψ)/2
ψ Z

−nG/2
G ZMS

ij

〈
(ψ)

nψ
(
ψ
)nψ (Gµ)

nG OMS
j [ψ,ψ,G]

〉amp

= Z
−(nψ+nψ)/2
ψ Z

−nG/2
G ZMS

ij c−1jk

〈
(ψ)

nψ
(
ψ
)nψ (Gµ)

nG ORk [χ, χ,B]
〉amp

= ZMS
ij c−1jk Z

−n/2
χ

〈(
ψ(0)

)nψ (
ψ
(0)
)nψ (

G(0)
µ

)nG
Otk[χ(0), χ(0), B(0)]

〉amp

, (8)

where we allow a generic number of nψ external fermion, nψ antifermion, and nG gauge fields at zero flow time.2

Using standard procedures we renormalize each field with the corresponding Z−1/2 renormalization factor and denote

with ZMS
ij the matrix renormalizing O(0)

i in the MS scheme. The renormalization of the bare flowed operators Otk is
diagonal and only requires the renormalization of the bare parameters of the QCD theory (coupling and quark masses)

and the flowed quark fields with a factor Z
−n/2
χ , where n denotes the total number of fermion and antifermion fields

in the operator Otk. Since the external states are at zero flow time, the product of the wave-function renormalization
factors cancels in the matching equation:3

cij
(
ZMS
jk

)−1 〈(
ψ(0)

)nψ (
ψ
(0)
)nψ (

G(0)
µ

)nG
O(0)
k [ψ(0), ψ

(0)
, G(0)]

〉amp

= Z−n/2χ

〈(
ψ(0)

)nψ (
ψ
(0)
)nψ (

G(0)
µ

)nG
Oti [χ(0), χ(0), B(0)]

〉amp

.

(9)

IV. RENORMALIZATION AND MATCHING COEFFICIENTS

A. Dirac algebra

We perform the calculation both in the ’t Hooft–Veltman (HV) scheme [58, 59] as well as in the scheme with
anticommuting γ5 (NDR). For the CP -odd operators, we define the following Dirac structures:

σ̃HV
µν = −1

2
εµναβσαβ , σ̃NDR

µν = σµνγ5 , (10)

where as usual σµν = i
2 [γµ, γν ]. As the Levi-Civita symbol is a purely four-dimensional object, in the HV scheme σ̃µν

only contains four-dimensional components. In order to compare the HV and NDR schemes, we introduce

δHV =

{
1 in the HV scheme,
0 in the NDR scheme.

(11)

B. Quark-field renormalization

We express the SFTE in terms of operators in the MS scheme. Therefore, we renormalize the parameters of the
boundary theory in the MS scheme and define the renormalized coupling as

g0 = Zggµ
ε . (12)

One can easily switch to the MS scheme by replacing the MS scale µ with the MS scale µ̄ according to

µ = µ̄
eγE/2

(4π)1/2
. (13)

2 In Sec. IV D we also use an external photon field to study the mixing of the quark chromo-EDM with the quark EDM operator.
3 The external-leg amputation happens at zero flow time, which can leave an exponential factor as a remainder if the external legs connect

to a vertex at finite flow time.
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While the flow equations regulate most of the UV singularities, the fermion fields (as well as the gauge coupling
and quark mass) require renormalization. In the MS scheme, we define renormalized flowed fermion fields according
to

χ(0)(x; t) = Z1/2
χ χ(x; t) , χ̄(0)(x; t) = Z1/2

χ χ̄(x; t) , (14)

where the superscript (0) marks the bare fields and

Zχ = 1− αsCF
4π

3

ε
. (15)

The quark-field renormalization contributes to the two-point function of renormalized quark fields as S̃tree(p, s, t) =

Z−1χ S̃(p, s + t), where the propagator is defined in (B9). Summing tree-level and one-loop diagrams leads to the
following finite result for the two-point function in the massless limit:

S̃1-loop(p, s, t) =

∫
dDxe−ip·x〈χ(x; t)χ̄(0; s)〉

∣∣∣
1-loop

= S̃(p, s+ t)

(
1− αsCF

4π

[
ξ log

(
4πµ2

p2

)
+ 1− ξγE − ξ log(α0)

+
3− ξ

2
log(8πµ2t) +

3− ξ
2

log(8πµ2s) +O(p2t, p2s)

])
.

(16)

Note that the finite part of the two-point function depends on the gauge parameters, while the flowed quark-field
renormalization Zχ in (15) is independent of ξ and α0.

To make contact with lattice calculations, it is necessary to implement a renormalization scheme that is regulariza-
tion independent. This is achieved by imposing the following regularization-independent renormalization condition
on a gauge-invariant composite operator (for one quark flavor) [60, 61]

〈0|˚̄χ(x; t)
←→
/D χ̊(x; t)|0〉 = − 2Nc

(4π)2t2
, (17)

where
←→
D µ = Dµ −

←−
Dµ. In dimensional regularization, this implies an additional finite renormalization compared to

MS. The “ringed fields” are related to the MS renormalized fields by

χ(x; t) = (8πt)ε/2ζ1/2χ χ̊(x; t) , χ̄(x; t) = (8πt)ε/2ζ1/2χ
˚̄χ(x; t) . (18)

The prefactors (8πt)ε/2 are introduced in dimensional regularization because the renormalization condition fixes the
dimension of the fields ˚̄χ and χ̊ to be equal to 3/2 instead of (D − 1)/2.

The next-to-leading order (NLO) contribution to the vacuum expectation value in (17) is obtained from vacuum
two-loop diagrams [61], leading to the following finite renormalization ζχ:

ζχ = 1− αsCF
4π

(
3 log

(
8πµ2t

)
− log(432)

)
. (19)

We have performed the calculation of ζχ for generic ξ and α0, confirming its gauge-parameter independence.

C. Expanding loops

The matching coefficients cij(t, µ) only depend on the flow-time t and the MS renormalization scale µ and can be
expanded in the renormalized MS coupling αs = g2/(4π) as

cij(t, µ) = δij +
αs(µ)

4π
c
(1)
ij (t, µ) +O(α2

s) . (20)

The coefficients c
(1)
ij are independent of the soft scales—we include powers of the quark mass explicitly in the operators.

When solving the matching equation for the coefficients c
(1)
ij , the non-analytic dependence on the soft scales cancels

between the MS and flowed loop diagrams. Therefore, one can apply standard techniques for matching calculations [62–
64] and expand the integrands of the loop integrals in all scales apart from the flow time t, before integration: although
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this alters the analytic structure of the loop integrals and distorts the infrared (IR) structure, these IR modifications
drop out in the difference between MS and flowed loop diagrams. Expanding the loop integrals leads to scaleless
integrals for the operator insertions on the LHS of (9), which vanish in dimensional regularization, hence ultraviolet
(UV) and IR singularities of the expanded loops are identical. Insertions of the flowed operators are free from UV
singularities (apart from the renormalization of the gauge coupling and the quark-field renormalization Zχ). The
IR singularities of the expanded loop integrals on the RHS of (9) exactly match the UV MS counterterms. The
finite matching coefficients cij can then be most easily obtained from the expanded integrals of insertions of the
flowed operators, which are single-scale integrals and straightforward to calculate. Even the inclusion of generic gauge
parameters ξ and α0 does not lead to major complications in the calculation of the integrals, hence we perform all
calculations for generic ξ and α0, which provides a useful check: the coefficients cij of gauge-invariant operators in
the SFTE need to be independent of ξ and α0.

When expanding the loop integrands in all soft scales before performing the loop integrals, one potential pitfall
arises in the calculation due to the fact that the ringed fields are renormalized through the condition (17) and not in
the MS scheme, as we will explain in the following.

In the dimensionally regularized theory, we can relate both the renormalized MS and flowed operators to the bare
operators at zero flow time by

O(0)
i = ZMS

ik (µ)OMS
k (µ) = µ̃−nεZRik(t, µ̃)ORk (t) , (21)

where the relation for the flowed operators involves the short flow-time OPE and hence an infinite sum and where
we assumed for notational simplicity that the operators contain in total n fermion and antifermion fields. We have
introduced an arbitrary mass scale µ̃, which compensates the mismatch of mass dimension between the bare operators
and the flowed operators in terms of ringed fields. If we choose µ̃ = (8πt)−1/2, at one loop the renormalization factors
ZRik can be written as

ZRik(t, (8πt)−1/2) = δik +
αs
4π

(
∆ik

ε
+ ∆R

ik

)
+O(αsε, α

2
s) . (22)

For a generic choice of µ̃, this changes to

ZRik(t, µ̃) = δik

[
1 +

nε

2
log
(
8πµ̃2t

)]
+
αs
4π

(
∆ik

ε
+

∆ikn

2
log
(
8πµ̃2t

)
+ ∆R

ik

)
+O(ε2, αsε, α

2
s) , (23)

where we have included the O(α0
s) evanescent structure linear in ε. The matching coefficients follow from (21):

ORi (t) = µ̃nε
[
(ZR)−1ij (t, µ̃)ZMS

jk (µ)
]
OMS
k (µ) = µ̃nεcik(t, µ, µ̃)OMS

k (µ) , (24)

which is the continuation of (7) to D dimensions. The coefficient cik(t, µ, µ̃) depends on µ̃ through evanescent terms.
We are only interested in the limit ε→ 0:

cik(t, µ) = lim
ε→0

cik(t, µ, µ̃) = lim
ε→0

[
(ZR)−1ij (t, µ̃)ZMS

jk (µ)
]

= lim
ε→0

{(
δij

[
1− nε

2
log
(
8πµ̃2t

)]
− αs

4π

(
∆ij

ε
− ∆ijn

2
log
(
8πµ̃2t

)
+ ∆R

ij

))
×
[
δjk +

αs
4π

∆jk

ε

]}
+O(α2

s)

= lim
ε→0

{
δik

[
1− nε

2
log
(
8πµ̃2t

)]
− αs

4π
∆R
ik

}
+O(α2

s)

= δik −
αs
4π

∆R
ik +O(α2

s) = (8πµ̃2t)nε/2cik(t, µ, µ̃) , (25)

which is indeed independent of µ̃, but only if the linearly evanescent O(α0
s) term is correctly taken into account.

Including the finite renormalization and the factor (8πt)ε/2 that compensates the mass dimension of the ringed
fields in the dimensionally regularized theory, the matching equation (9) reads

cij(t, µ, µ̃)
(
ZMS
jk

)−1
Z

(nψ+nψ)/2

ψ Z
nG/2
G

〈(
ψ(0)

)nψ (
ψ
(0)
)nψ (

G(0)
µ

)nG
O(0)
k [ψ(0), ψ

(0)
, G(0)]

〉amp

= (8πµ̃2t)−nε/2Z
(nψ+nψ)/2

ψ Z
nG/2
G Z−n/2χ ζ−n/2χ

〈(
ψ(0)

)nψ (
ψ
(0)
)nψ (

G(0)
µ

)nG
Oti [χ(0), χ(0), B(0)]

〉amp

. (26)
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We have kept all renormalization factors in the equation, so that both sides are UV finite. In particular, the factor
(8πµ̃2t)−nε/2 multiplies a UV finite quantity. Its evanescent component matches the evanescent term in cij(t, µ, µ̃).
Therefore, the matching equation can be simplified to

cij(t, µ)
(
ZMS
jk

)−1
Z

(nψ+nψ)/2

ψ Z
nG/2
G

〈(
ψ(0)

)nψ (
ψ
(0)
)nψ (

G(0)
µ

)nG
O(0)
k [ψ(0), ψ

(0)
, G(0)]

〉amp

= Z
(nψ+nψ)/2

ψ Z
nG/2
G Z−n/2χ ζ−n/2χ

〈(
ψ(0)

)nψ (
ψ
(0)
)nψ (

G(0)
µ

)nG
Oti [χ(0), χ(0), B(0)]

〉amp

. (27)

At this stage, the integrands on both side of the equation can be expanded in the soft scales before performing the
loop integrals. The loops on the left-hand side are transformed into scaleless integrals, where UV and IR divergences
are identical. The same IR divergences are generated on both sides of the matching equation, so that they cancel
when solving for cij . However, since after the expansion both sides of the equation contain divergences, it is important

that evanescent terms on both sides are consistently taken into account and that the factor (8πµ̃2t)−nε/2 is cancelled
by the evanescent part of cij(t, µ, µ̃).

D. Chromo-EDM

We define the flowed qCEDM operator in terms of renormalized (ringed) fields as

ORCE(x; t) = ˚̄χ(x; t)σ̃µνt
aχ̊(x; t)Gaµν(x; t) . (28)

We want to extract the coefficients of the short flow-time OPE up to dimension five:

ORCE(x; t) = cP (t, µ)OMS
P (x;µ) + cm2P (t, µ)OMS

m2P (x;µ) + cmθ(t, µ)OMS
mθ (x;µ)

+ cE(t, µ)OMS
E (x;µ) + cCE(t, µ)OMS

CE(x;µ) + . . . , (29)

where the MS operators are minimally subtracted versions of the following operators:

OP (x;µ) = ψ̄(x)γ5ψ(x) ,

Om2P (x;µ) = m2ψ̄(x)γ5ψ(x) ,

Omθ(x;µ) = µ−2εm tr[GµνG̃µν ] ,

OE(x;µ) = ψ̄(x)σ̃µνFµν(x)ψ(x) ,

OCE(x;µ) = ψ̄(x)σ̃µνt
aψ(x)Gaµν(x) , (30)

in terms or renormalized fields, with Fµν the field-strength tensor of the external U(1) gauge field. The dual gluonic

field-strength tensor is defined as G̃µν = 1
2εµνλσGλσ. The five coefficients can be extracted by computing insertions

of the flowed operator into suitable 1PI Green’s functions (including wave-function renormalization).
The mixing with the pseudoscalar density is obtained from the 1PI matrix element with external quark-antiquark

states (we can also insert momentum −q into the operator in order to obtain the mixing with total-derivative opera-
tors):∫

dDxe−iq·x〈ψ(k)|ORCE(x; t)|ψ(p)〉
∣∣
amp

= (2π)Dδ(D)(p− k − q)〈ψ(k)|ORCE(0; t)|ψ(p)〉
∣∣
amp

=: (2π)Dδ(D)(p− k − q)M(p, k) . (31)

In total, one obtains [37]

cP (t, µ) =
αsCF

4π

6i

t
,

cm2P (t, µ) =
αsCF

4π
i

[
12 log(8πµ2t) +

1

2
(29 + 24δHV)

]
, (32)

where cm2P is a new result.
Due to chiral symmetry, mixing with the QCD θ term requires an insertion of a mass factor, which we include in

the operator Omθ. The SFTE coefficient can be extracted by calculating the Green’s function∫
dDxe−iq·x〈g(k)|ORCE(x; t)|g(p)〉

∣∣
amp

= (2π)Dδ(D)(p− k − q)〈g(k)|ORCE(0; t)|g(p)〉
∣∣
amp

=: (2π)Dδ(D)(p− k − q)εaµ(p)εbν(k)∗Mab
µν(p, k) , (33)
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where momentum −q is inserted into the operator [65]. The loop calculation leads to γ5-odd Dirac traces that are
not well-defined in NDR. The result in the HV scheme reads [37]

cmθ(t, µ) = − i

4π2

[
1 + log(8πµ2t)

]
. (34)

In order to extract the mixing with the qEDM operator, we consider a quark-antiquark matrix element with an
external U(1) field:∫

dDxe−iq·x〈ψ(k)|ORCE(x; t)|ψ(p)γ(r)〉
∣∣
amp

= (2π)Dδ(D)(p+ r − k − q)〈ψ(k)|ORCE(0; t)|ψ(p)γ(r)〉
∣∣
amp

=: (2π)Dδ(D)(p+ r − k − q)εµ(r)Mµ(p, k, r) . (35)

Only two diagrams contribute. As we are not interested in total derivative operators, we can send q → 0 and obtain
for the diagrams expanded in all soft scales:

+

Mµ(p, k, r) =
αsCF

4π

[(
1

ε
+ log(8πµ2t)

)
(6γ5(kµ + pµ)− 2iσ̃µνrν)

+

(
1

2
+ 6δHV

)
γ5(kµ + pµ)−

(
11

2
− 2δHV

)
iσ̃µνrν

]
. (36)

Up to the contribution of equation-of-motion operators, this results in

cE(t, µ) =
αsCF

4π

[
4 log(8πµ2t) + 3 + 2δHV

]
. (37)

There is no tree-level contribution to this coefficient, so at the one-loop level it is immaterial whether the flowed
fermion fields are renormalized in MS or through the ringed fermion renormalization condition in Eq. (17).

Finally, the coefficient of the MS qCEDM operator is obtained from the matrix element with external quark-
antiquark-gluon states:∫

dDxe−iq·x〈ψ(k)|ORCE(x; t)|ψ(p)g(r)〉
∣∣
amp

= (2π)Dδ(D)(p+ r − k − q)〈ψ(k)|ORCE(0; t)|ψ(p)g(r)〉
∣∣
amp

=: (2π)Dδ(D)(p+ r − k − q)εaµ(r)Ma
µ(p, k, r) . (38)

The list of Feynman diagrams is shown in App. C. For ξ = α0 = 1, several diagrams are of second order in the soft
scales and can be discarded, but they contribute in the calculation with generic gauge parameters.

In total, we obtain for q = 0 (i.e., without additional momentum insertion into the operator)

Ma
µ(p, k, r) = −2iσ̃µνrνt

aZ−1χ ζ−1χ +
αst

a

4π

[
− 3

4

(
1

ε
+ log(8πµ2t)

)
(CA − 8CF )γ5(kµ + pµ)

+
i

4

(
1

ε
+ log(8πµ2t)

)
(13CA + 8CF )σ̃µνrν

− 1

8

(
(5 + 4δHV)CA + (68− 48δHV)CF

)
γ5(kµ + pµ)

+
i

8

(
(27 + 36δHV)CA − (44− 16δHV)CF

)
σ̃µνrν

]
. (39)

Up to the contribution of equation-of-motion operators, this results in the following matching coefficient, including

8



the finite renormalization imposed by (17):

cCE(t, µ) = ζ−1χ +
αs
4π

[
2(CF − CA) log(8πµ2t)− 1

2

(
(4 + 5δHV)CA + (3− 4δHV)CF

)]
= 1 +

αs
4π

[
(5CF − 2CA) log(8πµ2t)

− 1

2

(
(4 + 5δHV)CA + (3− 4δHV)CF

)
− log(432)CF

]
.

(40)

The divergences of the expanded flowed diagrams cancel in the matching equations against the counterterms on the
MS side, which are determined by the anomalous dimension of the qCEDM operator. We have again checked that
the result for the matching coefficient is independent of the gauge parameters ξ and α0.

E. Chromo-MDM

Similarly to the qCEDM operator, we also define the CP -even flowed qCMDM operator in terms of renormalized
(ringed) fields as

ORCM (x; t) = ˚̄χ(x; t)σµνt
aχ̊(x; t)Gaµν(x; t) . (41)

Its short flow-time OPE up to dimension five reads

ORCM (x; t) = cm(t, µ)OMS
m (µ) + cm3(t, µ)OMS

m3 (µ) + cm5(t, µ)OMS
m5 (µ)

+ cS(t, µ)OMS
S (x;µ) + cm2S(t, µ)OMS

m2S(x;µ) + cmG(t, µ)OMS
mG(x;µ)

+ cM (t, µ)OMS
M (x;µ) + cCM (t, µ)OMS

CM (x;µ) + . . . , (42)

where the renormalized MS operators are the minimally subtracted versions of

Om(µ) = µ−2εm,

Om3(µ) = µ−2εm3 ,

Om5(µ) = µ−2εm5 ,

OS(x;µ) = ψ̄(x)ψ(x) ,

Om2S(x;µ) = m2ψ̄(x)ψ(x) ,

OmG(x;µ) = µ−2εm tr[GµνGµν ] ,

OM (x;µ) = ψ̄(x)σµνFµν(x)ψ(x) ,

OCM (x;µ) = ψ̄(x)σµνt
aψ(x)Gaµν(x) . (43)

Due to chiral symmetry, mixing with the identity or with the gluon kinetic term requires an insertion of a mass factor,
which we include in the definition of the operators. The mixing with the identity starts at two loops and is determined
by the following vacuum diagrams:

+ + , (44)
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where only the first diagram gives a non-vanishing contribution. The remaining coefficients can be calculated in
analogy to the CP -odd case. The results agree with the CP -odd sector for δHV = 0:

cm(t, µ) = −24iNc
(4π)2

αsCF
4π

1

t2
log

(
4

3

)
,

cm3(t, µ) = −24iNc
(4π)2

αsCF
4π

1

t

[
2 log(8πµ2t) +

1

3
+ 6 log(2)− 3 log(3)

]
,

cm5(t, µ) = −24iNc
(4π)2

αsCF
4π

[
2 log2(8πµ2t) +

37

6
log(8πµ2t) +

π2

6
+

1

2
− 4 log2(2) +

21

2
log(2)

− 21

4
log(3) + 2 log(2) log(3)− Li2

(
3

4

)]
,

cS(t, µ) =
αsCF

4π

6i

t
,

cm2S(t, µ) =
αsCF

4π
i

[
12 log(8πµ2t) +

29

2

]
,

cmG(t, µ) =
i

4π2

[
1 + log(8πµ2t)

]
,

cM (t, µ) =
αsCF

4π

[
4 log(8πµ2t) + 3

]
,

cCM (t, µ) = ζ−1χ +
αs
4π

[
(2CF − 2CA) log(8πµ2t)− 1

2

(
4CA + 3CF

)]
= 1 +

αs
4π

[
(5CF − 2CA) log(8πµ2t)− 1

2

(
4CA + 3CF

)
− log(432)CF

]
. (45)

In the case of the qCMDM, flavor off-diagonal components are also of interest [51, 56], because they can mediate
BSM contributions to K → ππ and ε′/ε. The matching coefficients cS(t, µ), cM (t, µ) and cCM (t, µ) are the same for
flavor diagonal and off-diagonal components, while only the diagonal components contribute to cmG(t, µ), cm, cm3 and
cm5 . For the flavor-changing components of the qCMDM, the factor m2 in Om2S is replaced by m2 7→ (m2

i +m2
f )/2,

with i and f the flavors of initial- and final-state quarks. With this replacement, cm2S is unchanged.

V. SCALE DEPENDENCE OF THE MATCHING COEFFICIENTS

The SFTE connects renormalized operators at positive and vanishing flow time t. Operators at positive flow time
defined in terms of the flowed gauge field and the ringed quark fields are independent of the renormalization scale µ,
which implies that the scale dependence of the matching coefficients has to be cancelled by the renormalization-scale
dependence of the renormalized MS operator at vanishing flow time, up to higher-order corrections in the perturbative
expansion.

In Sec. IV, we have defined appropriately renormalized flowed operators and determined the matching coefficients in
the SFTE. The matching coefficients depend on the matching scale and the flow time in the combination log(8πµ2t).
The additional scale dependence of the coupling αs is beyond the accuracy of the one-loop matching calculation.

For illustration, we numerically evaluate the matching coefficient cCE(t, µ). We take as input the MS coupling at
the weak scale αs(M

2
Z) = 0.1179 [66] and evolve it down to a MS scale µ̄ = 3 GeV using the one-, two-, or three-loop

QCD β-function [67, 68]. This corresponds to a MS scale of

µ0 = 3 GeV× eγE/2

(4π)1/2
≈ 1.13 GeV . (46)

In Fig. 1, we plot the results for the matching coefficient cCE(t, µ0), evaluated for different values of the flow-time t
around

t0 =
1

8πµ2
0

. (47)

The difference to the tree-level result cCE = 1 illustrates the impact of the one-loop corrections, which are larger
in the HV scheme than in NDR. The blue curves show the results for αs evaluated at the fixed scale µ0, while the
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FIG. 1: Scale dependence of the matching coefficient cCE . The left (right) plot shows the result in the HV (NDR)
scheme. Detailed explanations are given in the main text.

red curves show the result for αs evaluated at a MS scale µ = (8πt)−1/2. In principle, we could resum the leading
logarithms (αs log(8πµ2t))n in the matching coefficient by solving the renormalization-group equations. However, the
logarithms in the matching are small—for a matching performed at the flow time t0, they vanish. We checked that
the resummation has a small impact in the range of t shown in Fig. 1.

The mild logarithmic t-dependence of the blue curves simply reflects the scale dependence of the MS operators as
dictated by the one-loop anomalous dimensions. The red curves lead to a result that differs from the blue curves by

∆ = (#1)α2
s(µ

2
0) log2(8πµ2

0t) + (#2)α2
s(µ

2
0) log(8πµ2

0t) +O(α3
s) , (48)

with constant coefficients #i and where the subleading logarithm dominates numerically and is beyond the accuracy
of our calculation. We take the variation in the range t ∈ [t0/4, 4t0] as an estimate of genuine O(α2

s) corrections,
which require a two-loop matching calculation.

VI. SUMMARY AND OUTLOOK

The next generation of experimental searches for a permanent nucleon electric dipole moment (EDM) will improve
the precision of current constraints by an order of magnitude or more. The neutron EDM offers a unique window
into new sources of charge and parity (CP) violation, generated by physics beyond the standard model of particle
physics. The effects of heavy BSM particles on measurements at hadronic scales can be parametrized by effective,
higher-dimensional CP-violating operators. In order to constrain the coefficients of these effective operators from data
and ultimately obtain constraints on BSM theories, one needs to know the non-perturbative hadronic matrix elements
of the effective operators.

We have calculated the short flow-time expansion coefficients for the quark chromo-EDM and the quark chromo-
MDM operators. We have determined the complete set of one-loop matching coefficients up to dimension five,
extending the work on the leading coefficients in Ref. [37]. These finite one-loop matching corrections enter at next-
to-leading-log accuracy. For the qCMDM operator, we also included the two-loop matching to the identity operator.

This work is part of ongoing efforts to calculate the hadronic matrix elements of CP-violating operators with
lattice QCD by the SymLat collaboration [31, 35, 39, 42] and others [69–75]. Our calculation provides the matching
relations necessary to relate results extracted from lattice QCD to the MS (or MS) scheme, which is the one used
in perturbative effective-field theory calculations. They are important to obtain robust constraints on BSM operator
coefficients from the phenomenological analysis of experimental data. In addition, the perturbative calculation of the
short flow-time coefficients will help to constrain the nonperturbative determination of the matching coefficient, first
carried out in [38], by constraining it in the weak-coupling regime.
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Appendix A: Conventions

1. SU(3)

We use traceless and anti-Hermitian SU(3) generators ta,

ta = −iλ
a

2
, (A1)

where λa are the Gell-Mann matrices. The generators fulfill

[ta, tb] = fabctc , {ta, tb} = −1

3
δab − idabctc , tr[tatb] = −1

2
δab , tata = −CF . (A2)

2. Dirac algebra and dimensional regularization

We use the Dirac algebra in D = 4− 2ε Euclidean dimensions either in the HV or NDR scheme:

{γµ, γν} = 2δµν . (A3)

The Dirac matrices are Hermitian, γ†µ = γµ and fulfill

γµγµ = δµµ = D . (A4)

In the HV scheme, we decompose the metric tensor into a part projecting onto 4 and −2ε dimensions, respectively,

δµν = δ̄µν + δ̂µν , (A5)

satisfying

δ̄µν δ̄νλ = δ̄µλ , δ̂µν δ̂νλ = δ̂µλ , δ̄µν δ̂νλ = 0 , δ̄µν δ̄νµ = 4 , δ̂µν δ̂νµ = −2ε . (A6)

The projections of gamma matrices (or four-vectors in general) are defined as

γ̄µ = δ̄µνγν , γ̂µ = δ̂µνγν . (A7)

The fifth gamma matrix is defined as

γ5 =
1

4!
εµνλσγµγνγλγσ = γ1γ2γ3γ4 , (A8)

with the purely four-dimensional antisymmetric Levi-Civita tensor, ε1234 = +1. The fifth gamma matrix is Hermitian,

γ†5 = γ5, it anticommutes with the four-dimensional gamma matrices, and it commutes with the gamma matrices in
the −2ε-dimensional subspace:

{γ5, γ̄µ} = [γ5, γ̂µ] = 0 . (A9)

The HV scheme is fully consistent and since QCD is a vector theory, spurious anomalies that arise in chiral gauge
theories are absent in the present context (as long as we only consider single-operator insertions).

In the NDR scheme, γ5 is assumed to anticommute with all Dirac matrices in D dimensions.
In four dimensions, the Dirac matrices fulfill the Chisholm identity

γ̄αγ̄β γ̄γ = γ̄αδ̄βγ + γ̄γ δ̄αβ − γ̄β δ̄αγ − γ̄µγ5εαβγµ . (A10)
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Appendix B: Feynman rules

We start from QCD in Euclidean space in D = 4 − 2ε dimensions. We absorb the gauge couplings into the gauge
fields and treat the electromagnetic field as an external static field. The Euclidean QCD Lagrangian is given by

LQCD+GF+gh =
1

4g20
GaµνG

a
µν + ψ̄( /D +m)ψ + LGF + Lgh ,

LGF =
1

2g20ξ
(∂µG

a
µ)2 ,

Lgh = (∂µc̄
a)Dac

µ c
c , (B1)

where the covariant derivative is

Dµ = ∂µ +Gµ +Aµ , Gµ = taGaµ , (B2)

or, when acting on objects in the SU(3) adjoint representation,

Dµ(·) = ∂µ(·) + [Gµ, · ] , Dac
µ = ∂µδ

ac + fabcGbµ . (B3)

The field-strength tensors are related to the commutator of the covariant derivative by

[Dµ, Dν ] = Gµν + Fµν ,

Gµν = ∂µGν − ∂νGµ + [Gµ, Gν ] ,

Fµν = ∂µAν − ∂νAµ . (B4)

The Feynman rules are obtained from the generating functional

ZE [J ] =

∫
DGDψ̄DψDc̄Dc e−SE [J] , (B5)

where the Euclidean action including sources J = {Jaµ , ζ, ζ̄, Na, N̄a} is defined as

SE [J ] =

∫
dDx (LQCD+GF+gh − JaµGaµ − ψ̄ζ − ζ̄ψ − c̄aNa − N̄aca) . (B6)

The standard QCD interaction vertices are

= −γµta ,

= ipµf
abc , (for p outgoing) ,

= − if
abc

g20

(
δµν(p1 − p2)ρ + δνρ(p2 − p3)µ + δµρ(p3 − p1)ν

)
,

(all momenta outgoing) ,

= − 1

g20

(
fadef bce (δµνδρσ − δµρδνσ)

+ facef bde (δµνδρσ − δµσδνρ)

+ fabef cde (δµρδνσ − δµσδνρ)
)
. (B7)
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The leading-order flowed propagators are given by:

t, µ, a = D̃ab
µν(p, s+ t) =

∫
dDxe−ip·xBaµ(x; t)Bbν(0; s)

= g20δ
ab 1

p2

[(
δµν −

pµpν
p2

)
e−(s+t)p

2

+ ξ
pµpν
p2

e−α0(s+t)p
2

]
, (B8)

t, α = S̃αβ(p, s+ t) =

∫
dDxe−ip·xχα(x; t)χ̄β(0; s)

= δαβ
−i/p+m

p2 +m2
e−(s+t)p

2

. (B9)

At second and third order, instead of contracting the fundamental fields, one can reinsert the leading-order solution
of the flow equation into the flow equation itself and replace the gauge field by second- and third-order expressions
in the fields. The kernels of the flow equations then act as another type of “propagators” and the interaction terms
in (6) imply interaction vertices with three and four fields. The same results are obtained by considering the D + 1-
dimensional field theory and calculating contractions with the Lagrange-multiplier fields [76]. We regard the flow-time
integrals as part of the vertices and keep Heaviside step functions in the flow lines:

s, ν, b t, µ, a = δabθ(t− s)
∫
dDxe−ip·xKµν(x; t− s)

= δabθ(t− s) 1

p2

[
(δµνp

2 − pµpν)e−(t−s)p
2

+ pµpνe
−α0(t−s)p2

]
, (B10)

where the adjacent arrow points into the direction of increasing flow time. For the quarks, one obtains

s, β t, α = δαβθ(t− s)
∫
dDxe−ip·xJ(x; t− s) = δαβθ(t− s)e−(t−s)p

2

,

s, β t, α = δαβθ(t− s)
∫
dDxe−ip·xJ̄(x; t− s) = δαβθ(t− s)e−(t−s)p

2

. (B11)

The gauge flow-interaction vertices are easily obtained by considering Green’s functions of three and four fields and
replacing one field by the leading-order solution of the flow equation. The contractions of the fields then lead to one
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flow line and two or three flowed propagators, times the interaction vertex. The vertex rules are given by

= −ifabc
∫ ∞
0

dt
(
δνρ(p2 − p3)µ + 2δµρp3ν − 2δµνp2ρ

+ (α0 − 1)(δµνp3ρ − δµρp2ν)
)
,

(all momenta outgoing) , (B12)

= −
∫ ∞
0

dt
(
fabef cde(δµρδνσ − δµσδρν)

+ facef bde(δµνδρσ − δµσδνρ)

+ fadef bce(δµνδρσ − δµρδνσ)
)
, (B13)

where the dashed adjacent arrows indicate that the line either is a propagator or a flow line, since in more complicated
diagrams the leading-order solution of the flow equation can be reinserted iteratively. The fermionic interaction vertices
are

= −ita
∫ ∞
0

dt
(

(1− α0)p1µ + 2p2µ

)
,

(p1, p2 outgoing) , (B14)

= ita
∫ ∞
0

dt
(

(1− α0)p1µ + 2p2µ

)
,

(p1, p2 outgoing) , (B15)

= δµν{ta, tb}
∫ ∞
0

dt , (B16)

= δµν{ta, tb}
∫ ∞
0

dt . (B17)
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Finally, the vertex rules for insertions of the qCEDM are the following:

= 2itaσ̃µνpν , (for p outgoing) , (B18)

= 2σ̃µνf
abctc . (B19)

The conventions for the vertex rules are chosen so that symmetry factors of loop diagrams match the ones of standard
perturbation theory. Flow lines and propagators need to be distinguished when determining the symmetry factor of
a given topology.

Appendix C: Feynman diagrams

In Fig. 2, we show the list of diagrams that are required to extract the coefficient of the MS cEDM operator in the
SFTE of the flowed cEDM operator. There are 18 additional diagrams, which follow from crossing the quark- and
antiquark legs and inverting the fermion-flow direction. We also do not show the diagrams needed for the calculation
of the quark-field renormalization.
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FIG. 2: Feynman diagrams for the matching calculation of the flowed cEDM operator. We do not show 18
additional diagrams that follow from crossing and inverting the fermion-flow direction. The hatched blob denotes
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lines denote propagators, while lines with an adjacent arrow stand for flow lines. The adjacent arrow points into the

direction of increasing flow time.

[28] E. Mereghetti, J. de Vries, W. Hockings, C. Maekawa, and U. van Kolck, Phys. Lett. B 696, 97 (2011),
[arXiv:1010.4078 [hep-ph]].

[29] J. de Vries, R. Timmermans, E. Mereghetti, and U. van Kolck, Phys. Lett. B 695, 268 (2011), [arXiv:1006.2304 [hep-ph]].
[30] J. de Vries, E. Mereghetti, R. Timmermans, and U. van Kolck, Annals Phys. 338, 50 (2013), [arXiv:1212.0990 [hep-ph]].
[31] J. Dragos, T. Luu, A. Shindler, J. de Vries, and A. Yousif, PoS LATTICE2018, 259 (2019), [arXiv:1809.03487 [hep-lat]].
[32] A. Shindler, Eur. Phys. J. A 57, 128 (2021).
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